1
|
Bauer JR, Robinson TL, Strich R, Cooper KF. Quitting Your Day Job in Response to Stress: Cell Survival and Cell Death Require Secondary Cytoplasmic Roles of Cyclin C and Med13. Cells 2025; 14:636. [PMID: 40358161 PMCID: PMC12071894 DOI: 10.3390/cells14090636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Following unfavorable environmental cues, cells reprogram pathways that govern transcription, translation, and protein degradation systems. This reprogramming is essential to restore homeostasis or commit to cell death. This review focuses on the secondary roles of two nuclear transcriptional regulators, cyclin C and Med13, which play key roles in this decision process. Both proteins are members of the Mediator kinase module (MKM) of the Mediator complex, which, under normal physiological conditions, positively and negatively regulates a subset of stress response genes. However, cyclin C and Med13 translocate to the cytoplasm following cell death or cell survival cues, interacting with a host of cell death and cell survival proteins, respectively. In the cytoplasm, cyclin C is required for stress-induced mitochondrial hyperfission and promotes regulated cell death pathways. Cytoplasmic Med13 stimulates the stress-induced assembly of processing bodies (P-bodies) and is required for the autophagic degradation of a subset of P-body assembly factors by cargo hitchhiking autophagy. This review focuses on these secondary, a.k.a. "night jobs" of cyclin C and Med13, outlining the importance of these secondary functions in maintaining cellular homeostasis following stress.
Collapse
Affiliation(s)
| | | | | | - Katrina F. Cooper
- Department of Cell and Molecular Biology, School of Osteopathic Medicine, Rowan-Virtua College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084, USA; (J.R.B.); (T.L.R.); (R.S.)
| |
Collapse
|
2
|
Turner-Ivey B, Jenkins DP, Carroll SL. Multiple Roles for Neuregulins and Their ERBB Receptors in Neurodegenerative Disease Pathogenesis and Therapy. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00119-1. [PMID: 40254133 DOI: 10.1016/j.ajpath.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025]
Abstract
The role that neurotrophins, such as nerve growth factor, play in the pathogenesis of neurodegenerative diseases has long been appreciated. However, the neuregulin (NRG) family of growth factors and/or their v-erb-B2 avian erythroblastic leukemia viral oncogene homolog (ERBB) receptors have also been implicated in the pathogenesis of conditions, such as Alzheimer disease (AD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS). In this review, we consider i) the structural variability of NRG isoforms generated by alternative RNA splicing, the use of multiple promoters and proteolysis, and the impact that this structural variability has on neuronal and glial physiology during development and adulthood. We discuss ii) the NRG receptors ERBB2, ERBB3, and ERBB4, how activation of each of these receptors further diversifies NRG actions in the central nervous system, and how dementia-related proteins, such as γ-secretase modulate the action of NRGs and their ERBB receptors. We then iii) turn to the abnormalities in NRG and ERBB expression and function evident in human AD and mouse AD models, how these abnormalities affect brain function, and attempts to use NRGs to treat AD. Finally, iv) we discuss NRG effects on the survival and function of neurons relevant to FTLD and ALS, alterations in NRG/ERBB signaling identified in these conditions, and the recent discovery of multiple human pedigrees in which autosomal dominant FTLD/ALS potentially results from point mutations in ERBB4.
Collapse
Affiliation(s)
- Brittany Turner-Ivey
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Dorea P Jenkins
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Steven L Carroll
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
3
|
Mitra J, Kodavati M, Dharmalingam P, Guerrero EN, Rao KS, Garruto RM, Hegde ML. Endogenous TDP-43 mislocalization in a novel knock-in mouse model reveals DNA repair impairment, inflammation, and neuronal senescence. Acta Neuropathol Commun 2025; 13:54. [PMID: 40057796 PMCID: PMC11889789 DOI: 10.1186/s40478-025-01962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 03/14/2025] Open
Abstract
TDP-43 mislocalization and aggregation are key pathological features of amyotrophic lateral sclerosis (ALS)- and frontotemporal dementia (FTD). However, existing transgenic hTDP-43 WT or ∆NLS-overexpression animal models primarily focus on late-stage TDP-43 proteinopathy. To complement these models and to study the early-stage motor neuron-specific pathology during pre-symptomatic phases of disease progression, we generated a new endogenous knock-in (KI) mouse model using a combination of CRISPR/Cas9 and FLEX Cre-switch strategy for the conditional expression of a mislocalized Tdp-43∆NLS variant of mouse Tdp-43. This variant is expressed either in the whole body (WB) or specifically in the motor neurons (MNs) in two distinct models. These mice exhibit loss of nuclear Tdp-43, with concomitant cytosolic accumulation and aggregation in targeted cells, leading to increased DNA double-strand breaks (DSBs), signs of inflammation, and associated cellular senescence. Notably, unlike WT Tdp-43, which functionally interacts with Xrcc4 and DNA Ligase 4, the key DSB repair proteins in the non-homologous end-joining (NHEJ) pathway, the Tdp-43∆NLS mutant sequesters them into cytosolic aggregates, exacerbating neuronal damage in mouse brain. The mutant mice also exhibit myogenic degeneration in hindlimb soleus muscles and distinct motor deficits, consistent with the characteristics of motor neuron disease (MND). Our findings reveal progressive degenerative mechanisms in motor neurons expressing endogenous Tdp-43∆NLS mutant, independent of Tdp-43 overexpression or other confounding factors. Thus, this unique Tdp-43 KI mouse model, which displays key molecular and phenotypic features of Tdp-43 proteinopathy, offers a significant opportunity to characterize the early-stage progression of MND further and also opens avenues for developing DNA repair-targeted approaches for treating TDP-43 pathology-linked neurodegenerative diseases.
Collapse
Affiliation(s)
- Joy Mitra
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA.
| | - Manohar Kodavati
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Prakash Dharmalingam
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Erika N Guerrero
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Gorgas Memorial Institute for Health Studies, Avenida Justo Arosemena y Calle 35, Panama City, Republic of Panama
- Sistema Nacional de Investigación, SENACYT, Panama City, Republic of Panama
| | - K S Rao
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation Deemed to Be University, Green Fields, Vaddeswaram, Andhra Pradesh, 522502, India
| | - Ralph M Garruto
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, NY, 13902, USA
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY, 13902, USA
| | - Muralidhar L Hegde
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Department of Neuroscience, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
4
|
Wu Z, Omura I, Saito A, Imaizumi K, Kamikawa Y. VPS4B orchestrates response to nuclear envelope stress by regulating ESCRT-III dynamics in glioblastoma. Nucleus 2024; 15:2423660. [PMID: 39540606 PMCID: PMC11572143 DOI: 10.1080/19491034.2024.2423660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The Nuclear envelope (NE) is frequently challenged by mechanical stimuli involving cells passing through a tight space and such stress is known as "NE stress." Various factors that cooperate to repair the NE have been identified, including endosomal sorting complex required for transport-III (ESCRT-III). Recently, vacuolar protein sorting 4 homolog B (VPS4B) has been reported to modulate the recycling of ESCRT-III during NE repair, but the regulatory mechanism remains unclear. Our previous study revealed that U251MG cells, derived from the glioblastoma (GBM), exhibited nuclear deformation followed by DNA damage upon mechanical NE stress while these phenotypes were not observed in U87MG, another GBM-derived cell line. Here, we found that VPS4B expression was lower in U251MG than in U87MG. Our functional analysis demonstrated that insufficient VPS4B triggers an inadequate response to NE stress and that VPS4B regulates the dynamics of ESCRT-III, uncovering the mechanism underlying the NE stress response in GBM.
Collapse
Affiliation(s)
- Zuqian Wu
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Issei Omura
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
- Department of Frontier Science and Interdisciplinary Research, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Atsushi Saito
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
- Department of Frontier Science and Interdisciplinary Research, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Yasunao Kamikawa
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| |
Collapse
|
5
|
Mariani D, Setti A, Castagnetti F, Vitiello E, Stufera Mecarelli L, Di Timoteo G, Giuliani A, D’Angelo A, Santini T, Perego E, Zappone S, Liessi N, Armirotti A, Vicidomini G, Bozzoni I. ALS-associated FUS mutation reshapes the RNA and protein composition of stress granules. Nucleic Acids Res 2024; 52:13269-13289. [PMID: 39494508 PMCID: PMC11602144 DOI: 10.1093/nar/gkae942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
Stress granules (SG) are part of a cellular protection mechanism where untranslated messenger RNAs and RNA-binding proteins are stored upon conditions of cellular stress. Compositional variations due to qualitative or quantitative protein changes can disrupt their functionality and alter their structure. This is the case of different forms of amyotrophic lateral sclerosis (ALS) where a causative link has been proposed between the cytoplasmic de-localization of mutant proteins, such as FUS (Fused in Sarcoma), and the formation of cytotoxic inclusions. Here, we describe the SG transcriptome in neuroblastoma cells and define several features for RNA recruitment in these condensates. We demonstrate that SG dynamics and RNA content are strongly modified by the incorporation of mutant FUS, switching to a more unstructured, AU-rich SG transcriptome. Moreover, we show that mutant FUS, together with its protein interactors and their target RNAs, are responsible for the reshaping of the mutant SG transcriptome with alterations that can be linked to neurodegeneration. Our data describe the molecular differences between physiological and pathological SG in ALS-FUS conditions, showing how FUS mutations impact the RNA and protein composition of these condensates.
Collapse
Affiliation(s)
- Davide Mariani
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Adriano Setti
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesco Castagnetti
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
| | - Erika Vitiello
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
| | - Lorenzo Stufera Mecarelli
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Gaia Di Timoteo
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Andrea Giuliani
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Angelo D’Angelo
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Eleonora Perego
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
| | - Sabrina Zappone
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
| | - Nara Liessi
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Giuseppe Vicidomini
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
| | - Irene Bozzoni
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Center for Life Nano-& Neuro-Science, Fondazione Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| |
Collapse
|
6
|
Singh SB, Rajput SS, Sharma A, Kataria S, Dutta P, Ananthanarayanan V, Nandi A, Patil S, Majumdar A, Subramanyam D. Pathogenic Huntingtin aggregates alter actin organization and cellular stiffness resulting in stalled clathrin-mediated endocytosis. eLife 2024; 13:e98363. [PMID: 39382268 PMCID: PMC11643626 DOI: 10.7554/elife.98363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024] Open
Abstract
Aggregation of mutant forms of Huntingtin is the underlying feature of neurodegeneration observed in Huntington's disorder. In addition to neurons, cellular processes in non-neuronal cell types are also shown to be affected. Cells expressing neurodegeneration-associated mutant proteins show altered uptake of ligands, suggestive of impaired endocytosis, in a manner as yet unknown. Using live cell imaging, we show that clathrin-mediated endocytosis (CME) is affected in Drosophila hemocytes and mammalian cells containing Huntingtin aggregates. This is also accompanied by alterations in the organization of the actin cytoskeleton resulting in increased cellular stiffness. Further, we find that Huntingtin aggregates sequester actin and actin-modifying proteins. Overexpression of Hip1 or Arp3 (actin-interacting proteins) could restore CME and cellular stiffness in cells containing Huntingtin aggregates. Neurodegeneration driven by pathogenic Huntingtin was also rescued upon overexpression of either Hip1 or Arp3 in Drosophila. Examination of other pathogenic aggregates revealed that TDP-43 also displayed defective CME, altered actin organization and increased stiffness, similar to pathogenic Huntingtin. Together, our results point to an intimate connection between dysfunctional CME, actin misorganization and increased cellular stiffness caused by alteration in the local intracellular environment by pathogenic aggregates.
