1
|
Cappelletti G, Brambilla L, Strizzi S, Limanaqi F, Melzi V, Rizzuti M, Nizzardo M, Saulle I, Trabattoni D, Corti S, Clerici M, Biasin M. iPSC-derived human cortical organoids display profound alterations of cellular homeostasis following SARS-CoV-2 infection and Spike protein exposure. FASEB J 2025; 39:e70396. [PMID: 39950320 PMCID: PMC11826378 DOI: 10.1096/fj.202401604rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/16/2025]
Abstract
COVID-19 commonly leads to respiratory issues, yet numerous patients also exhibit a diverse range of neurological conditions, suggesting a detrimental impact of SARS-CoV-2 or the viral Spike protein on the central nervous system. Nonetheless, the molecular pathway behind neurological pathology and the presumed neurotropism of SARS-CoV-2 remains largely unexplored. We generated human cortical organoids (HCOs) derived from human induced pluripotent stem cells (hiPSC) to assess: (1) the expression of SARS-CoV-2 main entry factors; (2) their vulnerability to SARS-CoV-2 infection; and (3) the impact of SARS-CoV-2 infection and exposure to the Spike protein on their transcriptome. Results proved that (1) HCOs express the main SARS-CoV-2 receptors and co-receptors; (2) HCOs may be productively infected by SARS-CoV-2; (3) the viral particles released by SARS-CoV-2-infected HCOs are able to re-infect another cellular line; and (4) the infection resulted in the activation of apoptotic and stress pathways, along with inflammatory processes. Notably, these effects were recapitulated when HCOs were exposed to the Spike protein alone. The data obtained demonstrate that SARS-CoV-2 likely infects HCOs probably through the binding of ACE2, CD147, and NRP1 entry factors. Furthermore, exposure to the Spike protein alone proved sufficient to disrupt their homeostasis and induce neurotoxic effects, potentially contributing to the onset of long-COVID symptoms.
Collapse
Affiliation(s)
- Gioia Cappelletti
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Lorenzo Brambilla
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Sergio Strizzi
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Fiona Limanaqi
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Valentina Melzi
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Mafalda Rizzuti
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Monica Nizzardo
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Irma Saulle
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
| | - Daria Trabattoni
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| | - Stefania Corti
- Neurology UnitFoundation IRCCS Ca’ Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and Transplantation (DEPT), Dino Ferrari Centre, Neuroscience SectionUniversity of MilanMilanItaly
- Neuromuscular and Rare Diseases Unit, Department of NeuroscienceFondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Mario Clerici
- Department of Pathophysiology and TransplantationUniversity of MilanMilanItaly
- Don C. Gnocchi FoundationIstituto di Ricovero e Cura a Carattere Scientifico (IRCCS) FoundationMilanItaly
| | - Mara Biasin
- Department of Biomedical and Clinical SciencesUniversity of MilanMilanItaly
| |
Collapse
|
2
|
Ribeiro JH, Etlioglu E, Buset J, Janssen A, Puype H, Berden L, Mbouombouo Mfossa AC, De Vos WH, Vermeirssen V, Baatout S, Rajan N, Quintens R. A human-specific, concerted repression of microcephaly genes contributes to radiation-induced growth defects in cortical organoids. iScience 2025; 28:111853. [PMID: 39967878 PMCID: PMC11834077 DOI: 10.1016/j.isci.2025.111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/22/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Prenatal radiation-induced DNA damage poses a significant threat to neurodevelopment, resulting in microcephaly which primarily affects the cerebral cortex. So far, mechanistic studies were done in rodents. Here, we leveraged human cortical organoids to model fetal corticogenesis. Organoids were X-irradiated with moderate or high doses at different time points. Irradiation caused a dose- and time-dependent reduction in organoid size, which was more prominent in younger organoids. This coincided with a delayed and attenuated DNA damage response (DDR) in older organoids. Besides the DDR, radiation induced premature differentiation of neural progenitor cells (NPCs). Our transcriptomic analysis demonstrated a concerted p53-E2F4/DREAM-dependent repression of primary microcephaly genes, which was independently confirmed in cultured human NPCs and neurons. This was a human-specific feature, as it was not observed in mouse embryonic brains or primary NPCs. Thus, human cortical organoids are an excellent model for DNA damage-induced microcephaly and to uncover potentially targetable human-specific pathways.
Collapse
Affiliation(s)
- Jessica Honorato Ribeiro
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Emre Etlioglu
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Jasmine Buset
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Hanne Puype
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Lisa Berden
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
- Laboratory for Neurophysiology, Biomedical Research Institute, Hasselt University, 3500 Hasselt, Belgium
| | | | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, Antwerp Centre for Advanced Microscopy (ACAM), University of Antwerp, 2610 Wilrijk, Belgium
| | - Vanessa Vermeirssen
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
- Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Nicholas Rajan
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| | - Roel Quintens
- Radiobiology Unit, Nuclear Medical Applications Institute, Belgian Nuclear Research Centre (SCK CEN), 2400 Mol, Belgium
| |
Collapse
|
3
|
Charles S, Jackson-Holmes E, Sun G, Zhou Y, Siciliano B, Niu W, Han H, Nikitina A, Kemp ML, Wen Z, Lu H. Non-Invasive Quality Control of Organoid Cultures Using Mesofluidic CSTR Bioreactors and High-Content Imaging. ADVANCED MATERIALS TECHNOLOGIES 2025; 10:2400473. [PMID: 40248044 PMCID: PMC12002419 DOI: 10.1002/admt.202400473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Indexed: 04/19/2025]
Abstract
Human brain organoids produce anatomically relevant cellular structures and recapitulate key aspects of in vivo brain function, which holds great potential to model neurological diseases and screen therapeutics. However, the long growth time of 3D systems complicates the culturing of brain organoids and results in heterogeneity across samples hampering their applications. We developed an integrated platform to enable robust and long-term culturing of 3D brain organoids. We designed a mesofluidic bioreactor device based on a reaction-diffusion scaling theory, which achieves robust media exchange for sufficient nutrient delivery in long-term culture. We integrated this device with longitudinal tracking and machine learning-based classification tools to enable non-invasive quality control of live organoids. This integrated platform allows for sample pre-selection for downstream molecular analysis. Transcriptome analyses of organoids revealed that our mesofluidic bioreactor promoted organoid development while reducing cell death. Our platform thus offers a generalizable tool to establish reproducible culture standards for 3D cellular systems for a variety of applications beyond brain organoids.
Collapse
Affiliation(s)
- Seleipiri Charles
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
| | - Emily Jackson-Holmes
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| | - Gongchen Sun
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| | - Ying Zhou
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, U.S.A
| | - Benjamin Siciliano
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, 615 Michael Street, Atlanta, GA, 30322, U.S.A
| | - Weibo Niu
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, U.S.A
| | - Haejun Han
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
| | - Arina Nikitina
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| | - Melissa L Kemp
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, U.S.A
| | - Hang Lu
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| |
Collapse
|
4
|
Shao Y, Wang J, Jin A, Jiang S, Lei L, Liu L. Biomaterial-assisted organoid technology for disease modeling and drug screening. Mater Today Bio 2025; 30:101438. [PMID: 39866785 PMCID: PMC11757232 DOI: 10.1016/j.mtbio.2024.101438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Developing disease models and screening for effective drugs are key areas of modern medical research. Traditional methodologies frequently fall short in precisely replicating the intricate architecture of bodily tissues and organs. Nevertheless, recent advancements in biomaterial-assisted organoid technology have ushered in a paradigm shift in biomedical research. This innovative approach enables the cultivation of three-dimensional cellular structures in vitro that closely emulate the structural and functional attributes of organs, offering physiologically superior models compared to conventional techniques. The evolution of biomaterials plays a pivotal role in supporting the culture and development of organ tissues, thereby facilitating more accurate disease state modeling and the rigorous evaluation of drug efficacy and safety profiles. In this review, we will explore the roles that various biomaterials play in organoid development, examine the fundamental principles and advantages of utilizing these technologies in constructing disease models, and highlight recent advances and practical applications in drug screening using disease-specific organoid models. Additionally, the challenges and future directions of organoid technology are discussed. Through continued research and innovation, we aim to make remarkable strides in disease treatment and drug development, ultimately enhancing patient quality of life.
Collapse
Affiliation(s)
- Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Juncheng Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Anqi Jin
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shicui Jiang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| |
Collapse
|
5
|
Jagodzik P, Zietkiewicz E, Bukowy-Bieryllo Z. Conservation of OFD1 Protein Motifs: Implications for Discovery of Novel Interactors and the OFD1 Function. Int J Mol Sci 2025; 26:1167. [PMID: 39940934 PMCID: PMC11818881 DOI: 10.3390/ijms26031167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
OFD1 is a protein involved in many cellular processes, including cilia biogenesis, mitotic spindle assembly, translation, autophagy and the repair of double-strand DNA breaks. Despite many potential interactors identified in high-throughput studies, only a few have been directly confirmed with their binding sites identified. We performed an analysis of the evolutionary conservation of the OFD1 sequence in three clades: 80 Tetrapoda, 144 Vertebrata or 26 Animalia species, and identified 59 protein-binding motifs localized in the OFD1 regions conserved in various clades. Our results indicate that OFD1 contains 14 potential post-translational modification (PTM) sites targeted by at least eight protein kinases, seven motifs bound by proteins recognizing phosphorylated aa residues and a binding site for phosphatase 2A. Moreover, OFD1 harbors both a motif that enables its phosphorylation by mitogen-activated protein kinases (MAPKs) and a specific docking site for these proteins. Generally, our results suggest that OFD1 forms a scaffold for interaction with many proteins and is tightly regulated by PTMs and ligands. Future research on OFD1 should focus on the regulation of OFD1 function and localization.
Collapse
Affiliation(s)
| | | | - Zuzanna Bukowy-Bieryllo
- Institute of Human Genetics Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (P.J.); (E.Z.)
| |
Collapse
|
6
|
Pagliaro A, Artegiani B, Hendriks D. Emerging approaches to enhance human brain organoid physiology. Trends Cell Biol 2025:S0962-8924(24)00254-X. [PMID: 39826996 DOI: 10.1016/j.tcb.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
Brain organoids are important 3D models for studying human brain development, disease, and evolution. To overcome some of the existing limitations that affect organoid quality, reproducibility, characteristics, and in vivo resemblance, current efforts are directed to improve their physiological relevance by exploring different, yet interconnected, routes. In this review, these approaches and their latest developments are discussed, including stem cell optimization, refining morphogen administration strategies, altering the extracellular matrix (ECM) niche, and manipulating tissue architecture to mimic in vivo brain morphogenesis. Additionally, strategies to increase cell diversity and enhance organoid maturation, such as establishing co-cultures, assembloids, and organoid in vivo xenotransplantation, are reviewed. We explore how these various factors can be tuned and intermingled and speculate on future avenues towards even more physiologically-advanced brain organoids.
Collapse
Affiliation(s)
- Anna Pagliaro
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Delilah Hendriks
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| |
Collapse
|
7
|
Rushforth R, Shamseldin HE, Costantino N, Michaels JR, Sawyer SL, Osmond M, Kurdi W, Abdulwahab F, DiStasio A, Boycott KM, Alkuraya FS, Stottmann RW. NUBP2 deficiency disrupts the centrosome-check point in the brain and causes primary microcephaly. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.16.25320041. [PMID: 39867373 PMCID: PMC11759615 DOI: 10.1101/2025.01.16.25320041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Microcephaly affects 1 in 2,500 babies per year. Primary microcephaly results from aberrant neurogenesis leading to a small brain at birth. This is due to altered patterns of proliferation and/or early differentiation of neurons. Premature differentiation of neurons is associated with defects in the centrosome and/or primary cilia. In this study, we report on the first patients identified with NUBP2 -deficiency and utilize a conditional mouse model to ascertain the molecular mechanisms associated with NUBP2 -deficient primary microcephaly. We identified homozygous NUBP2 variants in these patients who displayed profound primary microcephaly in addition to intrauterine growth restriction, cervical kyphosis, severe contractures of joints, and facial dysmorphia. We then generated a mouse model using Emx1-Cre to ablate Nubp2 from the forebrain. The mice presented with severe microcephaly starting at E18.5. Neurospheres generated from the forebrain of Emx1-Cre; Nubp2 flox/flox conditional deletion mice were used to support the pathogenicity of the patient variants. We show that loss of Nubp2 increases both canonical and non-canonical cell death, but that loss of p53 fails to rescue microcephaly in the mouse model. Examination of neurogenesis in Emx1-Cre; Nubp2 flox/flox mice revealed distinct alterations in proliferation and cellular migration accompanied by supernumerary centrosomes and cilia. We therefore propose that NUBP2 is a novel primary microcephaly-related gene and that the role of Nubp2 in centrosome and cilia regulation is crucial for proper neurogenesis.
