1
|
McLean FE, Omondi BR, Diallo N, Otoboh S, Kifude C, Abdi AI, Lim R, Otto TD, Ghumra A, Rowe JA. Identification of novel PfEMP1 variants containing domain cassettes 11, 15 and 8 that mediate the Plasmodium falciparum virulence-associated rosetting phenotype. PLoS Pathog 2025; 21:e1012434. [PMID: 39804943 PMCID: PMC11759366 DOI: 10.1371/journal.ppat.1012434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/24/2025] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a diverse family of variant surface antigens, encoded by var genes, that mediates binding of infected erythrocytes to human cells and plays a key role in parasite immune evasion and malaria pathology. The increased availability of parasite genome sequence data has revolutionised the study of PfEMP1 diversity across multiple P. falciparum isolates. However, making functional sense of genomic data relies on the ability to infer binding phenotype from var gene sequence. For P. falciparum rosetting, the binding of infected erythrocytes to uninfected erythrocytes, the analysis of var gene/PfEMP1 sequences encoding the phenotype is limited, with only eight rosette-mediating PfEMP1 variants described to date. These known rosetting PfEMP1 variants fall into two types, characterised by N-terminal domains known as "domain cassette" 11 (DC11) and DC16. Here we test the hypothesis that DC11 and DC16 are the only PfEMP1 types in the P. falciparum genome that mediate rosetting, by examining a set of thirteen recent culture-adapted Kenyan parasite lines. We first analysed the var gene/PfEMP1 repertoires of the Kenyan lines and identified an average of three DC11 or DC16 PfEMP1 variants per genotype. In vitro rosette selection of the parasite lines yielded four with a high rosette frequency, and analysis of their var gene transcription, infected erythrocyte PfEMP1 surface expression, rosette disruption and erythrocyte binding function identified four novel rosette-mediating PfEMP1 variants. Two of these were of the predicted DC11 type (one showing the dual rosetting/IgM-Fc-binding phenotype), whereas two contained DC15 (DBLα1.2-CIDRα1.5b) a PfEMP1 type not previously associated with rosetting. We also showed that a Thai parasite line expressing a DC8-like PfEMP1 binds to erythrocytes to form rosettes. Hence, these data expand current knowledge of rosetting mechanisms and emphasize that the PfEMP1 types mediating rosetting are more diverse than previously recognised.
Collapse
Affiliation(s)
- Florence E. McLean
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Brian R. Omondi
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Nouhoum Diallo
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stanley Otoboh
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Carolyne Kifude
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Abdirahman I. Abdi
- KEMRI-Wellcome Trust Research Programme: Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Rivka Lim
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Thomas D. Otto
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ashfaq Ghumra
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - J. Alexandra Rowe
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Joof F, Hu R, Saidi A, Seydel KB, Cohee LM, Zheng Y, Smith JD. Plasma From Older Children in Malawi Inhibits Plasmodium falciparum Binding in 3-Dimensional Brain Microvessels. J Infect Dis 2024; 230:e1402-e1411. [PMID: 38875153 PMCID: PMC11646604 DOI: 10.1093/infdis/jiae315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/02/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024] Open
Abstract
A hallmark of cerebral malaria is sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the brain microcirculation. Antibodies contribute to malaria immunity, but it remains unclear whether functional antibodies targeting parasite-expressed ligand can block cytoadhesion in the brain. Here, we screened the plasma of older children and young adults in Malawi to characterize the antibody response against the P. falciparum-IE surface and used a bioengineered 3-dimensional (3D) human brain microvessel model incorporating variable flow dynamics to measure adhesion-blocking responses. We found a strong correlation between surface antibody reactivity by flow cytometry and reduced P. falciparum-IE binding in 3D microvessels. Moreover, there was a threshold of surface antibody reactivity necessary to achieve robust inhibitory activity. Our findings provide evidence of the acquisition of adhesion-blocking antibodies against cerebral binding variants in people exposed to stable P. falciparum transmission and suggest the quality of the inhibitory response can be influenced by flow dynamics.