Collapse
Affiliation(s)
- Surya Bansi Singh
- National Centre for Cell Science, SP Pune University CampusPuneIndia
- SP Pune UniversityPuneIndia
| | - Shatruhan Singh Rajput
- Indian Institute of Science Education and ResearchPuneIndia
- Department of Biochemistry, University of Cambridge, 80 Tennis Court RoadCambridgeUnited Kingdom
| | - Aditya Sharma
- Department of Computer Science and Engineering, Indian Institute of Technology Bombay, PowaiMumbaiIndia
| | - Sujal Kataria
- Indian Institute of Science Education and ResearchPuneIndia
| | - Priyanka Dutta
- National Centre for Cell Science, SP Pune University CampusPuneIndia
| | - Vaishnavi Ananthanarayanan
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South WalesSydneyAustralia
| | - Amitabha Nandi
- Department of Physics, Indian Institute of Technology, Bombay PowaiMumbaiIndia
| | | | - Amitabha Majumdar
- National Centre for Cell Science, SP Pune University CampusPuneIndia
| | - Deepa Subramanyam
- National Centre for Cell Science, SP Pune University CampusPuneIndia
| |
Collapse
|
7
|
Çelik MH, Gagneur J, Lim RG, Wu J, Thompson LM, Xie X. Identifying dysregulated regions in amyotrophic lateral sclerosis through chromatin accessibility outliers. HGG ADVANCES 2024; 5:100318. [PMID: 38872308 PMCID: PMC11260578 DOI: 10.1016/j.xhgg.2024.100318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
The high heritability of amyotrophic lateral sclerosis (ALS) contrasts with its low molecular diagnosis rate post-genetic testing, pointing to potential undiscovered genetic factors. To aid the exploration of these factors, we introduced EpiOut, an algorithm to identify chromatin accessibility outliers that are regions exhibiting divergent accessibility from the population baseline in a single or few samples. Annotation of accessible regions with histone chromatin immunoprecipitation sequencing and Hi-C indicates that outliers are concentrated in functional loci, especially among promoters interacting with active enhancers. Across different omics levels, outliers are robustly replicated, and chromatin accessibility outliers are reliable predictors of gene expression outliers and aberrant protein levels. When promoter accessibility does not align with gene expression, our results indicate that molecular aberrations are more likely to be linked to post-transcriptional regulation rather than transcriptional regulation. Our findings demonstrate that the outlier detection paradigm can uncover dysregulated regions in rare diseases. EpiOut is available at github.com/uci-cbcl/EpiOut.
Collapse
Affiliation(s)
- Muhammed Hasan Çelik
- Department of Computer Science, University of California Irvine, Irvine, CA, USA; Center for Complex Biological Systems, University of California Irvine, Irvine, CA, USA
| | - Julien Gagneur
- Department of Informatics, Technical University of Munich, Garching, Germany; Helmholtz Association - Munich School for Data Science (MUDS), Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Ryan G Lim
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA
| | - Jie Wu
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Leslie M Thompson
- Institute for Memory Impairments and Neurological Disorders, University of California Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA; UCI MIND, University of California Irvine, Irvine, CA, USA; Department of Psychiatry and Human Behavior and Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA, USA; Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - Xiaohui Xie
- Department of Computer Science, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
8
|
Jamet M, Dupuis L, Gonzalez De Aguilar JL. Oligodendrocytes in amyotrophic lateral sclerosis and frontotemporal dementia: the new players on stage. Front Mol Neurosci 2024; 17:1375330. [PMID: 38585368 PMCID: PMC10995329 DOI: 10.3389/fnmol.2024.1375330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal adult-onset neurodegenerative disorders that share clinical, neuropathological and genetic features, which forms part of a multi-system disease spectrum. The pathological process leading to ALS and FTD is the result of the combination of multiple mechanisms that operate within specific populations of neurons and glial cells. The implication of oligodendrocytes has been the subject of a number of studies conducted on patients and related animal models. In this review we summarize our current knowledge on the alterations specific to myelin and the oligodendrocyte lineage occurring in ALS and FTD. We also consider different ways by which specific oligodendroglial alterations influence neurodegeneration and highlight the important role of oligodendrocytes in these two intrinsically associated neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Jose-Luis Gonzalez De Aguilar
- Strasbourg Translational Neuroscience and Psychiatry, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
9
|
Mitra J, Dharmalingam P, Kodavati M, Guerrero EN, Rao KS, Garruto RM, Hegde ML. Endogenous TDP-43 mislocalization in a novel knock-in mouse model reveals DNA repair impairment, inflammation, and neuronal senescence. RESEARCH SQUARE 2024:rs.3.rs-3879966. [PMID: 38343852 PMCID: PMC10854316 DOI: 10.21203/rs.3.rs-3879966/v2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
TDP-43 mislocalization and aggregation are key pathological features of motor neuron diseases (MND) including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, transgenic hTDP-43 WT or ΔNLS-overexpression animal models mainly capture late-stages TDP-43 proteinopathy, and do not provide a complete understanding of early motor neuron-specific pathology during pre-symptomatic phases. We have now addressed this shortcoming by generating a new endogenous knock-in (KI) mouse model using a combination of CRISPR/Cas9 and FLEX Cre-switch strategy for the conditional expression of a mislocalized Tdp-43ΔNLS variant of mouse Tdp-43. This variant is either expressed conditionally in whole mice or specifically in the motor neurons. The mice exhibit loss of nuclear Tdp-43 concomitant with its cytosolic accumulation and aggregation in targeted cells, leading to increased DNA double-strand breaks (DSBs), signs of inflammation and DNA damage-associated cellular senescence. Notably, unlike WT Tdp43 which functionally interacts with Xrcc4 and DNA Ligase 4, the key DSB repair proteins in the non-homologous end-joining (NHEJ) pathway, the Tdp-43ΔNLS mutant sequesters them into cytosolic aggregates, exacerbating neuronal damage in mice brain. The mutant mice also exhibit myogenic degeneration in limb muscles and distinct motor deficits, consistent with the characteristics of MND. Our findings reveal progressive degenerative mechanisms in motor neurons expressing endogenous Tdp-43ΔNLS mutant, independent of TDP-43 overexpression or other confounding etiological factors. Thus, this unique Tdp-43 KI mouse model, which displays key molecular and phenotypic features of Tdp-43 proteinopathy, offers a significant opportunity to further characterize the early-stage progression of MND and also opens avenues for developing DNA repair-targeted approaches for treating TDP-43 pathology-linked neurodegenerative diseases.
Collapse
Affiliation(s)
- Joy Mitra
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Prakash Dharmalingam
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Manohar Kodavati
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Erika N. Guerrero
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - K. S. Rao
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation Deemed to be University, Green Fields, Vaddeswaram, Andhra Pradesh 522502, India
| | - Ralph M. Garruto
- Department of Anthropology, Binghamton University, State University of New York, Binghamton, NY 13902, USA
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Muralidhar L. Hegde
- Division of DNA Repair Research, Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
10
|
Mitra J, Dharmalingam P, Kodavati MM, Guerrero EN, Rao KS, Garruto R, Hegde ML. Endogenous TDP-43 mislocalization in a novel knock-in mouse model reveals DNA repair impairment, inflammation, and neuronal senescence. RESEARCH SQUARE 2024:rs.3.rs-3879966. [PMID: 38343852 PMCID: PMC10854316 DOI: 10.21203/rs.3.rs-3879966/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
TDP-43 mislocalization and aggregation are key pathological features of motor neuron diseases (MND) including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, transgenic hTDP-43 WT or ∆NLS-overexpression animal models mainly capture late-stages TDP-43 proteinopathy, and do not provide a complete understanding of early motor neuron-specific pathology during pre-symptomatic phases. We have now addressed this shortcoming by generating a new endogenous knock-in (KI) mouse model using a combination of CRISPR/Cas9 and FLEX Cre-switch strategy for the conditional expression of a mislocalized Tdp-43∆NLS variant of mouse Tdp-43. This variant is either expressed conditionally in whole mice or specifically in the motor neurons. The mice exhibit loss of nuclear Tdp-43 concomitant with its cytosolic accumulation and aggregation in targeted cells, leading to increased DNA double-strand breaks (DSBs), signs of inflammation and DNA damage-associated cellular senescence. Notably, unlike WT Tdp43 which functionally interacts with Xrcc4 and DNA Ligase 4, the key DSB repair proteins in the non-homologous end-joining (NHEJ) pathway, the Tdp-43∆NLS mutant sequesters them into cytosolic aggregates, exacerbating neuronal damage in mice brain. The mutant mice also exhibit myogenic degeneration in limb muscles and distinct motor deficits, consistent with the characteristics of MND. Our findings reveal progressive degenerative mechanisms in motor neurons expressing endogenous Tdp-43∆NLS mutant, independent of TDP-43 overexpression or other confounding etiological factors. Thus, this unique Tdp-43 KI mouse model, which displays key molecular and phenotypic features of Tdp-43 proteinopathy, offers a significant opportunity to further characterize the early-stage progression of MND and also opens avenues for developing DNA repair-targeted approaches for treating TDP-43 pathology-linked neurodegenerative diseases.
Collapse
|
11
|
Kwon Y, Kang M, Jeon YM, Lee S, Lee HW, Park JS, Kim HJ. Identification and characterization of novel ERBB4 variant associated with sporadic amyotrophic lateral sclerosis (ALS). J Neurol Sci 2024; 457:122885. [PMID: 38278691 DOI: 10.1016/j.jns.2024.122885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/28/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common type of motor neuron disease characterized by progressive motor neuron degeneration in brain and spinal cord. Most cases are sporadic in ALS and 5-10% of cases are familiar. >50 genes are known to be associated with ALS and one of them is ERBB4. In this paper, we report the case of a 53-year-old ALS patient with progressive muscle weakness and fasciculation, but he had no cognitive decline. We performed the next generation sequencing (NGS) and in silico analysis, it predicted a highly pathogenic variant, c.2116 A > G, p.Asn706Asp (N706D) in the ERBB4 gene. The amino acid residue is highly conserved among species. ERBB4 is a member of the ERBB family of receptor tyrosine kinases. ERBB4 has multiple tyrosine phosphorylation sites, including an autophosphorylation site at tyrosine 1284 residue. Autophosphorylation of ERBB4 promotes biological activity and it associated with NRG-1/ERBB4 pathway. It is already known that tyrosine 128 phosphorylation of ERBB4 is decreased in patients who have ALS-associated ERBB4 mutations. We generated ERBB4 N706D construct using site-directed mutagenesis and checked the phosphorylation level of ERBB4 N706D in NSC-34 cells. We found that the phosphorylation of ERBB4 N706D was decreased compared to ERBB4 wild-type, indicating a loss of function mutation in ERBB4. We report a novel variant in ERBB4 gene leading to ALS through dysfunction of ERBB4.
Collapse
Affiliation(s)
- Younghwi Kwon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Minsung Kang
- Department of Neurology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Yu-Mi Jeon
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Shinrye Lee
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Ho-Won Lee
- Department of Neurology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea; Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Jin-Sung Park
- Department of Neurology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea.
| | - Hyung-Jun Kim
- Dementia Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea; Department of Brain Sciences, DGIST, Daegu, South Korea.
| |
Collapse
|
12
|
Sung W, Noh MY, Nahm M, Kim YS, Ki CS, Kim YE, Kim HJ, Kim SH. Progranulin haploinsufficiency mediates cytoplasmic TDP-43 aggregation with lysosomal abnormalities in human microglia. J Neuroinflammation 2024; 21:47. [PMID: 38347588 PMCID: PMC10863104 DOI: 10.1186/s12974-024-03039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/07/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Progranulin (PGRN) haploinsufficiency due to progranulin gene (GRN) variants can cause frontotemporal dementia (FTD) with aberrant TAR DNA-binding protein 43 (TDP-43) accumulation. Despite microglial burden with TDP-43-related pathophysiology, direct microglial TDP-43 pathology has not been clarified yet, only emphasized in neuronal pathology. Thus, the objective of this study was to investigate TDP-43 pathology in microglia of patients with PGRN haploinsufficiency. METHODS To design a human microglial cell model with PGRN haploinsufficiency, monocyte-derived microglia (iMGs) were generated from FTD-GRN patients carrying pathogenic or likely pathogenic variants (p.M1? and p.W147*) and three healthy controls. RESULTS iMGs from FTD-GRN patients with PGRN deficiency exhibited severe neuroinflammation phenotype and failure to maintain their homeostatic molecular signatures, along with impaired phagocytosis. In FTD-GRN patients-derived iMGs, significant cytoplasmic TDP-43 aggregation and accumulation of lipid droplets with profound lysosomal abnormalities were observed. These pathomechanisms were mediated by complement C1q activation and upregulation of pro-inflammatory cytokines. CONCLUSIONS Our study provides considerable cellular and molecular evidence that loss-of-function variants of GRN in human microglia can cause microglial dysfunction with abnormal TDP-43 aggregation induced by inflammatory milieu as well as the impaired lysosome. Elucidating the role of microglial TDP-43 pathology in intensifying neuroinflammation in individuals with FTD due to PGRN deficiency and examining consequential effects on microglial dysfunction might yield novel insights into the mechanisms underlying FTD and neurodegenerative disorders.
Collapse
Affiliation(s)
- Wonjae Sung
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Yong Sung Kim
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | | | - Young-Eun Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hee-Jin Kim
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, 222, Wangsimni-Ro, Seongdong-Gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
13
|
Ravichandran KA, Heneka MT. Inflammasomes in neurological disorders - mechanisms and therapeutic potential. Nat Rev Neurol 2024; 20:67-83. [PMID: 38195712 DOI: 10.1038/s41582-023-00915-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/11/2024]
Abstract
Inflammasomes are molecular scaffolds that are activated by damage-associated and pathogen-associated molecular patterns and form a key element of innate immune responses. Consequently, the involvement of inflammasomes in several diseases that are characterized by inflammatory processes, such as multiple sclerosis, is widely appreciated. However, many other neurological conditions, including Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, stroke, epilepsy, traumatic brain injury, sepsis-associated encephalopathy and neurological sequelae of COVID-19, all involve persistent inflammation in the brain, and increasing evidence suggests that inflammasome activation contributes to disease progression in these conditions. Understanding the biology and mechanisms of inflammasome activation is, therefore, crucial for the development of inflammasome-targeted therapies for neurological conditions. In this Review, we present the current evidence for and understanding of inflammasome activation in neurological diseases and discuss current and potential interventional strategies that target inflammasome activation to mitigate its pathological consequences.