Collapse
|
8
|
Constable S, Ott CM, Lemire AL, White K, Xun Y, Lim A, Lippincott-Schwartz J, Mukhopadhyay S. Permanent cilia loss during cerebellar granule cell neurogenesis involves withdrawal of cilia maintenance and centriole capping. Proc Natl Acad Sci U S A 2024; 121:e2408083121. [PMID: 39705308 DOI: 10.1073/pnas.2408083121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/09/2024] [Indexed: 12/22/2024] Open
Abstract
Brain neurons utilize the primary cilium as a privileged compartment to detect and respond to extracellular ligands such as Sonic hedgehog (SHH). However, cilia in cerebellar granule cell (GC) neurons disassemble during differentiation through ultrastructurally unique intermediates, a process we refer to as cilia deconstruction. In addition, mature neurons do not reciliate despite having docked centrioles. Here, we identify molecular changes that accompany cilia deconstruction and centriole docking in GC neurons. We used single cell transcriptomic and immunocytological analyses to compare the transcript levels and subcellular localization of proteins between progenitor, differentiating, and mature GCs. Differentiating GCs lacked transcripts for key activators of premitotic cilia resorption, indicating that cilia disassembly in differentiating cells is distinct from premitotic cilia resorption. Instead, during differentiation, transcripts of many genes required for cilia maintenance-specifically those encoding components of intraflagellar transport, pericentrosomal material, and centriolar satellites-decreased. The abundance of several corresponding proteins in and around cilia and centrosomes also decreased. These changes coincided with downregulation of SHH signaling prior to differentiation, even in a mutant with excessive SHH activation. Finally, mother centrioles in maturing granule neurons recruited the cap complex protein, CEP97. These data suggest that a global, developmentally programmed decrease in cilium maintenance in differentiating GCs mediates cilia deconstruction, while capping of docked mother centrioles prevents cilia regrowth and dysregulated SHH signaling. Our study provides mechanistic insights expanding our understanding of permanent cilia loss in multiple tissue-specific contexts.
Collapse
Affiliation(s)
- Sandii Constable
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Carolyn M Ott
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Andrew L Lemire
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Kevin White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yu Xun
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Amin Lim
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
9
|
Ramani A, Pasquini G, Gerkau NJ, Jadhav V, Vinchure OS, Altinisik N, Windoffer H, Muller S, Rothenaigner I, Lin S, Mariappan A, Rathinam D, Mirsaidi A, Goureau O, Ricci-Vitiani L, D'Alessandris QG, Wollnik B, Muotri A, Freifeld L, Jurisch-Yaksi N, Pallini R, Rose CR, Busskamp V, Gabriel E, Hadian K, Gopalakrishnan J. Reliability of high-quantity human brain organoids for modeling microcephaly, glioma invasion and drug screening. Nat Commun 2024; 15:10703. [PMID: 39702477 PMCID: PMC11659410 DOI: 10.1038/s41467-024-55226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Brain organoids offer unprecedented insights into brain development and disease modeling and hold promise for drug screening. Significant hindrances, however, are morphological and cellular heterogeneity, inter-organoid size differences, cellular stress, and poor reproducibility. Here, we describe a method that reproducibly generates thousands of organoids across multiple hiPSC lines. These High Quantity brain organoids (Hi-Q brain organoids) exhibit reproducible cytoarchitecture, cell diversity, and functionality, are free from ectopically active cellular stress pathways, and allow cryopreservation and re-culturing. Patient-derived Hi-Q brain organoids recapitulate distinct forms of developmental defects: primary microcephaly due to a mutation in CDK5RAP2 and progeria-associated defects of Cockayne syndrome. Hi-Q brain organoids displayed a reproducible invasion pattern for a given patient-derived glioma cell line. This enabled a medium-throughput drug screen to identify Selumetinib and Fulvestrant, as inhibitors of glioma invasion in vivo. Thus, the Hi-Q approach can easily be adapted to reliably harness brain organoids' application for personalized neurogenetic disease modeling and drug discovery.
Collapse
Affiliation(s)
- Anand Ramani
- Institute of Human Genetics, University Hospital, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany
| | - Giovanni Pasquini
- Department of Ophthalmology, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Niklas J Gerkau
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Vaibhav Jadhav
- Institute of Human Genetics, University Hospital, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany
| | - Omkar Suhas Vinchure
- Institute of Human Genetics, University Hospital, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany
| | - Nazlican Altinisik
- Institute of Human Genetics, University Hospital, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany
| | - Hannes Windoffer
- Institute of Human Genetics, University Hospital, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany
| | - Sarah Muller
- Institute of Human Genetics, University Hospital, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany
| | - Ina Rothenaigner
- Research Unit Signaling and Translation, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Sean Lin
- Research Unit Signaling and Translation, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Aruljothi Mariappan
- Institute of Human Genetics, University Hospital, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany
| | - Dhanasekaran Rathinam
- Institute of Human Genetics, University Hospital, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany
| | | | - Olivier Goureau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012, Paris, France
| | - Lucia Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Alysson Muotri
- University of California San Diego, School of Medicine, Department of Pediatrics/Rady Children's Hospital-San Diego, San Diego, USA
- Department of Cellular & Molecular Medicine, Stem Cell Program, La Jolla, CA 92093, MC 0695, USA
| | - Limor Freifeld
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Roberto Pallini
- Department of Neuroscience, Neurosurgery Section, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Volker Busskamp
- Department of Ophthalmology, University Hospital Bonn, Medical Faculty, Bonn, Germany
| | - Elke Gabriel
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Kamyar Hadian
- Research Unit Signaling and Translation, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital, Friedrich-Schiller-Universität Jena, 07740, Jena, Germany.
| |
Collapse
|
10
|
Guguin J, Chen TY, Cuinat S, Besson A, Bertiaux E, Boutaud L, Ardito N, Imaz Murguiondo M, Cabet S, Hamel V, Thomas S, Pain B, Edery P, Putoux A, Tang TK, Mazoyer S, Delous M. A Taybi-Linder syndrome-related RTTN variant impedes neural rosette formation in human cortical organoids. PLoS Genet 2024; 20:e1011517. [PMID: 39680576 PMCID: PMC11684760 DOI: 10.1371/journal.pgen.1011517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/30/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Taybi-Linder syndrome (TALS) is a rare autosomal recessive disorder characterized by severe microcephaly with abnormal gyral pattern, severe growth retardation and bone abnormalities. It is caused by pathogenic variants in the RNU4ATAC gene. Its transcript, the small nuclear RNA U4atac, is involved in the excision of ~850 minor introns. Here, we report a patient presenting with TALS features but no pathogenic variants were found in RNU4ATAC, instead the homozygous RTTN c.2953A>G variant was detected by whole-exome sequencing. After deciphering the impact of the variant on the RTTN protein function at centrosome in engineered RTTN-depleted RPE1 cells and patient fibroblasts, we analysed neural stem cells (NSC) derived from CRISPR/Cas9-edited induced pluripotent stem cells and revealed major cell cycle and mitotic abnormalities, leading to aneuploidy, cell cycle arrest and cell death. In cortical organoids, we discovered an additional function of RTTN in the self-organisation of NSC into neural rosettes, by observing delayed apico-basal polarization of NSC. Altogether, these defects contributed to a marked delay of rosette formation in RTTN-mutated organoids, thus impeding their overall growth and shedding light on mechanisms leading to microcephaly.
Collapse
Affiliation(s)
- Justine Guguin
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | - Ting-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Silvestre Cuinat
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | - Alicia Besson
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | - Eloïse Bertiaux
- University of Geneva, Molecular and Cellular biology department, Sciences faculty, Geneva, Switzerland
| | - Lucile Boutaud
- INSERM UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Nolan Ardito
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | | | - Sara Cabet
- Service d’imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, Institut NeuroMyoGène, Université de Lyon, Lyon, France
| | - Virginie Hamel
- University of Geneva, Molecular and Cellular biology department, Sciences faculty, Geneva, Switzerland
| | - Sophie Thomas
- INSERM UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Bertrand Pain
- University of Lyon, Université de Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Patrick Edery
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
- Unité de génétique clinique et Centre de référence labellisé des Anomalies du Développement Sud-Est, Département de génétique, Hospices Civils de Lyon, Bron, France
| | - Audrey Putoux
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
- Unité de génétique clinique et Centre de référence labellisé des Anomalies du Développement Sud-Est, Département de génétique, Hospices Civils de Lyon, Bron, France
| | - Tang K. Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sylvie Mazoyer
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | - Marion Delous
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| |
Collapse
|
11
|
Ferreccio A, Byeon S, Cornell M, Oses-Prieto J, Deshpande A, Weiss LA, Burlingame A, Yadav S. TAOK2 Drives Opposing Cilia Length Deficits in 16p11.2 Deletion and Duplication Carriers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617069. [PMID: 39416068 PMCID: PMC11482803 DOI: 10.1101/2024.10.07.617069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Copy number variation (CNV) in the 16p11.2 (BP4-BP5) genomic locus is strongly associated with autism. Carriers of 16p11.2 deletion and duplication exhibit several common behavioral and social impairments, yet, show opposing brain structural changes and body mass index. To determine cellular mechanisms that might contribute to these opposing phenotypes, we performed quantitative tandem mass tag (TMT) proteomics on human dorsal forebrain neural progenitor cells (NPCs) differentiated from induced pluripotent stem cells (iPSC) derived from 16p11.2 CNV carriers. Differentially phosphorylated proteins between unaffected individuals and 16p11.2 CNV carriers were significantly enriched for centrosomal and cilia proteins. Deletion patient-derived NPCs show increased primary cilium length compared to unaffected individuals, while stunted cilium growth was observed in 16p11.2 duplication NPCs. Through cellular shRNA and overexpression screens in human iPSC derived NPCs, we determined the contribution of genes within the 16p11.2 locus to cilium length. TAOK2, a serine threonine protein kinase, and PPP4C, a protein phosphatase, were found to regulate primary cilia length in a gene dosage-dependent manner. We found TAOK2 was localized at centrosomes and the base of the primary cilium, and NPCs differentiated from TAOK2 knockout iPSCs had longer cilia. In absence of TAOK2, there was increased pericentrin at the basal body, and aberrant accumulation of IFT88 at the ciliary distal tip. Further, pharmacological inhibition of TAO kinase activity led to increased ciliary length, indicating that TAOK2 negatively controls primary cilium length through its catalytic activity. These results implicate aberrant cilia length in the pathophysiology of 16p11.2 CNV, and establish the role of TAOK2 kinase as a regulator of primary cilium length.
