1
|
Koelsch N, Mirshahi F, Aqbi HF, Seneshaw M, Idowu MO, Olex AL, Sanyal AJ, Manjili MH. Anti-Tumour Immunity Relies on Targeting Tissue Homeostasis Through Monocyte-Driven Responses Rather Than Direct Tumour Cytotoxicity. Liver Int 2025; 45:e70110. [PMID: 40272245 PMCID: PMC12020664 DOI: 10.1111/liv.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/16/2025] [Accepted: 04/13/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated fatty liver disease (MAFLD) can progress to hepatocellular carcinoma (HCC), yet the immune mechanisms driving this transition remain unclear. METHODS In a chronic Western diet (WD) mouse model, we performed single-nuclei RNA sequencing to track MAFLD progression into HCC and subsequent tumour inhibition upon dietary correction. RESULTS Carcinogenesis begins during MAFLD, with tumour cells entering dormancy when HCC is mitigated. Rather than purely tolerogenic, the liver actively engages immune responses targeting myofibroblasts, fibroblasts and hepatocytes to maintain tissue homeostasis. Cytotoxic cells contribute to the turnover of liver cells but do not primarily target the tumour. NKT cells predominate under chronic WD, while monocytes join them in HCC progression on a WD. Upon dietary correction, monocyte-driven immunity confers protection against HCC through targeting tissue homeostatic pathways and antioxidant mechanisms. Crucially, liver tissue response-not merely immune activation-dictates whether tumours grow or regress, emphasising the importance of restoring liver tissue integrity. Also, protection against HCC is linked to a distinct immunological pattern, differing from healthy controls, underscoring the need for immune reprogramming. CONCLUSION These findings reveal the dual roles of similar pathways, where immune patterns targeting different cells shape distinct outcomes. Restoring tissue homeostasis and regeneration creates a tumour-hostile microenvironment, whereas tumour-directed approaches fail to remodel the TME. This underscores the need for tissue remodelling strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Nicholas Koelsch
- Department of Microbiology & ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Faridoddin Mirshahi
- Department of Internal MedicineVCU School of MedicineRichmondVirginiaUSA
- Stravitz‐Sanyal Institute for Liver Disease and Metabolic HealthRichmondVirginiaUSA
| | | | - Mulugeta Seneshaw
- Department of Internal MedicineVCU School of MedicineRichmondVirginiaUSA
- Stravitz‐Sanyal Institute for Liver Disease and Metabolic HealthRichmondVirginiaUSA
| | - Michael O. Idowu
- Department of PathologyVCU School of MedicineRichmondVirginiaUSA
- VCU Massey Comprehensive Cancer CenterRichmondVirginiaUSA
| | - Amy L. Olex
- VCU Massey Comprehensive Cancer CenterRichmondVirginiaUSA
- C. Kenneth and Dianne Wright Center for Clinical and Translational ResearchVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
| | - Arun J. Sanyal
- Department of Internal MedicineVCU School of MedicineRichmondVirginiaUSA
- Stravitz‐Sanyal Institute for Liver Disease and Metabolic HealthRichmondVirginiaUSA
- VCU Massey Comprehensive Cancer CenterRichmondVirginiaUSA
| | - Masoud H. Manjili
- Department of Microbiology & ImmunologyVirginia Commonwealth University School of MedicineRichmondVirginiaUSA
- VCU Massey Comprehensive Cancer CenterRichmondVirginiaUSA
- VCU Institute of Molecular MedicineRichmondVirginiaUSA
| |
Collapse
|
2
|
Li YZ, Gao L, Sun XL, Duan L, Jiang M, Wu QF. Neural cell competition sculpting brain from cradle to grave. Natl Sci Rev 2025; 12:nwaf057. [PMID: 40309342 PMCID: PMC12042753 DOI: 10.1093/nsr/nwaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/18/2025] [Accepted: 02/13/2025] [Indexed: 05/02/2025] Open
Abstract
Darwinian selection, operating within the cellular ecosystem of multicellular organisms, drives a pervasive surveillance mechanism of cell-cell competition that shapes tissue architecture and function. While cell competition eliminates suboptimal cells to ensure tissue integrity across various tissues, neuronal competition specifically sculpts neural networks to establish precise circuits for sensory, motor and cognitive functions. However, our understanding of cell competition across diverse neural cell types in both developmental and pathological contexts remains limited. Here, we review recent advances on the phenomenon, and mechanisms and potential functions of neural cell competition (NCC), ranging from neural progenitors, neurons, astrocytes and oligodendrocytes to microglia. Physiological NCC governs cellular survival, proliferation, arborization, organization, function and territorial colonization, whereas dysregulated NCC may cause neurodevelopmental disorders, accelerate aging, exacerbate neurodegenerative diseases and drive brain tumor progression. Future work that leverages cell competition mechanisms may help to improve cognition and curb diseases.
Collapse
Affiliation(s)
- Yu Zheng Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lisen Gao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Lian Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lihui Duan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Man Jiang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing-Feng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100101, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Children's Hospital, Beijing 100045, China
| |
Collapse
|
3
|
Zhu Y, Wunderlich Z, Lander AD. Epithelial cell competition is promoted by signaling from immune cells. Nat Commun 2025; 16:3710. [PMID: 40251197 PMCID: PMC12008283 DOI: 10.1038/s41467-025-59130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 04/11/2025] [Indexed: 04/20/2025] Open
Abstract
In epithelial tissues, juxtaposition of cells of different phenotypes can trigger cell competition, a process whereby one type of cell drives death and extrusion of another. During growth and homeostasis, cell competition is thought to serve a quality control function, eliminating cells that are "less fit". Tissues may also attack and eliminate newly arising tumor cells, exploiting mechanisms shared with other instances of cell competition, but that differ, reportedly, in the involvement of the immune system. Whereas immune cells have been shown to play a direct role in killing tumor cells, this has not been observed in other cases of cell competition, suggesting that tissues recognize and handle cancer cells differently. Here, we challenge this view, showing that, in the fruit fly Drosophila, innate immune cells play similar roles in cell killing during classical cell competition as in eliminating tumors. These findings suggest that immune suppression of cancer may exploit the same mechanisms as are involved in promoting phenotypic uniformity among epithelial cells.
Collapse
Affiliation(s)
- Yilun Zhu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA
| | - Zeba Wunderlich
- Department of Biology, Boston University, Boston, MA, 02215, USA
- Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Arthur D Lander
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA.
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA.
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
4
|
Schoenit A, Monfared S, Anger L, Rosse C, Venkatesh V, Balasubramaniam L, Marangoni E, Chavrier P, Mège RM, Doostmohammadi A, Ladoux B. Force transmission is a master regulator of mechanical cell competition. NATURE MATERIALS 2025:10.1038/s41563-025-02150-9. [PMID: 40087537 DOI: 10.1038/s41563-025-02150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 01/22/2025] [Indexed: 03/17/2025]
Abstract
Cell competition is a tissue surveillance mechanism for eliminating unwanted cells, being indispensable in development, infection and tumourigenesis. Although studies have established the role of biochemical mechanisms in this process, due to challenges in measuring forces in these systems, how mechanical forces determine the competition outcome remains unclear. Here we report a form of cell competition that is regulated by differences in force transmission capabilities, selecting for cell types with stronger intercellular adhesion. Direct force measurements in ex vivo tissues and different cell lines reveal that there is an increased mechanical activity at the interface between two competing cell types, which can lead to large stress fluctuations resulting in upward forces and cell elimination. We show how a winning cell type endowed with a stronger intercellular adhesion exhibits higher resistance to elimination and benefiting from efficient force transmission to the neighbouring cells. This cell elimination mechanism could have broad implications for keeping the strong force transmission ability for maintaining tissue boundaries and cell invasion pathology.
Collapse
Affiliation(s)
- Andreas Schoenit
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Siavash Monfared
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Lucas Anger
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Carine Rosse
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Institut Curie, Paris Université Sciences et Lettres, CNRS, Paris, France
| | - Varun Venkatesh
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Elisabetta Marangoni
- Translational Research Department, Institut Curie, PSL Research University, Paris, France
| | - Philippe Chavrier
- Institut Curie, Paris Université Sciences et Lettres, CNRS, Paris, France
| | - René-Marc Mège
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France.
| | | | - Benoit Ladoux
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France.
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
- Max-Planck-Zentrum für Physik und Medizin and Max Planck Institute for the Science of Light, Erlangen, Germany.
| |
Collapse
|
5
|
Koelsch N, Mirshahi F, Aqbi HF, Seneshaw M, Idowu MO, Olex AL, Sanyal AJ, Manjili MH. Anti-tumor immunity relies on targeting tissue homeostasis through monocyte-driven responses rather than direct tumor cytotoxicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.12.598563. [PMID: 38903113 PMCID: PMC11188117 DOI: 10.1101/2024.06.12.598563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Background Metabolic dysfunction-associated fatty liver disease (MAFLD) can progress to hepatocellular carcinoma (HCC), yet the immune mechanisms driving this transition remain unclear. Methods In a chronic Western diet (WD) mouse model, we performed single-nuclei RNA sequencing to track MAFLD progression into HCC and subsequent tumor inhibition upon dietary correction. Results Carcinogenesis begins during MAFLD, with tumor cells entering dormancy when HCC is mitigated. Rather than purely tolerogenic, the liver actively engages immune responses targeting myofibroblasts, fibroblasts and hepatocytes to maintain tissue homeostasis. Cytotoxic cells contribute to turnover of liver cells but do not primarily target the tumor. NKT cells predominate under chronic WD, while monocytes join them in HCC progression on a WD. Upon dietary correction, monocyte-driven immunity confers protection against HCC through targeting tissue homeostatic pathways and antioxidant mechanisms. Crucially, liver tissue response-not merely immune activation-dictates whether tumors grow or regress, emphasizing the importance of restoring liver tissue integrity. Also, protection against HCC is linked to a distinct immunological pattern, differing from healthy controls, underscoring the need for immune reprogramming. Conclusion These findings reveal the dual roles of similar pathways, where immune patterns targeting different cells shape distinct outcomes. Restoring tissue homeostasis and regeneration creates a tumor-hostile microenvironment, whereas tumor-directed approaches fail to remodel the TME. This underscores the need for tissue remodeling strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Nicholas Koelsch
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Faridoddin Mirshahi
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Richmond, VA 23298
| | - Hussein F. Aqbi
- College of Science, Mustansiriyah University, Baghdad, P.O. Box 14022, Iraq
| | - Mulugeta Seneshaw
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Richmond, VA 23298
| | - Michael O. Idowu
- Department of Pathology, VCU School of Medicine, Richmond, VA 23298, USA
- VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Amy L. Olex
- VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University School of Medicine
| | - Arun J. Sanyal
- Department of Internal Medicine, VCU School of Medicine, Richmond, VA 23298, USA
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Richmond, VA 23298
- VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
| | - Masoud H. Manjili
- Department of Microbiology & Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
- VCU Massey Comprehensive Cancer Center, Richmond, VA 23298, USA
- VCU Institute of Molecular Medicine, Richmond VA 23298
| |
Collapse
|
6
|
Gracia F, Sanchez-Laorden B, Gomez-Sanchez JA. Schwann cells in regeneration and cancer: an epithelial-mesenchymal transition perspective. Open Biol 2025; 15:240337. [PMID: 40037534 DOI: 10.1098/rsob.240337] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/13/2025] [Accepted: 02/09/2025] [Indexed: 03/06/2025] Open
Abstract
In the peripheral nervous system, glial cells, known as Schwann cells (SCs), are responsible for supporting and maintaining nerves. One of the most important characteristics of SCs is their remarkable plasticity. In various injury contexts, SCs undergo a reprogramming process that generates specialized cells to promote tissue regeneration and repair. However, in pathological conditions, this same plasticity and regenerative potential can be hijacked. Different studies highlight the activation of the epithelial-mesenchymal transition (EMT) as a driver of SC phenotypic plasticity. Although SCs are not epithelial, their neural crest origin makes EMT activation crucial for their ability to adopt repair phenotypes, mirroring the plasticity observed during development. These adaptive processes are essential for regeneration. However, EMT activation in SCs-derived tumours enhances cancer progression and aggressiveness. Furthermore, in the tumour microenvironment (TME), SCs also acquire activated phenotypes that contribute to tumour migration and invasion by activating EMT in cancer cells. In this review, we will discuss how EMT impacts SC plasticity and function from development and tissue regeneration to pathological conditions, such as cancer.