Collapse
Affiliation(s)
- Fatou Joof
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Ruoqian Hu
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Alex Saidi
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Karl B Seydel
- Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Lauren M Cohee
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Joseph D Smith
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Andrade CM, Carrasquilla M, Dabbas U, Briggs J, van Dijk H, Sergeev N, Sissoko A, Niangaly M, Ntalla C, LaVerriere E, Skinner J, Golob K, Richter J, Cisse H, Li S, Hendry JA, Asghar M, Doumtabe D, Farnert A, Ruppert T, Neafsey DE, Kayentao K, Doumbo S, Ongoiba A, Crompton PD, Traore B, Greenhouse B, Portugal S. Infection length and host environment influence on Plasmodium falciparum dry season reservoir. EMBO Mol Med 2024; 16:2349-2375. [PMID: 39284949 PMCID: PMC11473648 DOI: 10.1038/s44321-024-00127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 10/16/2024] Open
Abstract
Persistence of malaria parasites in asymptomatic hosts is crucial in areas of seasonally-interrupted transmission, where P. falciparum bridges wet seasons months apart. During the dry season, infected erythrocytes exhibit extended circulation with reduced cytoadherence, increasing the risk of splenic clearance of infected cells and hindering parasitaemia increase. However, what determines parasite persistence for long periods of time remains unknown. Here, we investigated whether seasonality affects plasma composition so that P. falciparum can detect and adjust to changing serological cues; or if alternatively, parasite infection length dictates clinical presentation and persistency. Data from Malian children exposed to alternating ~6-month wet and dry seasons show that plasma composition is unrelated to time of year in non-infected children, and that carrying P. falciparum only minimally affects plasma constitution in asymptomatic hosts. Parasites persisting in the blood of asymptomatic children from the dry into the ensuing wet season rarely if ever appeared to cause malaria in their hosts as seasons changed. In vitro culture in the presence of plasma collected in the dry or the wet seasons did not affect parasite development, replication or host-cell remodelling. The absence of a parasite-encoded sensing mechanism was further supported by the observation of similar features in P. falciparum persisting asymptomatically in the dry season and parasites in age- and sex-matched asymptomatic children in the wet season. Conversely, we show that P. falciparum clones transmitted early in the wet season had lower chance of surviving until the end of the following dry season, contrasting with a higher likelihood of survival of clones transmitted towards the end of the wet season, allowing for the re-initiation of transmission. We propose that the decreased virulence observed in persisting parasites during the dry season is not due to the parasites sensing ability, nor is it linked to a decreased capacity for parasite replication but rather a consequence decreased cytoadhesion associated with infection length.
Collapse
Affiliation(s)
- Carolina M Andrade
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany.
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | | | - Usama Dabbas
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jessica Briggs
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Hannah van Dijk
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nikolay Sergeev
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Awa Sissoko
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Moussa Niangaly
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Emily LaVerriere
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Jeff Skinner
- Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, MD, USA
| | - Klara Golob
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jeremy Richter
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hamidou Cisse
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Shanping Li
- Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, MD, USA
| | - Jason A Hendry
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Muhammad Asghar
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institute, Stockholm Sweden and Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Biology, Lund University, Lund, Sweden
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Didier Doumtabe
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Anna Farnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institute, Stockholm Sweden and Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | | | - Daniel E Neafsey
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Peter D Crompton
- Laboratory of Immunogenetics, NIAID, National Institutes of Health, Rockville, MD, USA
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Bryan Greenhouse
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Silvia Portugal
- Center for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany.
- Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
4
|
Dunican C, Andradi-Brown C, Ebmeier S, Georgiadou A, Cunnington AJ. The malarial blood transcriptome: translational applications. Biochem Soc Trans 2024; 52:651-660. [PMID: 38421063 PMCID: PMC11088907 DOI: 10.1042/bst20230497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
The blood transcriptome of malaria patients has been used extensively to elucidate the pathophysiological mechanisms and host immune responses to disease, identify candidate diagnostic and prognostic biomarkers, and reveal new therapeutic targets for drug discovery. This review gives a high-level overview of the three main translational applications of these studies (diagnostics, prognostics, and therapeutics) by summarising recent literature and outlining the main limitations and future directions of each application. It highlights the need for consistent and accurate definitions of disease states and subject groups and discusses how prognostic studies must distinguish clearly between analyses that attempt to predict future disease states and those which attempt to discriminate between current disease states (classification). Lastly it examines how many promising therapeutics fail due to the choice of imperfect animal models for pre-clinical testing and lack of appropriate validation studies in humans, and how future transcriptional studies may be utilised to overcome some of these limitations.