Collapse
Affiliation(s)
- Amy Ferreccio
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Sujin Byeon
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195
| | - Moira Cornell
- Department of Pharmacology, University of Washington, Seattle, WA 98195
| | - Juan Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94195
| | - Aditi Deshpande
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA 94195
| | - Lauren A Weiss
- Department of Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA 94195
| | - Alma Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94195
| | - Smita Yadav
- Department of Pharmacology, University of Washington, Seattle, WA 98195
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98106
| |
Collapse
|
12
|
Serafini CE, Charles S, Casteleiro Costa P, Niu W, Cheng B, Wen Z, Lu H, Robles FE. Non-invasive label-free imaging analysis pipeline for in situ characterization of 3D brain organoids. Sci Rep 2024; 14:22331. [PMID: 39333572 PMCID: PMC11436713 DOI: 10.1038/s41598-024-72038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024] Open
Abstract
Brain organoids provide a unique opportunity to model organ development in a system similar to human organogenesis in vivo. Brain organoids thus hold great promise for drug screening and disease modeling. Conventional approaches to organoid characterization predominantly rely on molecular analysis methods, which are expensive, time-consuming, labor-intensive, and involve the destruction of the valuable three-dimensional (3D) architecture of the organoids. This reliance on end-point assays makes it challenging to assess cellular and subcellular events occurring during organoid development in their 3D context. As a result, the long developmental processes are not monitored nor assessed. The ability to perform non-invasive assays is critical for longitudinally assessing features of organoid development during culture. In this paper, we demonstrate a label-free high-content imaging approach for observing changes in organoid morphology and structural changes occurring at the cellular and subcellular level. Enabled by microfluidic-based culture of 3D cell systems and a novel 3D quantitative phase imaging method, we demonstrate the ability to perform non-destructive high-resolution quantitative image analysis of the organoid. The highlighted results demonstrated in this paper provide a new approach to performing live, non-destructive monitoring of organoid systems during culture.
Collapse
Affiliation(s)
- Caroline E Serafini
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA
| | - Seleipiri Charles
- Georgia Institute of Technology, Interdisciplinary Program in Bioengineering, Atlanta, GA, 30332, USA
| | - Paloma Casteleiro Costa
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA, 30332, USA
| | - Weibo Niu
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Brian Cheng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30318, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
- Departments of Cell Biology and Neurology, Emory University School of Medicine, Atlanta, Georgia, 30322, USA
| | - Hang Lu
- Georgia Institute of Technology, Interdisciplinary Program in Bioengineering, Atlanta, GA, 30332, USA
- Georgia Institute of Technology, School of Chemical and Biomolecular Engineering, Atlanta, Georgia, 30332, USA
| | - Francisco E Robles
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA.
- Georgia Institute of Technology, Interdisciplinary Program in Bioengineering, Atlanta, GA, 30332, USA.
- Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, GA, 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30318, USA.
| |
Collapse
|
13
|
Stracker TH. Regulation of p53 by the mitotic surveillance/stopwatch pathway: implications in neurodevelopment and cancer. Front Cell Dev Biol 2024; 12:1451274. [PMID: 39398482 PMCID: PMC11466822 DOI: 10.3389/fcell.2024.1451274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/06/2024] [Indexed: 10/15/2024] Open
Abstract
The transcription factor p53 (encoded by TP53) plays diverse roles in human development and disease. While best known for its role in tumor suppression, p53 signaling also influences mammalian development by triggering cell fate decisions in response to a wide variety of stresses. After over 4 decades of study, a new pathway that triggers p53 activation in response to mitotic delays was recently identified. Termed the mitotic surveillance or mitotic stopwatch pathway, the USP28 and 53BP1 proteins activate p53 in response to delayed mitotic progression to control cell fate and promote genomic stability. In this Minireview, I discuss its identification, potential roles in neurodevelopmental disorders and cancer, as well as explore outstanding questions about its function, regulation and potential use as a biomarker for anti-mitotic therapies.
Collapse
Affiliation(s)
- Travis H. Stracker
- Center for Cancer Research, Radiation Oncology Branch, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
14
|
Boonsawat P, Asadollahi R, Niedrist D, Steindl K, Begemann A, Joset P, Bhoj EJ, Li D, Zackai E, Vetro A, Barba C, Guerrini R, Whalen S, Keren B, Khan A, Jing D, Palomares Bralo M, Rikeros Orozco E, Hao Q, Schlott Kristiansen B, Zheng B, Donnelly D, Clowes V, Zweier M, Papik M, Siegel G, Sabatino V, Mocera M, Horn AHC, Sticht H, Rauch A. Deleterious ZNRF3 germline variants cause neurodevelopmental disorders with mirror brain phenotypes via domain-specific effects on Wnt/β-catenin signaling. Am J Hum Genet 2024; 111:1994-2011. [PMID: 39168120 PMCID: PMC11393693 DOI: 10.1016/j.ajhg.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Zinc and RING finger 3 (ZNRF3) is a negative-feedback regulator of Wnt/β-catenin signaling, which plays an important role in human brain development. Although somatically frequently mutated in cancer, germline variants in ZNRF3 have not been established as causative for neurodevelopmental disorders (NDDs). We identified 12 individuals with ZNRF3 variants and various phenotypes via GeneMatcher/Decipher and evaluated genotype-phenotype correlation. We performed structural modeling and representative deleterious and control variants were assessed using in vitro transcriptional reporter assays with and without Wnt-ligand Wnt3a and/or Wnt-potentiator R-spondin (RSPO). Eight individuals harbored de novo missense variants and presented with NDD. We found missense variants associated with macrocephalic NDD to cluster in the RING ligase domain. Structural modeling predicted disruption of the ubiquitin ligase function likely compromising Wnt receptor turnover. Accordingly, the functional assays showed enhanced Wnt/β-catenin signaling for these variants in a dominant negative manner. Contrarily, an individual with microcephalic NDD harbored a missense variant in the RSPO-binding domain predicted to disrupt binding affinity to RSPO and showed attenuated Wnt/β-catenin signaling in the same assays. Additionally, four individuals harbored de novo truncating or de novo or inherited large in-frame deletion variants with non-NDD phenotypes, including heart, adrenal, or nephrotic problems. In contrast to NDD-associated missense variants, the effects on Wnt/β-catenin signaling were comparable between the truncating variant and the empty vector and between benign variants and the wild type. In summary, we provide evidence for mirror brain size phenotypes caused by distinct pathomechanisms in Wnt/β-catenin signaling through protein domain-specific deleterious ZNRF3 germline missense variants.
Collapse
Affiliation(s)
| | - Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Faculty of Engineering and Science, University of Greenwich London, Medway Campus, Chatham Maritime ME4 4TB, UK
| | - Dunja Niedrist
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Anaïs Begemann
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Pascal Joset
- Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Elizabeth J Bhoj
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elaine Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Annalisa Vetro
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Carmen Barba
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy; University of Florence, Florence, Italy
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Sandra Whalen
- Unité Fonctionnelle de Génétique Odellin, Hôpital Armand Trousseau, Paris, France
| | - Boris Keren
- Département de Génétique, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Amjad Khan
- Faculty of Science, Department of Biological Science (Zoology), University of Lakki Marwat, Khyber Pakhtunkhwa 28420, Pakistan
| | - Duan Jing
- Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - María Palomares Bralo
- Instituto de Genética Médica y Molecular (INGEMM), Unidad de Trastornos Del Neurodesarrollo, Hospital Universitario La Paz, Madrid, Spain
| | - Emi Rikeros Orozco
- Instituto de Genética Médica y Molecular (INGEMM), Unidad de Trastornos Del Neurodesarrollo, Hospital Universitario La Paz, Madrid, Spain
| | - Qin Hao
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Deirdre Donnelly
- Northern Ireland Regional Genetics Centre, Belfast Health & Social Care Trust, Belfast, Northern Ireland
| | - Virginia Clowes
- Thames Regional Genetics Service, North West University Healthcare NHS Trust, London, UK
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Michael Papik
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Gabriele Siegel
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Valeria Sabatino
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Martina Mocera
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Anselm H C Horn
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland; Pediatric University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
15
|
Aili Y, Maimaitiming N, Wang Z, Wang Y. Brain organoids: A new tool for modelling of neurodevelopmental disorders. J Cell Mol Med 2024; 28:e18560. [PMID: 39258535 PMCID: PMC11388061 DOI: 10.1111/jcmm.18560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 09/12/2024] Open
Abstract
Neurodevelopmental disorders are mostly studied using mice as models. However, the mouse brain lacks similar cell types and structures as those of the human brain. In recent years, emergence of three-dimensional brain organoids derived from human embryonic stem cells or induced pluripotent stem cells allows for controlled monitoring and evaluation of early neurodevelopmental processes and has opened a window for studying various aspects of human brain development. However, such organoids lack original anatomical structure of the brain during maturation, and neurodevelopmental maturation processes that rely on unique cellular interactions and neural network connections are limited. Consequently, organoids are difficult to be used extensively and effectively while modelling later stages of human brain development and disease progression. To address this problem, several methods and technologies have emerged that aim to enhance the sophisticated regulation of brain organoids developmental processes through bioengineering approaches, which may alleviate some of the current limitations. This review discusses recent advances and application areas of human brain organoid culture methods, aiming to generalize optimization strategies for organoid systems, improve the ability to mimic human brain development, and enhance the application value of organoids.
Collapse
Affiliation(s)
- Yirizhati Aili
- Department of NeurosurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System TumorsXinjiang Medical UniversityXinjiangPeople's Republic of China
| | | | - Zengliang Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System TumorsXinjiang Medical UniversityXinjiangPeople's Republic of China
| | - Yongxin Wang
- Department of NeurosurgeryThe First Affiliated Hospital of Xinjiang Medical UniversityXinjiangPeople's Republic of China
- Key Laboratory of Precision Diagnosis and Clinical Transformation of Nervous System TumorsXinjiang Medical UniversityXinjiangPeople's Republic of China
| |
Collapse
|
16
|
Su Y, Liu A, Chen H, Chen Q, Zhao B, Gao R, Zhang K, Peng T, Zhang Z, Ouyang C, Zhu D. Research progress of brain organoids in the field of diabetes. Mol Brain 2024; 17:53. [PMID: 39107846 PMCID: PMC11304585 DOI: 10.1186/s13041-024-01123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
Human embryonic stem cells and human induced pluripotent stem cells may be used to create 3D tissues called brain organoids. They duplicate the physiological and pathological characteristics of human brain tissue more faithfully in terms of both structure and function, and they more precisely resemble the morphology and cellular structure of the human embryonic brain. This makes them valuable models for both drug screening and in vitro studies on the development of the human brain and associated disorders. The technical breakthroughs enabled by brain organoids have a significant impact on the research of different brain regions, brain development and sickness, the connections between the brain and other tissues and organs, and brain evolution. This article discusses the development of brain organoids, their use in diabetes research, and their progress.
Collapse
Affiliation(s)
- Ying Su
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Aimei Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
| | - Hongguang Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
| | - Qingjie Chen
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
| | - Bo Zhao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Runze Gao
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Kangwei Zhang
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China
| | - Tie Peng
- Hubei University of Science and Technology, Xianning, 437100, P. R. China
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China.
| | - Changhan Ouyang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China.
- School of Phamacy, Hubei University of Science and Technology, Xianning, 437000, Hubei Province, P. R. China.
| | - Dan Zhu
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, No.88, Xianning Avenue, Xianan District, Xianning, 437000, Hubei Province, P. R. China.
| |
Collapse
|
17
|
Charles S, Jackson-Holmes E, Sun G, Zhou Y, Siciliano B, Niu W, Han H, Nikitina A, Kemp ML, Wen Z, Lu H. Non-Invasive Quality Control of Organoid Cultures Using Mesofluidic CSTR Bioreactors and High-Content Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604365. [PMID: 39091761 PMCID: PMC11291105 DOI: 10.1101/2024.07.19.604365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Human brain organoids produce anatomically relevant cellular structures and recapitulate key aspects of in vivo brain function, which holds great potential to model neurological diseases and screen therapeutics. However, the long growth time of 3D systems complicates the culturing of brain organoids and results in heterogeneity across samples hampering their applications. We developed an integrated platform to enable robust and long-term culturing of 3D brain organoids. We designed a mesofluidic bioreactor device based on a reaction-diffusion scaling theory, which achieves robust media exchange for sufficient nutrient delivery in long-term culture. We integrated this device with longitudinal tracking and machine learning-based classification tools to enable non-invasive quality control of live organoids. This integrated platform allows for sample pre-selection for downstream molecular analysis. Transcriptome analyses of organoids revealed that our mesofluidic bioreactor promoted organoid development while reducing cell death. Our platform thus offers a generalizable tool to establish reproducible culture standards for 3D cellular systems for a variety of applications beyond brain organoids.