Collapse
Affiliation(s)
- Francisco Gracia
- Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, 03550, Spain
| | | | - Jose A Gomez-Sanchez
- Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, 03550, Spain
- Instituto de Investigacion Sanitaria y Biomedica de Alicante (ISABIAL), Alicante 03010, Spain
| |
Collapse
|
7
|
Shi J, Han W, Wang J, Kong X. Anti-Tumor Strategies Targeting Nutritional Deprivation: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415550. [PMID: 39895165 DOI: 10.1002/adma.202415550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/04/2025] [Indexed: 02/04/2025]
Abstract
Higher and richer nutrient requirements are typical features that distinguish tumor cells from AU: cells, ensuring adequate substrates and energy sources for tumor cell proliferation and migration. Therefore, nutrient deprivation strategies based on targeted technologies can induce impaired cell viability in tumor cells, which are more sensitive than normal cells. In this review, nutrients that are required by tumor cells and related metabolic pathways are introduced, and anti-tumor strategies developed to target nutrient deprivation are described. In addition to tumor cells, the nutritional and metabolic characteristics of other cells in the tumor microenvironment (including macrophages, neutrophils, natural killer cells, T cells, and cancer-associated fibroblasts) and related new anti-tumor strategies are also summarized. In conclusion, recent advances in anti-tumor strategies targeting nutrient blockade are reviewed, and the challenges and prospects of these anti-tumor strategies are discussed, which are of theoretical significance for optimizing the clinical application of tumor nutrition deprivation strategies.
Collapse
Affiliation(s)
- Jinsheng Shi
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Wei Han
- Qingdao Key Lab of Common Diseases, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266000, China
| | - Jie Wang
- Pharmacy Department, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao, Shandong, 266000, China
| | - Xiaoying Kong
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China
| |
Collapse
|
8
|
Dai Z, Chen S, Shi J, Rui M, Xu Q. N-cadherin-triggered myosin II inactivation provides tumor cells with a mechanical cell competition advantage and chemotherapy resistance. Dev Cell 2025:S1534-5807(25)00061-9. [PMID: 39986277 DOI: 10.1016/j.devcel.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 10/12/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
The concept that mechanical cell competition may contribute to tumor cell expansion has been widely discussed. However, whether this process could occur during natural tumor progression, as well as its underlying mechanisms and clinical implications, remains largely unknown. In this study, we observed that self-seeded tumor cell lines of human oral cancer, SCC9- and SCC25-seeded cells, exhibited a mechanical competitive advantage, outcompeted neighboring cells, and became "winner" cells. Mechanical compression-induced calcium influx activates myosin II in "loser" cells, leading to apoptotic nuclear breakdown and subsequent clearance. N-cadherin/Rac1/PAK1/myosin light-chain kinase (MLCK)-controlled myosin II inactivation endows cells with resistance to mechanical stress and superior cellular flexibility, thus providing a cell competition advantage to self-seeded cells. The activation of the N-cadherin/Rac1/PAK1/MLCK/myosin II signaling axis is associated with drug resistance. Together, these results suggest that N-cadherin/Rac1/PAK1/MLCK signaling-induced myosin II inactivation enables tumor cells to acquire resistance to mechanical stress and a competitive advantage. Our study also provides insights into drug resistance from a stress-sensitivity perspective.
Collapse
Affiliation(s)
- Zhenlin Dai
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Disease, Shanghai 200011, China
| | - Shengkai Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Disease, Shanghai 200011, China
| | - Jianbo Shi
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Disease, Shanghai 200011, China
| | - Mengyu Rui
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Disease, Shanghai 200011, China
| | - Qin Xu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200011, China; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China; National Clinical Research Center for Oral Disease, Shanghai 200011, China.
| |
Collapse
|
9
|
Cerqua M, Foiani M, Boccaccio C, Comoglio PM, Altintas DM. The integrated stress response drives MET oncogene overexpression in cancers. EMBO J 2025; 44:1107-1130. [PMID: 39774381 PMCID: PMC11832788 DOI: 10.1038/s44318-024-00338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/09/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer cells rely on invasive growth to survive in a hostile microenvironment; this growth is characterised by interconnected processes such as epithelial-to-mesenchymal transition and migration. A master regulator of these events is the MET oncogene, which is overexpressed in the majority of cancers; however, since mutations in the MET oncogene are seen only rarely in cancers and are relatively infrequent, the mechanisms that cause this widespread MET overexpression remain obscure. Here, we show that the 5' untranslated region (5'UTR) of MET mRNA harbours two functional stress-responsive elements, conferring translational regulation by the integrated stress response (ISR), regulated by phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) at serine 52. ISR activation by serum starvation, leucine deprivation, hypoxia, irradiation, thapsigargin or gemcitabine is followed by MET protein overexpression. We mechanistically link MET translation to the ISR by (i) mutation of the two uORFs within the MET 5'UTR, (ii) CRISPR/Cas9-mediated mutation of eIF2α (S52A), or (iii) the application of ISR pathway inhibitors. All of these interventions reduce stress-induced MET overexpression. Finally, we show that blocking stress-induced MET translation blunts MET-dependent invasive growth. These findings indicate that upregulation of the MET oncogene is a functional requirement linking integrated stress response to cancer progression.
Collapse
Affiliation(s)
- Marina Cerqua
- IFOM ETS-The AIRC Institute of Molecular Oncology, 20139, Milano, Italy
| | - Marco Foiani
- IFOM ETS-The AIRC Institute of Molecular Oncology, 20139, Milano, Italy
| | - Carla Boccaccio
- Candiolo Cancer Institute, 10060 Candiolo, Torino, Italy
- Department of Oncology, University of Torino, 10100, Torino, Italy
| | - Paolo M Comoglio
- IFOM ETS-The AIRC Institute of Molecular Oncology, 20139, Milano, Italy.
| | - Dogus M Altintas
- IFOM ETS-The AIRC Institute of Molecular Oncology, 20139, Milano, Italy.
| |
Collapse
|
10
|
Sanchez Bosch P, Cho B, Axelrod JD. Flamingo participates in multiple models of cell competition. eLife 2024; 13:RP98535. [PMID: 39854621 PMCID: PMC11684786 DOI: 10.7554/elife.98535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
The growth and survival of cells with different fitness, such as those with a proliferative advantage or a deleterious mutation, is controlled through cell competition. During development, cell competition enables healthy cells to eliminate less fit cells that could jeopardize tissue integrity, and facilitates the elimination of pre-malignant cells by healthy cells as a surveillance mechanism to prevent oncogenesis. Malignant cells also benefit from cell competition to promote their expansion. Despite its ubiquitous presence, the mechanisms governing cell competition, particularly those common to developmental competition and tumorigenesis, are poorly understood. Here, we show that in Drosophila, the planar cell polarity (PCP) protein Flamingo (Fmi) is required by winners to maintain their status during cell competition in malignant tumors to overtake healthy tissue, in early pre-malignant cells when they overproliferate among wildtype cells, in healthy cells when they later eliminate pre-malignant cells, and by supercompetitors as they compete to occupy excessive territory within wildtype tissues. 'Would-be' winners that lack Fmi are unable to overproliferate, and instead become losers. We demonstrate that the role of Fmi in cell competition is independent of PCP, and that it uses a distinct mechanism that may more closely resemble one used in other less well-defined functions of Fmi.
Collapse
Affiliation(s)
- Pablo Sanchez Bosch
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Bomsoo Cho
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
11
|
Zhang H, Xiong X, Cheng M, Ji L, Ning K. Deep learning enabled integration of tumor microenvironment microbial profiles and host gene expressions for interpretable survival subtyping in diverse types of cancers. mSystems 2024; 9:e0139524. [PMID: 39565103 PMCID: PMC11651096 DOI: 10.1128/msystems.01395-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
The tumor microbiome, a complex community of microbes found in tumors, has been found to be linked to cancer development, progression, and treatment outcome. However, it remains a bottleneck in distangling the relationship between the tumor microbiome and host gene expressions in tumor microenvironment, as well as their concert effects on patient survival. In this study, we aimed to decode this complex relationship by developing ASD-cancer (autoencoder-based subtypes detector for cancer), a semi-supervised deep learning framework that could extract survival-related features from tumor microbiome and transcriptome data, and identify patients' survival subtypes. By using tissue samples from The Cancer Genome Atlas database, we identified two statistically distinct survival subtypes across all 20 types of cancer Our framework provided improved risk stratification (e.g., for liver hepatocellular carcinoma, [LIHC], log-rank test, P = 8.12E-6) compared to PCA (e.g., for LIHC, log-rank test, P = 0.87), predicted survival subtypes accurately, and identified biomarkers for survival subtypes. Additionally, we identified potential interactions between microbes and host genes that may play roles in survival. For instance, in LIHC, Arcobacter, Methylocella, and Isoptericola may regulate host survival through interactions with host genes enriched in the HIF-1 signaling pathway, indicating these species as potential therapy targets. Further experiments on validation data sets have also supported these patterns. Collectively, ASD-cancer has enabled accurate survival subtyping and biomarker discovery, which could facilitate personalized treatment for broad-spectrum types of cancers.IMPORTANCEUnraveling the intricate relationship between the tumor microbiome, host gene expressions, and their collective impact on cancer outcomes is paramount for advancing personalized treatment strategies. Our study introduces ASD-cancer, a cutting-edge autoencoder-based subtype detector. ASD-cancer decodes the complexities within the tumor microenvironment, successfully identifying distinct survival subtypes across 20 cancer types. Its superior risk stratification, demonstrated by significant improvements over traditional methods like principal component analysis, holds promise for refining patient prognosis. Accurate survival subtype predictions, biomarker discovery, and insights into microbe-host gene interactions elevate ASD-cancer as a powerful tool for advancing precision medicine. These findings not only contribute to a deeper understanding of the tumor microenvironment but also open avenues for personalized interventions across diverse cancer types, underscoring the transformative potential of ASD-cancer in shaping the future of cancer care.
