1
|
Marian AJ. Causes and consequences of DNA double-stranded breaks in cardiovascular disease. Mol Cell Biochem 2025; 480:2043-2064. [PMID: 39404936 DOI: 10.1007/s11010-024-05131-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/29/2024] [Indexed: 04/02/2025]
Abstract
The genome, whose stability is essential for survival, is incessantly exposed to internal and external stressors, which introduce an estimated 104 to 105 lesions, such as oxidation, in the nuclear genome of each mammalian cell each day. A delicate homeostatic balance between the generation and repair of DNA lesions maintains genomic stability. To initiate transcription, DNA strands unwind to form a transcription bubble and provide a template for the RNA polymerase II (RNAPII) complex to synthesize nascent RNA. The process generates DNA supercoils and introduces torsional stress. To enable RNAPII processing, the supercoils are released by topoisomerases by introducing strand breaks, including double-stranded breaks (DSBs). Thus, DSBs are intrinsic genomic features of gene expression. The breaks are quickly repaired upon processing of the transcription. DNA lesions and damaged proteins involved in transcription could impede the integrity and efficiency of RNAPII processing. The impediment, which is referred to as transcription stress, not only could lead to the generation of aberrant RNA species but also the accumulation of DSBs. The latter is particularly the case when topoisomerase processing and/or the repair mechanisms are compromised. The DSBs activate the DNA damage response (DDR) pathways to repair the damaged DNA and/or impose cell cycle arrest and cell death. In addition, the release of DSBs into the cytosol activates the cytosolic DNA-sensing proteins (CDSPs), which along with the nuclear DDR pathways induce the expression of senescence-associated secretory phenotype (SASP), cell cycle arrest, senescence, cell death, inflammation, and aging. The primary stimulus in hereditary cardiomyopathies is a mutation(s) in genes encoding the protein constituents of cardiac myocytes; however, the phenotype is the consequence of intertwined complex interactions among numerous stressors and the causal mutation(s). Increased internal DNA stressors, such as oxidation, alkylation, and cross-linking, are expected to be common in pathological conditions, including in hereditary cardiomyopathies. In addition, dysregulation of gene expression also imposes transcriptional stress and collectively with other stressors provokes the generation of DSBs. In addition, the depletion of nicotinamide adenine dinucleotide (NAD), which occurs in pathological conditions, impairs the repair mechanism and further facilitates the accumulation of DSBs. Because DSBs activate the DDR pathways, they are expected to contribute to the pathogenesis of cardiomyopathies. Thus, interventions to reduce the generation of DSBs, enhance their repair, and block the deleterious DDR pathways would be expected to impart salubrious effects not only in pathological states, as in hereditary cardiomyopathies but also aging.
Collapse
Affiliation(s)
- A J Marian
- Center for Cardiovascular Genetic Studies, Institute of Molecular Medicine, The University of Texas Health Science Center, 6770 Bertner Street, Suite C900A, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Zhang M, Wu C, Lu D, Wang X, Shang G. cGAS-STING: mechanisms and therapeutic opportunities. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2808-3. [PMID: 39821837 DOI: 10.1007/s11427-024-2808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
The cGAS-STING pathway plays a crucial role in the innate immune system by detecting mislocalized double-stranded DNA (dsDNA) in the cytoplasm and triggering downstream signal transduction. Understanding the mechanisms by which cGAS and STING operate is vital for gaining insights into the biology of this pathway. This review provides a detailed examination of the structural features of cGAS and STING proteins, with a particular emphasis on their activation and inhibition mechanisms. We also discuss the novel discovery of STING functioning as an ion channel. Furthermore, we offer an overview of key agonists and antagonists of cGAS and STING, shedding light on their mechanisms of action. Deciphering the molecular intricacies of the cGAS-STING pathway holds significant promise for the development of targeted therapies aimed at maintaining immune homeostasis within both innate and adaptive immunity.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Changxin Wu
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Defen Lu
- College of Life Sciences, Shanxi Agricultural University, Taiyuan, 030031, China.
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| | - Guijun Shang
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
- College of Life Sciences, Shanxi Agricultural University, Taiyuan, 030031, China.
| |
Collapse
|
3
|
Kwaku GN, Jensen KN, Simaku P, Floyd DJ, Saelens JW, Reardon CM, Ward RA, Basham KJ, Hepworth OW, Vyas TD, Zamith-Miranda D, Nosanchuk JD, Vyas JM, Harding HB. Extracellular vesicles from diverse fungal pathogens induce species-specific and endocytosis-dependent immunomodulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.03.631181. [PMID: 39803513 PMCID: PMC11722428 DOI: 10.1101/2025.01.03.631181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Microbial pathogens generate extracellular vesicles (EVs) for intercellular communication and quorum sensing. Microbial EVs also induce inflammatory pathways within host innate immune cells. We previously demonstrated that EVs secreted by Candida albicans trigger type I interferon signaling in host cells specifically via the cGAS-STING innate immune signaling pathway. Here, we show that despite sharing similar properties of morphology and internal DNA content, the interactions between EVs and the innate immune system differ according to the parental fungal species. EVs secreted by C. albicans, Saccharomyces cerevisiae, Cryptococcus neoformans, and Aspergillus fumigatus are endocytosed at different rates by murine macrophages triggering varied cytokine responses, innate immune signaling, and subsequent immune cell recruitment. Notably, cell wall constituents that decorate C. neoformans and A. fumigatus EVs inhibit efficient internalization by macrophages and dampen innate immune activation. Our data uncover the transcriptional and functional consequences of the internalization of diverse fungal EVs by immune cells and reveal novel insights into the early innate immune response to distinct clinically significant fungal pathogens.
Collapse
Affiliation(s)
- Geneva N Kwaku
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kirstine Nolling Jensen
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Patricia Simaku
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel J Floyd
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph W Saelens
- Pfizer Worldwide Research Development and Medical, Machine Learning and Computational Sciences, Cambridge, MA, USA
| | - Christopher M Reardon
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca A Ward
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Kyle J Basham
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Olivia W Hepworth
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Tammy D Vyas
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joshua D Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jatin M Vyas
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Disease, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Hannah Brown Harding
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
4
|
Grinat J, Shriever NP, Christophorou MA. Fantastic proteins and where to find them - histones, in the nucleus and beyond. J Cell Sci 2024; 137:jcs262071. [PMID: 39704565 PMCID: PMC11827605 DOI: 10.1242/jcs.262071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
Animal genomes are packaged into chromatin, a highly dynamic macromolecular structure of DNA and histone proteins organised into nucleosomes. This accommodates packaging of lengthy genomic sequences within the physical confines of the nucleus while also enabling precise regulation of access to genetic information. However, histones existed before chromatin and have lesser-known functions beyond genome regulation. Most notably, histones are potent antimicrobial agents, and the release of chromatin to the extracellular space is a defence mechanism nearly as ancient and widespread as chromatin itself. Histone sequences have changed very little throughout evolution, suggesting the possibility that some of their 'non-canonical' functions are at play in parallel or in concert with their genome regulatory functions. In this Review, we take an evolutionary perspective of histone, nuclear chromatin and extracellular chromatin biology and describe the known extranuclear and extracellular functions of histones. We detail molecular mechanisms of chromatin release and extracellular chromatin sensing, and we discuss their roles in physiology and disease. Finally, we present evidence and give a perspective on the potential of extracellular histones to act as bioactive, cell modulatory factors.
Collapse
|
5
|
Zhao M, Xie J, Zhang J, Zhao B, Zhang Y, Xue J, Zhang R, Zhang R, Wang H, Li Y, Ge W, Zhou X. Disturbance of mitochondrial dynamics led to spermatogenesis disorder in mice exposed to polystyrene micro- and nanoplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124935. [PMID: 39260550 DOI: 10.1016/j.envpol.2024.124935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/11/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
The widespread presence of polystyrene micro- and nanoplastics (PS-MPs/NPs) in the environment poses a threat to the health of the population. Animal studies have shown PS-MPs/NPs had male reproductive toxicity, while its mechanisms are unclear. To investigate that, male Balb/c mice were randomized into 3 groups: the control, 1 μm PS-MPs and 70 nm PS-NPs group, and they were given PS-MPs/NPs by intratracheal instillation for 28 days. Results revealed that PS-MPs/NPs up-regulated the expression of mitochondrial fission related factors (p-DRP1/DRP1, FIS1) and down-regulated the level of mitochondrial fusion related factors (MFN1/2, OPA1), causing over mitochondrial fission, which activating mitochondrial apoptotic pathway (BAX, Cleaved-Caspase9, Cleaved-Caspase3), resulting in cell apoptosis. Moreover, the damaged structure of mitochondria and over mitochondrial fission caused mitochondrial DNA (mtDNA) to translocate from mitochondria to cytoplasm, which activated DNA sensing pathway (cGAS-STING) and induced cell pyroptosis in testis by raising the expression of inflammation factors (NLRP3, ASC, Caspase1 p20, IL-1β). In vitro, by using the mitochondrial fission inhibitor Mdivi-1, it is found that PS-NPs-induced cell apoptosis and pyroptosis were associated with over mitochondrial fission. Taken together, we conclude that PS-MPs/NPs cause spermatogenesis disorder possibly through damaging mitochondrial structure and dynamic homeostasis, which on the one hand results in mitochondria-mediated apoptosis, and on the other hand leads to mtDNA mislocalization, activating cGAS-STING pathway and inflammation, ultimately resulting in pyroptosis. This study may provide a new reference to the potential mechanisms of male reproductive toxicity caused by PS-MPs/NPs.