Collapse
Affiliation(s)
- Seleipiri Charles
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
| | - Emily Jackson-Holmes
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| | - Gongchen Sun
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| | - Ying Zhou
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, U.S.A
| | - Benjamin Siciliano
- Graduate Program in Molecular and Systems Pharmacology, Laney Graduate School, Emory University, 615 Michael Street, Atlanta, GA, 30322, U.S.A
| | - Weibo Niu
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, U.S.A
| | - Haejun Han
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- School of Biological Sciences, Georgia Institute of Technology, 310 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
| | - Arina Nikitina
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| | - Melissa L Kemp
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, U.S.A
| | - Hang Lu
- Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, U.S.A
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta, Georgia 30332, U.S.A
| |
Collapse
|
18
|
Kim JT, Song K, Han SW, Youn DH, Jung H, Kim KS, Lee HJ, Hong JY, Cho YJ, Kang SM, Jeon JP. Modeling of the brain-lung axis using organoids in traumatic brain injury: an updated review. Cell Biosci 2024; 14:83. [PMID: 38909262 PMCID: PMC11193205 DOI: 10.1186/s13578-024-01252-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024] Open
Abstract
Clinical outcome after traumatic brain injury (TBI) is closely associated conditions of other organs, especially lungs as well as degree of brain injury. Even if there is no direct lung damage, severe brain injury can enhance sympathetic tones on blood vessels and vascular resistance, resulting in neurogenic pulmonary edema. Conversely, lung damage can worsen brain damage by dysregulating immunity. These findings suggest the importance of brain-lung axis interactions in TBI. However, little research has been conducted on the topic. An advanced disease model using stem cell technology may be an alternative for investigating the brain and lungs simultaneously but separately, as they can be potential candidates for improving the clinical outcomes of TBI.In this review, we describe the importance of brain-lung axis interactions in TBI by focusing on the concepts and reproducibility of brain and lung organoids in vitro. We also summarize recent research using pluripotent stem cell-derived brain organoids and their preclinical applications in various brain disease conditions and explore how they mimic the brain-lung axis. Reviewing the current status and discussing the limitations and potential perspectives in organoid research may offer a better understanding of pathophysiological interactions between the brain and lung after TBI.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Kang Song
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, 31066, Republic of Korea
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Harry Jung
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Keun-Suh Kim
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Hyo-Jung Lee
- Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Ji Young Hong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea
| | - Sung-Min Kang
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, 31066, Republic of Korea.
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, 24252, Republic of Korea.
| |
Collapse
|
19
|
D’Gama PP, Jeong I, Nygård AM, Trinh AT, Yaksi E, Jurisch-Yaksi N. Ciliogenesis defects after neurulation impact brain development and neuronal activity in larval zebrafish. iScience 2024; 27:110078. [PMID: 38868197 PMCID: PMC11167523 DOI: 10.1016/j.isci.2024.110078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/06/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
Cilia are slender, hair-like structures extending from cell surfaces and playing essential roles in diverse physiological processes. Within the nervous system, primary cilia contribute to signaling and sensory perception, while motile cilia facilitate cerebrospinal fluid flow. Here, we investigated the impact of ciliary loss on neural circuit development using a zebrafish line displaying ciliogenesis defects. We found that cilia defects after neurulation affect neurogenesis and brain morphology, especially in the cerebellum, and lead to altered gene expression profiles. Using whole brain calcium imaging, we measured reduced light-evoked and spontaneous neuronal activity in all brain regions. By shedding light on the intricate role of cilia in neural circuit formation and function in the zebrafish, our work highlights their evolutionary conserved role in the brain and sets the stage for future analysis of ciliopathy models.
Collapse
Affiliation(s)
- Percival P. D’Gama
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
| | - Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
| | - Andreas Moe Nygård
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
| | - Anh-Tuan Trinh
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
- Koç University Research Center for Translational Medicine, Koç University School of Medicine, Davutpaşa Caddesi, No:4, Topkapı 34010, Istanbul, Turkey
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| |
Collapse
|
20
|
Ma R, Chen L, Hu N, Caplan S, Hu G. Cilia and Extracellular Vesicles in Brain Development and Disease. Biol Psychiatry 2024; 95:1020-1029. [PMID: 37956781 PMCID: PMC11087377 DOI: 10.1016/j.biopsych.2023.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Primary and motile cilia are thin, hair-like cellular projections from the cell surface involved in movement, sensing, and communication between cells. Extracellular vesicles (EVs) are small membrane-bound vesicles secreted by cells and contain various proteins, lipids, and nucleic acids that are delivered to and influence the behavior of other cells. Both cilia and EVs are essential for the normal functioning of brain cells, and their malfunction can lead to several neurological diseases. Cilia and EVs can interact with each other in several ways, and this interplay plays a crucial role in facilitating various biological processes, including cell-to-cell communication, tissue homeostasis, and pathogen defense. Cilia and EV crosstalk in the brain is an emerging area of research. Herein, we summarize the detailed molecular mechanisms of cilia and EV interplay and address the ciliary molecules that are involved in signaling and cellular dysfunction in brain development and diseases. Finally, we discuss the potential clinical use of cilia and EVs in brain diseases.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska; Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong, China
| | - Ningyun Hu
- Millard West High School, Omaha, Nebraska
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
21
|
Jurisch-Yaksi N, Wachten D, Gopalakrishnan J. The neuronal cilium - a highly diverse and dynamic organelle involved in sensory detection and neuromodulation. Trends Neurosci 2024; 47:383-394. [PMID: 38580512 DOI: 10.1016/j.tins.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 04/07/2024]
Abstract
Cilia are fascinating organelles that act as cellular antennae, sensing the cellular environment. Cilia gained significant attention in the late 1990s after their dysfunction was linked to genetic diseases known as ciliopathies. Since then, several breakthrough discoveries have uncovered the mechanisms underlying cilia biogenesis and function. Like most cells in the animal kingdom, neurons also harbor cilia, which are enriched in neuromodulatory receptors. Yet, how neuronal cilia modulate neuronal physiology and animal behavior remains poorly understood. By comparing ciliary biology between the sensory and central nervous systems (CNS), we provide new perspectives on the functions of cilia in brain physiology.
Collapse
Affiliation(s)
- Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine (IKOM), Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7491 Trondheim, Norway.
| | - Dagmar Wachten
- Department of Biophysical Imaging, Institute of Innate Immunity, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany; Institute for Human Genetics, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, 07740 Jena, Germany
| |
Collapse
|
22
|
Filan C, Charles S, Casteleiro Costa P, Niu W, Cheng BF, Wen Z, Lu H, Robles FE. Non-Invasive Label-free Analysis Pipeline for In Situ Characterization of Differentiation in 3D Brain Organoid Models. RESEARCH SQUARE 2024:rs.3.rs-4049577. [PMID: 38645145 PMCID: PMC11030508 DOI: 10.21203/rs.3.rs-4049577/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Brain organoids provide a unique opportunity to model organ development in a system similar to human organogenesis in vivo. Brain organoids thus hold great promise for drug screening and disease modeling. Conventional approaches to organoid characterization predominantly rely on molecular analysis methods, which are expensive, time-consuming, labor-intensive, and involve the destruction of the valuable 3D architecture of the organoids. This reliance on end-point assays makes it challenging to assess cellular and subcellular events occurring during organoid development in their 3D context. As a result, the long developmental processes are not monitored nor assessed. The ability to perform non-invasive assays is critical for longitudinally assessing features of organoid development during culture. In this paper, we demonstrate a label-free high-content imaging approach for observing changes in organoid morphology and structural changes occurring at the cellular and subcellular level. Enabled by microfluidic-based culture of 3D cell systems and a novel 3D quantitative phase imaging method, we demonstrate the ability to perform non-destructive high-resolution imaging of the organoid. The highlighted results demonstrated in this paper provide a new approach to performing live, non-destructive monitoring of organoid systems during culture.
Collapse
Affiliation(s)
- Caroline Filan
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA, 30318, USA
| | - Seleipiri Charles
- Georgia Institute of Technology, Interdisciplinary Program in Bioengineering, Atlanta, GA, 30332, USA
| | - Paloma Casteleiro Costa
- Georgia Institute of Technology, School of Electrical & Computer Engineering, Atlanta, GA, 30332, USA
| | - Weibo Niu
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, Georgia 30322, USA
| | - Brian F. Cheng
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, 30318, USA
| | - Zhexing Wen
- Emory University School of Medicine, Department of Psychiatry and Behavioral Sciences, Atlanta, Georgia 30322, USA
- Emory University School of Medicine, Departments of Cell Biology and Neurology, Atlanta, Georgia, 30322, USA
| | - Hang Lu
- Georgia Institute of Technology, Interdisciplinary Program in Bioengineering, Atlanta, GA, 30332, USA
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, Georgia 30332, USA
| | - Francisco E. Robles
- Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA, 30318, USA
- Georgia Institute of Technology, Interdisciplinary Program in Bioengineering, Atlanta, GA, 30332, USA
- Georgia Institute of Technology, School of Electrical & Computer Engineering, Atlanta, GA, 30332, USA
- Georgia Institute of Technology and Emory University, Wallace H. Coulter Department of Biomedical Engineering, Atlanta, GA, 30318, USA
| |
Collapse
|
23
|
Szepanowski LP, Wruck W, Kapr J, Rossi A, Fritsche E, Krutmann J, Adjaye J. Cockayne Syndrome Patient iPSC-Derived Brain Organoids and Neurospheres Show Early Transcriptional Dysregulation of Biological Processes Associated with Brain Development and Metabolism. Cells 2024; 13:591. [PMID: 38607030 PMCID: PMC11011893 DOI: 10.3390/cells13070591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024] Open
Abstract
Cockayne syndrome (CS) is a rare hereditary autosomal recessive disorder primarily caused by mutations in Cockayne syndrome protein A (CSA) or B (CSB). While many of the functions of CSB have been at least partially elucidated, little is known about the actual developmental dysregulation in this devasting disorder. Of particular interest is the regulation of cerebral development as the most debilitating symptoms are of neurological nature. We generated neurospheres and cerebral organoids utilizing Cockayne syndrome B protein (CSB)-deficient induced pluripotent stem cells derived from two patients with distinct severity levels of CS and healthy controls. The transcriptome of both developmental timepoints was explored using RNA-Seq and bioinformatic analysis to identify dysregulated biological processes common to both patients with CS in comparison to the control. CSB-deficient neurospheres displayed upregulation of the VEGFA-VEGFR2 signalling pathway, vesicle-mediated transport and head development. CSB-deficient cerebral organoids exhibited downregulation of brain development, neuron projection development and synaptic signalling. We further identified the upregulation of steroid biosynthesis as common to both timepoints, in particular the upregulation of the cholesterol biosynthesis branch. Our results provide insights into the neurodevelopmental dysregulation in patients with CS and strengthen the theory that CS is not only a neurodegenerative but also a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Leon-Phillip Szepanowski
- Institute for Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Duesseldorf, Germany; (L.-P.S.)
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Duesseldorf, Germany; (L.-P.S.)
| | - Julia Kapr
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Andrea Rossi
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Ellen Fritsche
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - Jean Krutmann
- IUF—Leibniz Research Institute for Environmental Medicine, Auf’m Hennekamp 50, D-40225 Duesseldorf, Germany
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Duesseldorf, Germany; (L.-P.S.)