Collapse
Affiliation(s)
- Kishore Aravind Ravichandran
- Department of Neuroinflammation, Institute of innate immunity, University of Bonn Medical Center Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Esch-sur-Alzette, Luxembourg.
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, North Worcester, MA, USA.
| |
Collapse
|
14
|
Fazeli E, Child DD, Bucks SA, Stovarsky M, Edwards G, Rose SE, Yu CE, Latimer C, Kitago Y, Bird T, Jayadev S, Andersen OM, Young JE. A familial missense variant in the Alzheimer's disease gene SORL1 impairs its maturation and endosomal sorting. Acta Neuropathol 2024; 147:20. [PMID: 38244079 PMCID: PMC10799806 DOI: 10.1007/s00401-023-02670-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/11/2023] [Accepted: 12/16/2023] [Indexed: 01/22/2024]
Abstract
The SORL1 gene has recently emerged as a strong Alzheimer's Disease (AD) risk gene. Over 500 different variants have been identified in the gene and the contribution of individual variants to AD development and progression is still largely unknown. Here, we describe a family consisting of 2 parents and 5 offspring. Both parents were affected with dementia and one had confirmed AD pathology with an age of onset > 75 years. All offspring were affected with AD with ages at onset ranging from 53 years to 74 years. DNA was available from the parent with confirmed AD and 5 offspring. We identified a coding variant, p.(Arg953Cys), in SORL1 in 5 of 6 individuals affected by AD. Notably, variant carriers had severe AD pathology, and the SORL1 variant segregated with TDP-43 pathology (LATE-NC). We further characterized this variant and show that this Arginine substitution occurs at a critical position in the YWTD-domain of the SORL1 translation product, SORL1. Functional studies further show that the p.R953C variant leads to retention of the SORL1 protein in the endoplasmic reticulum which leads to decreased maturation and shedding of the receptor and prevents its normal endosomal trafficking. Together, our analysis suggests that p.R953C is a pathogenic variant of SORL1 and sheds light on mechanisms of how missense SORL1 variants may lead to AD.
Collapse
Affiliation(s)
- Elnaz Fazeli
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Daniel D Child
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Stephanie A Bucks
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - Miki Stovarsky
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, 98195, USA
| | - Gabrielle Edwards
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
| | - Shannon E Rose
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Chang-En Yu
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, 98195, USA
- Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Health Care System, Seattle, WA, 98108, USA
| | - Caitlin Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98109, USA
| | - Yu Kitago
- Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Thomas Bird
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, 98195, USA
- Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Health Care System, Seattle, WA, 98108, USA
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA, 98195, USA.
| | - Olav M Andersen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark.
| | - Jessica E Young
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98109, USA.
| |
Collapse
|
15
|
Marks JD, Ayuso VE, Carlomagno Y, Yue M, Todd TW, Hao Y, Li Z, McEachin ZT, Shantaraman A, Duong DM, Daughrity LM, Jansen-West K, Shao W, Calliari A, Bejarano JG, DeTure M, Rawlinson B, Casey MC, Lilley MT, Donahue MH, Jawahar VM, Boeve BF, Petersen RC, Knopman DS, Oskarsson B, Graff-Radford NR, Wszolek ZK, Dickson DW, Josephs KA, Qi YA, Seyfried NT, Ward ME, Zhang YJ, Prudencio M, Petrucelli L, Cook CN. TMEM106B core deposition associates with TDP-43 pathology and is increased in risk SNP carriers for frontotemporal dementia. Sci Transl Med 2024; 16:eadf9735. [PMID: 38232138 PMCID: PMC10841341 DOI: 10.1126/scitranslmed.adf9735] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/18/2023] [Indexed: 01/19/2024]
Abstract
Genetic variation at the transmembrane protein 106B gene (TMEM106B) has been linked to risk of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) through an unknown mechanism. We found that presence of the TMEM106B rs3173615 protective genotype was associated with longer survival after symptom onset in a postmortem FTLD-TDP cohort, suggesting a slower disease course. The seminal discovery that filaments derived from TMEM106B is a common feature in aging and, across a range of neurodegenerative disorders, suggests that genetic variants in TMEM106B could modulate disease risk and progression through modulating TMEM106B aggregation. To explore this possibility and assess the pathological relevance of TMEM106B accumulation, we generated a new antibody targeting the TMEM106B filament core sequence. Analysis of postmortem samples revealed that the TMEM106B rs3173615 risk allele was associated with higher TMEM106B core accumulation in patients with FTLD-TDP. In contrast, minimal TMEM106B core deposition was detected in carriers of the protective allele. Although the abundance of monomeric full-length TMEM106B was unchanged, carriers of the protective genotype exhibited an increase in dimeric full-length TMEM106B. Increased TMEM106B core deposition was also associated with enhanced TDP-43 dysfunction, and interactome data suggested a role for TMEM106B core filaments in impaired RNA transport, local translation, and endolysosomal function in FTLD-TDP. Overall, these findings suggest that prevention of TMEM106B core accumulation is central to the mechanism by which the TMEM106B protective haplotype reduces disease risk and slows progression.
Collapse
Affiliation(s)
- Jordan D. Marks
- Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
| | - Virginia Estades Ayuso
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mei Yue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tiffany W. Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Ying Hao
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ziyi Li
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zachary T. McEachin
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30307, USA
- Department for Human Genetics, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Anantharaman Shantaraman
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Duc M. Duong
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30307, USA
| | | | - Karen Jansen-West
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wei Shao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Anna Calliari
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Bailey Rawlinson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Meredith T. Lilley
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
| | - Megan H. Donahue
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | | | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | - Dennis W. Dickson
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Yue A. Qi
- Center for Alzheimer’s and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas T. Seyfried
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30307, USA
| | - Michael E. Ward
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yong-Jie Zhang
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Mercedes Prudencio
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Leonard Petrucelli
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Casey N. Cook
- Neuroscience Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| |
Collapse
|
16
|
Castillo Bautista CM, Eismann K, Gentzel M, Pelucchi S, Mertens J, Walters HE, Yun MH, Sterneckert J. Obatoclax Rescues FUS-ALS Phenotypes in iPSC-Derived Neurons by Inducing Autophagy. Cells 2023; 12:2247. [PMID: 37759469 PMCID: PMC10527391 DOI: 10.3390/cells12182247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is associated with the disruption of protein homeostasis and causally contributes to multiple diseases, including amyotrophic lateral sclerosis (ALS). One strategy for restoring protein homeostasis and protecting neurons against age-dependent diseases such as ALS is to de-repress autophagy. BECN1 is a master regulator of autophagy; however, is repressed by BCL2 via a BH3 domain-mediated interaction. We used an induced pluripotent stem cell model of ALS caused by mutant FUS to identify a small molecule BH3 mimetic that disrupts the BECN1-BCL2 interaction. We identified obatoclax as a brain-penetrant drug candidate that rescued neurons at nanomolar concentrations by reducing cytoplasmic FUS levels, restoring protein homeostasis, and reducing degeneration. Proteomics data suggest that obatoclax protects neurons via multiple mechanisms. Thus, obatoclax is a candidate for repurposing as a possible ALS therapeutic and, potentially, for other age-associated disorders linked to defects in protein homeostasis.
Collapse
Affiliation(s)
| | - Kristin Eismann
- Core Facility Mass Spectrometry & Proteomics, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany (M.G.)
| | - Marc Gentzel
- Core Facility Mass Spectrometry & Proteomics, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany (M.G.)
| | - Silvia Pelucchi
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92161, USA (J.M.)
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Jerome Mertens
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92161, USA (J.M.)
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Institute for Molecular Biology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Hannah E. Walters
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (C.M.C.B.); (H.E.W.)
| | - Maximina H. Yun
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (C.M.C.B.); (H.E.W.)
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; (C.M.C.B.); (H.E.W.)
- Medical Faculty Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| |
Collapse
|
17
|
Gimenez J, Spalloni A, Cappelli S, Ciaiola F, Orlando V, Buratti E, Longone P. TDP-43 Epigenetic Facets and Their Neurodegenerative Implications. Int J Mol Sci 2023; 24:13807. [PMID: 37762112 PMCID: PMC10530927 DOI: 10.3390/ijms241813807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
Since its initial involvement in numerous neurodegenerative pathologies in 2006, either as a principal actor or as a cofactor, new pathologies implicating transactive response (TAR) DNA-binding protein 43 (TDP-43) are regularly emerging also beyond the neuronal system. This reflects the fact that TDP-43 functions are particularly complex and broad in a great variety of human cells. In neurodegenerative diseases, this protein is often pathologically delocalized to the cytoplasm, where it irreversibly aggregates and is subjected to various post-translational modifications such as phosphorylation, polyubiquitination, and cleavage. Until a few years ago, the research emphasis has been focused particularly on the impacts of this aggregation and/or on its widely described role in complex RNA splicing, whether related to loss- or gain-of-function mechanisms. Interestingly, recent studies have strengthened the knowledge of TDP-43 activity at the chromatin level and its implication in the regulation of DNA transcription and stability. These discoveries have highlighted new features regarding its own transcriptional regulation and suggested additional mechanistic and disease models for the effects of TPD-43. In this review, we aim to give a comprehensive view of the potential epigenetic (de)regulations driven by (and driving) this multitask DNA/RNA-binding protein.
Collapse
Affiliation(s)
- Juliette Gimenez
- Molecular Neurobiology Laboratory, Experimental Neuroscience, IRCCS Fondazione Santa Lucia (FSL), 00143 Rome, Italy; (A.S.); (P.L.)
| | - Alida Spalloni
- Molecular Neurobiology Laboratory, Experimental Neuroscience, IRCCS Fondazione Santa Lucia (FSL), 00143 Rome, Italy; (A.S.); (P.L.)
| | - Sara Cappelli
- Molecular Pathology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (S.C.); (E.B.)
| | - Francesca Ciaiola
- Molecular Neurobiology Laboratory, Experimental Neuroscience, IRCCS Fondazione Santa Lucia (FSL), 00143 Rome, Italy; (A.S.); (P.L.)
- Department of Systems Medicine, University of Roma Tor Vergata, 00133 Rome, Italy
| | - Valerio Orlando
- KAUST Environmental Epigenetics Program, Biological Environmental Sciences and Engineering Division BESE, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Emanuele Buratti
- Molecular Pathology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; (S.C.); (E.B.)
| | - Patrizia Longone
- Molecular Neurobiology Laboratory, Experimental Neuroscience, IRCCS Fondazione Santa Lucia (FSL), 00143 Rome, Italy; (A.S.); (P.L.)
| |
Collapse
|
18
|
Davis SE, Cook AK, Hall JA, Voskobiynyk Y, Carullo NV, Boyle NR, Hakim AR, Anderson KM, Hobdy KP, Pugh DA, Murchison CF, McMeekin LJ, Simmons M, Margolies KA, Cowell RM, Nana AL, Spina S, Grinberg LT, Miller BL, Seeley WW, Arrant AE. Patients with sporadic FTLD exhibit similar increases in lysosomal proteins and storage material as patients with FTD due to GRN mutations. Acta Neuropathol Commun 2023; 11:70. [PMID: 37118844 PMCID: PMC10148425 DOI: 10.1186/s40478-023-01571-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023] Open
Abstract
Loss of function progranulin (GRN) mutations are a major autosomal dominant cause of frontotemporal dementia (FTD). Patients with FTD due to GRN mutations (FTD-GRN) develop frontotemporal lobar degeneration with TDP-43 pathology type A (FTLD-TDP type A) and exhibit elevated levels of lysosomal proteins and storage material in frontal cortex, perhaps indicating lysosomal dysfunction as a mechanism of disease. To investigate whether patients with sporadic FTLD exhibit similar signs of lysosomal dysfunction, we compared lysosomal protein levels, transcript levels, and storage material in patients with FTD-GRN or sporadic FTLD-TDP type A. We analyzed samples from frontal cortex, a degenerated brain region, and occipital cortex, a relatively spared brain region. In frontal cortex, patients with sporadic FTLD-TDP type A exhibited similar increases in lysosomal protein levels, transcript levels, and storage material as patients with FTD-GRN. In occipital cortex of both patient groups, most lysosomal measures did not differ from controls. Frontal cortex from a transgenic mouse model of TDP-opathy had similar increases in cathepsin D and lysosomal storage material, showing that TDP-opathy and neurodegeneration can drive these changes independently of progranulin. To investigate these changes in additional FTLD subtypes, we analyzed frontal cortical samples from patients with sporadic FTLD-TDP type C or Pick's disease, an FTLD-tau subtype. All sporadic FTLD groups had similar increases in cathepsin D activity, lysosomal membrane proteins, and storage material as FTD-GRN patients. However, patients with FTLD-TDP type C or Pick's disease did not have similar increases in lysosomal transcripts as patients with FTD-GRN or sporadic FTLD-TDP type A. Based on these data, accumulation of lysosomal proteins and storage material may be a common aspect of end-stage FTLD. However, the unique changes in gene expression in patients with FTD-GRN or sporadic FTLD-TDP type A may indicate distinct underlying lysosomal changes among FTLD subtypes.