Collapse
Affiliation(s)
- Moxuan Zhao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Junhong Xie
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jiaxiang Zhang
- Class of Clinical Medicine, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Bosen Zhao
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yue Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Jinglong Xue
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ruxuan Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Ruiyang Zhang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Hongou Wang
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Yanbo Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, 519000, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
6
|
He M, Jiang H, Li S, Xue M, Wang H, Zheng C, Tong J. The crosstalk between DNA-damage responses and innate immunity. Int Immunopharmacol 2024; 140:112768. [PMID: 39088918 DOI: 10.1016/j.intimp.2024.112768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
DNA damage is typically caused during cell growth by DNA replication stress or exposure to endogenous or external toxins. The accumulation of damaged DNA causes genomic instability, which is the root cause of many serious disorders. Multiple cellular organisms utilize sophisticated signaling pathways against DNA damage, collectively known as DNA damage response (DDR) networks. Innate immune responses are activated following cellular abnormalities, including DNA damage. Interestingly, recent studies have indicated that there is an intimate relationship between the DDR network and innate immune responses. Diverse kinds of cytosolic DNA sensors, such as cGAS and STING, recognize damaged DNA and induce signals related to innate immune responses, which link defective DDR to innate immunity. Moreover, DDR components operate in immune signaling pathways to induce IFNs and/or a cascade of inflammatory cytokines via direct interactions with innate immune modulators. Consistently, defective DDR factors exacerbate the innate immune imbalance, resulting in severe diseases, including autoimmune disorders and tumorigenesis. Here, the latest progress in understanding crosstalk between the DDR network and innate immune responses is reviewed. Notably, the dual function of innate immune modulators in the DDR network may provide novel insights into understanding and developing targeted immunotherapies for DNA damage-related diseases, even carcinomas.
Collapse
Affiliation(s)
- Mei He
- College of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Hua Jiang
- Department of Hematology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610041, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China.
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Jie Tong
- College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
7
|
Lee JH, Sergi C, Kast RE, Kanwar BA, Bourbeau J, Oh S, Sohn MG, Lee CJ, Coleman MD. Aggravating mechanisms from COVID-19. Virol J 2024; 21:228. [PMID: 39334442 PMCID: PMC11430051 DOI: 10.1186/s12985-024-02506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces immune-mediated diseases. The pathophysiology of COVID-19 uses the following three mechanisms: (1) inflammasome activation mechanism; (2) cGAS-STING signaling mechanism; and (3) SAMHD1 tetramerization mechanism, which leads to IFN-I production. Interactions between the host and virus govern induction, resulting in multiorgan impacts. The NLRP3 with cGAS-STING constitutes the primary immune response. The expression of SARS-CoV-2 ORF3a, NSP6, NSP7, and NSP8 blocks innate immune activation and facilitates virus replication by targeting the RIG-I/MDA5, TRIF, and cGAS-STING signaling. SAMHD1 has a target motif for CDK1 to protect virion assembly, threonine 592 to modulate a catalytically active tetramer, and antiviral IFN responses to block retroviral infection. Plastic and allosteric nucleic acid binding of SAMHD1 modulates the antiretroviral activity of SAMHD1. Therefore, inflammasome activation, cGAS-STING signaling, and SAMHD1 tetramerization explain acute kidney injury, hepatic, cardiac, neurological, and gastrointestinal injury of COVID-19. It might be necessary to effectively block the pathological courses of diverse diseases.
Collapse
Affiliation(s)
- Jong Hoon Lee
- Science and Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
- Department of Geriatrics, Gyeonggi Medical Center Pocheon Hospital, 1648 Pocheon-ro Sin-eup-dong, Pocheon-si, Gyeonggi-do, 11142, Republic of Korea.
| | - Consolato Sergi
- Division of Anatomical Pathology, Children's Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Richard E Kast
- IIAIGC Study Center, 11 Arlington Ct, Burlington, 05408 VT, USA
| | - Badar A Kanwar
- Haider Associates, 1999 Forest Ridge Dr, Bedford, TX, 76021, USA
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montréal, QC, Canada
| | - Sangsuk Oh
- Department of Food Engineering, Food Safety Laboratory, Memory Unit, Ewha Womans University, Seoul, 03670, Korea
| | - Mun-Gi Sohn
- Department of Food Science, KyungHee University College of Life Science, Seoul, 17104, Republic of Korea
| | - Chul Joong Lee
- Department of Anesthesiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Michael D Coleman
- College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
8
|
Shang L, Jiang X, Zhao X, Huang X, Wang X, Jiang X, Kong X, Yao M, Jiang S, Wong PP. Mitochondrial DNA-boosted dendritic cell-based nanovaccination triggers antitumor immunity in lung and pancreatic cancers. Cell Rep Med 2024; 5:101648. [PMID: 38986624 PMCID: PMC11293323 DOI: 10.1016/j.xcrm.2024.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/09/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
Low migratory dendritic cell (DC) levels pose a challenge in cancer immune surveillance, yet their impact on tumor immune status and immunotherapy responses remains unclear. We present clinical evidence linking reduced migratory DC levels to immune-cold tumor status, resulting in poor patient outcomes. To address this, we develop an autologous DC-based nanovaccination strategy using patient-derived organoid or cancer cell lysate-pulsed cationic nanoparticles (cNPs) to load immunogenic DC-derived microvesicles (cNPcancer cell@MVDC). This approach transforms immune-cold tumors, increases migratory DCs, activates T cells and natural killer cells, reduces tumor growth, and enhances survival in orthotopic pancreatic and lung cancer models, surpassing conventional methods. In vivo imaging reveals superior cNPcancer cell@MVDC accumulation in tumors and lymph nodes, promoting immune cell infiltration. Mechanistically, cNPs enrich mitochondrial DNA, enhancing cGAS-STING-mediated DC activation and migration. Our strategy shifts cold tumors to a hot state, enhancing antitumor immunity for potential personalized cancer treatments.
Collapse
Affiliation(s)
- Lihuan Shang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xinbao Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Department of Ultrasound, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xi Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiaojuan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xue Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Xiangzhan Kong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Mingkang Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Respiratory Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Shanping Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Respiratory Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510120, China; Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| |
Collapse
|
9
|
Gąssowska-Dobrowolska M, Olech-Kochańczyk G, Culmsee C, Adamczyk A. Novel Insights into Parkin-Mediated Mitochondrial Dysfunction and "Mito-Inflammation" in α-Synuclein Toxicity. The Role of the cGAS-STING Signalling Pathway. J Inflamm Res 2024; 17:4549-4574. [PMID: 39011416 PMCID: PMC11249072 DOI: 10.2147/jir.s468609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
The prevalence of age-related neurodegenerative diseases, such as Parkinson's disease (PD) and related disorders continues to grow worldwide. Increasing evidence links intracellular inclusions of misfolded alpha-synuclein (α-syn) aggregates, so-called Lewy bodies (LB) and Lewy neuritis, to the progressive pathology of PD and other synucleinopathies. Our previous findings established that α-syn oligomers induce S-nitrosylation and deregulation of the E3-ubiquitin ligase Parkin, leading to mitochondrial disturbances in neuronal cells. The accumulation of damaged mitochondria as a consequence, together with the release of mitochondrial-derived damage-associated molecular patterns (mtDAMPs) could activate the innate immune response and induce neuroinflammation ("mito-inflammation"), eventually accelerating neurodegeneration. However, the molecular pathways that transmit pro-inflammatory signals from damaged mitochondria are not well understood. One of the proposed pathways could be the cyclic GMP-AMP synthase (cGAS) - stimulator of interferon genes (STING) (cGAS-STING) pathway, which plays a pivotal role in modulating the innate immune response. It has recently been suggested that cGAS-STING deregulation may contribute to the development of various pathological conditions. Especially, its excessive engagement may lead to neuroinflammation and appear to be essential for the development of neurodegenerative brain diseases, including PD. However, the precise molecular mechanisms underlying cGAS-STING pathway activation in PD and other synucleinopathies are not fully understood. This review focuses on linking mitochondrial dysfunction to neuroinflammation in these disorders, particularly emphasizing the role of the cGAS-STING signaling. We propose the cGAS-STING pathway as a critical driver of inflammation in α-syn-dependent neurodegeneration and hypothesize that cGAS-STING-driven "mito-inflammation" may be one of the key mechanisms promoting the neurodegeneration in PD. Understanding the molecular mechanisms of α-syn-induced cGAS-STING-associated "mito-inflammation" in PD and related synucleinopathies may contribute to the identification of new targets for the treatment of these disorders.