- Zayed Centre for Research into Rare Diseases in Children (ZCR), University College London (UCL)—EGA Institute for Women’s Health, 20 Guilford Street, London WC1N 1DZ, UK
| |
Collapse
|
24
|
Horwitz A, Levi-Carmel N, Shnaider O, Birk R. BBS genes are involved in accelerated proliferation and early differentiation of BBS-related tissues. Differentiation 2024; 135:100745. [PMID: 38215537 DOI: 10.1016/j.diff.2024.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/14/2024]
Abstract
Bardet-Biedl syndrome (BBS) is an inherited disorder primarily ciliopathy with pleiotropic multi-systemic phenotypic involvement, including adipose, nerve, retinal, kidney, Etc. Consequently, it is characterized by obesity, cognitive impairment and retinal, kidney and cutaneous abnormalities. Initial studies, including ours have shown that BBS genes play a role in the early developmental stages of adipocytes and β-cells. However, this role in other BBS-related tissues is unknown. We investigated BBS genes involvement in the proliferation and early differentiation of different BBS cell types. The involvement of BBS genes in cellular proliferation were studied in seven in-vitro and transgenic cell models; keratinocytes (hHaCaT) and Ras-transfected keratinocytes (Ras-hHaCaT), neuronal cell lines (hSH-SY5Y and rPC-12), silenced BBS4 neural cell lines (siBbs4 hSH-SY5Y and siBbs4 rPC-12), adipocytes (m3T3L1), and ex-vivo transformed B-cells obtain from BBS4 patients, using molecular and biochemical methodologies. RashHaCaT cells showed an accelerated proliferation rate in parallel to significant reduction in the transcript levels of BBS1, 2, and 4. BBS1, 2, and 4 transcripts linked with hHaCaT cell cycle arrest (G1 phase) using both chemical (CDK4 inhibitor) and serum deprivation methodologies. Adipocyte (m3T3-L1) Bbs1, 2 and 4 transcript levels corresponded to the cell cycle phase (CDK4 inhibitor and serum deprivation). SiBBS4 hSH-SY5Y cells exhibited early cell proliferation and differentiation (wound healing assay) rates. SiBbs4 rPC-12 models exhibited significant proliferation and differentiation rate corresponding to Nestin expression levels. BBS4 patients-transformed B-cells exhibited an accelerated proliferation rate (LPS-induced methodology). In conclusions, the BBS4 gene plays a significant, similar and global role in the cellular proliferation of various BBS related tissues. These results highlight the universal role of the BBS gene in the cell cycle, and further deepen the knowledge of the mechanisms underlying the development of BBS.
Collapse
Affiliation(s)
- Avital Horwitz
- Nutrition Department, Health Sciences Faculty, Ariel University, Israel
| | | | - Olga Shnaider
- Nutrition Department, Health Sciences Faculty, Ariel University, Israel
| | - Ruth Birk
- Nutrition Department, Health Sciences Faculty, Ariel University, Israel.
| |
Collapse
|
25
|
Abstract
Brain development in humans is achieved through precise spatiotemporal genetic control, the mechanisms of which remain largely elusive. Recently, integration of technological advances in human stem cell-based modelling with genome editing has emerged as a powerful platform to establish causative links between genotypes and phenotypes directly in the human system. Here, we review our current knowledge of complex genetic regulation of each key step of human brain development through the lens of evolutionary specialization and neurodevelopmental disorders and highlight the use of human stem cell-derived 2D cultures and 3D brain organoids to investigate human-enriched features and disease mechanisms. We also discuss opportunities and challenges of integrating new technologies to reveal the genetic architecture of human brain development and disorders.
Collapse
Affiliation(s)
- Yi Zhou
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Adametz F, Müller A, Stilgenbauer S, Burkhalter MD, Philipp M. Aging Associates with Cilium Elongation and Dysfunction in Kidney and Pancreas. Adv Biol (Weinh) 2023; 7:e2300194. [PMID: 37537358 DOI: 10.1002/adbi.202300194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/08/2023] [Indexed: 08/05/2023]
Abstract
Cilia are best known and most studied for their manifold functions enabling proper embryonic development. Loss of cilia or dysfunction thereof results in a great variety of congenital malformations and syndromes. However, there are also cilia-driven conditions, which manifest only later in life, such as polycystic kidney disease. Even degenerative diseases in the central nervous system have recently been linked to alterations in cilia biology. Surprisingly though, there is very little knowledge regarding cilia in normally aged organisms absent any disease. Here, it is provided evidence that cilia in naturally aged mice are considerably elongated in the kidney and pancreas, respectively. Moreover, such altered cilia appear to have become dysfunctional as indicated by changes in cellular signaling.
Collapse
Affiliation(s)
- Fabian Adametz
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081, Ulm, Germany
| | - Annika Müller
- Department of Internal Medicine III, Ulm University, 89081, Ulm, Germany
| | | | - Martin D Burkhalter
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomis, University of Tübingen, 72074, Tübingen, Germany
| | - Melanie Philipp
- Department of Experimental and Clinical Pharmacology and Pharmacogenomics, Division of Pharmacogenomis, University of Tübingen, 72074, Tübingen, Germany
| |
Collapse
|
27
|
Takahashi H, Fujimoto T, Yaoi T, Fushiki S, Itoh K. Leukemia inhibitory factor shortens primary cilia by upregulating C-C motif chemokine 2 in human neural stem/progenitor cells. Genes Cells 2023; 28:868-880. [PMID: 37837427 DOI: 10.1111/gtc.13074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
Primary cilia on neural stem/progenitor cells (NSPCs) play an important role in determining cell fate, although the regulatory mechanisms involved in the ciliogenesis remain largely unknown. In this study, we analyzed the effect of the leukemia inhibitory factor (LIF) for the primary cilia in immortalized human NSPCs. LIF withdrawal elongated the primary cilia length, whereas the addition of LIF shortened it. Microarray gene expression analysis revealed that differentially expressed genes (DEGs) associated with LIF treatment were related with the multiple cytokine signaling pathways. Among the DEGs, C-C motif chemokine 2 (CCL2) had the highest ranking and its increase in the protein concentration in the NSPCs-conditioned medium after the LIF treatment was confirmed by ELISA. Interestingly, we found that CCL2 was a negative regulator of cilium length, and LIF-induced shortening of primary cilia was antagonized by CCL2-specific antibody, suggesting that LIF could influence cilia length via upregulating CCL2. The shortening effect of LIF and CCL2 on primary cilia was also observed in SH-SY5Y cells. The results of the study suggested that the LIF-CCL2 axis may well be a regulator of NSPCs and its primary cilia length, which could affect multiple cellular processes, including NSPC proliferation and differentiation.
Collapse
Affiliation(s)
- Hisashi Takahashi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Takahiro Fujimoto
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Shinji Fushiki
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto, Japan
| |
Collapse
|
28
|
Gopalakrishnan J, Feistel K, Friedrich BM, Grapin‐Botton A, Jurisch‐Yaksi N, Mass E, Mick DU, Müller R, May‐Simera H, Schermer B, Schmidts M, Walentek P, Wachten D. Emerging principles of primary cilia dynamics in controlling tissue organization and function. EMBO J 2023; 42:e113891. [PMID: 37743763 PMCID: PMC10620770 DOI: 10.15252/embj.2023113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.
Collapse
Affiliation(s)
- Jay Gopalakrishnan
- Institute for Human Genetics, Heinrich‐Heine‐UniversitätUniversitätsklinikum DüsseldorfDüsseldorfGermany
| | - Kerstin Feistel
- Department of Zoology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | | | - Anne Grapin‐Botton
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at The University Hospital Carl Gustav Carus and Faculty of Medicine of the TU DresdenDresdenGermany
| | - Nathalie Jurisch‐Yaksi
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune SystemUniversity of BonnBonnGermany
| | - David U Mick
- Center for Molecular Signaling (PZMS), Center of Human and Molecular Biology (ZHMB)Saarland School of MedicineHomburgGermany
| | - Roman‐Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Helen May‐Simera
- Institute of Molecular PhysiologyJohannes Gutenberg‐UniversityMainzGermany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Miriam Schmidts
- Pediatric Genetics Division, Center for Pediatrics and Adolescent MedicineUniversity Hospital FreiburgFreiburgGermany
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Peter Walentek
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Renal Division, Internal Medicine IV, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical FacultyUniversity of BonnBonnGermany
| |
Collapse
|
29
|
Sakaji K, Ebrahimiazar S, Harigae Y, Ishibashi K, Sato T, Yoshikawa T, Atsumi GI, Sung CH, Saito M. MAST4 promotes primary ciliary resorption through phosphorylation of Tctex-1. Life Sci Alliance 2023; 6:e202301947. [PMID: 37726137 PMCID: PMC10509483 DOI: 10.26508/lsa.202301947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/21/2023] Open
Abstract
The primary cilium undergoes cell cycle-dependent assembly and disassembly. Dysregulated ciliary dynamics are associated with several pathological conditions called ciliopathies. Previous studies showed that the localization of phosphorylated Tctex-1 at Thr94 (T94) at the ciliary base critically regulates ciliary resorption by accelerating actin remodeling and ciliary pocket membrane endocytosis. Here, we show that microtubule-associated serine/threonine kinase family member 4 (MAST4) is localized at the primary cilium. Suppressing MAST4 blocks serum-induced ciliary resorption, and overexpressing MAST4 accelerates ciliary resorption. Tctex-1 binds to the kinase domain of MAST4, in which the R503 and D504 residues are key to MAST4-mediated ciliary resorption. The ciliary resorption and the ciliary base localization of phospho-(T94)Tctex-1 are blocked by the knockdown of MAST4 or the expression of the catalytic-inactive site-directed MAST4 mutants. Moreover, MAST4 is required for Cdc42 activation and Rab5-mediated periciliary membrane endocytosis during ciliary resorption. These results support that MAST4 is a novel kinase that regulates ciliary resorption by modulating the ciliary base localization of phospho-(T94)Tctex-1. MAST4 is a potential new target for treating ciliopathies causally by ciliary resorption defects.
Collapse
Affiliation(s)
- Kensuke Sakaji
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sara Ebrahimiazar
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Developmental Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Harigae
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenichi Ishibashi
- Department of Molecular Physiology and Pathology, School of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Takeya Sato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takeo Yoshikawa
- Department of Neuropharmacology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
- Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Gen-Ichi Atsumi
- Department of Molecular Physiology and Pathology, School of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| | - Ching-Hwa Sung
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Molecular Physiology and Pathology, School of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
30
|
Li Y, Zeng PM, Wu J, Luo ZG. Advances and Applications of Brain Organoids. Neurosci Bull 2023; 39:1703-1716. [PMID: 37222855 PMCID: PMC10603019 DOI: 10.1007/s12264-023-01065-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/02/2023] [Indexed: 05/25/2023] Open
Abstract
Understanding the fundamental processes of human brain development and diseases is of great importance for our health. However, existing research models such as non-human primate and mouse models remain limited due to their developmental discrepancies compared with humans. Over the past years, an emerging model, the "brain organoid" integrated from human pluripotent stem cells, has been developed to mimic developmental processes of the human brain and disease-associated phenotypes to some extent, making it possible to better understand the complex structures and functions of the human brain. In this review, we summarize recent advances in brain organoid technologies and their applications in brain development and diseases, including neurodevelopmental, neurodegenerative, psychiatric diseases, and brain tumors. Finally, we also discuss current limitations and the potential of brain organoids.
Collapse
Affiliation(s)
- Yang Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Peng-Ming Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jian Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhen-Ge Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
31
|
Bergwell M, Smith A, Smith E, Dierlam C, Duran R, Haastrup E, Napier-Jameson R, Seidel R, Potter W, Norris A, Iyer J. A primary microcephaly-associated sas-6 mutation perturbs centrosome duplication, dendrite morphogenesis, and ciliogenesis in Caenorhabditis elegans. Genetics 2023; 224:iyad105. [PMID: 37279547 PMCID: PMC10411591 DOI: 10.1093/genetics/iyad105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
The human SASS6(I62T) missense mutation has been linked with the incidence of primary microcephaly in a Pakistani family, although the mechanisms by which this mutation causes disease remain unclear. The SASS6(I62T) mutation corresponds to SAS-6(L69T) in Caenorhabditis elegans. Given that SAS-6 is highly conserved, we modeled this mutation in C. elegans and examined the sas-6(L69T) effect on centrosome duplication, ciliogenesis, and dendrite morphogenesis. Our studies revealed that all the above processes are perturbed by the sas-6(L69T) mutation. Specifically, C. elegans carrying the sas-6(L69T) mutation exhibit an increased failure of centrosome duplication in a sensitized genetic background. Further, worms carrying this mutation also display shortened phasmid cilia, an abnormal phasmid cilia morphology, shorter phasmid dendrites, and chemotaxis defects. Our data show that the centrosome duplication defects caused by this mutation are only uncovered in a sensitized genetic background, indicating that these defects are mild. However, the ciliogenesis and dendritic defects caused by this mutation are evident in an otherwise wild-type background, indicating that they are stronger defects. Thus, our studies shed light on the novel mechanisms by which the sas-6(L69T) mutation could contribute to the incidence of primary microcephaly in humans.