Collapse
Affiliation(s)
- Haohong Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinghao Xiong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyue Cheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lei Ji
- Geneis Beijing Co., Ltd., Beijing, China
- Qingdao Geneis Institute of Big Data Mining and Precision Medicine, Qingdao, China
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Sukpol W, Laomettachit T, Tangthanawatsakul A. A Cancer Subpopulation Competition Model Reveals Optimal Levels of Immune Response that Minimize Tumor Size. J Comput Biol 2024; 31:1179-1194. [PMID: 39253839 DOI: 10.1089/cmb.2024.0618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Breast cancer is a complex disease with significant phenotypic heterogeneity of cells, even within a single breast tumor. Emerging evidence underscores the significance of intratumoral competition, which can serve as a key contributor to cancer drug resistance, imparting substantial clinical implications. Understanding the competitive dynamics is paramount as it can significantly influence disease progression and treatment outcomes. In the present work, a mathematical model was developed using a system of differential equations to describe the dynamic interactions between two cancer subtypes (each further classified into cancer stem cells and tumor cells) and innate immune cells. The purpose of the model is to comprehensively understand the competitive interactions between the heterogeneous subpopulations. The equilibrium points and stability analysis for each equilibrium point were established. Model simulations showed that the competition between two cancer subtypes directly affects the number of both species. When competition between two cancer subtypes is strong, increasing the immune response rate specific to the more competitive species effectively reduces the tumor size. However, if the competition is relatively weak, an optimal immune response rate is required to minimize the total number of tumor cells. Rates below the optimal level fail to reduce the population of the stronger species, whereas rates above the optimal level can lead to the recurrence of the weaker species. Overall, this model provides insights into breast cancer dynamics and guides the development of effective treatment strategies.
Collapse
Affiliation(s)
- Wimonnat Sukpol
- Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Teeraphan Laomettachit
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
- Theoretical and Computational Physics Group, Center of Excellence in Theoretical and Computational Science (TaCS-CoE), King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Anuwat Tangthanawatsakul
- Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
- Mathematics and Statistics with Applications Research Group (MaSA), Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
13
|
Bosch PS, Cho B, Axelrod JD. Flamingo participates in multiple models of cell competition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.24.559197. [PMID: 37790459 PMCID: PMC10542155 DOI: 10.1101/2023.09.24.559197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The growth and survival of cells with different fitness, such as those with a proliferative advantage or a deleterious mutation, is controlled through cell competition. During development, cell competition enables healthy cells to eliminate less fit cells that could jeopardize tissue integrity, and facilitates the elimination of pre-malignant cells by healthy cells as a surveillance mechanism to prevent oncogenesis. Malignant cells also benefit from cell competition to promote their expansion. Despite its ubiquitous presence, the mechanisms governing cell competition, particularly those common to developmental competition and tumorigenesis, are poorly understood. Here, we show that in Drosophila, the planar cell polarity (PCP) protein Flamingo (Fmi) is required by winners to maintain their status during cell competition in malignant tumors to overtake healthy tissue, in early pre-malignant cells when they overproliferate among wildtype cells, in healthy cells when they later eliminate pre-malignant cells, and by supercompetitors as they compete to occupy excessive territory within wildtype tissues. "Would-be" winners that lack Fmi are unable to over-proliferate, and instead become losers. We demonstrate that the role of Fmi in cell competition is independent of PCP, and that it uses a distinct mechanism that may more closely resemble one used in other less well-defined functions of Fmi.
Collapse
Affiliation(s)
- Pablo Sanchez Bosch
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Dr., Stanford CA, 94305, USA
| | - Bomsoo Cho
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Dr., Stanford CA, 94305, USA
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Dr., Stanford CA, 94305, USA
| |
Collapse
|
14
|
Chen J, Cao W, Li Y, Zhu J. Comprehensive analysis of the expression level, prognostic value, and immune infiltration of cuproptosis-related genes in human breast cancer. Medicine (Baltimore) 2024; 103:e40132. [PMID: 39432636 PMCID: PMC11495725 DOI: 10.1097/md.0000000000040132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND As a novel cell death form, cuproptosis results from copper combining with lipidated proteins in the tricarboxylic acid cycle. To the best of our knowledge no study has yet comprehensively analyzed the relationship between cuproptosis-related genes and breast cancer. METHODS The expression, prognostic value, mutations, chemosensitivity, and immune infiltration of cuproptosis-related genes in breast carcinoma patients were analyzed, PPI networks were constructed, and enrichment analyses were performed based on these genes. TIMER, UALCAN, Kaplan-Meier plotter, Human Protein Atlas, cBioPortal, STRING, GeneMANIA, DAVID, and R program v4.0.3 were used to accomplish the analyses above. RESULTS Compared to normal breast tissues, FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, MTF1, and GLS were down-regulated in breast cancer tissues, while CDKN2A was up-regulated. High expression of FDX1, LIAS, DLD, DLAT, MTF1, GLS, and CDKN2A were associated with favorable overall survival. Cuproptosis-related genes showed a high alteration rate (51.3%) in breast cancer, contributing to worse clinical outcomes. The expression levels of FDX1, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, and CDKN2A were associated positively with 1 or more immune cell infiltrations in breast cancer. Patients with high levels of B cell, CD4+ T cell, CD8+ T cell, and dendritic cell infiltration had a higher survival rate at 10 years. CONCLUSION This study comprehensively investigated relationships between cuproptosis and breast cancer by bioinformatic analyses. We found that cuproptosis-related genes were generally lowly expressed in breast carcinoma tissue. As the critical gene of cuproptosis, high expression of FDX1 was related to favorable prognoses in breast cancer patients; thus, it might be a potential prognostic marker. Moreover, genes associated with cuproptosis were linked to immune infiltration in breast cancer and this relationship affected the prognosis of breast cancer.
Collapse
Affiliation(s)
- Jian Chen
- Breast Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Cao
- Breast Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yingliang Li
- Breast Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jia Zhu
- Breast Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
15
|
Sabit H, Arneth B, Abdel-Ghany S, Madyan EF, Ghaleb AH, Selvaraj P, Shin DM, Bommireddy R, Elhashash A. Beyond Cancer Cells: How the Tumor Microenvironment Drives Cancer Progression. Cells 2024; 13:1666. [PMID: 39404428 PMCID: PMC11475877 DOI: 10.3390/cells13191666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
Liver cancer represents a substantial global health challenge, contributing significantly to worldwide morbidity and mortality. It has long been understood that tumors are not composed solely of cancerous cells, but also include a variety of normal cells within their structure. These tumor-associated normal cells encompass vascular endothelial cells, fibroblasts, and various inflammatory cells, including neutrophils, monocytes, macrophages, mast cells, eosinophils, and lymphocytes. Additionally, tumor cells engage in complex interactions with stromal cells and elements of the extracellular matrix (ECM). Initially, the components of what is now known as the tumor microenvironment (TME) were thought to be passive bystanders in the processes of tumor proliferation and local invasion. However, recent research has significantly advanced our understanding of the TME's active role in tumor growth and metastasis. Tumor progression is now known to be driven by an intricate imbalance of positive and negative regulatory signals, primarily influenced by specific growth factors produced by both inflammatory and neoplastic cells. This review article explores the latest developments and future directions in understanding how the TME modulates liver cancer, with the aim of informing the design of novel therapies that target critical components of the TME.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt; (H.S.); (E.F.M.)
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Philipps University Marburg, Baldinger Str., 35043 Marburg, Germany
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, Feulgenstr. 12, 35392 Giessen, Germany
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
| | - Engy F. Madyan
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt; (H.S.); (E.F.M.)
| | - Ashraf H. Ghaleb
- Department of Surgery, College of Medicine, Misr University for Science and Technology, Giza P.O. Box 77, Egypt;
- Department of Surgery, College of Medicine, Cairo University, Giza 12613, Egypt
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.S.); (R.B.)
| | - Dong M. Shin
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Ramireddy Bommireddy
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (P.S.); (R.B.)
| | - Ahmed Elhashash
- Department of Biology, Texas A&M University, 3258 TAMU I, College Station, TX 77843-3258, USA
| |
Collapse
|
16
|
Kim H, Kim KE, Madan E, Martin P, Gogna R, Rhee HW, Won KJ. Unveiling contact-mediated cellular crosstalk. Trends Genet 2024; 40:868-879. [PMID: 38906738 DOI: 10.1016/j.tig.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Cell-cell interactions orchestrate complex functions in multicellular organisms, forming a regulatory network for diverse biological processes. Their disruption leads to disease states. Recent advancements - including single-cell sequencing and spatial transcriptomics, coupled with powerful bioengineering and molecular tools - have revolutionized our understanding of how cells respond to each other. Notably, spatial transcriptomics allows us to analyze gene expression changes based on cell proximity, offering a unique window into the impact of cell-cell contact. Additionally, computational approaches are being developed to decipher how cell contact governs the symphony of cellular responses. This review explores these cutting-edge approaches, providing valuable insights into deciphering the intricate cellular changes influenced by cell-cell communication.
Collapse
Affiliation(s)
- Hyobin Kim
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West, Hollywood, CA, USA
| | - Kwang-Eun Kim
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea; Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Esha Madan
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; School of Medicine, Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Patrick Martin
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West, Hollywood, CA, USA
| | - Rajan Gogna
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA; School of Medicine, Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA; Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, South Korea.
| | - Kyoung-Jae Won
- Department of Computational Biomedicine, Cedars-Sinai Medical Center, West, Hollywood, CA, USA.
| |
Collapse
|
17
|
Hodge RA, Bach EA. Mechanisms of Germline Stem Cell Competition across Species. Life (Basel) 2024; 14:1251. [PMID: 39459551 PMCID: PMC11509876 DOI: 10.3390/life14101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
In this review, we introduce the concept of cell competition, which occurs between heterogeneous neighboring cell populations. Cells with higher relative fitness become "winners" that outcompete cells of lower relative fitness ("losers"). We discuss the idea of super-competitors, mutant cells that expand at the expense of wild-type cells. Work on adult stem cells (ASCs) has revealed principles of neutral competition, wherein ASCs can be stochastically lost and replaced, and of biased competition, in which a winning ASC with a competitive advantage replaces its neighbors. Germline stem cells (GSCs) are ASCs that are uniquely endowed with the ability to produce gametes and, therefore, impact the next generation. Mechanisms of GSC competition have been elucidated by studies in Drosophila gonads, tunicates, and the mammalian testis. Competition between ASCs is thought to underlie various forms of cancer, including spermatocytic tumors in the human testis. Paternal age effect (PAE) disorders are caused by de novo mutations in human GSCs that increase their competitive ability and make them more likely to be inherited, leading to skeletal and craniofacial abnormalities in offspring. Given its widespread effects on human health, it is important to study GSC competition to elucidate how cells can become winners or losers.