Collapse
Affiliation(s)
| | - Gabriela Olech-Kochańczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, University of Marburg, Marburg, Germany
- Center for Mind Brain and Behavior - CMBB, University of Marburg, Marburg, Germany
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Wenzl SJ, de Oliveira Mann CC. How enzyme-centered approaches are advancing research on cyclic oligo-nucleotides. FEBS Lett 2024; 598:839-863. [PMID: 38453162 DOI: 10.1002/1873-3468.14838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/09/2024]
Abstract
Cyclic nucleotides are the most diversified category of second messengers and are found in all organisms modulating diverse pathways. While cAMP and cGMP have been studied over 50 years, cyclic di-nucleotide signaling in eukaryotes emerged only recently with the anti-viral molecule 2´3´cGAMP. Recent breakthrough discoveries have revealed not only the astonishing chemical diversity of cyclic nucleotides but also surprisingly deep-rooted evolutionary origins of cyclic oligo-nucleotide signaling pathways and structural conservation of the proteins involved in their synthesis and signaling. Here we discuss how enzyme-centered approaches have paved the way for the identification of several cyclic nucleotide signals, focusing on the advantages and challenges associated with deciphering the activation mechanisms of such enzymes.
Collapse
Affiliation(s)
- Simon J Wenzl
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Carina C de Oliveira Mann
- Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Garching, Germany
| |
Collapse
|
11
|
Yoo M, Haydak JC, Azeloglu EU, Lee K, Gusella GL. cGAS Activation Accelerates the Progression of Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2024; 35:466-482. [PMID: 38247039 PMCID: PMC11000720 DOI: 10.1681/asn.0000000000000305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
SIGNIFICANCE STATEMENT The renal immune infiltrate observed in autosomal polycystic kidney disease contributes to the evolution of the disease. Elucidating the cellular mechanisms underlying the inflammatory response could help devise new therapeutic strategies. Here, we provide evidence for a mechanistic link between the deficiency polycystin-1 and mitochondrial homeostasis and the activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)/stimulator of the interferon genes (STING) pathway. Our data identify cGAS as an important mediator of renal cystogenesis and suggest that its inhibition may be useful to slow down the disease progression. BACKGROUND Immune cells significantly contribute to the progression of autosomal dominant polycystic kidney disease (ADPKD), the most common genetic disorder of the kidney caused by the dysregulation of the Pkd1 or Pkd2 genes. However, the mechanisms triggering the immune cells recruitment and activation are undefined. METHODS Immortalized murine collecting duct cell lines were used to dissect the molecular mechanism of cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) activation in the context of genotoxic stress induced by Pkd1 ablation. We used conditional Pkd1 and knockout cGas-/- genetic mouse models to confirm the role of cGAS/stimulator of the interferon genes (STING) pathway activation on the course of renal cystogenesis. RESULTS We show that Pkd1 -deficient renal tubular cells express high levels of cGAS, the main cellular sensor of cytosolic nucleic acid and a potent stimulator of proinflammatory cytokines. Loss of Pkd1 directly affects cGAS expression and nuclear translocation, as well as activation of the cGAS/STING pathway, which is reversed by cGAS knockdown or functional pharmacological inhibition. These events are tightly linked to the loss of mitochondrial structure integrity and genotoxic stress caused by Pkd1 depletion because they can be reverted by the potent antioxidant mitoquinone or by the re-expression of the polycystin-1 carboxyl terminal tail. The genetic inactivation of cGAS in a rapidly progressing ADPKD mouse model significantly reduces cystogenesis and preserves normal organ function. CONCLUSIONS Our findings indicate that the activation of the cGAS/STING pathway contributes to ADPKD cystogenesis through the control of the immune response associated with the loss of Pkd1 and suggest that targeting this pathway may slow disease progression.
Collapse
Affiliation(s)
- Miran Yoo
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | | | |
Collapse
|
12
|
Leonen CJA, Funabiki H. cGAS meets its demise in the nucleus. Nat Immunol 2024; 25:592-593. [PMID: 38514888 DOI: 10.1038/s41590-024-01794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Affiliation(s)
- Calvin Jon A Leonen
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY, USA
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
13
|
Yang K, Tang Z, Xing C, Yan N. STING signaling in the brain: Molecular threats, signaling activities, and therapeutic challenges. Neuron 2024; 112:539-557. [PMID: 37944521 PMCID: PMC10922189 DOI: 10.1016/j.neuron.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Stimulator of interferon genes (STING) is an innate immune signaling protein critical to infections, autoimmunity, and cancer. STING signaling is also emerging as an exciting and integral part of many neurological diseases. Here, we discuss recent advances in STING signaling in the brain. We summarize how molecular threats activate STING signaling in the diseased brain and how STING signaling activities in glial and neuronal cells cause neuropathology. We also review human studies of STING neurobiology and consider therapeutic challenges in targeting STING to treat neurological diseases.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhen Tang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cong Xing
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
14
|
Silva RCMC, Gomes FM. Evolution of the Major Components of Innate Immunity in Animals. J Mol Evol 2024; 92:3-20. [PMID: 38281163 DOI: 10.1007/s00239-024-10155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Innate immunity is present in all animals. In this review, we explore the main conserved mechanisms of recognition and innate immune responses among animals. In this sense, we discuss the receptors, critical for binding to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs); the downstream signaling proteins; and transcription factors that govern immune responses. We also highlight conserved inflammatory mediators that are induced after the recognition of DAMPs and PAMPs. At last, we discuss the mechanisms that are involved in the regulation and/or generation of reactive oxygen species (ROS), influencing immune responses, like heme-oxygenases (HOs).
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Fábio Mendonça Gomes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Luan X, Wang L, Song G, Zhou W. Innate immune responses to RNA: sensing and signaling. Front Immunol 2024; 15:1287940. [PMID: 38343534 PMCID: PMC10854198 DOI: 10.3389/fimmu.2024.1287940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/11/2024] [Indexed: 02/15/2024] Open
Abstract
Nucleic acids are among the most essential PAMPs (pathogen-associated molecular patterns). Animals have evolved numerous sensors to recognize nucleic acids and trigger immune signaling against pathogen replication, cellular stress and cancer. Many sensor proteins (e.g., cGAS, AIM2, and TLR9) recognize the molecular signature of infection or stress and are responsible for the innate immune response to DNA. Remarkably, recent evidence demonstrates that cGAS-like receptors acquire the ability to sense RNA in some forms of life. Compared with the nucleic-acid sensing by cGAS, innate immune responses to RNA are based on various RNA sensors, including RIG-I, MDA5, ADAR1, TLR3/7/8, OAS1, PKR, NLRP1/6, and ZBP1, via a broad-spectrum signaling axis. Importantly, new advances have brought to light the potential clinical application of targeting these signaling pathways. Here, we highlight the latest discoveries in the field. We also summarize the activation and regulatory mechanisms of RNA-sensing signaling. In addition, we discuss how RNA sensing is tightly controlled in cells and why the disruption of immune homeostasis is linked to disease.
Collapse
Affiliation(s)
- Xiaohan Luan
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Guangji Song
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wen Zhou
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
16
|
Gregorczyk M, Parkes EE. Targeting mitotic regulators in cancer as a strategy to enhance immune recognition. DNA Repair (Amst) 2023; 132:103583. [PMID: 37871511 DOI: 10.1016/j.dnarep.2023.103583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Eukaryotic DNA has evolved to be enclosed within the nucleus to protect the cellular genome from autoinflammatory responses driven by the immunogenic nature of cytoplasmic DNA. Cyclic GMP-AMP Synthase (cGAS) is the cytoplasmic dsDNA sensor, which upon activation of Stimulator of Interferon Genes (STING), mediates production of pro-inflammatory interferons (IFNs) and interferon stimulated genes (ISGs). However, although this pathway is crucial in detection of viral and microbial genetic material, cytoplasmic DNA is not always of foreign origin. It is now recognised that specifically in genomic instability, a hallmark of cancer, extranuclear material in the form of micronuclei (MN) can be generated as a result of unresolved DNA lesions during mitosis. Activation of cGAS-STING in cancer has been shown to regulate numerous tumour-immune interactions such as acquisition of 'immunologically hot' phenotype which stimulates immune-mediated elimination of transformed cells. Nonetheless, a significant percentage of poorly prognostic cancers is 'immunologically cold'. As this state has been linked with low proportion of tumour-infiltrating lymphocytes (TILs), improving immunogenicity of cold tumours could be clinically relevant by exhibiting synergy with immunotherapy. This review aims to present how inhibition of vital mitotic regulators could provoke cGAS-STING response in cancer and improve the efficacy of current immunotherapy regimens.