Collapse
Affiliation(s)
- Mary Bergwell
- Oklahoma Medical Research Foundation, Cell Cycle & Cancer Biology Research Program, Oklahoma City, OK 73104, USA
| | - Amy Smith
- Pfizer Inc., Pharmaceutical R&D – Drug Product Design & Development, Chesterfield, MO 63017, USA
| | - Ellie Smith
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | - Carter Dierlam
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | - Ramon Duran
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | - Erin Haastrup
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | | | - Rory Seidel
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | - William Potter
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| | - Adam Norris
- Southern Methodist University, Department of Biological Sciences, Dallas, TX 75275, USA
| | - Jyoti Iyer
- University of Tulsa, Department of Chemistry and Biochemistry, Tulsa, OK 74104, USA
| |
Collapse
|
32
|
Kim SH, Chang MY. Application of Human Brain Organoids-Opportunities and Challenges in Modeling Human Brain Development and Neurodevelopmental Diseases. Int J Mol Sci 2023; 24:12528. [PMID: 37569905 PMCID: PMC10420018 DOI: 10.3390/ijms241512528] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Brain organoids are three-dimensional (3D) structures derived from human pluripotent stem cells (hPSCs) that reflect early brain organization. These organoids contain different cell types, including neurons and glia, similar to those found in the human brain. Human brain organoids provide unique opportunities to model features of human brain development that are not well-reflected in animal models. Compared with traditional cell cultures and animal models, brain organoids offer a more accurate representation of human brain development and function, rendering them suitable models for neurodevelopmental diseases. In particular, brain organoids derived from patients' cells have enabled researchers to study diseases at different stages and gain a better understanding of disease mechanisms. Multi-brain regional assembloids allow for the investigation of interactions between distinct brain regions while achieving a higher level of consistency in molecular and functional characterization. Although organoids possess promising features, their usefulness is limited by several unresolved constraints, including cellular stress, hypoxia, necrosis, a lack of high-fidelity cell types, limited maturation, and circuit formation. In this review, we discuss studies to overcome the natural limitations of brain organoids, emphasizing the importance of combinations of all neural cell types, such as glia (astrocyte, oligodendrocytes, and microglia) and vascular cells. Additionally, considering the similarity of organoids to the developing brain, regionally patterned brain organoid-derived neural stem cells (NSCs) could serve as a scalable source for cell replacement therapy. We highlight the potential application of brain organoid-derived cells in disease cell therapy within this field.
Collapse
Affiliation(s)
- Soo-hyun Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Seoul 04763, Republic of Korea;
- Biomedical Research Institute, Hanyang University, Seoul 04763, Republic of Korea
| | - Mi-Yoon Chang
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Seoul 04763, Republic of Korea;
- Biomedical Research Institute, Hanyang University, Seoul 04763, Republic of Korea
- Department of Premedicine, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
33
|
Appiah B, Fullio CL, Ossola C, Bertani I, Restelli E, Cheffer A, Polenghi M, Haffner C, Garcia‐Miralles M, Zeis P, Treppner M, Bovio P, Schlichtholz L, Mas‐Sanchez A, Zografidou L, Winter J, Binder H, Grün D, Kalebic N, Taverna E, Vogel T. DOT1L activity affects neural stem cell division mode and reduces differentiation and ASNS expression. EMBO Rep 2023; 24:e56233. [PMID: 37382163 PMCID: PMC10398646 DOI: 10.15252/embr.202256233] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Cortical neurogenesis depends on the balance between self-renewal and differentiation of apical progenitors (APs). Here, we study the epigenetic control of AP's division mode by focusing on the enzymatic activity of the histone methyltransferase DOT1L. Combining lineage tracing with single-cell RNA sequencing of clonally related cells, we show at the cellular level that DOT1L inhibition increases neurogenesis driven by a shift of APs from asymmetric self-renewing to symmetric neurogenic consumptive divisions. At the molecular level, DOT1L activity prevents AP differentiation by promoting transcription of metabolic genes. Mechanistically, DOT1L inhibition reduces activity of an EZH2/PRC2 pathway, converging on increased expression of asparagine synthetase (ASNS), a microcephaly associated gene. Overexpression of ASNS in APs phenocopies DOT1L inhibition, and also increases neuronal differentiation of APs. Our data suggest that DOT1L activity/PRC2 crosstalk controls AP lineage progression by regulating asparagine metabolism.
Collapse
Affiliation(s)
- Bismark Appiah
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Present address:
Institute of Medical Bioinformatics and Systems Medicine, Medical Center–University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Camila L Fullio
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | | | | | | | - Arquimedes Cheffer
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | | | - Christiane Haffner
- Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany
| | - Marta Garcia‐Miralles
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Patrice Zeis
- Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS‐MCB)FreiburgGermany
| | - Martin Treppner
- Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical CenterAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Freiburg Center for Data Analysis and ModelingAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Patrick Bovio
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Laura Schlichtholz
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Aina Mas‐Sanchez
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Institute of Molecular Biology (IMB) gGmbHMainzGermany
| | - Lea Zografidou
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Jennifer Winter
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University MainzMainzGermany
- German Resilience CentreUniversity Medical Center MainzMainzGermany
| | - Harald Binder
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical CenterAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Freiburg Center for Data Analysis and ModelingAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Dominic Grün
- Würzburg Institute of Systems ImmunologyMax Planck Research Group at Julius‐Maximilians‐University WürzburgWürzburgGermany
- Helmholtz Institute for RNA‐based Infection Research (HIRI), Helmholtz‐Center for Infection Research (HZI)WürzburgGermany
| | | | | | - Tanja Vogel
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Center for Basics in NeuroModulation (NeuroModul Basics), Medical FacultyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS), Albert‐Ludwigs‐University FreiburgFreiburgGermany
| |
Collapse
|
34
|
Farcy S, Hachour H, Bahi-Buisson N, Passemard S. Genetic Primary Microcephalies: When Centrosome Dysfunction Dictates Brain and Body Size. Cells 2023; 12:1807. [PMID: 37443841 PMCID: PMC10340463 DOI: 10.3390/cells12131807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Primary microcephalies (PMs) are defects in brain growth that are detectable at or before birth and are responsible for neurodevelopmental disorders. Most are caused by biallelic or, more rarely, dominant mutations in one of the likely hundreds of genes encoding PM proteins, i.e., ubiquitous centrosome or microtubule-associated proteins required for the division of neural progenitor cells in the embryonic brain. Here, we provide an overview of the different types of PMs, i.e., isolated PMs with or without malformations of cortical development and PMs associated with short stature (microcephalic dwarfism) or sensorineural disorders. We present an overview of the genetic, developmental, neurological, and cognitive aspects characterizing the most representative PMs. The analysis of phenotypic similarities and differences among patients has led scientists to elucidate the roles of these PM proteins in humans. Phenotypic similarities indicate possible redundant functions of a few of these proteins, such as ASPM and WDR62, which play roles only in determining brain size and structure. However, the protein pericentrin (PCNT) is equally required for determining brain and body size. Other PM proteins perform both functions, albeit to different degrees. Finally, by comparing phenotypes, we considered the interrelationships among these proteins.
Collapse
Affiliation(s)
- Sarah Farcy
- UMR144, Institut Curie, 75005 Paris, France;
- Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Hassina Hachour
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
| | - Nadia Bahi-Buisson
- Service de Neurologie Pédiatrique, DMU MICADO, APHP, Hôpital Necker Enfants Malades, 75015 Paris, France;
- Université Paris Cité, Inserm UMR-S 1163, Institut Imagine, 75015 Paris, France
| | - Sandrine Passemard
- Service de Neurologie Pédiatrique, DMU INOV-RDB, APHP, Hôpital Robert Debré, 75019 Paris, France;
- Université Paris Cité, Inserm UMR 1141, NeuroDiderot, 75019 Paris, France
| |
Collapse
|
35
|
Mill P, Christensen ST, Pedersen LB. Primary cilia as dynamic and diverse signalling hubs in development and disease. Nat Rev Genet 2023; 24:421-441. [PMID: 37072495 PMCID: PMC7615029 DOI: 10.1038/s41576-023-00587-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2023] [Indexed: 04/20/2023]
Abstract
Primary cilia, antenna-like sensory organelles protruding from the surface of most vertebrate cell types, are essential for regulating signalling pathways during development and adult homeostasis. Mutations in genes affecting cilia cause an overlapping spectrum of >30 human diseases and syndromes, the ciliopathies. Given the immense structural and functional diversity of the mammalian cilia repertoire, there is a growing disconnect between patient genotype and associated phenotypes, with variable severity and expressivity characteristic of the ciliopathies as a group. Recent technological developments are rapidly advancing our understanding of the complex mechanisms that control biogenesis and function of primary cilia across a range of cell types and are starting to tackle this diversity. Here, we examine the structural and functional diversity of primary cilia, their dynamic regulation in different cellular and developmental contexts and their disruption in disease.
Collapse
Affiliation(s)
- Pleasantine Mill
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland
| | | | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
36
|
Wimmer R, Baffet AD. The microtubule cytoskeleton of radial glial progenitor cells. Curr Opin Neurobiol 2023; 80:102709. [PMID: 37003105 DOI: 10.1016/j.conb.2023.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 04/01/2023]
Abstract
A high number of genetic mutations associated with cortical malformations are found in genes coding for microtubule-related factors. This has stimulated research to understand how the various microtubule-based processes are regulated to build a functional cerebral cortex. Here, we focus our review on the radial glial progenitor cells, the stem cells of the developing neocortex, summarizing research mostly performed in rodents and humans. We highlight how the centrosomal and acentrosomal microtubule networks are organized during interphase to support polarized transport and proper attachment of the apical and basal processes. We describe the molecular mechanism for interkinetic nuclear migration (INM), a microtubule-dependent oscillation of the nucleus. Finally, we describe how the mitotic spindle is built to ensure proper chromosome segregation, with a strong focus on factors mutated in microcephaly.
Collapse
Affiliation(s)
- Ryszard Wimmer
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France. https://twitter.com/RyWim
| | - Alexandre D Baffet
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France; Institut national de la santé et de la recherche médicale (INSERM), France.
| |
Collapse
|
37
|
Tian JL, Huang CW, Eslami F, Mannino MP, Mai RL, Hart GW. Regulation of Primary Cilium Length by O-GlcNAc during Neuronal Development in a Human Neuron Model. Cells 2023; 12:1520. [PMID: 37296641 PMCID: PMC10252524 DOI: 10.3390/cells12111520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
The primary cilium plays critical roles in the homeostasis and development of neurons. Recent studies demonstrate that cilium length is regulated by the metabolic state of cells, as dictated by processes such as glucose flux and O-GlcNAcylation (OGN). The study of cilium length regulation during neuron development, however, has been an area left largely unexplored. This project aims to elucidate the roles of O-GlcNAc in neuronal development through its regulation of the primary cilium. Here, we present findings suggesting that OGN levels negatively regulate cilium length on differentiated cortical neurons derived from human-induced pluripotent stem cells. In neurons, cilium length increased significantly during maturation (after day 35), while OGN levels began to drop. Long-term perturbation of OGN via drugs, which inhibit or promote its cycling, during neuron development also have varying effects. Diminishing OGN levels increases cilium length until day 25, when neural stem cells expand and undergo early neurogenesis, before causing cell cycle exit defects and multinucleation. Elevating OGN levels induces greater primary cilia assembly but ultimately results in the development of premature neurons, which have higher insulin sensitivity. These results indicate that OGN levels and primary cilium length are jointly critical in proper neuron development and function. Understanding the interplays between these two nutrient sensors, O-GlcNAc and the primary cilium, during neuron development is important in paving connections between dysfunctional nutrient-sensing and early neurological disorders.