Collapse
Affiliation(s)
- Skylar E Davis
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anna K Cook
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Justin A Hall
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yuliya Voskobiynyk
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nancy V Carullo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicholas R Boyle
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ahmad R Hakim
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kristian M Anderson
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kierra P Hobdy
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Derian A Pugh
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charles F Murchison
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Laura J McMeekin
- Department of Neuroscience, Southern Research, Birmingham, AL, USA
| | - Micah Simmons
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Neuroscience, Southern Research, Birmingham, AL, USA
| | | | - Rita M Cowell
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Neuroscience, Southern Research, Birmingham, AL, USA
| | - Alissa L Nana
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Salvatore Spina
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Lea T Grinberg
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew E Arrant
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
19
|
Ni J, Ren Y, Su T, Zhou J, Fu C, Lu Y, Li D, Zhao J, Li Y, Zhang Y, Fang Y, Liu N, Geng Y, Chen Y. Loss of TDP-43 function underlies hippocampal and cortical synaptic deficits in TDP-43 proteinopathies. Mol Psychiatry 2023; 28:931-945. [PMID: 34697451 DOI: 10.1038/s41380-021-01346-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022]
Abstract
TDP-43 proteinopathy is linked to neurodegenerative diseases that feature synaptic loss in the cortex and hippocampus, although it remains unclear how TDP-43 regulates mature synapses. We report that, in adult mouse hippocampus, TDP-43 knockdown, but not overexpression, induces robust structural and functional damage to excitatory synapses, supporting a role for TDP-43 in maintaining mature synapses. Dendritic spine loss induced by TDP-43 knockdown is rescued by wild-type TDP-43, but not ALS/FTLD-associated mutants, suggesting a common TDP-43 functional deficiency in neurodegenerative diseases. Interestingly, M337V and A90V mutants also display dominant negative activities against WT TDP-43, partially explaining why M337V transgenic mice develop hippocampal degeneration similar to that in excitatory neuronal TDP-43 knockout mice, and why A90V mutation is associated with Alzheimer's disease. Further analyses reveal that a TDP-43 knockdown-induced reduction in GluN2A contributes to synaptic loss. Our results show that loss of TDP-43 function underlies hippocampal and cortical synaptic degeneration in TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Jiangxia Ni
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yongfei Ren
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tonghui Su
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jia Zhou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chaoying Fu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
| | - Yi Lu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - De'an Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jing Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yunxia Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
| | - Nan Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China
| | - Yang Geng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China.
| | - Yelin Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, No.100 Haike Rd. Pudong New District, Shanghai, 201210, China.
| |
Collapse
|
20
|
Abstract
Vesicles mediate the trafficking of membranes/proteins in the endocytic and secretory pathways. These pathways are regulated by small GTPases of the Rab family. Rab proteins belong to the Ras superfamily of GTPases, which are significantly involved in various intracellular trafficking and signaling processes in the nervous system. Rab11 is known to play a key role especially in recycling many proteins, including receptors important for signal transduction and preservation of functional activities of nerve cells. Rab11 activity is controlled by GEFs (guanine exchange factors) and GAPs (GTPase activating proteins), which regulate its function through modulating GTP/GDP exchange and the intrinsic GTPase activity, respectively. Rab11 is involved in the transport of several growth factor molecules important for the development and repair of neurons. Overexpression of Rab11 has been shown to significantly enhance vesicle trafficking. On the other hand, a reduced expression of Rab11 was observed in several neurodegenerative diseases. Current evidence appears to support the notion that Rab11 and its cognate proteins may be potential targets for therapeutic intervention. In this review, we briefly discuss the function of Rab11 and its related interaction partners in intracellular pathways that may be involved in neurodegenerative processes.
Collapse
Affiliation(s)
| | - Jiri Novotny
- Jiri Novotny, Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic.
| |
Collapse
|
21
|
Yang C, Zhang X. Research progress on vesicular trafficking in amyotrophic lateral sclerosis. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:380-387. [PMID: 36161717 PMCID: PMC9511476 DOI: 10.3724/zdxbyxb-2022-0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/10/2022] [Indexed: 06/16/2023]
Abstract
Vesicular trafficking is a basic physiological process by which vesicles transport materials between cells and environment (intercellular transport) and between different cellular compartments (intracellular trafficking). In recent years, more and more evidences have suggested that vesicular trafficking dysfunction plays a key role in pathogenesis of neurodegenerative diseases. Abnormal vesicular trafficking promotes the propagation of misfolded proteins by mechanisms involving endocytosis, endosomal-lysosomal pathway, endosomal escape and exosome release, leading to further acceleration of disease progression. Amyotrophic lateral sclerosis (ALS), as a neurodegenerative disease, is characterized by the selective death of upper and lower motor neurons. A variety of causative genes for ALS have been implicated in vesicle trafficking dysfunction, such as C9ORF72, TARDBP and SOD1. Therefore, the aggregation and propagation of misfolded proteins may be prevented through regulation of vesicle trafficking-related proteins, thus delay the progression of ALS. A more in-depth understanding of vesicular trafficking in ALS will be helpful in revealing the mechanism and clinical treatment of ALS. This review focuses on molecular mechanisms of vesicular trafficking in ALS, to provide reference for exploring new therapeutic strategies.
Collapse
|
22
|
The Rab11-regulated endocytic pathway and BDNF/TrkB signaling: Roles in plasticity changes and neurodegenerative diseases. Neurobiol Dis 2022; 171:105796. [PMID: 35728773 DOI: 10.1016/j.nbd.2022.105796] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/10/2022] [Accepted: 06/14/2022] [Indexed: 02/08/2023] Open
Abstract
Neurons are highly polarized cells that rely on the intracellular transport of organelles. This process is regulated by molecular motors such as dynein and kinesins and the Rab family of monomeric GTPases that together help move cargo along microtubules in dendrites, somas, and axons. Rab5-Rab11 GTPases regulate receptor trafficking along early-recycling endosomes, which is a process that determines the intracellular signaling output of different signaling pathways, including those triggered by BDNF binding to its tyrosine kinase receptor TrkB. BDNF is a well-recognized neurotrophic factor that regulates experience-dependent plasticity in different circuits in the brain. The internalization of the BDNF/TrkB complex results in signaling endosomes that allow local signaling in dendrites and presynaptic terminals, nuclear signaling in somas and dynein-mediated long-distance signaling from axons to cell bodies. In this review, we briefly discuss the organization of the endocytic pathway and how Rab11-recycling endosomes interact with other endomembrane systems. We further expand upon the roles of the Rab11-recycling pathway in neuronal plasticity. Then, we discuss the BDNF/TrkB signaling pathways and their functional relationships with the postendocytic trafficking of BDNF, including axonal transport, emphasizing the role of BDNF signaling endosomes, particularly Rab5-Rab11 endosomes, in neuronal plasticity. Finally, we discuss the evidence indicating that the dysfunction of the early-recycling pathway impairs BDNF signaling, contributing to several neurodegenerative diseases.
Collapse
|
23
|
Biomarkers in Human Peripheral Blood Mononuclear Cells: The State of the Art in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:ijms23052580. [PMID: 35269723 PMCID: PMC8910056 DOI: 10.3390/ijms23052580] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease, characterized by the progressive loss of lower motor neurons, weakness and muscle atrophy. ALS lacks an effective cure and diagnosis is often made by exclusion. Thus, it is imperative to search for biomarkers. Biomarkers can help in understanding ALS pathomechanisms, identification of targets for treatment and development of effective therapies. Peripheral blood mononuclear cells (PBMCs) represent a valid source for biomarkers compared to cerebrospinal fluid, as they are simple to collect, and to plasma, because of the possibility of detecting lower expressed proteins. They are a reliable model for patients’ stratification. This review provides an overview on PBMCs as a potential source of biomarkers in ALS. We focused on altered RNA metabolism (coding/non-coding RNA), including RNA processing, mRNA stabilization, transport and translation regulation. We addressed protein abnormalities (aggregation, misfolding and modifications); specifically, we highlighted that SOD1 appears to be the most characterizing protein in ALS. Finally, we emphasized the correlation between biological parameters and disease phenotypes, as regards prognosis, severity and clinical features. In conclusion, even though further studies are needed to standardize the use of PBMCs as a tool for biomarker investigation, they represent a promising approach in ALS research.
Collapse
|
24
|
Peters JJ, Leitz J, Oses-Prieto JA, Burlingame AL, Brunger AT. Molecular Characterization of AMPA-Receptor-Containing Vesicles. Front Mol Neurosci 2021; 14:754631. [PMID: 34720876 PMCID: PMC8554035 DOI: 10.3389/fnmol.2021.754631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Regulated delivery of AMPA receptors (AMPARs) to the postsynaptic membrane is an essential step in synaptic strength modification, and in particular, long-term potentiation (LTP). While LTP has been extensively studied using electrophysiology and light microscopy, several questions regarding the molecular mechanisms of AMPAR delivery via trafficking vesicles remain outstanding, including the gross molecular make up of AMPAR trafficking organelles and identification and location of calcium sensors required for SNARE complex-dependent membrane fusion of such trafficking vesicles with the plasma membrane. Here, we isolated AMPA-containing vesicles (ACVs) from whole mouse brains via immunoisolation and characterized them using immunoelectron microscopy, immunoblotting, and liquid chromatography–tandem mass spectrometry (LC–MS/MS). We identified several proteins on ACVs that were previously found to play a role in AMPAR trafficking, including synaptobrevin-2, Rabs, the SM protein Munc18-1, the calcium-sensor synaptotagmin-1, as well as several new candidates, including synaptophysin and synaptogyrin on ACV membranes. Additionally, we identified two populations of ACVs based on size and molecular composition: small-diameter, synaptobrevin-2- and GluA1-containing ACVs, and larger transferrin- receptor-, GluA1-, GluA2-, and GluA3-containing ACVs. The small-diameter population of ACVs may represent a fusion-capable population of vesicles due to the presence of synaptobrevin-2. Because the fusion of ACVs may be a requisite of LTP, this population could represent trafficking vesicles related to LTP.
Collapse
Affiliation(s)
- John Jacob Peters
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States.,Department of Structural Biology, Stanford University, Stanford, CA, United States.,Department of Photon Science, Stanford University, Stanford, CA, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States
| | - Jeremy Leitz
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States.,Department of Structural Biology, Stanford University, Stanford, CA, United States.,Department of Photon Science, Stanford University, Stanford, CA, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States
| | - Juan A Oses-Prieto
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Alma L Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, United States.,Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States.,Department of Structural Biology, Stanford University, Stanford, CA, United States.,Department of Photon Science, Stanford University, Stanford, CA, United States.,Howard Hughes Medical Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
25
|
Zhao Y, Tang F, Lee D, Xiong WC. Expression of Low Level of VPS35-mCherry Fusion Protein Diminishes Vps35 Depletion Induced Neuron Terminal Differentiation Deficits and Neurodegenerative Pathology, and Prevents Neonatal Death. Int J Mol Sci 2021; 22:8394. [PMID: 34445101 PMCID: PMC8395035 DOI: 10.3390/ijms22168394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
Vps35 (vacuolar protein sorting 35) is a key component of retromer that consists of Vps35, Vps26, and Vps29 trimers, and sortin nexin dimers. Dysfunctional Vps35/retromer is believed to be a risk factor for development of various neurodegenerative diseases. Vps35Neurod6 mice, which selectively knock out Vps35 in Neurod6-Cre+ pyramidal neurons, exhibit age-dependent impairments in terminal differentiation of dendrites and axons of cortical and hippocampal neurons, neuro-degenerative pathology (i.e., increases in P62 and Tdp43 (TAR DNA-binding protein 43) proteins, cell death, and reactive gliosis), and neonatal death. The relationships among these phenotypes and the underlying mechanisms remain largely unclear. Here, we provide evidence that expression of low level of VPS35-mCherry fusion protein in Vps35Neurod6 mice could diminish the phenotypes in an age-dependent manner. Specifically, we have generated a conditional transgenic mouse line, LSL-Vps35-mCherry, which expresses VPS35-mCherry fusion protein in a Cre-dependent manner. Crossing LSL-Vps35-mCherry with Vps35Neurod6 to obtain TgVPS35-mCherry, Vps35Neurod6 mice prevent the neonatal death and diminish the dendritic morphogenesis deficit and gliosis at the neonatal, but not the adult age. Further studies revealed that the Vps35-mCherry transgene expression was low, and the level of Vps35 mRNA comprised only ~5-7% of the Vps35 mRNA of control mice. Such low level of VPS35-mCherry could restore the amount of other retromer components (Vps26a and Vps29) at the neonatal age (P14). Importantly, the neurodegenerative pathology presented in the survived adult TgVps35-mCherry; Vps35Neurod6 mice. These results demonstrate the sufficiency of low level of VPS35-mCherry fusion protein to diminish the phenotypes in Vps35Neurod6 mice at the neonatal age, verifying a key role of neuronal Vps35 in stabilizing retromer complex proteins, and supporting the view for Vps35 as a potential therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (Y.Z.); (D.L.)
| | - Fulei Tang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (Y.Z.); (D.L.)