Collapse
Affiliation(s)
- Mateusz Gregorczyk
- Oxford Centre for Immuno-Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Eileen E Parkes
- Oxford Centre for Immuno-Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom.
| |
Collapse
|
17
|
Hao W, Li W, Wang L, Li S. The odyssey of cGAS: From cytosol to nucleus. Cytokine Growth Factor Rev 2023; 74:29-39. [PMID: 37778920 PMCID: PMC11542052 DOI: 10.1016/j.cytogfr.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
The cyclic GMP-AMP synthase (cGAS) is a widely recognized pattern recognition receptor responsible for detecting pathogenic DNA in the cytosol and inducing the production of type I interferon (IFN) to combat infections. The recently discovered nuclear localization of cGAS has changed the old dogma, illuminated a captivating dimension of innate immunity, and sparked many fundamental questions beyond the field of immunology. This review explores cGAS nuclear localization models, activation mechanisms, and biological significance. This expansion challenges the conventional understanding of cGAS and opens new avenues for scientific exploration, promising insights into cellular surveillance and potentially unveiling new therapeutic targets for immune disorders.
Collapse
Affiliation(s)
- Wenzhuo Hao
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70112, USA
| | - Wenjun Li
- Department of Craniofacial Biomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lingyan Wang
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70112, USA.
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70112, USA.
| |
Collapse
|
18
|
Ma X, Xin D, She R, Liu D, Ge J, Mei Z. Novel insight into cGAS-STING pathway in ischemic stroke: from pre- to post-disease. Front Immunol 2023; 14:1275408. [PMID: 37915571 PMCID: PMC10616885 DOI: 10.3389/fimmu.2023.1275408] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
Ischemic stroke, a primary cause of disability and the second leading cause of mortality, has emerged as an urgent public health issue. Growing evidence suggests that the Cyclic GMP-AMP synthase (cGAS)- Stimulator of interferon genes (STING) pathway, a component of innate immunity, is closely associated with microglia activation, neuroinflammation, and regulated cell death in ischemic stroke. However, the mechanisms underlying this pathway remain inadequately understood. This article comprehensively reviews the existing literature on the cGAS-STING pathway and its multifaceted relationship with ischemic stroke. Initially, it examines how various risk factors and pre-disease mechanisms such as metabolic dysfunction and senescence (e.g., hypertension, hyperglycemia, hyperlipidemia) affect the cGAS-STING pathway in relation to ischemic stroke. Subsequently, we explore in depth the potential pathophysiological relationship between this pathway and oxidative stress, endoplasmic reticulum stress, neuroinflammation as well as regulated cell death including ferroptosis and PANoptosis following cerebral ischemia injury. Finally, it suggests that intervention targeting the cGAS-STING pathway may serve as promising therapeutic strategies for addressing neuroinflammation associated with ischemic stroke. Taken together, this review concludes that targeting the microglia cGAS-STING pathway may shed light on the exploration of new therapeutic strategies against ischemic stroke.
Collapse
Affiliation(s)
- Xiaoqi Ma
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Dan Xin
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruining She
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Danhong Liu
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jinwen Ge
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
19
|
Sasaki N, Homme M, Kitajima S. Targeting the loss of cGAS/STING signaling in cancer. Cancer Sci 2023; 114:3806-3815. [PMID: 37475576 PMCID: PMC10551601 DOI: 10.1111/cas.15913] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/28/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023] Open
Abstract
The cGAS/STING pathway provides a key host defense mechanism by detecting the accumulation of cytoplasmic double-stranded DNA (dsDNA) and mediating innate and adaptive immune signaling. In addition to detecting pathogen-derived dsDNA, cGAS senses intrinsic dsDNA, such as those associated with defective cell cycle progression and mitophagy that has leaked from the nucleus or mitochondria, and subsequently evokes host immunity to eliminate pathogenic cells. In cancer cells, dysregulation of DNA repair and cell cycle caused at the DNA replication checkpoint and spindle assembly checkpoint results in aberrant cytoplasmic dsDNA accumulation, stimulating anti-tumor immunity. Therefore, the suppression of cGAS/STING signaling is beneficial for survival and frequently observed in cancer cells as a way to evade detection by the immune system, and is likely to be related to immune checkpoint blockade (ICB) resistance. Indeed, the mechanisms of ICB resistance overlap with those acquired in cancers during immunoediting to evade immune surveillance. This review highlights the current understanding of cGAS/STING suppression in cancer cells and discusses how to establish effective strategies to regenerate effective anti-tumor immunity through reactivation of the cGAS/STING pathway.
Collapse
Affiliation(s)
- Nobunari Sasaki
- Department of Cell BiologyCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Mizuki Homme
- Department of Cell BiologyCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| | - Shunsuke Kitajima
- Department of Cell BiologyCancer Institute, Japanese Foundation for Cancer ResearchTokyoJapan
| |
Collapse
|
20
|
Ding H, Zhou Y, Yin Z, Tai S. Role of cGAS-STING signaling pathway in cardiometabolic diseases. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1086-1097. [PMID: 37724412 PMCID: PMC10930035 DOI: 10.11817/j.issn.1672-7347.2023.230028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Indexed: 09/20/2023]
Abstract
Cardiometabolic disease is a common clinical syndrome with exact causal relationship between the aberrant of glucose/lipid metabolism and cardiovascular disfunction, but its pathogenesis is unclear. Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon gene (STING) signaling pathway regulates the activation of innate immunity by sensing intracellular double stranded DNA. Metabolic risk factors drive the activation of cGAS-STING pathway through mitochondrial DNA, nuclear DNA and endoplasmic reticulum stress. In addition, the activation of the cGAS-STING pathway triggers chronic sterile inflammation, excessive activation of autophagy, senescence and apoptosis in related cells of cardiovascular system. These changes induced by cGAS-STING pathway might be implicated in the onset and deterioration of cardiometabolic disease. Therefore, the targeting intervention of cGAS-STING signaling pathway may emerge as a novel treatment for cardiometabolic disease.
Collapse
Affiliation(s)
- Huiqing Ding
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha 410011.
| | - Yuying Zhou
- Department of Cardiovascular Medicine, Xiangtan Central Hospital, Xiangtan Hunan 411199
| | - Zhiyi Yin
- Department of Blood Transfusion, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Shi Tai
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha 410011.
| |
Collapse
|
21
|
Fritsch LE, Kelly C, Pickrell AM. The role of STING signaling in central nervous system infection and neuroinflammatory disease. WIREs Mech Dis 2023; 15:e1597. [PMID: 36632700 PMCID: PMC10175194 DOI: 10.1002/wsbm.1597] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/27/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023]
Abstract
The cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthase-Stimulator of Interferon Genes (cGAS-STING) pathway is a critical innate immune mechanism for detecting the presence of double-stranded DNA (dsDNA) and prompting a robust immune response. Canonical cGAS-STING activation occurs when cGAS, a predominantly cytosolic pattern recognition receptor, binds microbial DNA to promote STING activation. Upon STING activation, transcription factors enter the nucleus to cause the production of Type I interferons, inflammatory cytokines whose primary function is to prime the host for viral infection by producing a number of antiviral interferon-stimulated genes. While the pathway was originally described in viral infection, more recent studies have implicated cGAS-STING signaling in a number of different contexts, including autoimmune disease, cancer, injury, and neuroinflammatory disease. This review focuses on how our understanding of the cGAS-STING pathway has evolved over time with an emphasis on the role of STING-mediated neuroinflammation and infection in the nervous system. We discuss recent findings on how STING signaling contributes to the pathology of pain, traumatic brain injury, and stroke, as well as how mitochondrial DNA may promote STING activation in common neurodegenerative diseases. We conclude by commenting on the current knowledge gaps that should be filled before STING can be an effective therapeutic target in neuroinflammatory disease. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Infectious Diseases > Molecular and Cellular Physiology Immune System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Lauren E. Fritsch
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia, USA
| | - Colin Kelly
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia, USA
| | - Alicia M. Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
22
|
cGAS-STING signalling in cancer: striking a balance with chromosomal instability. Biochem Soc Trans 2023; 51:539-555. [PMID: 36876871 DOI: 10.1042/bst20220838] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 03/07/2023]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer that drives tumour evolution. It is now recognised that CIN in cancer leads to the constitutive production of misplaced DNA in the form of micronuclei and chromatin bridges. These structures are detected by the nucleic acid sensor cGAS, leading to the production of the second messenger 2'3'-cGAMP and activation of the critical hub of innate immune signalling STING. Activation of this immune pathway should instigate the influx and activation of immune cells, resulting in the eradication of cancer cells. That this does not universally occur in the context of CIN remains an unanswered paradox in cancer. Instead, CIN-high cancers are notably adept at immune evasion and are highly metastatic with typically poor outcomes. In this review, we discuss the diverse facets of the cGAS-STING signalling pathway, including emerging roles in homeostatic processes and their intersection with genome stability regulation, its role as a driver of chronic pro-tumour inflammation, and crosstalk with the tumour microenvironment, which may collectively underlie its apparent maintenance in cancers. A better understanding of the mechanisms whereby this immune surveillance pathway is commandeered by chromosomally unstable cancers is critical to the identification of new vulnerabilities for therapeutic exploitation.