Collapse
Affiliation(s)
| | - Erika A. Bach
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
18
|
Fridland S, Kim HS, Chae YK. Differential impact of intratumor heterogeneity (ITH) on survival outcomes in early-stage lung squamous and adenocarcinoma based on tumor mutational burden (TMB). Transl Lung Cancer Res 2024; 13:1481-1494. [PMID: 39118891 PMCID: PMC11304137 DOI: 10.21037/tlcr-24-226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/06/2024] [Indexed: 08/10/2024]
Abstract
Background Molecular biomarkers are reshaping patient stratification and treatment decisions, yet their precise use and best implementation remain uncertain. Intratumor heterogeneity (ITH), an area of increasing research interest with prognostic value across various conditions, lacks defined clinical relevance in certain non-small cell lung cancer (NSCLC) subtypes. Exploring the relationship between ITH and tumor mutational burden (TMB) is crucial, as their interplay might reveal distinct patient subgroups. This study evaluates how the ITH-TMB dynamic affects prognosis across the two main histological subtypes of NSCLC, squamous cell and adenocarcinoma, with a specific focus on early-stage cases to address their highly unmet clinical needs. Methods We stratify a cohort of 741 early-stage NSCLC patients from The Cancer Genome Atlas (TCGA) based on ITH and TMB and evaluate differences in clinical outcomes. Additionally, we compare driver mutations and the tumor microenvironment (TME) between high and low ITH groups. Results In lung squamous cell carcinoma (LUSC), high ITH predicts an extended progression-free survival (PFS) (median: 21 vs. 14 months, P=0.01), while in lung adenocarcinoma (LUAD), high ITH predicts a reduced PFS (median: 15 vs. 20 months, P=0.04). This relationship is driven by the low TMB subset of patients. Additionally, we found that CD8 T cells were enriched in better-performing subgroups, regardless of histologic subtype or ITH status. Conclusions There are significant differences in clinical outcomes, driver mutations, and the TME between high and low ITH groups among early-stage NSCLC patients. These differences may have treatment implications, necessitating further validation in other NSCLC datasets.
Collapse
Affiliation(s)
- Stanislav Fridland
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hye Sung Kim
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Young Kwang Chae
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
19
|
Hasegawa Y, Nakano M, Hosouchi T, Watanabe T, Yamaguchi I, Nakayama M, Ohara O. A cell competition system with one gene expression from a single-copy gene in one cell. PLoS One 2024; 19:e0302451. [PMID: 38968258 PMCID: PMC11226009 DOI: 10.1371/journal.pone.0302451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/03/2024] [Indexed: 07/07/2024] Open
Abstract
Even with advanced plasmid and viral vectors, attaining copy numbers of multiple genes among different transfected cells is challenging. We achieved one gene expression from a single-copy gene in one cell using a transgene competition system, a combination of the Kazusa cDNA clones and our dual recombinase-mediated cassette exchange system. All 48 nuclear receptors were simultaneously expressed in one dish at the same expression level in HEK293 using this system, and the cell proliferation rate was compared. Significant differences were observed between cells transfected with CMV- or EF1 promoter-driven expression of the 48 nuclear receptors after 8 weeks. The EF1-NR1I2 cell line, which exhibited the highest increase from 2 to 8 weeks, showed 1.13-fold higher proliferation than the EF1-DsRed line. On the other hand, the EF1-NR4A1 cell line, which showed the maximum decrease at 8 weeks, showed 0.88-fold lower proliferation than the EF1-DsRed line. The results were confirmed in both our transgene competition system and long-term growth experiments. Our transgene competition system offers a wide-range, simple, and accurate cell competition method.
Collapse
Affiliation(s)
- Yoshinori Hasegawa
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Megumi Nakano
- Kazusa Genome Technologies Inc., Kisarazu, Chiba, Japan
| | - Tsutomu Hosouchi
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Takashi Watanabe
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Izumi Yamaguchi
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Manabu Nakayama
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| |
Collapse
|
20
|
Wang S, Cheng H, Li M, Gao D, Wu H, Zhang S, Huang Y, Guo K. BNIP3-mediated mitophagy boosts the competitive growth of Lenvatinib-resistant cells via energy metabolism reprogramming in HCC. Cell Death Dis 2024; 15:484. [PMID: 38969639 PMCID: PMC11226677 DOI: 10.1038/s41419-024-06870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
An increasing evidence supports that cell competition, a vital selection and quality control mechanism in multicellular organisms, is involved in tumorigenesis and development; however, the mechanistic contributions to the association between cell competition and tumor drug resistance remain ill-defined. In our study, based on a contructed lenvitinib-resistant hepatocellular carcinoma (HCC) cells display obvious competitive growth dominance over sensitive cells through reprogramming energy metabolism. Mechanistically, the hyperactivation of BCL2 interacting protein3 (BNIP3) -mediated mitophagy in lenvatinib-resistant HCC cells promotes glycolytic flux via shifting energy production from mitochondrial oxidative phosphorylation to glycolysis, by regulating AMP-activated protein kinase (AMPK) -enolase 2 (ENO2) signaling, which perpetually maintaining lenvatinib-resistant HCC cells' competitive advantage over sensitive HCC cells. Of note, BNIP3 inhibition significantly sensitized the anti-tumor efficacy of lenvatinib in HCC. Our findings emphasize a vital role for BNIP3-AMPK-ENO2 signaling in maintaining the competitive outcome of lenvitinib-resistant HCC cells via regulating energy metabolism reprogramming; meanwhile, this work recognizes BNIP3 as a promising target to overcome HCC drug resistance.
Collapse
Affiliation(s)
- Sikai Wang
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Hongxia Cheng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200032, China
| | - Miaomiao Li
- Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Haoran Wu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shanshan Zhang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yilan Huang
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, China.
- Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
21
|
Castro V, Calvo G, Oliveros JC, Pérez-Del-Pulgar S, Gastaminza P. Hepatitis C virus-induced differential transcriptional traits in host cells after persistent infection elimination by direct-acting antivirals in cell culture. J Med Virol 2024; 96:e29787. [PMID: 38988177 DOI: 10.1002/jmv.29787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Chronic hepatitis C virus infection (HCV) causes liver inflammation and fibrosis, leading to the development of severe liver disease, such as cirrhosis or hepatocellular carcinoma (HCC). Approval of direct-acting antiviral drug combinations has revolutionized chronic HCV therapy, with virus eradication in >98% of the treated patients. The efficacy of these treatments is such that it is formally possible for cured patients to carry formerly infected cells that display irreversible transcriptional alterations directly caused by chronic HCV Infection. Combining differential transcriptomes from two different persistent infection models, we observed a major reversion of infection-related transcripts after complete infection elimination. However, a small number of transcripts were abnormally expressed in formerly infected cells. Comparison of the results obtained in proliferating and growth-arrested cell culture models suggest that permanent transcriptional alterations may be established by several mechanisms. Interestingly, some of these alterations were also observed in the liver biopsies of virologically cured patients. Overall, our data suggest a direct and permanent impact of persistent HCV infection on the host cell transcriptome even after virus elimination, possibly contributing to the development of HCC.
Collapse
Affiliation(s)
- Victoria Castro
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Gema Calvo
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Juan Carlos Oliveros
- Bioinformatics for Genomics and Proteomics Unit, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Pablo Gastaminza
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
22
|
Otani Y, Katayama H, Zhu Y, Huang R, Shigehira T, Shien K, Suzawa K, Yamamoto H, Shien T, Toyooka S, Fujimura A. Adrenergic microenvironment driven by cancer-associated Schwann cells contributes to chemoresistance in patients with lung cancer. Cancer Sci 2024; 115:2333-2345. [PMID: 38676373 PMCID: PMC11247558 DOI: 10.1111/cas.16164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 04/28/2024] Open
Abstract
Doublecortin (DCX)-positive neural progenitor-like cells are purported components of the cancer microenvironment. The number of DCX-positive cells in tissues reportedly correlates with cancer progression; however, little is known about the mechanism by which these cells affect cancer progression. Here we demonstrated that DCX-positive cells, which are found in all major histological subtypes of lung cancer, are cancer-associated Schwann cells (CAS) and contribute to the chemoresistance of lung cancer cells by establishing an adrenergic microenvironment. Mechanistically, the activation of the Hippo transducer YAP/TAZ was involved in the acquisition of new traits of CAS and DCX positivity. We further revealed that CAS express catecholamine-synthesizing enzymes and synthesize adrenaline, which potentiates the chemoresistance of lung cancer cells through the activation of YAP/TAZ. Our findings shed light on CAS, which drive the formation of an adrenergic microenvironment by the reciprocal regulation of YAP/TAZ in lung cancer tissues.
Collapse
Affiliation(s)
- Yusuke Otani
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Haruyoshi Katayama
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Yidan Zhu
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Rongsheng Huang
- Department of Trauma Orthopedics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Takafumi Shigehira
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Kazuhiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Ken Suzawa
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Tadahiko Shien
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Atsushi Fujimura
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
- Neutron Therapy Research Center, Okayama University, Kita-ku, Okayama, Japan
| |
Collapse
|
23
|
Wang K, Zerdes I, Johansson HJ, Sarhan D, Sun Y, Kanellis DC, Sifakis EG, Mezheyeuski A, Liu X, Loman N, Hedenfalk I, Bergh J, Bartek J, Hatschek T, Lehtiö J, Matikas A, Foukakis T. Longitudinal molecular profiling elucidates immunometabolism dynamics in breast cancer. Nat Commun 2024; 15:3837. [PMID: 38714665 PMCID: PMC11076527 DOI: 10.1038/s41467-024-47932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/12/2024] [Indexed: 05/10/2024] Open
Abstract
Although metabolic reprogramming within tumor cells and tumor microenvironment (TME) is well described in breast cancer, little is known about how the interplay of immune state and cancer metabolism evolves during treatment. Here, we characterize the immunometabolic profiles of tumor tissue samples longitudinally collected from individuals with breast cancer before, during and after neoadjuvant chemotherapy (NAC) using proteomics, genomics and histopathology. We show that the pre-, on-treatment and dynamic changes of the immune state, tumor metabolic proteins and tumor cell gene expression profiling-based metabolic phenotype are associated with treatment response. Single-cell/nucleus RNA sequencing revealed distinct tumor and immune cell states in metabolism between cold and hot tumors. Potential drivers of NAC based on above analyses were validated in vitro. In summary, the study shows that the interaction of tumor-intrinsic metabolic states and TME is associated with treatment outcome, supporting the concept of targeting tumor metabolism for immunoregulation.
Collapse
Affiliation(s)
- Kang Wang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ioannis Zerdes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Theme Cancer, Karolinska University Hospital and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Henrik J Johansson
- Department of Oncology-Pathology, Karolinska Institutet, and Science for Life Laboratory, Stockholm, Sweden
| | - Dhifaf Sarhan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yizhe Sun
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Dimitris C Kanellis
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
- Molecular Oncology Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Xingrong Liu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Niklas Loman
- Department of Hematology, Oncology and Radiation Physics, Lund University Hospital, Lund, Sweden
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jonas Bergh
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Jiri Bartek
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Danish Cancer Institute, DK-2100, Copenhagen, Denmark
| | - Thomas Hatschek
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Janne Lehtiö
- Department of Oncology-Pathology, Karolinska Institutet, and Science for Life Laboratory, Stockholm, Sweden
- Division of Pathology, Karolinska University Hospital and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Alexios Matikas
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Breast Center, Theme Cancer, Karolinska University Hospital and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Theodoros Foukakis
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
- Breast Center, Theme Cancer, Karolinska University Hospital and Karolinska Comprehensive Cancer Center, Stockholm, Sweden.
| |
Collapse
|
24
|
Khan C, Rusan NM. Using Drosophila to uncover the role of organismal physiology and the tumor microenvironment in cancer. Trends Cancer 2024; 10:289-311. [PMID: 38350736 PMCID: PMC11008779 DOI: 10.1016/j.trecan.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Cancer metastasis causes over 90% of cancer patient fatalities. Poor prognosis is determined by tumor type, the tumor microenvironment (TME), organ-specific biology, and animal physiology. While model organisms do not fully mimic the complexity of humans, many processes can be studied efficiently owing to the ease of genetic, developmental, and cell biology studies. For decades, Drosophila has been instrumental in identifying basic mechanisms controlling tumor growth and metastasis. The ability to generate clonal populations of distinct genotypes in otherwise wild-type animals makes Drosophila a powerful system to study tumor-host interactions at the local and global scales. This review discusses advancements in tumor biology, highlighting the strength of Drosophila for modeling TMEs and systemic responses in driving tumor progression and metastasis.