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (Y.Z.); (D.L.)
| |
Collapse
|
26
|
Atkinson RAK, Fair HL, Wilson R, Vickers JC, King AE. Effects of TDP-43 overexpression on neuron proteome and morphology in vitro. Mol Cell Neurosci 2021; 114:103627. [PMID: 34015498 DOI: 10.1016/j.mcn.2021.103627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022] Open
Abstract
TDP-43 is pathologically and genetically with associated amyotrophic lateral sclerosis and frontotemporal lobar degeneration. These diseases are characterized by significant neurite defects, including cytoskeletal pathology. The involvement of TDP-43 in the degeneration of neurons in these diseases are not yet well understood, however accumulating evidence shows involvement in neurite outgrowth, remodelling and in regulation of many components of the neuronal cytoskeleton. In order to investigate how alterations to TDP-43 expression levels may exert effects on the neuronal cytoskeleton, primary cortical neurons from transgenic mice overexpressing one or two copies of human wildtype TDP-43 under the prion promoter were examined. Label-free quantitative proteomic analysis, followed by functional annotation clustering to identify protein families that clustered together within up- or down-regulated protein groups, revealed that actin-binding proteins were significantly more abundant in neurons overexpressing TDP-43 compared to wildtype neurons. Morphological analysis demonstrated that during early development neurons expressing one copy of human TDP-43 had an increased number of neurite branches and alterations to growth cone morphology, while no changes were observed in neurons expressing two copies of TDP-43. These developmental processes require specific expression and organization of the cytoskeleton. The results from these studies provide further insight into the normal function of TDP-43 and how alterations in TDP-43 expression may impact the cytoskeleton.
Collapse
Affiliation(s)
- Rachel A K Atkinson
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania 7000, Australia.
| | - Hannah L Fair
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania 7000, Australia
| |
Collapse
|
27
|
Peikert K, Federti E, Matte A, Constantin G, Pietronigro EC, Fabene PF, Defilippi P, Turco E, Del Gallo F, Pucci P, Amoresano A, Illiano A, Cozzolino F, Monti M, Garello F, Terreno E, Alper SL, Glaß H, Pelzl L, Akgün K, Ziemssen T, Ordemann R, Lang F, Brunati AM, Tibaldi E, Andolfo I, Iolascon A, Bertini G, Buffelli M, Zancanaro C, Lorenzetto E, Siciliano A, Bonifacio M, Danek A, Walker RH, Hermann A, De Franceschi L. Therapeutic targeting of Lyn kinase to treat chorea-acanthocytosis. Acta Neuropathol Commun 2021; 9:81. [PMID: 33941276 PMCID: PMC8091687 DOI: 10.1186/s40478-021-01181-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/14/2021] [Indexed: 11/18/2022] Open
Abstract
Chorea-Acanthocytosis (ChAc) is a devastating, little understood, and currently untreatable neurodegenerative disease caused by VPS13A mutations. Based on our recent demonstration that accumulation of activated Lyn tyrosine kinase is a key pathophysiological event in human ChAc cells, we took advantage of Vps13a−/− mice, which phenocopied human ChAc. Using proteomic approach, we found accumulation of active Lyn, γ-synuclein and phospho-tau proteins in Vps13a−/− basal ganglia secondary to impaired autophagy leading to neuroinflammation. Mice double knockout Vps13a−/− Lyn−/− showed normalization of red cell morphology and improvement of autophagy in basal ganglia. We then in vivo tested pharmacologic inhibitors of Lyn: dasatinib and nilotinib. Dasatinib failed to cross the mouse brain blood barrier (BBB), but the more specific Lyn kinase inhibitor nilotinib, crosses the BBB. Nilotinib ameliorates both Vps13a−/− hematological and neurological phenotypes, improving autophagy and preventing neuroinflammation. Our data support the proposal to repurpose nilotinib as new therapeutic option for ChAc patients.
Collapse
|
28
|
Lucini CB, Braun RJ. Mitochondrion-Dependent Cell Death in TDP-43 Proteinopathies. Biomedicines 2021; 9:376. [PMID: 33918437 PMCID: PMC8066287 DOI: 10.3390/biomedicines9040376] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/11/2022] Open
Abstract
In the last decade, pieces of evidence for TDP-43-mediated mitochondrial dysfunction in neurodegenerative diseases have accumulated. In patient samples, in vitro and in vivo models have shown mitochondrial accumulation of TDP-43, concomitantly with hallmarks of mitochondrial destabilization, such as increased production of reactive oxygen species (ROS), reduced level of oxidative phosphorylation (OXPHOS), and mitochondrial membrane permeabilization. Incidences of TDP-43-dependent cell death, which depends on mitochondrial DNA (mtDNA) content, is increased upon ageing. However, the molecular pathways behind mitochondrion-dependent cell death in TDP-43 proteinopathies remained unclear. In this review, we discuss the role of TDP-43 in mitochondria, as well as in mitochondrion-dependent cell death. This review includes the recent discovery of the TDP-43-dependent activation of the innate immunity cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) pathway. Unravelling cell death mechanisms upon TDP-43 accumulation in mitochondria may open up new opportunities in TDP-43 proteinopathy research.
Collapse
Affiliation(s)
- Chantal B. Lucini
- Research Area Neurodegenerative Diseases, Center for Biosciences, Faculty of Medicine/Dental Medicine, Danube Private University, 3500 Krems an der Donau, Austria
| | - Ralf J. Braun
- Research Area Neurodegenerative Diseases, Center for Biosciences, Faculty of Medicine/Dental Medicine, Danube Private University, 3500 Krems an der Donau, Austria
| |
Collapse
|
29
|
Barros II, Leão V, Santis JO, Rosa RCA, Brotto DB, Storti CB, Siena ÁDD, Molfetta GA, Silva WA. Non-Syndromic Intellectual Disability and Its Pathways: A Long Noncoding RNA Perspective. Noncoding RNA 2021; 7:ncrna7010022. [PMID: 33799572 PMCID: PMC8005948 DOI: 10.3390/ncrna7010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Non-syndromic intellectual disability (NS-ID or idiopathic) is a complex neurodevelopmental disorder that represents a global health issue. Although many efforts have been made to characterize it and distinguish it from syndromic intellectual disability (S-ID), the highly heterogeneous aspect of this disorder makes it difficult to understand its etiology. Long noncoding RNAs (lncRNAs) comprise a large group of transcripts that can act through various mechanisms and be involved in important neurodevelopmental processes. In this sense, comprehending the roles they play in this intricate context is a valuable way of getting new insights about how NS-ID can arise and develop. In this review, we attempt to bring together knowledge available in the literature about lncRNAs involved with molecular and cellular pathways already described in intellectual disability and neural function, to better understand their relevance in NS-ID and the regulatory complexity of this disorder.
Collapse
Affiliation(s)
- Isabela I. Barros
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Vitor Leão
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Jessica O. Santis
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Reginaldo C. A. Rosa
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Danielle B. Brotto
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Camila B. Storti
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Ádamo D. D. Siena
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Greice A. Molfetta
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
| | - Wilson A. Silva
- Department of Genetics at the Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3900, Monte Alegre, Ribeirão Preto, São Paulo 14049-900, Brazil; (I.I.B.); (V.L.); (J.O.S.); (R.C.A.R.); (D.B.B.); (C.B.S.); (Á.D.D.S.); (G.A.M.)
- National Institute of Science and Technology in Stem Cell and Cell Therapy and Center for Cell Based Therapy, Ribeirão Preto Medical School, University of São Paulo, Rua Tenente Catão Roxo, 2501, Monte Alegre, Ribeirão Preto 14051-140, Brazil
- Center for Integrative Systems Biology-CISBi, NAP/USP, Ribeirão Preto Medical School, University of São Paulo, Rua Catão Roxo, 2501, Monte Alegre, Ribeirão Preto 14051-140, Brazil
- Department of Medicine at the Midwest State University of Paraná-UNICENTRO, and Guarapuava Institute for Cancer Research, Rua Fortim Atalaia, 1900, Cidade dos Lagos, Guarapuava 85100-000, Brazil
- Correspondence: ; Tel.: +55-16-3315-3293
| |
Collapse
|
30
|
Buratti E. Trends in Understanding the Pathological Roles of TDP-43 and FUS Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:243-267. [PMID: 33433879 DOI: 10.1007/978-3-030-51140-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following the discovery of TDP-43 and FUS involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD), the major challenge in the field has been to understand their physiological functions, both in normal and disease conditions. The hope is that this knowledge will improve our understanding of disease and lead to the development of effective therapeutic options. Initially, the focus has been directed at characterizing the role of these proteins in the control of RNA metabolism, because the main function of TDP-43 and FUS is to bind coding and noncoding RNAs to regulate their life cycle within cells. As a result, we now have an in-depth picture of the alterations that occur in RNA metabolism following their aggregation in various ALS/FTLD models and, to a somewhat lesser extent, in patients' brains. In parallel, progress has been made with regard to understanding how aggregation of these proteins occurs in neurons, how it can spread in different brain regions, and how these changes affect various metabolic cellular pathways to result in neuronal death. The aim of this chapter will be to provide a general overview of the trending topics in TDP-43 and FUS investigations and to highlight what might represent the most promising avenues of research in the years to come.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
31
|
Park JH, Chung CG, Park SS, Lee D, Kim KM, Jeong Y, Kim ES, Cho JH, Jeon YM, Shen CKJ, Kim HJ, Hwang D, Lee SB. Cytosolic calcium regulates cytoplasmic accumulation of TDP-43 through Calpain-A and Importin α3. eLife 2020; 9:60132. [PMID: 33305734 PMCID: PMC7748415 DOI: 10.7554/elife.60132] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Cytoplasmic accumulation of TDP-43 in motor neurons is the most prominent pathological feature in amyotrophic lateral sclerosis (ALS). A feedback cycle between nucleocytoplasmic transport (NCT) defect and TDP-43 aggregation was shown to contribute to accumulation of TDP-43 in the cytoplasm. However, little is known about cellular factors that can control the activity of NCT, thereby affecting TDP-43 accumulation in the cytoplasm. Here, we identified via FRAP and optogenetics cytosolic calcium as a key cellular factor controlling NCT of TDP-43. Dynamic and reversible changes in TDP-43 localization were observed in Drosophila sensory neurons during development. Genetic and immunohistochemical analyses identified the cytosolic calcium-Calpain-A-Importin α3 pathway as a regulatory mechanism underlying NCT of TDP-43. In C9orf72 ALS fly models, upregulation of the pathway activity by increasing cytosolic calcium reduced cytoplasmic accumulation of TDP-43 and mitigated behavioral defects. Together, these results suggest the calcium-Calpain-A-Importin α3 pathway as a potential therapeutic target of ALS.