Collapse
|
23
|
Lazarchuk P, Nguyen VN, Brunon S, Pavlova MN, Sidorova JM. Innate immunity mediator STING modulates nascent DNA metabolism at stalled forks in human cells. Front Mol Biosci 2023; 9:1048726. [PMID: 36710880 PMCID: PMC9877313 DOI: 10.3389/fmolb.2022.1048726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Background: The cGAS/STING pathway, part of the innate immune response to foreign DNA, can be activated by cell's own DNA arising from the processing of the genome, including the degradation of nascent DNA at arrested replication forks, which can be upregulated in cancer cells. Recent evidence raises a possibility that the cGAS/STING pathway may also modulate the very processes that trigger it, e.g., DNA damage repair or processing of stalled forks. Methods: We manipulated STING levels in human cells by depleting or re-expressing it, and assessed the effects of STING on replication using microfluidics-assisted replication track analysis, or maRTA, a DNA fiber assay, as well as immuno-precipitation of nascent DNA, or iPOND. We also assessed STING subcellular distribution and its ability to activate. Results: Depletion of STING suppressed and its re-expression in STING-deficient cancer cells upregulated the degradation of nascent DNA at arrested replication forks. Replication fork arrest was accompanied by the STING pathway activation, and a STING mutant that does not activate the pathway failed to upregulate nascent DNA degradation. cGAS was required for STING's effect on degradation, but this requirement could be bypassed by treating cells with a STING agonist. Cells expressing inactive STING had a reduced level of RPA on parental and nascent DNA of arrested forks and a reduced CHK1 activation compared to cells with the wild type STING. STING also affected unperturbed fork progression in a subset of cell lines. STING fractionated to the nuclear fractions enriched for structural components of chromatin and nuclear envelope, and furthermore, it associated with the chromatin of arrested replication forks as well as post-replicative chromatin. Conclusion: Our data highlight STING as a determinant of stalled replication fork integrity, thus revealing a novel connection between the replication stress and innate immune responses.
Collapse
Affiliation(s)
| | | | | | | | - Julia M. Sidorova
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
24
|
Song JX, Villagomes D, Zhao H, Zhu M. cGAS in nucleus: The link between immune response and DNA damage repair. Front Immunol 2022; 13:1076784. [PMID: 36591232 PMCID: PMC9797516 DOI: 10.3389/fimmu.2022.1076784] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022] Open
Abstract
As the first barrier of host defense, innate immunity sets up the parclose to keep out external microbial or virus attacks. Depending on the type of pathogens, several cytoplasm pattern recognition receptors exist to sense the attacks from either foreign or host origins, triggering the immune response to battle with the infections. Among them, cGAS-STING is the major pathway that mainly responds to microbial DNA, DNA virus infections, or self-DNA, which mainly comes from genome instability by-product or released DNA from the mitochondria. cGAS was initially found functional in the cytoplasm, although intriguing evidence indicates that cGAS exists in the nucleus where it is involved in the DNA damage repair process. Because the close connection between DNA damage response and immune response and cGAS recognizes DNA in length-dependent but DNA sequence-independent manners, it is urgent to clear the function balance of cGAS in the nucleus versus cytoplasm and how it is shielded from recognizing the host origin DNA. Here, we outline the current conception of immune response and the regulation mechanism of cGAS in the nucleus. Furthermore, we will shed light on the potential mechanisms that are restricted to be taken away from self-DNA recognition, especially how post-translational modification regulates cGAS functions.
Collapse
Affiliation(s)
- Jia-Xian Song
- Institute for Translation Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Deana Villagomes
- Department of Molecular and Cellular Biology, University of California Davis, One Shields Avenue, Davis, CA, United States
| | - Hongchang Zhao
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA, United States
| | - Min Zhu
- Institute for Translation Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China,*Correspondence: Min Zhu,
| |
Collapse
|
25
|
Wang X, Zhu Y, Lu W, Guo X, Chen L, Zhang N, Chen S, Ge C, Xu S. Microcystin-LR-induced nuclear translocation of cGAS promotes mutagenesis in human hepatocytes by impeding homologous recombination repair. Toxicol Lett 2022; 373:94-104. [PMID: 36435412 DOI: 10.1016/j.toxlet.2022.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Microcystin-LR (MC-LR) has been recognized as a typical hepatotoxic cyclic peptides produced by cyanobacteria. Nowadays, due to the frequent occurrence of cyanobacterial blooms, the underlying hepatotoxic mechanism of MC-LR has become the focus of attention. In our present work, the mutagenic effect of MC-LR on human normal hepatic (HL-7702) cells regulated by cGAS was mainly studied. Here, we showed that exposure to MC-LR for 1-4 days could activate the cGAS-STING signaling pathway and then trigger immune response in HL-7702 cells. Notably, relative to the treatment with 1 μM MC-LR for 1-3 days, it was observed that when HL-7702 cells were exposed to 1 μM MC-LR for 4 days, the mutation frequency at the Hprt locus was remarkably increased. In addition, cGAS in HL-7702 cells was also found to complete the nuclear translocation after 4-day exposure. Moreover, co-immunoprecipitation and homologous recombination (HR)-directed DSB repair assay were applied to show that homologous recombination repair was inhibited after 4-day exposure. However, the intervention of the nuclear translocation of cGAS by transfecting BLK overexpression plasmid restored homologous recombination repair and reduced the mutation frequency at the Hprt locus in HL-7702 cells exposed to MC-LR. Our study unveiled the distinct roles of cGAS in the cytoplasm and nucleus of human hepatocytes as well as potential mutagenic mechanism under the early and late stage of exposure to MC-LR, and provided a novel insight into the prevention and control measures about the hazards of cGAS-targeted MC-LR.
Collapse
Affiliation(s)
- Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
| | - Yuchen Zhu
- School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
| | - Wenzun Lu
- School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
| | - Xiaoying Guo
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Science, Hefei 230031, PR China
| | - Liuzeng Chen
- School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
| | - Ning Zhang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
| | - Shaopeng Chen
- School of Public Health, Wannan Medical College, Wuhu 241002, PR China
| | - Chunmei Ge
- School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China.
| | - Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, PR China.
| |
Collapse
|
26
|
Schumann T, Ramon SC, Schubert N, Mayo MA, Hega M, Maser KI, Ada SR, Sydow L, Hajikazemi M, Badstübner M, Müller P, Ge Y, Shakeri F, Buness A, Rupf B, Lienenklaus S, Utess B, Muhandes L, Haase M, Rupp L, Schmitz M, Gramberg T, Manel N, Hartmann G, Zillinger T, Kato H, Bauer S, Gerbaulet A, Paeschke K, Roers A, Behrendt R. Deficiency for SAMHD1 activates MDA5 in a cGAS/STING-dependent manner. J Exp Med 2022; 220:213670. [PMID: 36346347 PMCID: PMC9648672 DOI: 10.1084/jem.20220829] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/01/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
Defects in nucleic acid metabolizing enzymes can lead to spontaneous but selective activation of either cGAS/STING or RIG-like receptor (RLR) signaling, causing type I interferon-driven inflammatory diseases. In these pathophysiological conditions, activation of the DNA sensor cGAS and IFN production are linked to spontaneous DNA damage. Physiological, or tonic, IFN signaling on the other hand is essential to functionally prime nucleic acid sensing pathways. Here, we show that low-level chronic DNA damage in mice lacking the Aicardi-Goutières syndrome gene SAMHD1 reduced tumor-free survival when crossed to a p53-deficient, but not to a DNA mismatch repair-deficient background. Increased DNA damage did not result in higher levels of type I interferon. Instead, we found that the chronic interferon response in SAMHD1-deficient mice was driven by the MDA5/MAVS pathway but required functional priming through the cGAS/STING pathway. Our work positions cGAS/STING upstream of tonic IFN signaling in Samhd1-deficient mice and highlights an important role of the pathway in physiological and pathophysiological innate immune priming.