Collapse
Affiliation(s)
- Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Clare Andradi-Brown
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Stefan Ebmeier
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Athina Georgiadou
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, U.K
- Centre for Paediatrics and Child Health, Imperial College London, London, U.K
| |
Collapse
|
5
|
Hviid L, Jensen AR, Deitsch KW. PfEMP1 and var genes - Still of key importance in Plasmodium falciparum malaria pathogenesis and immunity. ADVANCES IN PARASITOLOGY 2024; 125:53-103. [PMID: 39095112 DOI: 10.1016/bs.apar.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The most severe form of malaria, caused by infection with Plasmodium falciparum parasites, continues to be an important cause of human suffering and poverty. The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of clonally variant antigens, which mediates the adhesion of infected erythrocytes to the vascular endothelium in various tissues and organs, is a central component of the pathogenesis of the disease and a key target of the acquired immune response to malaria. Much new knowledge has accumulated since we published a systematic overview of the PfEMP1 family almost ten years ago. In this chapter, we therefore aim to summarize research progress since 2015 on the structure, function, regulation etc. of this key protein family of arguably the most important human parasite. Recent insights regarding PfEMP1-specific immune responses and PfEMP1-specific vaccination against malaria, as well as an outlook for the coming years are also covered.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Anja R Jensen
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
6
|
Reyes RA, Raghavan SSR, Hurlburt NK, Introini V, Kana IH, Jensen RW, Martinez-Scholze E, Gestal-Mato M, Bau CB, Fernández-Quintero ML, Loeffler JR, Ferguson JA, Lee WH, Martin GM, Theander TG, Ssewanyana I, Feeney ME, Greenhouse B, Bol S, Ward AB, Bernabeu M, Pancera M, Turner L, Bunnik EM, Lavstsen T. Broadly inhibitory antibodies against severe malaria virulence proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577124. [PMID: 38328068 PMCID: PMC10849712 DOI: 10.1101/2024.01.25.577124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Plasmodium falciparum pathology is driven by the accumulation of parasite-infected erythrocytes in microvessels. This process is mediated by the parasite's polymorphic erythrocyte membrane protein 1 (PfEMP1) adhesion proteins. A subset of PfEMP1 variants that bind human endothelial protein C receptor (EPCR) through their CIDRα1 domains is responsible for severe malaria pathogenesis. A longstanding question is whether individual antibodies can recognize the large repertoire of circulating PfEMP1 variants. Here, we describe two broadly reactive and binding-inhibitory human monoclonal antibodies against CIDRα1. The antibodies isolated from two different individuals exhibited a similar and consistent EPCR-binding inhibition of 34 CIDRα1 domains, representing five of the six subclasses of CIDRα1. Both antibodies inhibited EPCR binding of both recombinant full-length and native PfEMP1 proteins as well as parasite sequestration in bioengineered 3D brain microvessels under physiologically relevant flow conditions. Structural analyses of the two antibodies in complex with two different CIDRα1 antigen variants reveal similar binding mechanisms that depend on interactions with three highly conserved amino acid residues of the EPCR-binding site in CIDRα1. These broadly reactive antibodies likely represent a common mechanism of acquired immunity to severe malaria and offer novel insights for the design of a vaccine or treatment targeting severe malaria.