Collapse
Affiliation(s)
- Jeong Hyang Park
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Chang Geon Chung
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Sung Soon Park
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Davin Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Kyung Min Kim
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yeonjin Jeong
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Eun Seon Kim
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Dementia research group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Jae Ho Cho
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea
| | - Yu-Mi Jeon
- Dementia research group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - C-K James Shen
- Taipei Medical University/Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Hyung-Jun Kim
- Dementia research group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung Bae Lee
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea.,Protein dynamics-based proteotoxicity control laboratory, Basic research lab, DGIST, Daegu, Republic of Korea.,Dementia research group, Korea Brain Research Institute (KBRI), Daegu, Republic of Korea
| |
Collapse
|
32
|
Chung CG, Park SS, Park JH, Lee SB. Dysregulated Plasma Membrane Turnover Underlying Dendritic Pathology in Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:556461. [PMID: 33192307 PMCID: PMC7580253 DOI: 10.3389/fncel.2020.556461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Due to their enormous surface area compared to other cell types, neurons face unique challenges in properly handling supply and retrieval of the plasma membrane (PM)-a process termed PM turnover-in their distal areas. Because of the length and extensiveness of dendritic branches in neurons, the transport of materials needed for PM turnover from soma to distal dendrites will be inefficient and quite burdensome for somatic organelles. To meet local demands, PM turnover in dendrites most likely requires local cellular machinery, such as dendritic endocytic and secretory systems, dysregulation of which may result in dendritic pathology observed in various neurodegenerative diseases (NDs). Supporting this notion, a growing body of literature provides evidence to suggest the pathogenic contribution of dysregulated PM turnover to dendritic pathology in certain NDs. In this article, we present our perspective view that impaired dendritic endocytic and secretory systems may contribute to dendritic pathology by encumbering PM turnover in NDs.
Collapse
Affiliation(s)
- Chang Geon Chung
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Soon Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Jeong Hyang Park
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Sung Bae Lee
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| |
Collapse
|
33
|
Feneberg E, Gordon D, Thompson AG, Finelli MJ, Dafinca R, Candalija A, Charles PD, Mäger I, Wood MJ, Fischer R, Kessler BM, Gray E, Turner MR, Talbot K. An ALS-linked mutation in TDP-43 disrupts normal protein interactions in the motor neuron response to oxidative stress. Neurobiol Dis 2020; 144:105050. [PMID: 32800996 DOI: 10.1016/j.nbd.2020.105050] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/19/2020] [Accepted: 08/08/2020] [Indexed: 02/06/2023] Open
Abstract
TDP-43 pathology is a key feature of amyotrophic lateral sclerosis (ALS), but the mechanisms linking TDP-43 to altered cellular function and neurodegeneration remain unclear. We have recently described a mouse model in which human wild-type or mutant TDP-43 are expressed at low levels and where altered stress granule formation is a robust phenotype of TDP-43M337V/- expressing cells. In the present study we use this model to investigate the functional connectivity of human TDP-43 in primary motor neurons under resting conditions and in response to oxidative stress. The interactome of human TDP-43WT or TDP-43M337V was compared by mass spectrometry, and gene ontology enrichment analysis identified pathways dysregulated by the M337V mutation. We found that under normal conditions the interactome of human TDP-43WT was enriched for proteins involved in transcription, translation and poly(A)-RNA binding. In response to oxidative stress, TDP-43WT recruits proteins of the endoplasmic reticulum and endosomal-extracellular transport pathways, interactions which are reduced in the presence of the M337V mutation. Specifically, TDP-43M337V impaired protein-protein interactions involved in stress granule formation including reduced binding to the translation initiation factors Poly(A)-binding protein and Eif4a1 and the endoplasmic reticulum chaperone Grp78. The M337V mutation also affected interactions involved in endosomal-extracellular transport and this this was associated with reduced extracellular vesicle secretion in primary motor neurons from TDP-43M337V/- mice and in human iPSCs-derived motor neurons. Taken together, our analysis highlights a TDP-43 interaction network in motor neurons and demonstrates that an ALS associated mutation may alter the interactome to drive aberrant pathways involved in the pathogenesis of ALS.
Collapse
Affiliation(s)
- Emily Feneberg
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - David Gordon
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Alexander G Thompson
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Mattéa J Finelli
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Ruxandra Dafinca
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Ana Candalija
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Philip D Charles
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Imre Mäger
- Department of Paediatrics, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Matthew J Wood
- Department of Paediatrics, Medical Sciences Division, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Elizabeth Gray
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom.
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom; Lead Contact.
| |
Collapse
|
34
|
Suk TR, Rousseaux MWC. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol Neurodegener 2020; 15:45. [PMID: 32799899 PMCID: PMC7429473 DOI: 10.1186/s13024-020-00397-1] [Citation(s) in RCA: 235] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Since its discovery as a primary component in cytoplasmic aggregates in post-mortem tissue of patients with Amyotrophic Lateral Sclerosis (ALS), TAR DNA Binding Protein 43 kDa (TDP-43) has remained a central focus to understand the disease. TDP-43 links both familial and sporadic forms of ALS as mutations are causative for disease and cytoplasmic aggregates are a hallmark of nearly all cases, regardless of TDP-43 mutational status. Research has focused on the formation and consequences of cytosolic protein aggregates as drivers of ALS pathology through both gain- and loss-of-function mechanisms. Not only does aggregation sequester the normal function of TDP-43, but these aggregates also actively block normal cellular processes inevitably leading to cellular demise in a short time span. Although there may be some benefit to therapeutically targeting TDP-43 aggregation, this step may be too late in disease development to have substantial therapeutic benefit. However, TDP-43 pathology appears to be tightly linked with its mislocalization from the nucleus to the cytoplasm, making it difficult to decouple the consequences of nuclear-to-cytoplasmic mislocalization from protein aggregation. Studies focusing on the effects of TDP-43 mislocalization have demonstrated both gain- and loss-of-function consequences including altered splicing regulation, over responsiveness to cellular stressors, increases in DNA damage, and transcriptome-wide changes. Additionally, mutations in TARDBP confer a baseline increase in cytoplasmic TDP-43 thus suggesting that small changes in the subcellular localization of TDP-43 could in fact drive early pathology. In this review, we bring forth the theme of protein mislocalization as a key mechanism underlying ALS, by highlighting the importance of maintaining subcellular proteostasis along with the gain- and loss-of-functional consequences when TDP-43 localization is dysregulated. Additional research, focusing on early events in TDP-43 pathogenesis (i.e. to the protein mislocalization stage) will provide insight into disease mechanisms, therapeutic targets, and novel biomarkers for ALS.
Collapse
Affiliation(s)
- Terry R. Suk
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Maxime W. C. Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| |
Collapse
|
35
|
Proteotoxicity and Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21165646. [PMID: 32781742 PMCID: PMC7460676 DOI: 10.3390/ijms21165646] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases are a major burden for our society, affecting millions of people worldwide. A main goal of past and current research is to enhance our understanding of the mechanisms underlying proteotoxicity, a common theme among these incurable and debilitating conditions. Cell proteome alteration is considered to be one of the main driving forces that triggers neurodegeneration, and unraveling the biological complexity behind the affected molecular pathways constitutes a daunting challenge. This review summarizes the current state on key processes that lead to cellular proteotoxicity in Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, providing a comprehensive landscape of recent literature. A foundational understanding of how proteotoxicity affects disease etiology and progression may provide essential insight towards potential targets amenable of therapeutic intervention.
Collapse
|
36
|
Ashford BA, Boche D, Cooper-Knock J, Heath PR, Simpson JE, Highley JR. Review: Microglia in motor neuron disease. Neuropathol Appl Neurobiol 2020; 47:179-197. [PMID: 32594542 DOI: 10.1111/nan.12640] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023]
Abstract
Motor Neuron Disease (MND) is a fatal neurodegenerative condition, which is characterized by the selective loss of the upper and lower motor neurons. At the sites of motor neuron injury, accumulation of activated microglia, the primary immune cells of the central nervous system, is commonly observed in both human post mortem studies and animal models of MND. Microglial activation has been found to correlate with many clinical features and importantly, the speed of disease progression in humans. Both anti-inflammatory and pro-inflammatory microglial responses have been shown to influence disease progression in humans and models of MND. As such, microglia could both contribute to and protect against inflammatory mechanisms of pathogenesis in MND. While murine models have characterized the microglial response to MND, these studies have painted a complex and often contradictory picture, indicating a need for further characterization in humans. This review examines the potential role microglia play in MND in human and animal studies. Both the pro-inflammatory and anti-inflammatory responses will be addressed, throughout the course of disease, followed by the potential of microglia as a target in the development of disease-modifying treatments for MND.
Collapse
Affiliation(s)
| | - D Boche
- University of Southampton, Southampton, UK
| | | | - P R Heath
- University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
37
|
Mòdol-Caballero G, García-Lareu B, Verdés S, Ariza L, Sánchez-Brualla I, Brocard F, Bosch A, Navarro X, Herrando-Grabulosa M. Therapeutic Role of Neuregulin 1 Type III in SOD1-Linked Amyotrophic Lateral Sclerosis. Neurotherapeutics 2020; 17:1048-1060. [PMID: 31965551 PMCID: PMC7609630 DOI: 10.1007/s13311-019-00811-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating motoneuron (Mn) disease without effective cure currently available. Death of MNs in ALS is preceded by failure of neuromuscular junctions and axonal retraction. Neuregulin 1 (NRG1) is a neurotrophic factor highly expressed in MNs and neuromuscular junctions that support axonal and neuromuscular development and maintenance. NRG1 and its ErbB receptors are involved in ALS. Reduced NRG1 expression has been found in ALS patients and in the ALS SOD1G93A mouse model; however, the expression of the isoforms of NRG1 and its receptors is still controversial. Due to the reduced levels of NRG1 type III (NRG1-III) in the spinal cord of ALS patients, we used gene therapy based on intrathecal administration of adeno-associated virus to overexpress NRG1-III in SOD1G93A mice. The mice were evaluated from 9 to 16 weeks of age by electrophysiology and rotarod tests. At 16 weeks, samples were harvested for histological and molecular analyses. Our results indicate that overexpression of NRG1-III is able to preserve neuromuscular function of the hindlimbs, improve locomotor performance, increase the number of surviving MNs, and reduce glial reactivity in the treated female SOD1G93A mice. Furthermore, the NRG1-III/ErbB4 axis appears to regulate MN excitability by modulating the chloride transporter KCC2 and reduces the expression of the MN vulnerability marker MMP-9. However, NRG1-III did not have a significant effect on male mice, indicating relevant sex differences. These findings indicate that increasing NRG1-III at the spinal cord is a promising approach for promoting MN protection and functional improvement in ALS.
Collapse
Affiliation(s)
- Guillem Mòdol-Caballero
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193, Bellaterra, Spain
| | - Belén García-Lareu
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Sergi Verdés
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Lorena Ariza
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Irene Sánchez-Brualla
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix-Marseille Université and Centre National de la Recherche Scientifique (CNRS), 13005, Marseille, France
| | - Frédéric Brocard
- Team P3M, Institut de Neurosciences de la Timone, UMR7289, Aix-Marseille Université and Centre National de la Recherche Scientifique (CNRS), 13005, Marseille, France
| | - Assumpció Bosch
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193, Bellaterra, Spain
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Xavier Navarro
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193, Bellaterra, Spain.
| | - Mireia Herrando-Grabulosa
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08193, Bellaterra, Spain.