Collapse
Affiliation(s)
- Tina Schumann
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Santiago Costas Ramon
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nadja Schubert
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mohamad Aref Mayo
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Melanie Hega
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Katharina Isabell Maser
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Servi-Remzi Ada
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lukas Sydow
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mona Hajikazemi
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | - Markus Badstübner
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Patrick Müller
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Yan Ge
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany,Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Andreas Buness
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany,Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Benjamin Rupf
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Stefan Lienenklaus
- Institute of Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Barbara Utess
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Lina Muhandes
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Michael Haase
- Department of Pediatric Surgery, University Hospital Dresden, Dresden, Germany
| | - Luise Rupp
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marc Schmitz
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,National Center for Tumor Diseases, Partner Site Dresden, Dresden, Germany,German Cancer Consortium, Partner Site Dresden, and German Cancer Research Center, Heidelberg, Germany
| | - Thomas Gramberg
- Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Nicolas Manel
- Institut national de la santé et de la recherche médicale U932, Institut Curie, Paris Sciences et Lettres Research University, Paris, France
| | - Gunther Hartmann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Thomas Zillinger
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Stefan Bauer
- Institute for Immunology, Philipps-University Marburg, Marburg, Germany
| | - Alexander Gerbaulet
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Katrin Paeschke
- Clinic of Internal Medicine III, Oncology, Hematology, Rheumatology and Clinical Immunology, University Hospital Bonn, Bonn, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Rayk Behrendt
- Institute for Immunology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany,Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany,Correspondence to Rayk Behrendt:
| |
Collapse
|
27
|
Lee JH, Kanwar B, Khattak A, Balentine J, Nguyen NH, Kast RE, Lee CJ, Bourbeau J, Altschuler EL, Sergi CM, Nguyen TNM, Oh S, Sohn MG, Coleman M. COVID-19 Molecular Pathophysiology: Acetylation of Repurposing Drugs. Int J Mol Sci 2022; 23:13260. [PMID: 36362045 PMCID: PMC9656873 DOI: 10.3390/ijms232113260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 01/14/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces immune-mediated type 1 interferon (IFN-1) production, the pathophysiology of which involves sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) tetramerization and the cytosolic DNA sensor cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. As a result, type I interferonopathies are exacerbated. Aspirin inhibits cGAS-mediated signaling through cGAS acetylation. Acetylation contributes to cGAS activity control and activates IFN-1 production and nuclear factor-κB (NF-κB) signaling via STING. Aspirin and dapsone inhibit the activation of both IFN-1 and NF-κB by targeting cGAS. We define these as anticatalytic mechanisms. It is necessary to alleviate the pathologic course and take the lag time of the odds of achieving viral clearance by day 7 to coordinate innate or adaptive immune cell reactions.
Collapse
Affiliation(s)
- Jong Hoon Lee
- Science and Research Center, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul 03080, Korea
| | - Badar Kanwar
- Department of Intensive Care Unit and Neonatal Intensive Care, Hunt Regional Hospital, Greenville, 75401 TX, USA
| | - Asif Khattak
- Department of Intensive Care Unit and Neonatal Intensive Care, Hunt Regional Hospital, Greenville, 75401 TX, USA
| | - Jenny Balentine
- Department of Intensive Care Unit and Neonatal Intensive Care, Hunt Regional Hospital, Greenville, 75401 TX, USA
| | - Ngoc Huy Nguyen
- Department of Health, Phutho Province, Tran Phu Str., Viet Tri City 227, Vietnam
| | | | - Chul Joong Lee
- Department of Anesthesiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, McGill University Health Centre, Montréal, QC H4A 3S5, Canada
| | - Eric L. Altschuler
- Department of Physical Medicine and Rehabilitation, Metropolitan Hospital, New York, NY 10029, USA
| | - Consolato M. Sergi
- Division of Anatomical Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, 401 Smyth Road, Ottawa, ON K1H 8L1, Canada
| | | | - Sangsuk Oh
- Department of Food Engineering, Food Safety Laboratory, Memory Unit, Ewha Womans University, Seoul 03600, Korea
| | - Mun-Gi Sohn
- Department of Food Science, KyungHee University College of Life Science, Seoul 17104, Korea
| | - Michael Coleman
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| |
Collapse
|
28
|
MacLauchlan S, Fitzgerald KA, Gravallese EM. Intracellular Sensing of DNA in Autoinflammation and Autoimmunity. Arthritis Rheumatol 2022; 74:1615-1624. [PMID: 35656967 PMCID: PMC9529773 DOI: 10.1002/art.42256] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/25/2022] [Accepted: 05/27/2022] [Indexed: 11/10/2022]
Abstract
Evidence has shown that DNA is a pathogen-associated molecular pattern, posing a unique challenge in the discrimination between endogenous and foreign DNA. This challenge is highlighted by certain autoinflammatory diseases that arise from monogenic mutations and result in periodic flares of inflammation, typically in the absence of autoantibodies or antigen-specific T lymphocytes. Several autoinflammatory diseases arise due to mutations in genes that normally prevent the accrual of endogenous DNA or are due to mutations that cause activation of intracellular DNA-sensing pathway components. Evidence from genetically modified murine models further support an ability of endogenous DNA and DNA sensing to drive disease pathogenesis, prompting the question of whether endogenous DNA can also induce inflammation in human autoimmune diseases. In this review, we discuss the current understanding of intracellular DNA sensing and downstream signaling pathways as they pertain to autoinflammatory disease, including the development of monogenic disorders such as Stimulator of interferon genes-associated vasculopathy with onset in infancy and Aicardi-Goutières syndrome. In addition, we discuss systemic rheumatic diseases, including certain forms of systemic lupus erythematosus, familial chilblain lupus, and other diseases with established links to intracellular DNA-sensing pathways, and highlight the lessons learned from these examples as they apply to the development of therapies targeting these pathways.
Collapse
Affiliation(s)
- Susan MacLauchlan
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Katherine A. Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School
| | - Ellen M. Gravallese
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| |
Collapse
|
29
|
Takizawa Y, Kurumizaka H. Chromatin structure meets cryo-EM: Dynamic building blocks of the functional architecture. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194851. [PMID: 35952957 DOI: 10.1016/j.bbagrm.2022.194851] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Chromatin is a dynamic molecular complex composed of DNA and proteins that package the DNA in the nucleus of eukaryotic cells. The basic structural unit of chromatin is the nucleosome core particle, composed of ~150 base pairs of genomic DNA wrapped around a histone octamer containing two copies each of four histones, H2A, H2B, H3, and H4. Individual nucleosome core particles are connected by short linker DNAs, forming a nucleosome array known as a beads-on-a-string fiber. Higher-order structures of chromatin are closely linked to nuclear events such as replication, transcription, recombination, and repair. Recently, a variety of chromatin structures have been determined by single-particle cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET), and their structural details have provided clues about the chromatin architecture functions in the cell. In this review, we highlight recent cryo-EM structural studies of a fundamental chromatin unit to clarify the functions of chromatin.
Collapse
Affiliation(s)
- Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
30
|
Regulation of cGAS Activity and Downstream Signaling. Cells 2022; 11:cells11182812. [PMID: 36139387 PMCID: PMC9496985 DOI: 10.3390/cells11182812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is a predominant and ubiquitously expressed cytosolic onfirmedDNA sensor that activates innate immune responses by producing a second messenger, cyclic GMP-AMP (cGAMP), and the stimulator of interferon genes (STING). cGAS contains a highly disordered N-terminus, which can sense genomic/chromatin DNA, while the C terminal of cGAS binds dsDNA liberated from various sources, including mitochondria, pathogens, and dead cells. Furthermore, cGAS cellular localization dictates its response to foreign versus self-DNA. Recent evidence has also highlighted the importance of dsDNA-induced post-translational modifications of cGAS in modulating inflammatory responses. This review summarizes and analyzes cGAS activity regulation based on structure, sub-cellular localization, post-translational mechanisms, and Ca2+ signaling. We also discussed the role of cGAS activation in different diseases and clinical outcomes.
Collapse
|
31
|
Moody CA. Regulation of the Innate Immune Response during the Human Papillomavirus Life Cycle. Viruses 2022; 14:v14081797. [PMID: 36016419 PMCID: PMC9412305 DOI: 10.3390/v14081797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 12/12/2022] Open
Abstract
High-risk human papillomaviruses (HR HPVs) are associated with multiple human cancers and comprise 5% of the human cancer burden. Although most infections are transient, persistent infections are a major risk factor for cancer development. The life cycle of HPV is intimately linked to epithelial differentiation. HPVs establish infection at a low copy number in the proliferating basal keratinocytes of the stratified epithelium. In contrast, the productive phase of the viral life cycle is activated upon epithelial differentiation, resulting in viral genome amplification, high levels of late gene expression, and the assembly of virions that are shed from the epithelial surface. Avoiding activation of an innate immune response during the course of infection plays a key role in promoting viral persistence as well as completion of the viral life cycle in differentiating epithelial cells. This review highlights the recent advances in our understanding of how HPVs manipulate the host cell environment, often in a type-specific manner, to suppress activation of an innate immune response to establish conditions supportive of viral replication.