Collapse
Affiliation(s)
- Raphael A. Reyes
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Sai Sundar Rajan Raghavan
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas K. Hurlburt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Viola Introini
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona 08003, Spain
| | - Ikhlaq Hussain Kana
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Rasmus W. Jensen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Elizabeth Martinez-Scholze
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Maria Gestal-Mato
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona 08003, Spain
| | | | | | - Johannes R. Loeffler
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James Alexander Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Greg Michael Martin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thor G. Theander
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | | | - Margaret E. Feeney
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94110, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Sebastiaan Bol
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maria Bernabeu
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona 08003, Spain
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Louise Turner
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Thomas Lavstsen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| |
Collapse
|
7
|
Andradi-Brown C, Wichers-Misterek JS, von Thien H, Höppner YD, Scholz JAM, Hansson H, Filtenborg Hocke E, Gilberger TW, Duffy MF, Lavstsen T, Baum J, Otto TD, Cunnington AJ, Bachmann A. A novel computational pipeline for var gene expression augments the discovery of changes in the Plasmodium falciparum transcriptome during transition from in vivo to short-term in vitro culture. eLife 2024; 12:RP87726. [PMID: 38270586 PMCID: PMC10945709 DOI: 10.7554/elife.87726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The pathogenesis of severe Plasmodium falciparum malaria involves cytoadhesive microvascular sequestration of infected erythrocytes, mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 variants are encoded by the highly polymorphic family of var genes, the sequences of which are largely unknown in clinical samples. Previously, we published new approaches for var gene profiling and classification of predicted binding phenotypes in clinical P. falciparum isolates (Wichers et al., 2021), which represented a major technical advance. Building on this, we report here a novel method for var gene assembly and multidimensional quantification from RNA-sequencing that outperforms the earlier approach of Wichers et al., 2021, on both laboratory and clinical isolates across a combination of metrics. Importantly, the tool can interrogate the var transcriptome in context with the rest of the transcriptome and can be applied to enhance our understanding of the role of var genes in malaria pathogenesis. We applied this new method to investigate changes in var gene expression through early transition of parasite isolates to in vitro culture, using paired sets of ex vivo samples from our previous study, cultured for up to three generations. In parallel, changes in non-polymorphic core gene expression were investigated. Modest but unpredictable var gene switching and convergence towards var2csa were observed in culture, along with differential expression of 19% of the core transcriptome between paired ex vivo and generation 1 samples. Our results cast doubt on the validity of the common practice of using short-term cultured parasites to make inferences about in vivo phenotype and behaviour.
Collapse
Affiliation(s)
- Clare Andradi-Brown
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Jan Stephan Wichers-Misterek
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Heidrun von Thien
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Yannick D Höppner
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Judith AM Scholz
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
| | - Helle Hansson
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Diseases, Copenhagen University HospitalCopenhagenDenmark
| | - Emma Filtenborg Hocke
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Diseases, Copenhagen University HospitalCopenhagenDenmark
| | - Tim Wolf Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Michael F Duffy
- Department of Microbiology and Immunology, University of MelbourneMelbourneAustralia
| | - Thomas Lavstsen
- Center for Medical Parasitology, Department of Immunology and Microbiology, University of CopenhagenCopenhagenDenmark
- Department of Infectious Diseases, Copenhagen University HospitalCopenhagenDenmark
| | - Jake Baum
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
- School of Biomedical Sciences, Faculty of Medicine & Health, UNSW, KensingtonSydneyUnited Kingdom
| | - Thomas D Otto
- School of Infection & Immunity, MVLS, University of GlasgowGlasgowUnited Kingdom
| | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College LondonLondonUnited Kingdom
- Centre for Paediatrics and Child Health, Imperial College LondonLondonUnited Kingdom
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-StrasseHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-RiemsHamburgGermany
| |
Collapse
|
8
|
Walker IS, Rogerson SJ. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023; 14:2150456. [PMID: 36419237 PMCID: PMC9815252 DOI: 10.1080/21505594.2022.2150456] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| |
Collapse
|
9
|
Rajan Raghavan SS, Turner L, Jensen RW, Johansen NT, Jensen DS, Gourdon P, Zhang J, Wang Y, Theander TG, Wang K, Lavstsen T. Endothelial protein C receptor binding induces conformational changes to severe malaria-associated group A PfEMP1. Structure 2023; 31:1174-1183.e4. [PMID: 37582356 DOI: 10.1016/j.str.2023.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023]
Abstract
Severe Plasmodium falciparum malaria infections are caused by microvascular sequestration of parasites binding to the human endothelial protein C receptor (EPCR) via the multi-domain P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion ligands. Using cryogenic electron microscopy (Cryo-EM) and PfEMP1 sequence diversity analysis, we found that group A PfEMP1 CIDRα1 domains interact with the adjacent DBLα1 domain through central, conserved residues of the EPCR-binding site to adopt a compact conformation. Upon EPCR binding, the DBLα1 domain is displaced, and the EPCR-binding helix of CIDRα1 is turned, kinked, and twisted to reach a rearranged, stable EPCR-bound conformation. The unbound conformation and the required transition to the EPCR-bound conformation may represent a conformational masking mechanism of immune evasion for the PfEMP1 family.