| |
Collapse
|
38
|
Herzog JJ, Xu W, Deshpande M, Rahman R, Suib H, Rodal AA, Rosbash M, Paradis S. TDP-43 dysfunction restricts dendritic complexity by inhibiting CREB activation and altering gene expression. Proc Natl Acad Sci U S A 2020; 117:11760-11769. [PMID: 32393629 PMCID: PMC7260973 DOI: 10.1073/pnas.1917038117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two related neurodegenerative diseases that present with similar TDP-43 pathology in patient tissue. TDP-43 is an RNA-binding protein which forms aggregates in neurons of ALS and FTD patients as well as in a subset of patients diagnosed with other neurodegenerative diseases. Despite our understanding that TDP-43 is essential for many aspects of RNA metabolism, it remains obscure how TDP-43 dysfunction contributes to neurodegeneration. Interestingly, altered neuronal dendritic morphology is a common theme among several neurological disorders and is thought to precede neurodegeneration. We previously found that both TDP-43 overexpression (OE) and knockdown (KD) result in reduced dendritic branching of cortical neurons. In this study, we used TRIBE (targets of RNA-binding proteins identified by editing) as an approach to identify signaling pathways that regulate dendritic branching downstream of TDP-43. We found that TDP-43 RNA targets are enriched for pathways that signal to the CREB transcription factor. We further found that TDP-43 dysfunction inhibits CREB activation and CREB transcriptional output, and restoring CREB signaling rescues defects in dendritic branching. Finally, we demonstrate, using RNA sequencing, that TDP-43 OE and KD cause similar changes in the abundance of specific messenger RNAs, consistent with their ability to produce similar morphological defects. Our data therefore provide a mechanism by which TDP-43 dysfunction interferes with dendritic branching, and may define pathways for therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Josiah J Herzog
- Department of Biology, Brandeis University, Waltham, MA 02453
- Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453
| | - Weijin Xu
- Department of Biology, Brandeis University, Waltham, MA 02453
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453
| | - Mugdha Deshpande
- Department of Biology, Brandeis University, Waltham, MA 02453
- Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453
| | - Reazur Rahman
- Department of Biology, Brandeis University, Waltham, MA 02453
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453
| | - Hannah Suib
- Department of Biology, Brandeis University, Waltham, MA 02453
- Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453
| | - Avital A Rodal
- Department of Biology, Brandeis University, Waltham, MA 02453
| | - Michael Rosbash
- Department of Biology, Brandeis University, Waltham, MA 02453;
- Howard Hughes Medical Institute, Brandeis University, Waltham, MA 02453
| | - Suzanne Paradis
- Department of Biology, Brandeis University, Waltham, MA 02453;
- Volen Center for Complex Systems, Brandeis University, Waltham, MA 02453
| |
Collapse
|
39
|
Zhang J, Su G, Wu Q, Liu J, Tian Y, Liu X, Zhou J, Gao J, Chen W, Chen D, Zhang Z. Rab11-mediated recycling endosome role in nervous system development and neurodegenerative diseases. Int J Neurosci 2020; 131:1012-1018. [PMID: 32329391 DOI: 10.1080/00207454.2020.1761354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
STUDY Membrane trafficking process is significant for the complex and precise regulatory of the nervous system. Rab11, as a small GTPase of the Rab superfamily, controls endocytic vesicular trafficking to the cell surface after sorting in recycling endosome (RE), coordinating with its receptors to maintain neurological function. MATERIALS AND METHODS This article reviewed the literature of Rab11 in nervous system. RESULTS Rab11-positive vesicles targeted transport growth-related molecules, such as integrins, protrudin, tropomyosin receptor kinase (Trk) A/B receptor and AMPA receptor (AMPAR) to membrane surface to promote the regeneration capacity of axon and dendrites and maintain synaptic plasticity. In addition, many studies have shown that the expression of Rab11 is decreased in multiple neurodegenerative diseases, which is highly correlated with the process of production, transport and clearance of disease-related pathological proteins. And overexpression or increased activity of Rab11 can greatly improve the defect of membrane trafficking and slow down the disease process. CONCLUSION With increasing research efforts on Rab11-dependent membrane trafficking mechanisms, a potential target for nerve regeneration and neurodegenerative diseases will be provided.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Qionghui Wu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jifei Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ye Tian
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiaoyan Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Juanping Zhou
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Juan Gao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Wei Chen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Deyi Chen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| |
Collapse
|
40
|
Weskamp K, Tank EM, Miguez R, McBride JP, Gómez NB, White M, Lin Z, Gonzalez CM, Serio A, Sreedharan J, Barmada SJ. Shortened TDP43 isoforms upregulated by neuronal hyperactivity drive TDP43 pathology in ALS. J Clin Invest 2020; 130:1139-1155. [PMID: 31714900 PMCID: PMC7269575 DOI: 10.1172/jci130988] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Cortical hyperexcitability and mislocalization of the RNA-binding protein TDP43 are highly conserved features in amyotrophic lateral sclerosis (ALS). Nevertheless, the relationship between these phenomena remains poorly defined. Here, we showed that hyperexcitability recapitulates TDP43 pathology by upregulating shortened TDP43 (sTDP43) splice isoforms. These truncated isoforms accumulated in the cytoplasm and formed insoluble inclusions that sequestered full-length TDP43 via preserved N-terminal interactions. Consistent with these findings, sTDP43 overexpression was toxic to mammalian neurons, suggesting neurodegeneration arising from complementary gain- and loss-of-function mechanisms. In humans and mice, sTDP43 transcripts were enriched in vulnerable motor neurons, and we observed a striking accumulation of sTDP43 within neurons and glia of ALS patients. Collectively, these studies uncover a pathogenic role for alternative TDP43 isoforms in ALS, and implicate sTDP43 as a key contributor to the susceptibility of motor neurons in this disorder.
Collapse
Affiliation(s)
| | | | | | - Jonathon P. McBride
- Department of Neurology
- Cellular and Molecular Biology Program, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicolás B. Gómez
- Department of Neurology
- Cellular and Molecular Biology Program, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Ziqiang Lin
- Department of Basic and Clinical Neuroscience and
| | - Carmen Moreno Gonzalez
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Andrea Serio
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | | | - Sami J. Barmada
- Department of Neurology
- Neuroscience Graduate Program, and
- Cellular and Molecular Biology Program, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
41
|
Kumar R, Tang Q, Müller SA, Gao P, Mahlstedt D, Zampagni S, Tan Y, Klingl A, Bötzel K, Lichtenthaler SF, Höglinger GU, Koeglsperger T. Fibroblast Growth Factor 2-Mediated Regulation of Neuronal Exosome Release Depends on VAMP3/Cellubrevin in Hippocampal Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902372. [PMID: 32195080 PMCID: PMC7080514 DOI: 10.1002/advs.201902372] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/11/2019] [Indexed: 05/06/2023]
Abstract
Extracellular vesicles (EVs) are endogenous membrane-derived vesicles that shuttle bioactive molecules between glia and neurons, thereby promoting neuronal survival and plasticity in the central nervous system (CNS) and contributing to neurodegenerative conditions. Although EVs hold great potential as CNS theranostic nanocarriers, the specific molecular factors that regulate neuronal EV uptake and release are currently unknown. A combination of patch-clamp electrophysiology and pH-sensitive dye imaging is used to examine stimulus-evoked EV release in individual neurons in real time. Whereas spontaneous electrical activity and the application of a high-frequency stimulus induce a slow and prolonged fusion of multivesicular bodies (MVBs) with the plasma membrane (PM) in a subset of cells, the neurotrophic factor basic fibroblast growth factor (bFGF) greatly increases the rate of stimulus-evoked MVB-PM fusion events and, consequently, the abundance of EVs in the culture medium. Proteomic analysis of neuronal EVs demonstrates bFGF increases the abundance of the v-SNARE vesicle-associated membrane protein 3 (VAMP3, cellubrevin) on EVs. Conversely, knocking-down VAMP3 in cultured neurons attenuates the effect of bFGF on EV release. The results determine the temporal characteristics of MVB-PM fusion in hippocampal neurons and reveal a new function for bFGF signaling in controlling neuronal EV release.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Department of NeurologyLudwig Maximilian UniversityMarchioninistr. 1581377MunichGermany
- Graduate Program for Experimental MedicineFaculty of MedicineTechnical University of MunichIsmaninger Straße 2281675MünchenGermany
| | - Qilin Tang
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Department of NeurologyLudwig Maximilian UniversityMarchioninistr. 1581377MunichGermany
| | - Stephan A. Müller
- Department of NeuroproteomicsGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
| | - Pan Gao
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
| | - Diana Mahlstedt
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Graduate Program for Experimental MedicineFaculty of MedicineTechnical University of MunichIsmaninger Straße 2281675MünchenGermany
| | - Sofia Zampagni
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
| | - Yi Tan
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Graduate Program for Experimental MedicineFaculty of MedicineTechnical University of MunichIsmaninger Straße 2281675MünchenGermany
| | - Andreas Klingl
- Plant Development and Electron MicroscopyDepartment of Biology IBiocenterLudwig Maximilian UniversityGroßhaderner Str. 282152Planegg‐MartinsriedGermany
| | - Kai Bötzel
- Department of NeurologyLudwig Maximilian UniversityMarchioninistr. 1581377MunichGermany
| | - Stefan F. Lichtenthaler
- Department of NeuroproteomicsGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- NeuroproteomicsKlinikum rechts der IsarInstitute for Advanced StudyTechnical University of MunichIsmaninger Straße 2281675MunichGermany
| | - Günter U. Höglinger
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Department of Neurology (OE 7210)Hannover Medical SchoolCarl‐Neuberg‐Str. 130625HannoverGermany
- Department of NeurologyTechnical University of MunichIsmaninger Str. 2281675MunichGermany
| | - Thomas Koeglsperger
- Department of Translational NeurodegenerationGerman Centre for Neurodegenerative DiseasesFeodor‐Lynen‐Str. 1781377MunichGermany
- Department of NeurologyLudwig Maximilian UniversityMarchioninistr. 1581377MunichGermany
| |
Collapse
|
42
|
Gao J, Wang L, Gao C, Arakawa H, Perry G, Wang X. TDP-43 inhibitory peptide alleviates neurodegeneration and memory loss in an APP transgenic mouse model for Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165580. [PMID: 31678156 DOI: 10.1016/j.bbadis.2019.165580] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the elderly, characterized clinically by progressive decline in cognitive function and neuropathologically by the presence of senile plaques and neuronal loss in the brain. While current drugs for AD are always employed as symptomatic therapies with variable benefits, there is no treatment to delay its progression or halt neurodegeneration. TAR DNA-binding protein 43 (TDP-43) proteinopathy has increasingly been implicated as a prominent histopathological feature of AD and related dementias. Our recent studies have implicated mitochondria as critical targets of TDP-43 neurotoxicity. Here, we demonstrate that the suppression of mitochondrial-associated TDP-43 protects against neuronal loss and behavioral deficits in 5XFAD transgenic mice recapitulating AD-related phenotypes. In AD patients and 5XFAD mice, the level of TDP-43 is increased in mitochondria, and TDP-43 highly co-localizes with mitochondria in brain neurons exhibiting TDP-43 proteinopathy. Chronic administration of a TDP-43 mitochondrial localization inhibitory peptide, PM1, significantly alleviates TDP-43 proteinopathy, mitochondrial abnormalities, microgliosis and even neuronal loss without effect on amyloid plaque load in 12-month-old 5XFAD mice well after the onset of symptoms. Additionally, PM1 also improves the cognitive and motor function in 12-month-old 5XFAD mice and completely prevents the onset of mild cognitive impairment in 6-month-old 5XFAD mice. These data indicate that mitochondria-associated TDP-43 is likely involved in AD pathogenesis and that the inhibitor of mitochondria-associated TDP-43 may be a valuable drug to treat underlying AD.
Collapse
Affiliation(s)
- Ju Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Luwen Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Chao Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Hiroyuki Arakawa
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA; Center for Mitochondrial Diseases, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
43
|
Gao J, Wang L, Yan T, Perry G, Wang X. TDP-43 proteinopathy and mitochondrial abnormalities in neurodegeneration. Mol Cell Neurosci 2019; 100:103396. [PMID: 31445085 DOI: 10.1016/j.mcn.2019.103396] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/03/2019] [Accepted: 08/17/2019] [Indexed: 12/12/2022] Open
Abstract
Genetic mutations in TAR DNA-binding protein 43 (TDP-43) cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Importantly, TDP-43 proteinopathy, characterized by aberrant phosphorylation, ubiquitination, cleavage or nuclear depletion of TDP-43 in neurons and glial cells, is a common prominent pathological feature of various major neurodegenerative diseases including ALS, FTD, and Alzheimer's disease (AD). Although the pathomechanisms underlying TDP-43 proteinopathy remain elusive, pathologically relevant TDP-43 has been repeatedly shown to be present in either the inside or outside of mitochondria, and functionally involved in the regulation of mitochondrial morphology, trafficking, and function, suggesting mitochondria as likely targets of TDP-43 proteinopathy. In this review, we first describe the current knowledge of the association of TDP-43 with mitochondria. We then review in detail multiple mitochondrial pathways perturbed by pathological TDP-43, including mitochondrial fission and fusion dynamics, mitochondrial trafficking, bioenergetics, and mitochondrial quality control. Lastly, we briefly discuss how the study of TDP-43 proteinopathy and mitochondrial abnormalities may provide new avenues for neurodegeneration therapeutics.
Collapse
Affiliation(s)
- Ju Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Luwen Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Tingxiang Yan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
44
|
Ragagnin AMG, Shadfar S, Vidal M, Jamali MS, Atkin JD. Motor Neuron Susceptibility in ALS/FTD. Front Neurosci 2019; 13:532. [PMID: 31316328 PMCID: PMC6610326 DOI: 10.3389/fnins.2019.00532] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of both upper and lower motor neurons (MNs) in the brain, brainstem and spinal cord. The neurodegenerative mechanisms leading to MN loss in ALS are not fully understood. Importantly, the reasons why MNs are specifically targeted in this disorder are unclear, when the proteins associated genetically or pathologically with ALS are expressed ubiquitously. Furthermore, MNs themselves are not affected equally; specific MNs subpopulations are more susceptible than others in both animal models and human patients. Corticospinal MNs and lower somatic MNs, which innervate voluntary muscles, degenerate more readily than specific subgroups of lower MNs, which remain resistant to degeneration, reflecting the clinical manifestations of ALS. In this review, we discuss the possible factors intrinsic to MNs that render them uniquely susceptible to neurodegeneration in ALS. We also speculate why some MN subpopulations are more vulnerable than others, focusing on both their molecular and physiological properties. Finally, we review the anatomical network and neuronal microenvironment as determinants of MN subtype vulnerability and hence the progression of ALS.