Collapse
Affiliation(s)
- Cary A. Moody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
32
|
Ayanwale A, Trapp S, Guabiraba R, Caballero I, Roesch F. New Insights in the Interplay Between African Swine Fever Virus and Innate Immunity and Its Impact on Viral Pathogenicity. Front Microbiol 2022; 13:958307. [PMID: 35875580 PMCID: PMC9298521 DOI: 10.3389/fmicb.2022.958307] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/14/2022] [Indexed: 12/18/2022] Open
Abstract
The continuous spread of African swine fever virus (ASFV) in Europe and Asia represents a major threat to livestock health, with billions of dollars of income losses and major perturbations of the global pig industry. One striking feature of African swine fever (ASF) is the existence of different forms of the disease, ranging from acute with mortality rates approaching 100% to chronic, with mild clinical manifestations. These differences in pathogenicity have been linked to genomic alterations present in attenuated ASFV strains (and absent in virulent ones) and differences in the immune response of infected animals. In this mini-review, we summarized current knowledge on the connection between ASFV pathogenicity and the innate immune response induced in infected hosts, with a particular focus on the pathways involved in ASFV detection. Indeed, recent studies have highlighted the key role of the DNA sensor cGAS in ASFV sensing. We discussed what other pathways may be involved in ASFV sensing and inflammasome activation and summarized recent findings on the viral ASFV genes involved in the modulation of the interferon (IFN) and nuclear factor kappa B (NF-κB) pathways.
Collapse
Affiliation(s)
| | - Sascha Trapp
- UMR 1282 ISP, INRAE Centre Val de Loire, Nouzilly, France
| | | | | | | |
Collapse
|
33
|
Naesens L, Nemegeer J, Roelens F, Vallaeys L, Meuwissen M, Janssens K, Verloo P, Ogunjimi B, Hemelsoet D, Hoste L, Roels L, De Bruyne M, De Baere E, Van Dorpe J, Dendooven A, Sieben A, Rice GI, Kerre T, Beyaert R, Uggenti C, Crow YJ, Tavernier SJ, Maelfait J, Haerynck F. Mutations in RNU7-1 Weaken Secondary RNA Structure, Induce MCP-1 and CXCL10 in CSF, and Result in Aicardi-Goutières Syndrome with Severe End-Organ Involvement. J Clin Immunol 2022; 42:962-974. [PMID: 35320431 PMCID: PMC9402729 DOI: 10.1007/s10875-022-01209-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/07/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Aicardi-Goutières syndrome (AGS) is a type I interferonopathy usually characterized by early-onset neurologic regression. Biallelic mutations in LSM11 and RNU7-1, components of the U7 small nuclear ribonucleoprotein (snRNP) complex, have been identified in a limited number of genetically unexplained AGS cases. Impairment of U7 snRNP function results in misprocessing of replication-dependent histone (RDH) pre-mRNA and disturbance of histone occupancy of nuclear DNA, ultimately driving cGAS-dependent type I interferon (IFN-I) release. OBJECTIVE We performed a clinical, genetic, and immunological workup of 3 unrelated patients with uncharacterized AGS. METHODS Whole exome sequencing (WES) and targeted Sanger sequencing of RNU7-1 were performed. Primary fibroblasts were used for mechanistic studies. IFN-I signature and STAT1/2 phosphorylation were assessed in peripheral blood. Cytokines were profiled on serum and cerebrospinal fluid (CSF). Histopathology was examined on brain and kidney tissue. RESULTS Sequencing revealed compound heterozygous RNU7-1 mutations, resulting in impaired RDH pre-mRNA processing. The 3' stem-loop mutations reduced stability of the secondary U7 snRNA structure. A discrete IFN-I signature in peripheral blood was paralleled by MCP-1 (CCL2) and CXCL10 upregulation in CSF. Histopathological analysis of the kidney showed thrombotic microangiopathy. We observed dysregulated STAT phosphorylation upon cytokine stimulation. Clinical overview of all reported patients with RNU7-1-related disease revealed high mortality and high incidence of organ involvement compared to other AGS genotypes. CONCLUSIONS Targeted RNU7-1 sequencing is recommended in genetically unexplained AGS cases. CSF cytokine profiling represents an additional diagnostic tool to identify aberrant IFN-I signaling. Clinical follow-up of RNU7-1-mutated patients should include screening for severe end-organ involvement including liver disease and nephropathy.
Collapse
Affiliation(s)
- Leslie Naesens
- Department of Internal Medicine and Pediatrics, Ghent University, 9000, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, 9000, Ghent, Belgium
| | - Josephine Nemegeer
- VIB-UGent Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Filip Roelens
- Department of Pediatrics, Algemeen Ziekenhuis Delta, 8800, Roeselare, Belgium
| | - Lore Vallaeys
- Department of Pediatrics, Algemeen Ziekenhuis Groeninge, 8500, Kortrijk, Belgium
| | - Marije Meuwissen
- Department of Medical Genetics, University of Antwerp, 2000, Antwerp, Belgium
- Department of Medical Genetics, Antwerp University Hospital, 2650, Antwerp, Belgium
| | - Katrien Janssens
- Department of Medical Genetics, University of Antwerp, 2000, Antwerp, Belgium
- Department of Medical Genetics, Antwerp University Hospital, 2650, Antwerp, Belgium
| | - Patrick Verloo
- Department of Pediatrics, Division of Pediatric Neurology, University Hospital Ghent, 9000, Ghent, Belgium
| | - Benson Ogunjimi
- Department of Pediatrics, Antwerp University Hospital, 2650, Edegem, Belgium
- Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, 2610, Antwerp, Belgium
| | - Dimitri Hemelsoet
- Department of Neurology, Ghent University Hospital, 9000, Ghent, Belgium
| | - Levi Hoste
- Department of Internal Medicine and Pediatrics, Ghent University, 9000, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, 9000, Ghent, Belgium
| | - Lisa Roels
- Department of Internal Medicine and Pediatrics, Ghent University, 9000, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, 9000, Ghent, Belgium
| | - Marieke De Bruyne
- Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, 9000, Ghent, Belgium
| | - Amélie Dendooven
- Department of Pathology, Ghent University Hospital, 9000, Ghent, Belgium
- Department of Pathology, Antwerp University Hospital, 9000, Ghent, Belgium
| | - Anne Sieben
- Department of Neurology, Ghent University Hospital, 9000, Ghent, Belgium
- Department of Pathology, Antwerp University Hospital, 9000, Ghent, Belgium
| | - Gillian I Rice
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Tessa Kerre
- Department of Hematology, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, 9000, Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Laboratory of Molecular Signal Transduction in Inflammation, VIB, 9052, Ghent, Belgium
| | - Carolina Uggenti
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | - Yanick J Crow
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
- Laboratory of Neurogenetics and Neuroinflammation, University of Paris, Imagine Institute, Paris, France
| | - Simon J Tavernier
- Primary Immunodeficiency Research Lab, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, 9000, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, Laboratory of Molecular Signal Transduction in Inflammation, VIB, 9052, Ghent, Belgium
| | - Jonathan Maelfait
- VIB-UGent Center for Inflammation Research, 9052, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052, Ghent, Belgium
| | - Filomeen Haerynck
- Department of Internal Medicine and Pediatrics, Ghent University, 9000, Ghent, Belgium.
- Primary Immunodeficiency Research Lab, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, 9000, Ghent, Belgium.
- Department of Pediatric Pulmonology, Infectious Diseases and Immunology, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, Belgium.
| |
Collapse
|
34
|
Schubert N, Schumann T, Daum E, Flade K, Ge Y, Hagedorn L, Edelmann W, Müller L, Schmitz M, Kuut G, Hornung V, Behrendt R, Roers A. Genome Replication Is Associated With Release of Immunogenic DNA Waste. Front Immunol 2022; 13:880413. [PMID: 35634291 PMCID: PMC9130835 DOI: 10.3389/fimmu.2022.880413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/05/2022] [Indexed: 01/04/2023] Open
Abstract
Innate DNA sensors detect foreign and endogenous DNA to induce responses to infection and cellular stress or damage. Inappropriate activation by self-DNA triggers severe autoinflammatory conditions, including Aicardi-Goutières syndrome (AGS) that can be caused by defects of the cytosolic DNase 3’repair exonuclease 1 (TREX1). TREX1 loss-of-function alleles are also associated with systemic lupus erythematosus (SLE). Chronic activation of innate antiviral immunity in TREX1-deficient cells depends on the DNA sensor cGAS, implying that accumulating TREX1 DNA substrates cause the inflammatory pathology. Retrotransposon-derived cDNAs were shown to activate cGAS in TREX1-deficient neuronal cells. We addressed other endogenous sources of cGAS ligands in cells lacking TREX1. We find that induced loss of TREX1 in primary cells induces a rapid IFN response that requires ongoing proliferation. The inflammatory phenotype of Trex1-/- mice was partially rescued by additional knock out of exonuclease 1, a multifunctional enzyme providing 5’ flap endonuclease activity for Okazaki fragment processing and postreplicative ribonucleotide excision repair. Our data imply genome replication as a source of DNA waste with pathogenic potential that is efficiently degraded by TREX1.