Collapse
Affiliation(s)
- Sai Sundar Rajan Raghavan
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Louise Turner
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Rasmus W Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Nicolai Tidemand Johansen
- Section for Transport Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Skjold Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Pontus Gourdon
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jinqiu Zhang
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, China
| | - Yong Wang
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining, China
| | - Thor Grundtvig Theander
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Kaituo Wang
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
10
|
Wichers-Misterek JS, Krumkamp R, Held J, von Thien H, Wittmann I, Höppner YD, Ruge JM, Moser K, Dara A, Strauss J, Esen M, Fendel R, Sulyok Z, Jeninga MD, Kremsner PG, Sim BKL, Hoffman SL, Duffy MF, Otto TD, Gilberger TW, Silva JC, Mordmüller B, Petter M, Bachmann A. The exception that proves the rule: Virulence gene expression at the onset of Plasmodium falciparum blood stage infections. PLoS Pathog 2023; 19:e1011468. [PMID: 37384799 DOI: 10.1371/journal.ppat.1011468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
Controlled human malaria infections (CHMI) are a valuable tool to study parasite gene expression in vivo under defined conditions. In previous studies, virulence gene expression was analyzed in samples from volunteers infected with the Plasmodium falciparum (Pf) NF54 isolate, which is of African origin. Here, we provide an in-depth investigation of parasite virulence gene expression in malaria-naïve European volunteers undergoing CHMI with the genetically distinct Pf 7G8 clone, originating in Brazil. Differential expression of var genes, encoding major virulence factors of Pf, PfEMP1s, was assessed in ex vivo parasite samples as well as in parasites from the in vitro cell bank culture that was used to generate the sporozoites (SPZ) for CHMI (Sanaria PfSPZ Challenge (7G8)). We report broad activation of mainly B-type subtelomeric located var genes at the onset of a 7G8 blood stage infection in naïve volunteers, mirroring the NF54 expression study and suggesting that the expression of virulence-associated genes is generally reset during transmission from the mosquito to the human host. However, in 7G8 parasites, we additionally detected a continuously expressed single C-type variant, Pf7G8_040025600, that was most highly expressed in both pre-mosquito cell bank and volunteer samples, suggesting that 7G8, unlike NF54, maintains expression of some previously expressed var variants during transmission. This suggests that in a new host, the parasite may preferentially express the variants that previously allowed successful infection and transmission. Trial registration: ClinicalTrials.gov - NCT02704533; 2018-004523-36.
Collapse
Affiliation(s)
- Jan Stephan Wichers-Misterek
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Ralf Krumkamp
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Jana Held
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Heidrun von Thien
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Irene Wittmann
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Yannick Daniel Höppner
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Julia M Ruge
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| | - Kara Moser
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Antoine Dara
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
| | - Jan Strauss
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Meral Esen
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Rolf Fendel
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Zita Sulyok
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Myriam D Jeninga
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter G Kremsner
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - B Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, United States of America
| | | | - Michael F Duffy
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Thomas D Otto
- School of Infection & Immunity, University of Glasgow, Glasgow, United Kingdom
| | - Tim-Wolf Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, Maryland, United States of America
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | - Michaela Petter
- Institute of Microbiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Centre for Structural Systems Biology, Hamburg, Germany, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Hamburg/Borstel/Lübeck/Riems, Germany
| |
Collapse
|
11
|
Gill J, Sharma A. Structural and genomic analysis of single nucleotide polymorphisms in human host factor endothelial protein C receptor (EPCR) reveals complex interplay with malaria parasites. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 110:105413. [PMID: 36775045 DOI: 10.1016/j.meegid.2023.105413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Plasmodium parasites responsible for malaria follow a complex life cycle of which half takes place inside the human host. Parasites present diverse antigens at different stages of their life cycle and interact with many surface molecules to attach to and enter host cells. The CIDRα1 domain of Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) in infected erythrocytes adheres to one such vascular receptor endothelial protein C receptor (EPCR). EPCR is implicated in the pathogenesis of severe malaria as preferential binding of CIDRα1 to endothelium results in widespread sequestration of infected erythrocytes leading to endothelium inflammation and severe disease. A single EPCR variant S219G is clinically reported to provide protection from severe malaria. In this work, we have collated all single nucleotide polymorphisms (SNPs) in EPCR from dbSNP. We structurally mapped the SNPs on the three-dimensional complex of EPCR and PfEMP1 CIDRα1. Analysis shows that most EPCR mutations lie on the receptor surface and are non-conservative. Of the 11 mutations in the CIDRα1-interaction region of EPCR, S88P, L96V/I, and R98L/H/P/C are seen with comparably higher occurrences in diverse populations. Our structural analysis details a framework of the interactions between the parasite ligand and host factor EPCR. These structural glimpses provide a blueprint for designing both field-based variant sequencing studies and vaccine development.