Collapse
Affiliation(s)
- Chaitali Khan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Nasser M Rusan
- Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Ebrahim T, Ebrahim AS, Kandouz M. Diversity of Intercellular Communication Modes: A Cancer Biology Perspective. Cells 2024; 13:495. [PMID: 38534339 PMCID: PMC10969453 DOI: 10.3390/cells13060495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/10/2024] [Indexed: 03/28/2024] Open
Abstract
From the moment a cell is on the path to malignant transformation, its interaction with other cells from the microenvironment becomes altered. The flow of molecular information is at the heart of the cellular and systemic fate in tumors, and various processes participate in conveying key molecular information from or to certain cancer cells. For instance, the loss of tight junction molecules is part of the signal sent to cancer cells so that they are no longer bound to the primary tumors and are thus free to travel and metastasize. Upon the targeting of a single cell by a therapeutic drug, gap junctions are able to communicate death information to by-standing cells. The discovery of the importance of novel modes of cell-cell communication such as different types of extracellular vesicles or tunneling nanotubes is changing the way scientists look at these processes. However, are they all actively involved in different contexts at the same time or are they recruited to fulfill specific tasks? What does the multiplicity of modes mean for the overall progression of the disease? Here, we extend an open invitation to think about the overall significance of these questions, rather than engage in an elusive attempt at a systematic repertory of the mechanisms at play.
Collapse
Affiliation(s)
- Thanzeela Ebrahim
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Abdul Shukkur Ebrahim
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, USA
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48202, USA
| |
Collapse
|
26
|
Wang S, Cheng H, Huang Y, Li M, Gao D, Chen H, Su R, Guo K. HSP90a promotes the resistance to oxaliplatin in HCC through regulating IDH1-induced cell competition. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119680. [PMID: 38280407 DOI: 10.1016/j.bbamcr.2024.119680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/06/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Though burgeoning research manifests that cell competition, an essential selection and quality control mechanism for maintaining tissue or organ growth and homeostasis in multicellular organisms, is closely related to tumorigenesis and development, the mechanism of cell competition associated with tumor drug resistance remains elusive. In the study, we uncovered that oxaliplatin-resistant hepatocellular carcinoma (HCC) cells exhibit a pronounced competitive advantage against their sensitive counterparts, which is related to lipid takeover of resistant cells from sensitive cells. Of note, such lipid takeover is dependent on the existence of isocitrate dehydrogenase 1 (IDH1) in resistant HCC cells. Mechanistically, IDH1 activity is regulated by heat shock protein 90 alpha (HSP90α) through binding with each other, which orchestrates the expressions of lipid metabolic enzymes and lipid accumulation in resistant HCC cells. Our results suggest that HCC cell competition-driven chemoresistance can be regulated by HSP90α/IDH1-mediated lipid metabolism, which may serve as a promising target for overcoming drug resistance in HCC.
Collapse
Affiliation(s)
- Sikai Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Hongxia Cheng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200434, China
| | - Yilan Huang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Miaomiao Li
- Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Huaping Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi 530021, China
| | - Ruxiong Su
- Puning People's Hospital, Southern Medical University, Guangdong 515300, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China; Cancer Research Center, Institute of Biomedical Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
27
|
Dochi H, Kondo S, Komura S, Moriyama-Kita M, Komori T, Nanbo A, Sakaguchi M, Fukuyo M, Hamabe-Horiike T, Tanaka M, Mizokami H, Kano M, Kitagawa Y, Kobayashi E, Hirai N, Ueno T, Nakanishi Y, Endo K, Sugimoto H, Hanayama R, Kaneda A, Yoshizaki T. Peritumoral SPARC expression induced by exosomes from nasopharyngeal carcinoma infected Epstein-Barr virus: A poor prognostic marker. Int J Cancer 2024; 154:895-911. [PMID: 37907830 DOI: 10.1002/ijc.34777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023]
Abstract
Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) cells have high metastatic potential. Recent research has revealed that the interaction of between tumor cells and the surrounding stroma plays an important role in tumor invasion and metastasis. In this study, we showed the prognostic value of expression of SPARC, an extracellular matrix protein with multiple cellular functions, in normal adjacent tissues (NAT) surrounding NPC. In the immunohistochemical analysis of 51 NPC biopsy specimens, SPARC expression levels were significantly elevated in the NAT of EBER (EBV-encoded small RNA)-positive NPC compared to that in the NAT of EBER-negative NPC. Moreover, increased SPARC expression in NAT was associated with a worsening of overall survival. The enrichment analysis of RNA-seq of publicly available NPC and NAT surrounding NPC data showed that high SPARC expression in NPC was associated with epithelial mesenchymal transition promotion, and there was a dynamic change in the gene expression profile associated with interference of cellular proliferation in NAT, including SPARC expression. Furthermore, EBV-positive NPC cells induce SPARC expression in normal nasopharyngeal cells via exosomes. Induction of SPARC in cancer-surrounding NAT cells reduced intercellular adhesion in normal nasopharyngeal structures and promoted cell competition between cancer cells and normal epithelial cells. These results suggest that epithelial cells loosen their own binding with the extracellular matrix as well as stromal cells, facilitating the invasion of tumor cells into the adjacent stroma by activating cell competition. Our findings reveal a new mechanism by which EBV creates a pro-metastatic microenvironment by upregulating SPARC expression in NPC.
Collapse
Affiliation(s)
- Hirotomo Dochi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Satoru Kondo
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Shigetaka Komura
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makiko Moriyama-Kita
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takeshi Komori
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Asuka Nanbo
- Department of Virus Infection Dynamics, National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan
| | - Miako Sakaguchi
- Central Laboratory, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Masaki Fukuyo
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshihide Hamabe-Horiike
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Mariko Tanaka
- Center for Biochemical Research and Education, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Harue Mizokami
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Makoto Kano
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuki Kitagawa
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Eiji Kobayashi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Nobuyuki Hirai
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Takayoshi Ueno
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yosuke Nakanishi
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazuhira Endo
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Hisashi Sugimoto
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Rikinari Hanayama
- Department of Immunology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Ishikawa, Japan
| | - Atsushi Kaneda
- Department of Molecular Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tomokazu Yoshizaki
- Division of Otolaryngology and Head and Neck Surgery, Graduate School of Medical science, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
28
|
Fernández Moro C, Geyer N, Gerling M. Cellular spartans at the pass: Emerging intricacies of cell competition in early and late tumorigenesis. Curr Opin Cell Biol 2024; 86:102315. [PMID: 38181657 DOI: 10.1016/j.ceb.2023.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
Cell competition is a mechanism for cellular quality control based on cell-cell comparisons of fitness. Recent studies have unveiled a central and complex role for cell competition in cancer. Early tumors exploit cell competition to replace neighboring normal epithelial cells. Intestinal adenomas, for example, use cell competition to outcompete wild-type epithelial cells. However, oncogenic mutations do not always confer an advantage: wild-type cells can identify mutant cells and enforce their extrusion through cell competition, a process termed "epithelial defense against cancer". A particularly interesting situation emerges in metastasis: supercompetitive tumor cells encounter heterotypic partners and engage in reciprocal competition with diverging outcomes. This article sheds light on the emerging complexity of cell competition by highlighting recent studies that unveil its context dependency. Finally, we propose that tissue histomorphology implies a crucial role for cell competition at tumor invasion fronts particularly in metastases, warranting increased attention in future studies.
Collapse
Affiliation(s)
- Carlos Fernández Moro
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden; Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, 14186, Sweden; Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Natalie Geyer
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden
| | - Marco Gerling
- Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden; Theme Cancer, Karolinska University Hospital, 17 176 Solna, Sweden.
| |
Collapse
|
29
|
Cong B, Cagan RL. Cell competition and cancer from Drosophila to mammals. Oncogenesis 2024; 13:1. [PMID: 38172609 PMCID: PMC10764339 DOI: 10.1038/s41389-023-00505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
Throughout an individual's life, somatic cells acquire cancer-associated mutations. A fraction of these mutations trigger tumour formation, a phenomenon partly driven by the interplay of mutant and wild-type cell clones competing for dominance; conversely, other mutations function against tumour initiation. This mechanism of 'cell competition', can shift clone dynamics by evaluating the relative status of clonal populations, promoting 'winners' and eliminating 'losers'. This review examines the role of cell competition in the context of tumorigenesis, tumour progression and therapeutic intervention.
Collapse
Affiliation(s)
- Bojie Cong
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland, G61 1QH, UK.
| | - Ross L Cagan
- School of Cancer Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Road, Bearsden, Glasgow, Scotland, G61 1QH, UK
| |
Collapse
|
30
|
Zou DD, Sun YZ, Li XJ, Wu WJ, Xu D, He YT, Qi J, Tu Y, Tang Y, Tu YH, Wang XL, Li X, Lu FY, Huang L, Long H, He L, Li X. Single-cell sequencing highlights heterogeneity and malignant progression in actinic keratosis and cutaneous squamous cell carcinoma. eLife 2023; 12:e85270. [PMID: 38099574 PMCID: PMC10783873 DOI: 10.7554/elife.85270] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most frequent of the keratinocyte-derived malignancies with actinic keratosis (AK) as a precancerous lesion. To comprehensively delineate the underlying mechanisms for the whole progression from normal skin to AK to invasive cSCC, we performed single-cell RNA sequencing (scRNA-seq) to acquire the transcriptomes of 138,982 cells from 13 samples of six patients including AK, squamous cell carcinoma in situ (SCCIS), cSCC, and their matched normal tissues, covering comprehensive clinical courses of cSCC. We identified diverse cell types, including important subtypes with different gene expression profiles and functions in major keratinocytes. In SCCIS, we discovered the malignant subtypes of basal cells with differential proliferative and migration potential. Differentially expressed genes (DEGs) analysis screened out multiple key driver genes including transcription factors along AK to cSCC progression. Immunohistochemistry (IHC)/immunofluorescence (IF) experiments and single-cell ATAC sequencing (scATAC-seq) data verified the expression changes of these genes. The functional experiments confirmed the important roles of these genes in regulating cell proliferation, apoptosis, migration, and invasion in cSCC tumor. Furthermore, we comprehensively described the tumor microenvironment (TME) landscape and potential keratinocyte-TME crosstalk in cSCC providing theoretical basis for immunotherapy. Together, our findings provide a valuable resource for deciphering the progression from AK to cSCC and identifying potential targets for anticancer treatment of cSCC.