Collapse
Affiliation(s)
- Jie L. Tian
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.-W.H.); (F.E.); (M.P.M.); (R.L.M.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Chia-Wei Huang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.-W.H.); (F.E.); (M.P.M.); (R.L.M.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Farzad Eslami
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.-W.H.); (F.E.); (M.P.M.); (R.L.M.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Michael Philip Mannino
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.-W.H.); (F.E.); (M.P.M.); (R.L.M.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Rebecca Lee Mai
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.-W.H.); (F.E.); (M.P.M.); (R.L.M.)
- Department of Biology, University of Georgia, Athens, GA 30602, USA
| | - Gerald W. Hart
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (C.-W.H.); (F.E.); (M.P.M.); (R.L.M.)
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
38
|
Bieder A, Chandrasekar G, Wason A, Erkelenz S, Gopalakrishnan J, Kere J, Tapia-Páez I. Genetic and protein interaction studies between the ciliary dyslexia candidate genes DYX1C1 and DCDC2. BMC Mol Cell Biol 2023; 24:20. [PMID: 37237337 DOI: 10.1186/s12860-023-00483-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND DYX1C1 (DNAAF4) and DCDC2 are two of the most replicated dyslexia candidate genes in genetic studies. They both have demonstrated roles in neuronal migration, in cilia growth and function and they both are cytoskeletal interactors. In addition, they both have been characterized as ciliopathy genes. However, their exact molecular functions are still incompletely described. Based on these known roles, we asked whether DYX1C1 and DCDC2 interact on the genetic and the protein level. RESULTS Here, we report the physical protein-protein interaction of DYX1C1 and DCDC2 as well as their respective interactions with the centrosomal protein CPAP (CENPJ) on exogenous and endogenous levels in different cell models including brain organoids. In addition, we show a synergistic genetic interaction between dyx1c1 and dcdc2b in zebrafish exacerbating the ciliary phenotype. Finally, we show a mutual effect on transcriptional regulation among DYX1C1 and DCDC2 in a cellular model. CONCLUSIONS In summary, we describe the physical and functional interaction between the two genes DYX1C1 and DCDC2. These results contribute to the growing understanding of the molecular roles of DYX1C1 and DCDC2 and set the stage for future functional studies.
Collapse
Affiliation(s)
- Andrea Bieder
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | | | - Arpit Wason
- Center for Molecular Medicine, Institute for Biochemistry I of the University of Cologne, Cologne, Germany
| | - Steffen Erkelenz
- Institute of Human Genetics, Universitätsklinikum, Heinrich Heine University, Düsseldorf, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Universitätsklinikum, Heinrich Heine University, Düsseldorf, Germany
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Molecular Neurology Research Program, University of Helsinki, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Isabel Tapia-Páez
- Department of Medicine, Solna, Karolinska Institutet, Solnavägen 30, SE-171 76, Solna, Sweden.
| |
Collapse
|
39
|
Xu Z, Yang J, Xin X, Liu C, Li L, Mei X, Li M. Merits and challenges of iPSC-derived organoids for clinical applications. Front Cell Dev Biol 2023; 11:1188905. [PMID: 37305682 PMCID: PMC10250752 DOI: 10.3389/fcell.2023.1188905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/18/2023] [Indexed: 06/13/2023] Open
Abstract
Induced pluripotent stem cells (iPSCs) have entered an unprecedented state of development since they were first generated. They have played a critical role in disease modeling, drug discovery, and cell replacement therapy, and have contributed to the evolution of disciplines such as cell biology, pathophysiology of diseases, and regenerative medicine. Organoids, the stem cell-derived 3D culture systems that mimic the structure and function of organs in vitro, have been widely used in developmental research, disease modeling, and drug screening. Recent advances in combining iPSCs with 3D organoids are facilitating further applications of iPSCs in disease research. Organoids derived from embryonic stem cells, iPSCs, and multi-tissue stem/progenitor cells can replicate the processes of developmental differentiation, homeostatic self-renewal, and regeneration due to tissue damage, offering the potential to unravel the regulatory mechanisms of development and regeneration, and elucidate the pathophysiological processes involved in disease mechanisms. Herein, we have summarized the latest research on the production scheme of organ-specific iPSC-derived organoids, the contribution of these organoids in the treatment of various organ-related diseases, in particular their contribution to COVID-19 treatment, and have discussed the unresolved challenges and shortcomings of these models.
Collapse
Affiliation(s)
- Ziran Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
- Department of Clinical Laboratory, Lequn Branch, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaxu Yang
- Department of Neonatology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xianyi Xin
- Department of Pediatric Cardiovascular Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chengrun Liu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Xianglin Mei
- Department of pathology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| |
Collapse
|
40
|
Gabriel E, Albanna W, Pasquini G, Ramani A, Josipovic N, Mariappan A, Riparbelli MG, Callaini G, Karch CM, Goureau O, Papantonis A, Busskamp V, Schneider T, Gopalakrishnan J. Generation of iPSC-derived human forebrain organoids assembling bilateral eye primordia. Nat Protoc 2023:10.1038/s41596-023-00814-x. [PMID: 37198320 DOI: 10.1038/s41596-023-00814-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/13/2023] [Indexed: 05/19/2023]
Abstract
Induced pluripotent stem cell-derived brain organoids enable the developmental complexities of the human brain to be deconstructed. During embryogenesis, optic vesicles (OVs), the eye primordium attached to the forebrain, develop from diencephalon. However, most 3D culturing methods generate either brain or retinal organoids individually. Here we describe a protocol to generate organoids with both forebrain entities, which we call OV-containing brain organoids (OVB organoids). In this protocol, we first induce neural differentiation (days 0-5) and collect neurospheres, which we culture in a neurosphere medium to initiate their patterning and further self-assembly (days 5-10). Then, upon transfer to spinner flasks containing OVB medium (days 10-30), neurospheres develop into forebrain organoids with one or two pigmented dots restricted to one pole, displaying forebrain entities of ventral and dorsal cortical progenitors and preoptic areas. Further long-term culture results in photosensitive OVB organoids constituting complementary cell types of OVs, including primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections and electrically active neuronal networks. OVB organoids provide a system to help dissect interorgan interactions between the OVs as sensory organs and the brain as a processing unit, and can help model early eye patterning defects, including congenital retinal dystrophy. To conduct the protocol, experience in sterile cell culture and maintenance of human induced pluripotent stem cells is essential; theoretical knowledge of brain development is advantageous. Furthermore, specialized expertise in 3D organoid culture and imaging for the analysis is needed.
Collapse
Affiliation(s)
- Elke Gabriel
- Institute of Human Genetics, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Walid Albanna
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
- Department of Neurosurgery, RWTH Aachen University, Aachen, Germany
| | - Giovanni Pasquini
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anand Ramani
- Institute of Human Genetics, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Natasa Josipovic
- Institute of Pathology, University Medicine Göttingen, Georg-August University Göttingen, Göttingen, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Aruljothi Mariappan
- Institute of Human Genetics, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Giuliano Callaini
- Department of Life Sciences and Medical Biotechnology University of Siena, Siena, Italy
| | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Olivier Goureau
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Argyris Papantonis
- Institute of Pathology, University Medicine Göttingen, Georg-August University Göttingen, Göttingen, Germany
- Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Volker Busskamp
- Department of Ophthalmology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Toni Schneider
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
41
|
Wang L, Owusu-Hammond C, Sievert D, Gleeson JG. Stem Cell-Based Organoid Models of Neurodevelopmental Disorders. Biol Psychiatry 2023; 93:622-631. [PMID: 36759260 PMCID: PMC10022535 DOI: 10.1016/j.biopsych.2023.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
The past decade has seen an explosion in the identification of genetic causes of neurodevelopmental disorders, including Mendelian, de novo, and somatic factors. These discoveries provide opportunities to understand cellular and molecular mechanisms as well as potential gene-gene and gene-environment interactions to support novel therapies. Stem cell-based models, particularly human brain organoids, can capture disease-associated alleles in the context of the human genome, engineered to mirror disease-relevant aspects of cellular complexity and developmental timing. These models have brought key insights into neurodevelopmental disorders as diverse as microcephaly, autism, and focal epilepsy. However, intrinsic organoid-to-organoid variability, low levels of certain brain-resident cell types, and long culture times required to reach maturity can impede progress. Several recent advances incorporate specific morphogen gradients, mixtures of diverse brain cell types, and organoid engraftment into animal models. Together with nonhuman primate organoid comparisons, mechanisms of human neurodevelopmental disorders are emerging.
Collapse
Affiliation(s)
- Lu Wang
- From the Department of Neuroscience, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, California
| | - Charlotte Owusu-Hammond
- From the Department of Neuroscience, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, California
| | - David Sievert
- From the Department of Neuroscience, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, California
| | - Joseph G Gleeson
- From the Department of Neuroscience, Rady Children's Institute for Genomic Medicine, University of California, San Diego, San Diego, California.
| |
Collapse
|
42
|
Asif M, Abdullah U, Nürnberg P, Tinschert S, Hussain MS. Congenital Microcephaly: A Debate on Diagnostic Challenges and Etiological Paradigm of the Shift from Isolated/Non-Syndromic to Syndromic Microcephaly. Cells 2023; 12:cells12040642. [PMID: 36831309 PMCID: PMC9954724 DOI: 10.3390/cells12040642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Congenital microcephaly (CM) exhibits broad clinical and genetic heterogeneity and is thus categorized into several subtypes. However, the recent bloom of disease-gene discoveries has revealed more overlaps than differences in the underlying genetic architecture for these clinical sub-categories, complicating the differential diagnosis. Moreover, the mechanism of the paradigm shift from a brain-restricted to a multi-organ phenotype is only vaguely understood. This review article highlights the critical factors considered while defining CM subtypes. It also presents possible arguments on long-standing questions of the brain-specific nature of CM caused by a dysfunction of the ubiquitously expressed proteins. We argue that brain-specific splicing events and organ-restricted protein expression may contribute in part to disparate clinical manifestations. We also highlight the role of genetic modifiers and de novo variants in the multi-organ phenotype of CM and emphasize their consideration in molecular characterization. This review thus attempts to expand our understanding of the phenotypic and etiological variability in CM and invites the development of more comprehensive guidelines.
Collapse
Affiliation(s)
- Maria Asif
- Cologne Center for Genomics (CCG), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Uzma Abdullah
- University Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University, Rawalpindi, Rawalpindi 46300, Pakistan
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Sigrid Tinschert
- Zentrum Medizinische Genetik, Medizinische Universität, 6020 Innsbruck, Austria
| | - Muhammad Sajid Hussain
- Cologne Center for Genomics (CCG), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
- Correspondence:
| |
Collapse
|
43
|
Ji XS, Ji XL, Xiong M, Zhou WH. Modeling congenital brain malformations with brain organoids: a narrative review. Transl Pediatr 2023; 12:68-78. [PMID: 36798935 PMCID: PMC9926131 DOI: 10.21037/tp-22-239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/10/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND OBJECTIVE During embryonic development, the dysregulation of the proliferation and differentiation of neuronal progenitors triggers congenital brain malformations. These malformations are common causes of morbidity and mortality in patients younger than 2 years old. Animal models have provided considerable insights into the etiology of diseases that cause congenital brain malformations. However, the interspecies differences in brain structure limit the ability to transfer these insights directly to studies of humans. In recent years, brain organoids generated from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs) using a 3-dimensional (3D) culture system have been used to resemble the structure and function of a developing human brain. Therefore, we aimed to summarize the different congenital brain malformations that have been modeled by organoids and discuss the ability of this model to reveal the cellular and molecular mechanisms of congenital brain malformations. METHODS A comprehensive search was performed using PubMed and Web of Science's Core Collection for literature published from July 1, 2000 to July 1, 2022. Keywords included terms related to brain organoids and congenital brain malformations, as well as names of individual malformations. KEY CONTENT AND FINDINGS The self-assembled 3D aggregates have been used to recapitulate structural malformations of human brains, such as microcephaly, macrocephaly, lissencephaly (LIS), and periventricular nodular heterotopia (PH). The use of disease-specific brain organoids has revealed unprecedented details of mechanisms that cause congenital brain malformations. CONCLUSIONS This review summarizes the establishment and development of brain organoid technologies and provides an overview of their applications in modeling congenital brain malformations. Although several hurdles still need to be overcome, using brain organoids has greatly expanded our ability to reveal the pathogenesis of congenital brain malformations. Compared with existing methods, the combination with cutting-edge technologies enables a more accurate diagnosis and development of increasingly personalized targeted therapy for patients with congenital brain diseases.