Collapse
Affiliation(s)
- Audrey M G Ragagnin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sina Shadfar
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Marta Vidal
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
45
|
Gentile F, Scarlino S, Falzone YM, Lunetta C, Tremolizzo L, Quattrini A, Riva N. The Peripheral Nervous System in Amyotrophic Lateral Sclerosis: Opportunities for Translational Research. Front Neurosci 2019; 13:601. [PMID: 31293369 PMCID: PMC6603245 DOI: 10.3389/fnins.2019.00601] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022] Open
Abstract
Although amyotrophic lateral sclerosis (ALS) has been considered as a disorder of the motor neuron (MN) cell body, recent evidences show the non-cell-autonomous pathogenic nature of the disease. Axonal degeneration, loss of peripheral axons and destruction of nerve terminals are early events in the disease pathogenic cascade, anticipating MN degeneration, and the onset of clinical symptoms. Therefore, although ALS and peripheral axonal neuropathies should be differentiated in clinical practice, they also share damage to common molecular pathways, including axonal transport, RNA metabolism and proteostasis. Thus, an extensive evaluation of the molecular events occurring in the peripheral nervous system (PNS) could be fundamental to understand the pathogenic mechanisms of ALS, favoring the discovery of potential disease biomarkers, and new therapeutic targets.
Collapse
Affiliation(s)
- Francesco Gentile
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Scarlino
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Yuri Matteo Falzone
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| | | | - Lucio Tremolizzo
- Neurology Unit, ALS Clinic, San Gerardo Hospital, University of Milano-Bicocca, Monza, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology – San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
46
|
Mitra J, Hegde PM, Hegde ML. Loss of endosomal recycling factor RAB11 coupled with complex regulation of MAPK/ERK/AKT signaling in postmortem spinal cord specimens of sporadic amyotrophic lateral sclerosis patients. Mol Brain 2019; 12:55. [PMID: 31196199 PMCID: PMC6567394 DOI: 10.1186/s13041-019-0475-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/17/2019] [Indexed: 12/24/2022] Open
Abstract
Synaptic abnormalities, perturbed endosomal recycling mediated by loss of the small GTPase RAB11, and neuroinflammatory signaling have been associated with multiple neurodegenerative diseases including the motor neuron disease, amyotrophic lateral sclerosis (ALS). This is consistent with the neuroprotective effect of RAB11 overexpression as well as of anti-inflammatory compounds. However, most studies were in animal models, and this phenomenon has not been demonstrated in human patients. Moreover, crosstalk between endosomal trafficking and inflammatory signaling pathways in ALS remains enigmatic. Here, we investigated RAB11 expression and MAPK/ERK/AKT signaling in 10 post-mortem spinal cord specimens from patients with sporadic ALS and age-matched controls. All 10 ALS patients showed TDP-43 pathology, whereas two specimens showed an overlapping FUS pathology and one had an acquired Q331K mutation in TDP-43. There was consistent RAB11 downregulation in all ALS cases, while p-AKT and phospho-ribosomal S6 kinase (p-p90RSK) were upregulated. Furthermore, competition between AKT and ERK pathways was observed in ALS, suggesting subtle differences among the TDP-43-ALS subtypes, which may influence patient therapeutic responses. Our findings demonstrate a complex regulation/perturbation pattern of signaling cascades involving MAPK/AKT/RAB11 in spinal cord tissue from ALS patients. These results underscore the relationships between ALS pathology, altered neuronal trafficking, and inflammation.
Collapse
Affiliation(s)
- Joy Mitra
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030 USA
| | - Pavana M. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030 USA
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030 USA
- Weill Medical College, New York, NY 10065 USA
- Houston Methodist Neurological Institute, Institute of Academic Medicine, Houston Methodist, Houston, TX 77030 USA
| |
Collapse
|
47
|
Modic M, Grosch M, Rot G, Schirge S, Lepko T, Yamazaki T, Lee FCY, Rusha E, Shaposhnikov D, Palo M, Merl-Pham J, Cacchiarelli D, Rogelj B, Hauck SM, von Mering C, Meissner A, Lickert H, Hirose T, Ule J, Drukker M. Cross-Regulation between TDP-43 and Paraspeckles Promotes Pluripotency-Differentiation Transition. Mol Cell 2019; 74:951-965.e13. [PMID: 31047794 PMCID: PMC6561722 DOI: 10.1016/j.molcel.2019.03.041] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 02/12/2019] [Accepted: 03/28/2019] [Indexed: 01/22/2023]
Abstract
RNA-binding proteins (RBPs) and long non-coding RNAs (lncRNAs) are key regulators of gene expression, but their joint functions in coordinating cell fate decisions are poorly understood. Here we show that the expression and activity of the RBP TDP-43 and the long isoform of the lncRNA Neat1, the scaffold of the nuclear compartment "paraspeckles," are reciprocal in pluripotent and differentiated cells because of their cross-regulation. In pluripotent cells, TDP-43 represses the formation of paraspeckles by enhancing the polyadenylated short isoform of Neat1. TDP-43 also promotes pluripotency by regulating alternative polyadenylation of transcripts encoding pluripotency factors, including Sox2, which partially protects its 3' UTR from miR-21-mediated degradation. Conversely, paraspeckles sequester TDP-43 and other RBPs from mRNAs and promote exit from pluripotency and embryonic patterning in the mouse. We demonstrate that cross-regulation between TDP-43 and Neat1 is essential for their efficient regulation of a broad network of genes and, therefore, of pluripotency and differentiation.
Collapse
Affiliation(s)
- Miha Modic
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; The Francis Crick Institute, London NW1 1AT, UK; Department for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Markus Grosch
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Gregor Rot
- Institute of Molecular Life Sciences of the University of Zurich and Swiss Institute of Bioinformatics, 8057 Zurich, Switzerland
| | - Silvia Schirge
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Tjasa Lepko
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Tomohiro Yamazaki
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Flora C Y Lee
- The Francis Crick Institute, London NW1 1AT, UK; Department for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ejona Rusha
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Dmitry Shaposhnikov
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Michael Palo
- The Francis Crick Institute, London NW1 1AT, UK; Department for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 80939 Munich, Germany
| | - Davide Cacchiarelli
- Broad Institute of Harvard University/MIT, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Telethon Institute of Genetics and Medicine (TIGEM), NA 80078 Pozzuoli, Italy
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia; Biomedical Research Institute BRIS, 1000 Ljubljana, Slovenia
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 80939 Munich, Germany
| | - Christian von Mering
- Institute of Molecular Life Sciences of the University of Zurich and Swiss Institute of Bioinformatics, 8057 Zurich, Switzerland
| | - Alexander Meissner
- Broad Institute of Harvard University/MIT, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Heiko Lickert
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Jernej Ule
- The Francis Crick Institute, London NW1 1AT, UK; Department for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
| | - Micha Drukker
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Comprehensive Pneumology Center (CPC-M), Ludwig-Maximilians-Universität München, Asklepios Fachkliniken München-Gauting und Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377 Munich, Germany.
| |
Collapse
|
48
|
Burk K, Pasterkamp RJ. Disrupted neuronal trafficking in amyotrophic lateral sclerosis. Acta Neuropathol 2019; 137:859-877. [PMID: 30721407 PMCID: PMC6531423 DOI: 10.1007/s00401-019-01964-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 02/07/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, adult-onset neurodegenerative disease caused by degeneration of motor neurons in the brain and spinal cord leading to muscle weakness. Median survival after symptom onset in patients is 3-5 years and no effective therapies are available to treat or cure ALS. Therefore, further insight is needed into the molecular and cellular mechanisms that cause motor neuron degeneration and ALS. Different ALS disease mechanisms have been identified and recent evidence supports a prominent role for defects in intracellular transport. Several different ALS-causing gene mutations (e.g., in FUS, TDP-43, or C9ORF72) have been linked to defects in neuronal trafficking and a picture is emerging on how these defects may trigger disease. This review summarizes and discusses these recent findings. An overview of how endosomal and receptor trafficking are affected in ALS is followed by a description on dysregulated autophagy and ER/Golgi trafficking. Finally, changes in axonal transport and nucleocytoplasmic transport are discussed. Further insight into intracellular trafficking defects in ALS will deepen our understanding of ALS pathogenesis and will provide novel avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Katja Burk
- Department of Neurologie, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, Von-Siebold-Str. 3A, 37075, Göttingen, Germany.
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
49
|
Takahashi Y, Uchino A, Shioya A, Sano T, Matsumoto C, Numata-Uematsu Y, Nagano S, Araki T, Murayama S, Saito Y. Altered immunoreactivity of ErbB4, a causative gene product for ALS19, in the spinal cord of patients with sporadic ALS. Neuropathology 2019; 39:268-278. [PMID: 31124187 PMCID: PMC6852233 DOI: 10.1111/neup.12558] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/30/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022]
Abstract
ErbB4 is the protein implicated in familial amyotrophic lateral sclerosis (ALS), designated as ALS19. ErbB4 is a receptor tyrosine kinase activated by its ligands, neuregulins (NRG), and plays an essential role in the function and viability of motor neurons. Mutations in the ALS19 gene lead to the reduced autophosphorylation capacity of the ErbB4 protein upon stimulation with NRG‐1, suggesting that the disruption of the NRG–ErbB4 pathway causes motor neuron degeneration. We used immunohistochemistry to study ErbB4 in the spinal cord of patients with sporadic ALS (SALS) to test the hypothesis that ErbB4 may be involved in the pathogenesis of SALS. ErbB4 was specifically immunoreactive in the cytoplasm of motor neurons in the anterior horns of the spinal cord. In patients with SALS, some of the motor neurons lost immunoreactivity with ErbB4, with the proportion of motor neurons with a loss of immunoreactivity correlated with the severity of motor neuron loss. The subcellular localization was altered, demonstrating nucleolar or nuclear localization, threads/dots and spheroids. The ectopic glial immunoreactivity was observed, mainly in the oligodendrocytes of the lateral columns and anterior horns. The reduction in the ErbB4 immunoreactivity was significantly correlated with the cytoplasmic mislocalization of transactivation response DNA‐binding protein 43 kDa (TDP‐43) in the motor neurons. No alteration in immunoreactivity was observed in the motor neurons of mice carrying atransgene for mutant form of the superoxide dismutase 1 gene (SOD1). This study provided compelling evidence that ErbB4 is also involved in the pathophysiology of SALS, and that the disruption of the NRG–ErbB4 pathway may underlie the TDP‐43‐dependent motor neuron degeneration in ALS.
Collapse
Affiliation(s)
- Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Akiko Uchino
- Department of Neurology and Neuropathology and Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Ayako Shioya
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Terunori Sano
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan
| | - Chihiro Matsumoto
- Tokyo Medical and Dental University Graduate School of Medical and Dental Sciences, Tokyo, Japan.,Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yurika Numata-Uematsu
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Seiichi Nagano
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Shigeo Murayama
- Department of Neurology and Neuropathology and Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Yuko Saito
- Department of Laboratory Medicine, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
50
|
Parakh S, Perri ER, Jagaraj CJ, Ragagnin AMG, Atkin JD. Rab-dependent cellular trafficking and amyotrophic lateral sclerosis. Crit Rev Biochem Mol Biol 2019; 53:623-651. [PMID: 30741580 DOI: 10.1080/10409238.2018.1553926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rab GTPases are becoming increasingly implicated in neurodegenerative disorders, although their role in amyotrophic lateral sclerosis (ALS) has been somewhat overlooked. However, dysfunction of intracellular transport is gaining increasing attention as a pathogenic mechanism in ALS. Many previous studies have focused axonal trafficking, and the extreme length of axons in motor neurons may contribute to their unique susceptibility in this disorder. In contrast, the role of transport defects within the cell body has been relatively neglected. Similarly, whilst Rab GTPases control all intracellular membrane trafficking events, their role in ALS is poorly understood. Emerging evidence now highlights this family of proteins in ALS, particularly the discovery that C9orf72 functions in intra transport in conjunction with several Rab GTPases. Here, we summarize recent updates on cellular transport defects in ALS, with a focus on Rab GTPases and how their dysfunction may specifically target neurons and contribute to pathophysiology. We discuss the molecular mechanisms associated with dysfunction of Rab proteins in ALS. Finally, we also discuss dysfunction in other modes of transport recently implicated in ALS, including nucleocytoplasmic transport and the ER-mitochondrial contact regions (MAM compartment), and speculate whether these may also involve Rab GTPases.
Collapse
Affiliation(s)
- S Parakh
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| | - E R Perri
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| | - C J Jagaraj
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia
| | - A M G Ragagnin
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia
| | - J D Atkin
- a Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Centre for MND Research , Macquarie University , Sydney , Australia.,b Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| |
Collapse
|