Collapse
Affiliation(s)
- Dan-Dan Zou
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
- Department of Dermatology, The Affiliated Hospital of Kunming University of Science and Technology, The First People's Hospital of Yunnan Province, KunmingYunnanChina
| | - Ya-Zhou Sun
- Clinical Big Data Research Center, The Seventh Affiliated Hospital of Sun Yat-sen UniversityShenzhen, GuangdongChina
- School of Medical, Shenzhen Campus of Sun Yat-sen UniversityShenzhen, GuangdongChina
| | - Xin-Jie Li
- School of Medical, Shenzhen Campus of Sun Yat-sen UniversityShenzhen, GuangdongChina
| | - Wen-Juan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
| | - Dan Xu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
| | - Yu-Tong He
- School of Medical, Shenzhen Campus of Sun Yat-sen UniversityShenzhen, GuangdongChina
| | - Jue Qi
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
| | - Ying Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
| | - Yang Tang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
| | - Yun-Hua Tu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
| | - Xiao-Li Wang
- Department of Dermatology, Changzheng Hospital, Naval Medical UniversityShanghaiChina
| | - Xing Li
- Department of Dermatology, People's Hospital of Chuxiong Yi Autonomous Prefecture, ChuxiongYunnanChina
| | - Feng-Yan Lu
- Department of Dermatology, Qujing Affiliated Hospital of Kunming Medical University, The First People’s Hospital of QujingYunnanChina
| | - Ling Huang
- Department of Dermatology, First Affiliated Hospital of Dali University, DaliYunnanChina
| | - Heng Long
- Wenshan Zhuang and Miao Autonomous Prefecture Dermatology Clinic, Wenshan Zhuang and Miao Autonomous Prefecture Specialist Hospital of Dermatology, WenshanYunnanChina
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical UniversityYunnanChina
| | - Xin Li
- School of Medical, Shenzhen Campus of Sun Yat-sen UniversityShenzhen, GuangdongChina
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen UniversityGuangdongChina
| |
Collapse
|
31
|
Zheng J, Guo Y, Shi C, Yang S, Xu W, Ma X. Differential Ire1 determines loser cell fate in tumor-suppressive cell competition. Cell Rep 2023; 42:113303. [PMID: 37924514 DOI: 10.1016/j.celrep.2023.113303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 11/06/2023] Open
Abstract
Tumor-suppressive cell competition (TSCC) is a conserved surveillance mechanism in which neighboring cells actively eliminate oncogenic cells. Despite overwhelming studies showing that the unfolded protein response (UPR) is dysregulated in various tumors, it remains debatable whether the UPR restrains or promotes tumorigenesis. Here, using Drosophila eye epithelium as a model, we uncover a surprising decisive role of the Ire1 branch of the UPR in regulating cell polarity gene scribble (scrib) loss-induced TSCC. Both mutation and hyperactivation of Ire1 accelerate elimination of scrib clones via inducing apoptosis and autophagy, respectively. Unexpectedly, relative Ire1 activity is also crucial for determining loser cell fate, as dysregulating Ire1 signaling in the surrounding healthy cells reversed the "loser" status of scrib clones by decreasing their apoptosis. Furthermore, we show that Ire1 is required for cell competition in mammalian cells. Together, these findings provide molecular insights into scrib-mediated TSCC and highlight Ire1 as a key determinant of loser cell fate.
Collapse
Affiliation(s)
- Jiadong Zheng
- Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Yifan Guo
- Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Changyi Shi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Shuai Yang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Wenyan Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| | - Xianjue Ma
- Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
32
|
Zhao Y, Sheldon M, Sun Y, Ma L. New Insights into YAP/TAZ-TEAD-Mediated Gene Regulation and Biological Processes in Cancer. Cancers (Basel) 2023; 15:5497. [PMID: 38067201 PMCID: PMC10705714 DOI: 10.3390/cancers15235497] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 02/12/2024] Open
Abstract
The Hippo pathway is conserved across species. Key mammalian Hippo pathway kinases, including MST1/2 and LATS1/2, inhibit cellular growth by inactivating the TEAD coactivators, YAP, and TAZ. Extensive research has illuminated the roles of Hippo signaling in cancer, development, and regeneration. Notably, dysregulation of Hippo pathway components not only contributes to tumor growth and metastasis, but also renders tumors resistant to therapies. This review delves into recent research on YAP/TAZ-TEAD-mediated gene regulation and biological processes in cancer. We focus on several key areas: newly identified molecular patterns of YAP/TAZ activation, emerging mechanisms that contribute to metastasis and cancer therapy resistance, unexpected roles in tumor suppression, and advances in therapeutic strategies targeting this pathway. Moreover, we provide an updated view of YAP/TAZ's biological functions, discuss ongoing controversies, and offer perspectives on specific debated topics in this rapidly evolving field.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
| | - Marisela Sheldon
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
| | - Yutong Sun
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.S.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
33
|
Nakai K, Lin H, Yamano S, Tanaka S, Kitamoto S, Saitoh H, Sakuma K, Kurauchi J, Akter E, Konno M, Ishibashi K, Kamata R, Ohashi A, Koseki J, Takahashi H, Yokoyama H, Shiraki Y, Enomoto A, Abe S, Hayakawa Y, Ushiku T, Mutoh M, Fujita Y, Kon S. Wnt activation disturbs cell competition and causes diffuse invasion of transformed cells through NF-κB-MMP21 pathway. Nat Commun 2023; 14:7048. [PMID: 37923722 PMCID: PMC10624923 DOI: 10.1038/s41467-023-42774-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
Normal epithelial cells exert their competitive advantage over RasV12-transformed cells and eliminate them into the apical lumen via cell competition. However, the internal or external factors that compromise cell competition and provoke carcinogenesis remain elusive. In this study, we examine the effect of sequential accumulation of gene mutations, mimicking multi-sequential carcinogenesis on RasV12-induced cell competition in intestinal epithelial tissues. Consequently, we find that the directionality of RasV12-cell extrusion in Wnt-activated epithelia is reversed, and transformed cells are delaminated into the basal lamina via non-cell autonomous MMP21 upregulation. Subsequently, diffusively infiltrating, transformed cells develop into highly invasive carcinomas. The elevated production of MMP21 is elicited partly through NF-κB signaling, blockage of which restores apical elimination of RasV12 cells. We further demonstrate that the NF-κB-MMP21 axis is significantly bolstered in early colorectal carcinoma in humans. Collectively, this study shows that cells with high mutational burdens exploit cell competition for their benefit by behaving as unfit cells, endowing them with an invasion advantage.
Collapse
Affiliation(s)
- Kazuki Nakai
- Division of Cancer Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Hancheng Lin
- Division of Cancer Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Shotaro Yamano
- Japan Bioassay Research Center, Japan Organization of Occupational Health and Safety, Kanagawa, 257-0015, Japan
| | - Shinya Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Sho Kitamoto
- Division of Microbiology and Immunology, The WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka, 565-0871, Japan
| | - Hitoshi Saitoh
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, 277-8577, Japan
| | - Kenta Sakuma
- Division of Cancer Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Junpei Kurauchi
- Division of Cancer Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Eilma Akter
- Division of Cancer Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Masamitsu Konno
- Division of Cancer Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan
| | - Kojiro Ishibashi
- Division of Tumor Cell Biology and Bioimaging, Cancer Research Institute, Kanazawa University, Kakuma-Machi, Kanazawa, 920-1192, Japan
| | - Ryo Kamata
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, 277-8577, Japan
| | - Akihiro Ohashi
- Division of Translational Genomics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, 277-8577, Japan
| | - Jun Koseki
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hirotaka Takahashi
- Division of Cell-Free Sciences, Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Hideshi Yokoyama
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Yukihiro Shiraki
- Department of Pathology, Nagoya University Hospital, Nagoya, 466-8550, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Hospital, Nagoya, 466-8550, Japan
| | - Sohei Abe
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, 113-8655, Japan
| | - Michihiro Mutoh
- Department of Molecular-Targeting Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Yasuyuki Fujita
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Shunsuke Kon
- Division of Cancer Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, 278-0022, Japan.
| |
Collapse
|
34
|
Mukherjee S, Patra R, Behzadi P, Masotti A, Paolini A, Sarshar M. Toll-like receptor-guided therapeutic intervention of human cancers: molecular and immunological perspectives. Front Immunol 2023; 14:1244345. [PMID: 37822929 PMCID: PMC10562563 DOI: 10.3389/fimmu.2023.1244345] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Toll-like receptors (TLRs) serve as the body's first line of defense, recognizing both pathogen-expressed molecules and host-derived molecules released from damaged or dying cells. The wide distribution of different cell types, ranging from epithelial to immune cells, highlights the crucial roles of TLRs in linking innate and adaptive immunity. Upon stimulation, TLRs binding mediates the expression of several adapter proteins and downstream kinases, that lead to the induction of several other signaling molecules such as key pro-inflammatory mediators. Indeed, extraordinary progress in immunobiological research has suggested that TLRs could represent promising targets for the therapeutic intervention of inflammation-associated diseases, autoimmune diseases, microbial infections as well as human cancers. So far, for the prevention and possible treatment of inflammatory diseases, various TLR antagonists/inhibitors have shown to be efficacious at several stages from pre-clinical evaluation to clinical trials. Therefore, the fascinating role of TLRs in modulating the human immune responses at innate as well as adaptive levels directed the scientists to opt for these immune sensor proteins as suitable targets for developing chemotherapeutics and immunotherapeutics against cancer. Hitherto, several TLR-targeting small molecules (e.g., Pam3CSK4, Poly (I:C), Poly (A:U)), chemical compounds, phytocompounds (e.g., Curcumin), peptides, and antibodies have been found to confer protection against several types of cancers. However, administration of inappropriate doses of such TLR-modulating therapeutics or a wrong infusion administration is reported to induce detrimental outcomes. This review summarizes the current findings on the molecular and structural biology of TLRs and gives an overview of the potency and promises of TLR-directed therapeutic strategies against cancers by discussing the findings from established and pipeline discoveries.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Alessandro Paolini
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
35
|
Yang X, Lu Y, Kuang Q, Wu Y, Tan X, Lan J, Qiang Z, Feng T. Human embryonic stem cells exert antitumor effects on prostate cancer cells in a co-culture microenvironment. Front Oncol 2023; 13:1164250. [PMID: 37313467 PMCID: PMC10258316 DOI: 10.3389/fonc.2023.1164250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
Prostate cancer is currently the most common malignancy among men. Given the limitations of current conventional anticancer therapies, new high-risk treatments are urgently needed. Previous studies have shown that embryonic stem cells (ESCs) can reverse the tumorigenic phenotype of tumor cells. However, there are still challenges in using human ESCs (hESCs) directly in cancer treatment. To facilitate the practical application of hESCs, we established a co-culture system consisting of prostate cancer cell lines and hESCs and investigated the antitumor activity of the supernatant of the co-culture system (Co-Sp) in vitro and in vivo, as well as the underlying mechanisms involved. The Co-Sp decreased the viability of prostate cancer cells in a concentration-dependent manner, significantly inhibited colony formation, and induced cell cycle arrest at the G0/G1 phase of the cell cycle. In addition, Co-Sp promoted apoptosis of prostate cancer cells and inhibited cell migration and invasion. In vivo studies also revealed that Co-Sp inhibited tumor growth in the xenograft model. Mechanistic studies showed that Co-Sp reduced the expression of cyclin D1, cyclin E, CDK4, CDK2, MMP-9, MMP-1, and Bcl-2, and increased the expression of p21, cleaved caspase-9, cleaved caspase-3, cleaved PARP, and Bax in prostate cancer cells. Furthermore, the Co-Sp decreased the phosphorylation of PI3K, AKT, and mTOR in cells and tumor tissues. Taken together, our results indicated that the Co-Sp has potent antitumor activity and could directly inhibit tumor growth. Our findings provide a new and effective way for the application of hESCs in cancer therapy and contribute to a new strategy for clinical stem cell therapy.