Collapse
Affiliation(s)
- Nadja Schubert
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Tina Schumann
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Elena Daum
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Karolin Flade
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Yan Ge
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Lara Hagedorn
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Winfried Edelmann
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Luise Müller
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany
| | - Marc Schmitz
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), University Hospital Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gunnar Kuut
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rayk Behrendt
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany.,Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Axel Roers
- Institute for Immunology, Medical Faculty Carl Gustav Carus, University of Technology (TU) Dresden, Dresden, Germany.,Institute for Immunology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
35
|
Fan YM, Zhang YL, Luo H, Mohamud Y. Crosstalk between RNA viruses and DNA sensors: Role of the cGAS‐STING signalling pathway. Rev Med Virol 2022; 32:e2343. [DOI: 10.1002/rmv.2343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Yiyun Michelle Fan
- Center for Heart Lung Innovation St. Paul's Hospital University of British Columbia Vancouver British Columbia Canada
- Department of Cellular & Physiological Sciences University of British Columbia Vancouver British Columbia Canada
| | - Yizhuo Lyanne Zhang
- Center for Heart Lung Innovation St. Paul's Hospital University of British Columbia Vancouver British Columbia Canada
- Department of Cellular & Physiological Sciences University of British Columbia Vancouver British Columbia Canada
| | - Honglin Luo
- Center for Heart Lung Innovation St. Paul's Hospital University of British Columbia Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine University of British Columbia Vancouver British Columbia Canada
| | - Yasir Mohamud
- Center for Heart Lung Innovation St. Paul's Hospital University of British Columbia Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
36
|
Cai H, Meignin C, Imler JL. cGAS-like receptor-mediated immunity: the insect perspective. Curr Opin Immunol 2022; 74:183-189. [PMID: 35149240 DOI: 10.1016/j.coi.2022.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
Abstract
The cGAS-STING pathway plays a central role in the detection of DNA in the cytosol of mammalian cells and activation of immunity. Although the early evolutionary origin of this pathway in animals has been noted, its ancestral functions have remained elusive so far. We review here new findings in invertebrates establishing a role in sensing and signaling infection, triggering potent transcriptional responses, in addition to autophagy. Results from flies and moths/butterflies point to the importance of STING signaling in antiviral immunity in insects. The recent characterization of cGAS-like receptors in Drosophila reveals the plasticity of this family of pattern-recognition receptors, able to accommodate ligands different from DNA and to produce cyclic dinucleotides beyond 2'3'-cGAMP.
Collapse
Affiliation(s)
- Hua Cai
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Carine Meignin
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Jean-Luc Imler
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China; Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France.
| |
Collapse
|
37
|
Hayman TJ, Glazer PM. Regulation of the Cell-Intrinsic DNA Damage Response by the Innate Immune Machinery. Int J Mol Sci 2021; 22:12761. [PMID: 34884568 PMCID: PMC8657976 DOI: 10.3390/ijms222312761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Maintenance of genomic integrity is crucial for cell survival. As such, elegant DNA damage response (DDR) systems have evolved to ensure proper repair of DNA double-strand breaks (DSBs) and other lesions that threaten genomic integrity. Towards this end, most therapeutic studies have focused on understanding of the canonical DNA DSB repair pathways to enhance the efficacy of DNA-damaging therapies. While these approaches have been fruitful, there has been relatively limited success to date and potential for significant normal tissue toxicity. With the advent of novel immunotherapies, there has been interest in understanding the interactions of radiation therapy with the innate and adaptive immune responses, with the ultimate goal of enhancing treatment efficacy. While a substantial body of work has demonstrated control of the immune-mediated (extrinsic) responses to DNA-damaging therapies by several innate immune pathways (e.g., cGAS-STING and RIG-I), emerging work demonstrates an underappreciated role of the innate immune machinery in directly regulating tumor cell-intrinsic/cell-autonomous responses to DNA damage.
Collapse
Affiliation(s)
- Thomas J. Hayman
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Peter M. Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA;
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
38
|
Miller KN, Victorelli SG, Salmonowicz H, Dasgupta N, Liu T, Passos JF, Adams PD. Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell 2021; 184:5506-5526. [PMID: 34715021 PMCID: PMC8627867 DOI: 10.1016/j.cell.2021.09.034] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/17/2022]
Abstract
Endogenous cytoplasmic DNA (cytoDNA) species are emerging as key mediators of inflammation in diverse physiological and pathological contexts. Although the role of endogenous cytoDNA in innate immune activation is well established, the cytoDNA species themselves are often poorly characterized and difficult to distinguish, and their mechanisms of formation, scope of function and contribution to disease are incompletely understood. Here, we summarize current knowledge in this rapidly progressing field with emphases on similarities and differences between distinct cytoDNAs, their underlying molecular mechanisms of formation and function, interactions between cytoDNA pathways, and therapeutic opportunities in the treatment of age-associated diseases.
Collapse
Affiliation(s)
- Karl N Miller
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Stella G Victorelli
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Hanna Salmonowicz
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA; Institute for Cell and Molecular Biosciences & Newcastle University Institute for Ageing, Newcastle upon Tyne NE4 5PL, UK; International Institute of Molecular Mechanisms and Machines, Polish Academy of Sciences, 02-109 Warsaw, Poland
| | - Nirmalya Dasgupta
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Tianhui Liu
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA.
| | - Peter D Adams
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
39
|
Xiong Y, Tang YD, Zheng C. The crosstalk between the caspase family and the cGAS‒STING signaling pathway. J Mol Cell Biol 2021; 13:739-747. [PMID: 34718659 PMCID: PMC8718194 DOI: 10.1093/jmcb/mjab071] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
Edited by Jiarui Wu Cytosolic nucleic acid sensors are critical for sensing nucleic acids and initiating innate immunity during microbial infections and/or cell death. Over the last decade, several key studies have characterized the conserved mechanism of cyclic guanosine monophosphate‒adenosine monophosphate synthase (cGAS) and the downstream signaling adaptor stimulator of interferon genes (STING) initiating the innate immune signaling pathways. Aside from its primary involvement in microbial infections and inflammatory diseases, there is growing interest in the alternate roles of cGAS‒STING-mediated signaling. Caspase family members are powerful functional proteins that respond to cellular stress, including cell death signals, inflammation, and innate immunity. Recent studies have uncovered how the caspase family cooperates with the cGAS‒STING signaling pathway. Most caspase family members negatively regulate the cGAS‒STING signaling pathway. In turn, some caspase family members can also be modulated by cGAS‒STING. This review gives a detailed account of the interplay between the caspase family and the cGAS‒STING signaling pathway, which will shed light on developing novel therapeutics targeting the caspase family and cGAS‒STING signaling in antiviral innate immunity, cancer, inflammatory, and autoimmunity.
Collapse
Affiliation(s)
- Yongai Xiong
- Department of Pharmaceutics, Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yan-Dong Tang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
40
|
de Oliveira Mann CC, Hopfner K. Nuclear cGAS: guard or prisoner? EMBO J 2021; 40:e108293. [PMID: 34250619 PMCID: PMC8365253 DOI: 10.15252/embj.2021108293] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
cGAS, an innate immune sensor of cellular stress, recognizes double-stranded DNA mislocalized in the cytosol upon infection, mitochondrial stress, DNA damage, or malignancy. Early models suggested that cytosolic localization of cGAS prevents autoreactivity to nuclear and mitochondrial self-DNA, but this paradigm has shifted in light of recent findings of cGAS as a predominantly nuclear protein tightly bound to chromatin. This has raised the question how nuclear cGAS is kept inactive while being surrounded by chromatin, and what function nuclear localization of cGAS may serve in the first place? Cryo-EM structures have revealed that cGAS interacts with nucleosomes, the minimal units of chromatin, mainly via histones H2A/H2B, and that these protein-protein interactions block cGAS from DNA binding and thus prevent autoreactivity. Here, we discuss the biological implications of nuclear cGAS and its interaction with chromatin, including various mechanisms for nuclear cGAS inhibition, release of chromatin-bound cGAS, regulation of different cGAS pools in the cell, and chromatin structure/chromatin protein effects on cGAS activation leading to cGAS-induced autoimmunity.
Collapse
Affiliation(s)
- Carina C de Oliveira Mann
- Gene CenterLudwig‐Maximilians‐UniversitätMunichGermany
- Department of BiochemistryLudwig‐Maximilians‐UniversitätMunichGermany
| | - Karl‐Peter Hopfner
- Gene CenterLudwig‐Maximilians‐UniversitätMunichGermany
- Department of BiochemistryLudwig‐Maximilians‐UniversitätMunichGermany
| |
Collapse
|