Collapse
Affiliation(s)
- Xiao-Shan Ji
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Birth Defects, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Xiao-Li Ji
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Birth Defects, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Man Xiong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Wen-Hao Zhou
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Birth Defects, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| |
Collapse
|
44
|
Sudhakar DVS, Phanindranath R, Jaishankar S, Ramani A, Kalamkar KP, Kumar U, Pawar AD, Dada R, Singh R, Gupta NJ, Deenadayal M, Tolani AD, Sharma Y, Anand A, Gopalakrishnan J, Thangaraj K. Exome sequencing and functional analyses revealed CETN1 variants leads to impaired cell division and male fertility. Hum Mol Genet 2023; 32:533-542. [PMID: 36048845 DOI: 10.1093/hmg/ddac216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 02/07/2023] Open
Abstract
Human spermatogenesis requires an orchestrated expression of numerous genes in various germ cell subtypes. Therefore, the genetic landscape of male infertility is highly complex. Known genetic factors alone account for at least 15% of male infertility. However, ~40% of infertile men remain undiagnosed and are classified as idiopathic infertile men. We performed exome sequencing in 47 idiopathic infertile men (discovery cohort), followed by replication study (40 variants in 33 genes) in 844 infertile men and 709 controls using Sequenom MassARRAY® based genotyping. We report 17 variants in twelve genes that comprise both previously reported (DNAH8, DNAH17, FISP2 and SPEF2) and novel candidate genes (BRDT, CETN1, CATSPERD, GMCL1, SPATA6, TSSK4, TSKS and ZNF318) for male infertility. The latter have a strong biological nexus to human spermatogenesis and their respective mouse knockouts are concordant with human phenotypes. One candidate gene CETN1, identified in this study, was sequenced in another independent cohort of 840 infertile and 689 fertile men. Further, CETN1 variants were functionally characterized using biophysical and cell biology approaches. We demonstrate that CETN1 variant- p.Met72Thr leads to multipolar cells, fragmented nuclei during mitosis leading to cell death and show significantly perturbed ciliary disassembly dynamics. Whereas CETN1-5' UTR variant; rs367716858 leads to loss of a methylation site and increased reporter gene expression in vitro. We report a total of eight novel candidate genes identified by exome sequencing, which may have diagnostic relevance and can contribute to improved diagnostic workup and clinical management of male infertility.
Collapse
Affiliation(s)
| | - Regur Phanindranath
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Shveta Jaishankar
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Anand Ramani
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf 40225, Germany
| | - Kaustubh P Kalamkar
- Institute for Neurophysiology, University of Cologne, Cologne D-50931, Germany
| | - Umesh Kumar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Asmita D Pawar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500007, India
| | - Rima Dada
- All India Institute of Medical Sciences, New Delhi, India
| | - Rajender Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | | | | | | | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500007, India.,Indian Institute of Science Education and Research (IISER) Berhampur, Odisha, India
| | - Anuranjan Anand
- Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bengaluru, India
| | - Jay Gopalakrishnan
- Institute of Human Genetics, University Hospital Düsseldorf, Heinrich-Heine-Universität, Düsseldorf 40225, Germany
| | - Kumarasamy Thangaraj
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, 500007, India.,Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| |
Collapse
|
45
|
A Comprehensive Update of Cerebral Organoids between Applications and Challenges. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7264649. [DOI: 10.1155/2022/7264649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/30/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022]
Abstract
The basic technology of stem cells has been developed and created organoids, which have established a strong interest in regenerative medicine. Different cell types have been used to generate cerebral organoids, which include interneurons and oligodendrocytes (OLs). OLs are fundamental for brain development. Abundant studies have displayed that brain organoids can recapitulate fundamental and vital features of the human brain, such as cellular regulation and distribution, neuronal networks, electrical activities, and physiological structure. The organoids contain essential ventral brain domains and functional cortical interneurons, which are similar to the developing cortex and medial ganglionic eminence (MGE). So, brain organoids have provided a singular model to study and investigate neurological disorder mechanisms and therapeutics. Furthermore, the blood brain barrier (BBB) organoids modeling contributes to accelerate therapeutic discovery for the treatment of several neuropathologies. In this review, we summarized the advances of the brain organoids applications to investigate neurological disorder mechanisms such as neurodevelopmental and neurodegenerative disorders, mental disorders, brain cancer, and cerebral viral infections. We discussed brain organoids’ therapeutic application as a potential therapeutic unique method and highlighted in detail the challenges and hurdles of organoid models.
Collapse
|
46
|
Amack JD. Structures and functions of cilia during vertebrate embryo development. Mol Reprod Dev 2022; 89:579-596. [PMID: 36367893 PMCID: PMC9805515 DOI: 10.1002/mrd.23650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
Cilia are hair-like structures that project from the surface of cells. In vertebrates, most cells have an immotile primary cilium that mediates cell signaling, and some specialized cells assemble one or multiple cilia that are motile and beat synchronously to move fluids in one direction. Gene mutations that alter cilia structure or function cause a broad spectrum of disorders termed ciliopathies that impact virtually every system in the body. A wide range of birth defects associated with ciliopathies underscores critical functions for cilia during embryonic development. In many cases, the mechanisms underlying cilia functions during development and disease remain poorly understood. This review describes different types of cilia in vertebrate embryos and discusses recent research results from diverse model systems that provide novel insights into how cilia form and function during embryo development. The work discussed here not only expands our understanding of in vivo cilia biology, but also opens new questions about cilia and their roles in establishing healthy embryos.
Collapse
Affiliation(s)
- Jeffrey D. Amack
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York, USA,,BioInspired Syracuse: Institute for Material and Living Systems, Syracuse, New York, USA
| |
Collapse
|
47
|
Eichmüller OL, Knoblich JA. Human cerebral organoids - a new tool for clinical neurology research. Nat Rev Neurol 2022; 18:661-680. [PMID: 36253568 PMCID: PMC9576133 DOI: 10.1038/s41582-022-00723-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 11/21/2022]
Abstract
The current understanding of neurological diseases is derived mostly from direct analysis of patients and from animal models of disease. However, most patient studies do not capture the earliest stages of disease development and offer limited opportunities for experimental intervention, so rarely yield complete mechanistic insights. The use of animal models relies on evolutionary conservation of pathways involved in disease and is limited by an inability to recreate human-specific processes. In vitro models that are derived from human pluripotent stem cells cultured in 3D have emerged as a new model system that could bridge the gap between patient studies and animal models. In this Review, we summarize how such organoid models can complement classical approaches to accelerate neurological research. We describe our current understanding of neurodevelopment and how this process differs between humans and other animals, making human-derived models of disease essential. We discuss different methodologies for producing organoids and how organoids can be and have been used to model neurological disorders, including microcephaly, Zika virus infection, Alzheimer disease and other neurodegenerative disorders, and neurodevelopmental diseases, such as Timothy syndrome, Angelman syndrome and tuberous sclerosis. We also discuss the current limitations of organoid models and outline how organoids can be used to revolutionize research into the human brain and neurological diseases.
Collapse
Affiliation(s)
- Oliver L Eichmüller
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- University of Heidelberg, Heidelberg, Germany
| | - Juergen A Knoblich
- IMBA-Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria.
- Medical University of Vienna, Department of Neurology, Vienna, Austria.
| |
Collapse
|
48
|
Focus on organoids: cooperation and interconnection with extracellular vesicles - Is this the future of in vitro modeling? Semin Cancer Biol 2022; 86:367-381. [PMID: 34896267 DOI: 10.1016/j.semcancer.2021.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 01/27/2023]
Abstract
Organoids are simplified in vitro model systems of organs that are used for modeling tissue development and disease, drug screening, cell therapy, and personalized medicine. Despite considerable success in the design of organoids, challenges remain in achieving real-life applications. Organoids serve as unique and organized groups of micro physiological systems that are capable of self-renewal and self-organization. Moreover, they exhibit similar organ functionality(ies) as that of tissue(s) of origin. Organoids can be designed from adult stem cells, induced pluripotent stem cells, or embryonic stem cells. They consist of most of the important cell types of the desired tissue/organ along with the topology and cell-cell interactions that are highly similar to those of an in vivo tissue/organ. Organoids have gained interest in human biomedical research, as they demonstrate high promise for use in basic, translational, and applied research. As in vitro models, organoids offer significant opportunities for reducing the reliance and use of experimental animals. In this review, we will provide an overview of organoids, as well as those intercellular communications mediated by extracellular vesicles (EVs), and discuss the importance of organoids in modeling a tumor immune microenvironment (TIME). Organoids can also be exploited to develop a better understanding of intercellular communications mediated by EVs. Also, organoids are useful in mimicking TIME, thereby offering a better-controlled environment for studying various associated biological processes and immune cell types involved in tumor immunity, such as T-cells, macrophages, dendritic cells, and myeloid-derived suppressor cells, among others.
Collapse
|
49
|
Arthur P, Muok L, Nathani A, Zeng EZ, Sun L, Li Y, Singh M. Bioengineering Human Pluripotent Stem Cell-Derived Retinal Organoids and Optic Vesicle-Containing Brain Organoids for Ocular Diseases. Cells 2022; 11:3429. [PMID: 36359825 PMCID: PMC9653705 DOI: 10.3390/cells11213429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 08/24/2023] Open
Abstract
Retinal organoids are three-dimensional (3D) structures derived from human pluripotent stem cells (hPSCs) that mimic the retina's spatial and temporal differentiation, making them useful as in vitro retinal development models. Retinal organoids can be assembled with brain organoids, the 3D self-assembled aggregates derived from hPSCs containing different cell types and cytoarchitectures that resemble the human embryonic brain. Recent studies have shown the development of optic cups in brain organoids. The cellular components of a developing optic vesicle-containing organoids include primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections, and electrically active neuronal networks. The importance of retinal organoids in ocular diseases such as age-related macular degeneration, Stargardt disease, retinitis pigmentosa, and diabetic retinopathy are described in this review. This review highlights current developments in retinal organoid techniques, and their applications in ocular conditions such as disease modeling, gene therapy, drug screening and development. In addition, recent advancements in utilizing extracellular vesicles secreted by retinal organoids for ocular disease treatments are summarized.
Collapse
Affiliation(s)
- Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Laureana Muok
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| | - Eric Z. Zeng
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Li Sun
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
50
|
Damianidou E, Mouratidou L, Kyrousi C. Research models of neurodevelopmental disorders: The right model in the right place. Front Neurosci 2022; 16:1031075. [PMID: 36340790 PMCID: PMC9630472 DOI: 10.3389/fnins.2022.1031075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a heterogeneous group of impairments that affect the development of the central nervous system leading to abnormal brain function. NDDs affect a great percentage of the population worldwide, imposing a high societal and economic burden and thus, interest in this field has widely grown in recent years. Nevertheless, the complexity of human brain development and function as well as the limitations regarding human tissue usage make their modeling challenging. Animal models play a central role in the investigation of the implicated molecular and cellular mechanisms, however many of them display key differences regarding human phenotype and in many cases, they partially or completely fail to recapitulate them. Although in vitro two-dimensional (2D) human-specific models have been highly used to address some of these limitations, they lack crucial features such as complexity and heterogeneity. In this review, we will discuss the advantages, limitations and future applications of in vivo and in vitro models that are used today to model NDDs. Additionally, we will describe the recent development of 3-dimensional brain (3D) organoids which offer a promising approach as human-specific in vitro models to decipher these complex disorders.
Collapse
Affiliation(s)
- Eleni Damianidou
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
| | - Lidia Mouratidou
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
- First Department of Psychiatry, Medical School, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Kyrousi
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
- First Department of Psychiatry, Medical School, Eginition Hospital, National and Kapodistrian University of Athens, Athens, Greece
- *Correspondence: Christina Kyrousi,
| |
Collapse
|