Collapse
Affiliation(s)
- Xinyue Yang
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yang Lu
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Qin Kuang
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yong Wu
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Xin Tan
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jizhong Lan
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zhe Qiang
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
- Chongqing Academy of Chinese Materia Medica, Institute of Pharmacology Toxicology, Chongqing, China
| | - Tao Feng
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, China
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
36
|
Zhao W, Jia Y, Sun G, Yang H, Liu L, Qu X, Ding J, Yu H, Xu B, Zhao S, Xing L, Chai J. Single-cell analysis of gastric signet ring cell carcinoma reveals cytological and immune microenvironment features. Nat Commun 2023; 14:2985. [PMID: 37225691 DOI: 10.1038/s41467-023-38426-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
Gastric signet ring cell carcinoma (GSRC) is a special subtype of gastric cancer (GC) associated with poor prognosis, but an in-depth and systematic study of GSRC is lacking. Here, we perform single-cell RNA sequencing to assess GC samples. We identify signet ring cell carcinoma (SRCC) cells. Microseminoprotein-beta (MSMB) can be used as a marker gene to guide the identification of moderately/poorly differentiated adenocarcinoma and signet ring cell carcinoma (SRCC). The upregulated differentially expressed genes in SRCC cells are mainly enriched in abnormally activated cancer-related signalling pathways and immune response signalling pathways. SRCC cells are also significantly enriched in mitogen-activated protein kinase and oestrogen signalling pathways, which can interact and promote each other in a positive feedback loop. SRCC cells are shown to have lower cell adhesion and higher immune evasion capabilities as well as an immunosuppressive microenvironment, which may be closely associated with the relatively poor prognosis of GSRC. In summary, GSRC exhibits unique cytological characteristics and a unique immune microenvironment, which may be advantageous for accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Weizhu Zhao
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China
- Department of Radialogy Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Oncology, Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, Shandong, China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Guangyu Sun
- Department of Oncology, Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, Shandong, China
| | - Haiying Yang
- Department of Cardiology, Binzhou People's Hospital Affiliated to Shandong First Medical University, Binzhou, Shandong, China
| | - Luguang Liu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xianlin Qu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jishuang Ding
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hang Yu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Botao Xu
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Siwei Zhao
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ligang Xing
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China.
- Department of Radialogy Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jie Chai
- Department of Gastroenterological Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
37
|
Guo Y, Tang Y, Lu G, Gu J. p53 at the Crossroads between Doxorubicin-Induced Cardiotoxicity and Resistance: A Nutritional Balancing Act. Nutrients 2023; 15:nu15102259. [PMID: 37242146 DOI: 10.3390/nu15102259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/19/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
Doxorubicin (DOX) is a highly effective chemotherapeutic drug, but its long-term use can cause cardiotoxicity and drug resistance. Accumulating evidence demonstrates that p53 is directly involved in DOX toxicity and resistance. One of the primary causes for DOX resistance is the mutation or inactivation of p53. Moreover, because the non-specific activation of p53 caused by DOX can kill non-cancerous cells, p53 is a popular target for reducing toxicity. However, the reduction in DOX-induced cardiotoxicity (DIC) via p53 suppression is often at odds with the antitumor advantages of p53 reactivation. Therefore, in order to increase the effectiveness of DOX, there is an urgent need to explore p53-targeted anticancer strategies owing to the complex regulatory network and polymorphisms of the p53 gene. In this review, we summarize the role and potential mechanisms of p53 in DIC and resistance. Furthermore, we focus on the advances and challenges in applying dietary nutrients, natural products, and other pharmacological strategies to overcome DOX-induced chemoresistance and cardiotoxicity. Lastly, we present potential therapeutic strategies to address key issues in order to provide new ideas for increasing the clinical use of DOX and improving its anticancer benefits.
Collapse
Affiliation(s)
- Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
38
|
Sambruni G, Macandog AD, Wirbel J, Cagnina D, Catozzi C, Dallavilla T, Borgo F, Fazio N, Fumagalli-Romario U, Petz WL, Manzo T, Ravenda SP, Zeller G, Nezi L, Schaefer MH. Location and condition based reconstruction of colon cancer microbiome from human RNA sequencing data. Genome Med 2023; 15:32. [PMID: 37131219 PMCID: PMC10155404 DOI: 10.1186/s13073-023-01180-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND The association between microbes and cancer has been reported repeatedly; however, it is not clear if molecular tumour properties are connected to specific microbial colonisation patterns. This is due mainly to the current technical and analytical strategy limitations to characterise tumour-associated bacteria. METHODS Here, we propose an approach to detect bacterial signals in human RNA sequencing data and associate them with the clinical and molecular properties of the tumours. The method was tested on public datasets from The Cancer Genome Atlas, and its accuracy was assessed on a new cohort of colorectal cancer patients. RESULTS Our analysis shows that intratumoural microbiome composition is correlated with survival, anatomic location, microsatellite instability, consensus molecular subtype and immune cell infiltration in colon tumours. In particular, we find Faecalibacterium prausnitzii, Coprococcus comes, Bacteroides spp., Fusobacterium spp. and Clostridium spp. to be strongly associated with tumour properties. CONCLUSIONS We implemented an approach to concurrently analyse clinical and molecular properties of the tumour as well as the composition of the associated microbiome. Our results may improve patient stratification and pave the path for mechanistic studies on microbiota-tumour crosstalk.
Collapse
Affiliation(s)
- Gaia Sambruni
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Angeli D Macandog
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Jakob Wirbel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Danilo Cagnina
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Carlotta Catozzi
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Tiziano Dallavilla
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Francesca Borgo
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
- Center for Omics Sciences, IRCCS San Raffaele Institute, Milano, Italy
| | - Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology-IRCCS, Milano, Italy
| | | | - Wanda L Petz
- Digestive Surgery, European Institute of Oncology-IRCCS, Milano, Italy
| | - Teresa Manzo
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Simona P Ravenda
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology-IRCCS, Milano, Italy
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Luigi Nezi
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy.
| | - Martin H Schaefer
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy.
| |
Collapse
|
39
|
何 军, 胡 长, 杨 仕. [Latest Findings on the Effect of Gastrointestinal Microecology Remodeling of Tumor Microenvironment on Tumor Stemness]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:482-490. [PMID: 37248572 PMCID: PMC10475420 DOI: 10.12182/20230560107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 05/31/2023]
Abstract
Gastrointestinal microecology (GM) system is composed of normal gut microbiota and its living environment. The impact of GM on human health and many diseases has been widely studied. The impact of GM system on tumors is mainly reflected in the remodeling of the tumor microenvironment (TME). TME, a special microenvironment that tumors live in, can regulate the characteristics of tumor cells and affect the occurrence and development of tumors through intercellular contact and the secretion of cytokines. At present, cancer stem cell (CSC) model is considered an important theory that explains the origin and malignant progression of tumors. The formation and proliferation of CSC usually represent increased tumor invasion, metastasis, and chemotherapy resistance, resulting in poor clinical prognosis in patients. Therefore, it is important to study the role and mechanism through which GM system affects the acquisition of CSC characteristics through remodeling TME, thereby affecting tumor invasion, metastasis, and chemotherapy resistance. Studies on this topic are of great significance for clinical understanding of tumor malignant progression and improving tumor treatment outcomes. However, due to the low content of single bacteria in the gastrointestinal model, high heterogeneity, and difficulty in tracing distant metastasis, there are still great limitations in the previous research. Herein, we reviewed the research progress in the effect of GM remodeling of TME on the acquisition of tumor stemness, tumor invasion and metastasis, and the resistance to chemotherapy.
Collapse
Affiliation(s)
- 军舰 何
- 陆军军医大学第二附属医院 消化内科 (重庆 400037)Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - 长江 胡
- 陆军军医大学第二附属医院 消化内科 (重庆 400037)Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| | - 仕明 杨
- 陆军军医大学第二附属医院 消化内科 (重庆 400037)Department of Gastroenterology, Second Affiliated Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
40
|
Lee ND, Kaveh K, Bozic I. Clonal interactions in cancer: integrating quantitative models with experimental and clinical data. Semin Cancer Biol 2023; 92:61-73. [PMID: 37023969 DOI: 10.1016/j.semcancer.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/16/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Tumors consist of different genotypically distinct subpopulations-or subclones-of cells. These subclones can influence neighboring clones in a process called "clonal interaction." Conventionally, research on driver mutations in cancer has focused on their cell-autonomous effects that lead to an increase in fitness of the cells containing the driver. Recently, with the advent of improved experimental and computational technologies for investigating tumor heterogeneity and clonal dynamics, new studies have shown the importance of clonal interactions in cancer initiation, progression, and metastasis. In this review we provide an overview of clonal interactions in cancer, discussing key discoveries from a diverse range of approaches to cancer biology research. We discuss common types of clonal interactions, such as cooperation and competition, its mechanisms, and the overall effect on tumorigenesis, with important implications for tumor heterogeneity, resistance to treatment, and tumor suppression. Quantitative models-in coordination with cell culture and animal model experiments-have played a vital role in investigating the nature of clonal interactions and the complex clonal dynamics they generate. We present mathematical and computational models that can be used to represent clonal interactions and provide examples of the roles they have played in identifying and quantifying the strength of clonal interactions in experimental systems. Clonal interactions have proved difficult to observe in clinical data; however, several very recent quantitative approaches enable their detection. We conclude by discussing ways in which researchers can further integrate quantitative methods with experimental and clinical data to elucidate the critical-and often surprising-roles of clonal interactions in human cancers.
Collapse
Affiliation(s)
- Nathan D Lee
- Department of Applied Mathematics, University of Washington, Seattle, WA, United States of America
| | - Kamran Kaveh
- Department of Applied Mathematics, University of Washington, Seattle, WA, United States of America
| | - Ivana Bozic
- Department of Applied Mathematics, University of Washington, Seattle, WA, United States of America; Herbold Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America.
| |
Collapse
|
41
|
Abstract
Organ development and homeostasis involve dynamic interactions between individual cells that collectively regulate tissue architecture and function. To ensure the highest tissue fidelity, equally fit cell populations are continuously renewed by stochastic replacement events, while cells perceived as less fit are actively removed by their fitter counterparts. This renewal is mediated by surveillance mechanisms that are collectively known as cell competition. Recent studies have revealed that cell competition has roles in most, if not all, developing and adult tissues. They have also established that cell competition functions both as a tumour-suppressive mechanism and as a tumour-promoting mechanism, thereby critically influencing cancer initiation and development. This Review discusses the latest insights into the mechanisms of cell competition and its different roles during embryonic development, homeostasis and cancer.
Collapse
|
42
|
Xie C, Liang C, Wang R, Yi K, Zhou X, Li X, Chen Y, Miao D, Zhong C, Zhu J. Resveratrol suppresses lung cancer by targeting cancer stem-like cells and regulating tumor microenvironment. J Nutr Biochem 2023; 112:109211. [PMID: 36370924 DOI: 10.1016/j.jnutbio.2022.109211] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/30/2022] [Accepted: 09/23/2022] [Indexed: 11/11/2022]
Abstract
Increasing evidence indicate that cancer stem cells (CSCs) are the key driver of tumor initiation and recurrence. The cellular and soluble components of the tumor microenvironment (TME) impact on cancer initiation and progression, such as cytokines and chemokines. Thus, targeting CSCs and TME is a novel anti-cancer approach. Resveratrol (RES), a bioactive phytochemical extracted from various plants, exhibits tumor-suppressing activities in lung cancer, yet the mechanism remains poorly understood. Our data showed that the expression level of IL-6 was positively correlated with the presence of lung cancer stem-like cells (LCSCs) in human lung cancer tissues. In vitro results showed that IL-6 was highly elevated in lung cancer sphere-forming cells and could enhance the stemness of LCSCs, including tumor sphere formation ability, the percentage of CD133 positive cells, and the expression of LCSC specific markers (CD133, ALDH1A1 and Nanog). Simultaneously, our results confirmed that RES effectively inhibited LCSC properties, downregulated Wnt/β-catenin signaling and reduced IL-6 level in vitro and in vivo. Furthermore, we found RES treatment attenuated the activation of Wnt/β-catenin signaling by LiCl (GSK3β agonist). IL-6-promoted LCSC properties and Wnt/β-catenin signaling was also reversed by RES. Taken together, these data illustrated that RES inhibited lung cancer by targeting LCSCs and IL-6 in TME. The novel findings from this study provided evidence that RES exhibited multi-target effects on suppression of lung cancer and could be a novel potent cancer-preventive compound.
Collapse
Affiliation(s)
- Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunhua Liang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rong Wang
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kefan Yi
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Zhou
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoting Li
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Chen
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dengshun Miao
- Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Key Laboratory for Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Cancer Research Division, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China.
| |
Collapse
|
43
|
Kim K, Huang H, Parida PK, He L, Marquez-Palencia M, Reese TC, Kapur P, Brugarolas J, Brekken RA, Malladi S. Cell Competition Shapes Metastatic Latency and Relapse. Cancer Discov 2023; 13:85-97. [PMID: 36098678 PMCID: PMC9839468 DOI: 10.1158/2159-8290.cd-22-0236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/21/2022] [Accepted: 09/06/2022] [Indexed: 01/17/2023]
Abstract
Cell competition, a fitness-sensing process, is essential for tissue homeostasis. Using cancer metastatic latency models, we show that cell competition results in the displacement of latent metastatic (Lat-M) cells from the primary tumor. Lat-M cells resist anoikis and survive as residual metastatic disease. A memodeled extracellular matrix facilitates Lat-M cell displacement and survival in circulation. Disrupting cell competition dynamics by depleting secreted protein and rich in cysteine (SPARC) reduced displacement from orthotopic tumors and attenuated metastases. In contrast, depletion of SPARC after extravasation in lung-resident Lat-M cells increased metastatic outgrowth. Furthermore, multiregional transcriptomic analyses of matched primary tumors and metachronous metastases from patients with kidney cancer identified tumor subclones with Lat-M traits. Kidney cancer enriched for these Lat-M traits had a rapid onset of metachronous metastases and significantly reduced disease-free survival. Thus, an unexpected consequence of cell competition is the displacement of cells with Lat-M potential, thereby shaping metastatic latency and relapse. SIGNIFICANCE We demonstrate that cell competition within the primary tumor results in the displacement of Lat-M cells. We further show the impact of altering cell competition dynamics on metastatic incidence that may guide strategies to limit metastatic recurrences. This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Huocong Huang
- Hamon Center for Therapeutic Oncology Research and Department of Surgery, UT Southwestern Medical Center, Dallas, Texas
| | - Pravat Kumar Parida
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Lan He
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mauricio Marquez-Palencia
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Tanner C Reese
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.,Department of Urology, UT Southwestern Medical Center, Dallas, Texas
| | - Payal Kapur
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, UT Southwestern Medical Center, Dallas, Texas
| | - James Brugarolas
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.,Kidney Cancer Program, UT Southwestern Medical Center, Dallas, Texas.,Hematology-Oncology Division, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Rolf A Brekken
- Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas.,Hamon Center for Therapeutic Oncology Research and Department of Surgery, UT Southwestern Medical Center, Dallas, Texas
| | - Srinivas Malladi
- Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
44
|
Singh A, Yeates C, Deshpande P, Kango-Singh M. Signaling interactions among neurons impact cell fitness and death in Alzheimer’s disease. Neural Regen Res 2023; 18:784-789. [DOI: 10.4103/1673-5374.354516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
45
|
Smith PJ, McKeown SR, Patterson LH. Targeting DNA topoisomerase IIα (TOP2A) in the hypoxic tumour microenvironment using unidirectional hypoxia-activated prodrugs (uHAPs). IUBMB Life 2023; 75:40-54. [PMID: 35499745 PMCID: PMC10084299 DOI: 10.1002/iub.2619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/24/2022] [Accepted: 04/03/2022] [Indexed: 12/29/2022]
Abstract
The hypoxic tumour microenvironment (hTME), arising from inadequate and chaotic vascularity, can present a major obstacle for the treatment of solid tumours. Hypoxic tumour cells compromise responses to treatment since they can generate resistance to radiotherapy, chemotherapy and immunotherapy. The hTME impairs the delivery of a range of anti-cancer drugs, creates routes for metastasis and exerts selection pressures for aggressive phenotypes; these changes potentially occur within an immunosuppressed environment. Therapeutic strategies aimed at the hTME include targeting the molecular changes associated with hypoxia. An alternative approach is to exploit the prevailing lack of oxygen as a principle for the selective activation of prodrugs to target cellular components within the hTME. This review focuses on the design concepts and rationale for the use of unidirectional Hypoxia-Activated Prodrugs (uHAPs) to target the hTME as exemplified by the uHAPs AQ4N and OCT1002. These agents undergo irreversible reduction in a hypoxic environment to active forms that target DNA topoisomerase IIα (TOP2A). This nuclear enzyme is essential for cell division and is a recognised chemotherapeutic target. An activated uHAP interacts with the enzyme-DNA complex to induce DNA damage, cell cycle arrest and tumour cell death. uHAPs are designed to overcome the shortcomings of conventional HAPs and offer unique pharmacodynamic properties for effective targeting of TOP2A in the hTME. uHAP therapy in combination with standard of care treatments has the potential to enhance outcomes by co-addressing the therapeutic challenge presented by the hTME.
Collapse
Affiliation(s)
- Paul J Smith
- Cancer and Genetics Division, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Laurence H Patterson
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
46
|
Zhang H, Zhang M, Lei J. A mathematical model with aberrant growth correction in tissue homeostasis and tumor cell growth. J Math Biol 2022; 86:2. [PMID: 36436124 DOI: 10.1007/s00285-022-01837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022]
Abstract
Cancer is usually considered a genetic disease caused by alterations in genes that control cellular behaviors, especially growth and division. Cancer cells differ from normal tissue cells in many ways that allow them to grow out of control and become invasive. However, experiments have shown that aberrant growth in many tissues burdened with varying numbers of mutant cells can be corrected, and wild-type cells are required for the active elimination of mutant cells. These findings reveal the dynamic cellular behaviors that lead to a tissue homeostatic state when faced with mutational and nonmutational insults. The current study was motivated by these observations and established a mathematical model of how a tissue copes with the aberrant behavior of mutant cells. The proposed model depicts the interaction between wild-type and mutant cells through a system of two delay differential equations, which include the random mutation of normal cells and the active extrusion of mutant cells. Based on the proposed model, we performed qualitative analysis to identify the conditions of either normal tissue homeostasis or uncontrolled growth with varying numbers of abnormal mutant cells. Bifurcation analysis suggests the conditions of bistability with either a small or large number of mutant cells, the coexistence of bistable steady states can be clinically beneficial by driving the state of mutant cell predominance to the attraction basin of the state with a low number of mutant cells. This result is further confirmed by the treatment strategy obtained from optimal control theory.
Collapse
Affiliation(s)
- Haifeng Zhang
- Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China
| | - Meirong Zhang
- Department of Mathematical Sciences, Tsinghua University, Beijing, 100084, China
| | - Jinzhi Lei
- School of Mathematical Sciences, Center for Applied Mathematics, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
47
|
Kumar A, Baker NE. The CRL4 E3 ligase Mahjong/DCAF1 controls cell competition through the transcription factor Xrp1, independently of polarity genes. Development 2022; 149:dev200795. [PMID: 36278853 PMCID: PMC9845748 DOI: 10.1242/dev.200795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
Abstract
Cell competition, the elimination of cells surrounded by more fit neighbors, is proposed to suppress tumorigenesis. Mahjong (Mahj), a ubiquitin E3 ligase substrate receptor, has been thought to mediate competition of cells mutated for lethal giant larvae (lgl), a neoplastic tumor suppressor that defines apical-basal polarity of epithelial cells. Here, we show that Drosophila cells mutated for mahjong, but not for lgl [l(2)gl], are competed because they express the bZip-domain transcription factor Xrp1, already known to eliminate cells heterozygous for ribosomal protein gene mutations (Rp/+ cells). Xrp1 expression in mahj mutant cells results in activation of JNK signaling, autophagosome accumulation, eIF2α phosphorylation and lower translation, just as in Rp/+ cells. Cells mutated for damage DNA binding-protein 1 (ddb1; pic) or cullin 4 (cul4), which encode E3 ligase partners of Mahj, also display Xrp1-dependent phenotypes, as does knockdown of proteasome subunits. Our data suggest a new model of mahj-mediated cell competition that is independent of apical-basal polarity and couples Xrp1 to protein turnover.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nicholas E. Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
48
|
Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022; 41:e109288. [PMID: 36052513 PMCID: PMC9475536 DOI: 10.15252/embj.2021109288] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
Collapse
Affiliation(s)
- Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Candia M Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
49
|
Zhu L, Liu J, Qiu M, Chen J, Liang Q, Peng G, Zou Z. Bacteria-mediated metformin-loaded peptide hydrogel reprograms the tumor immune microenvironment in glioblastoma. Biomaterials 2022; 288:121711. [DOI: 10.1016/j.biomaterials.2022.121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/14/2022] [Accepted: 07/31/2022] [Indexed: 11/02/2022]
|
50
|
Li Y, Tang K, Zhang X, Pan W, Li N, Tang B. Tumor microenvironment responsive nanocarriers for gene therapy. Chem Commun (Camb) 2022; 58:8754-8765. [PMID: 35880654 DOI: 10.1039/d2cc02759c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli responsive nanocarriers are important non-viral gene carriers for gene therapy. We discuss the stimulus conditions and then highlight various stimuli responsive nanocarriers in the tumor microenvironment for cancer gene therapy. We hope that this review will inspire readers to develop more effective stimuli responsive nanocarriers for delivering genes.
Collapse
Affiliation(s)
- Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Kun Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xia Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|