Collapse
Affiliation(s)
- Jasmita Gill
- ICMR-National Institute of Malaria Research, New Delhi, India.
| | - Amit Sharma
- ICMR-National Institute of Malaria Research, New Delhi, India; International Centre for Genetic Engineering and Biotechnology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
12
|
Muppidi P, Wright E, Wassmer SC, Gupta H. Diagnosis of cerebral malaria: Tools to reduce Plasmodium falciparum associated mortality. Front Cell Infect Microbiol 2023; 13:1090013. [PMID: 36844403 PMCID: PMC9947298 DOI: 10.3389/fcimb.2023.1090013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Cerebral malaria (CM) is a major cause of mortality in Plasmodium falciparum (Pf) infection and is associated with the sequestration of parasitised erythrocytes in the microvasculature of the host's vital organs. Prompt diagnosis and treatment are key to a positive outcome in CM. However, current diagnostic tools remain inadequate to assess the degree of brain dysfunction associated with CM before the window for effective treatment closes. Several host and parasite factor-based biomarkers have been suggested as rapid diagnostic tools with potential for early CM diagnosis, however, no specific biomarker signature has been validated. Here, we provide an updated review on promising CM biomarker candidates and evaluate their applicability as point-of-care tools in malaria-endemic areas.
Collapse
Affiliation(s)
- Pranavi Muppidi
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emily Wright
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Himanshu Gupta
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, UP, India
| |
Collapse
|
13
|
CD36-A Host Receptor Necessary for Malaria Parasites to Establish and Maintain Infection. Microorganisms 2022; 10:microorganisms10122356. [PMID: 36557610 PMCID: PMC9785914 DOI: 10.3390/microorganisms10122356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022] Open
Abstract
Plasmodium falciparum-infected erythrocytes (PfIEs) present P. falciparum erythrocyte membrane protein 1 proteins (PfEMP1s) on the cell surface, via which they cytoadhere to various endothelial cell receptors (ECRs) on the walls of human blood vessels. This prevents the parasite from passing through the spleen, which would lead to its elimination. Each P. falciparum isolate has about 60 different PfEMP1s acting as ligands, and at least 24 ECRs have been identified as interaction partners. Interestingly, in every parasite genome sequenced to date, at least 75% of the encoded PfEMP1s have a binding domain for the scavenger receptor CD36 widely distributed on host endothelial cells and many other cell types. Here, we discuss why the interaction between PfIEs and CD36 is optimal to maintain a finely regulated equilibrium that allows the parasite to multiply and spread while causing minimal harm to the host in most infections.
Collapse
|
14
|
Ruybal-Pesántez S, Tiedje KE, Pilosof S, Tonkin-Hill G, He Q, Rask TS, Amenga-Etego L, Oduro AR, Koram KA, Pascual M, Day KP. Age-specific patterns of DBLα var diversity can explain why residents of high malaria transmission areas remain susceptible to Plasmodium falciparum blood stage infection throughout life. Int J Parasitol 2022; 52:721-731. [PMID: 35093396 PMCID: PMC9339046 DOI: 10.1016/j.ijpara.2021.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022]
Abstract
Immunity to Plasmodium falciparum is non-sterilising, thus individuals residing in malaria-endemic areas are at risk of infection throughout their lifetime. Here we seek to find a genomic epidemiological explanation for why residents of all ages harbour blood stage infections despite lifelong exposure to P. falciparum in areas of high transmission. We do this by exploring, for the first known time, the age-specific patterns of diversity of variant antigen encoding (var) genes in the reservoir of infection. Microscopic and submicroscopic P. falciparum infections were analysed at the end of the wet and dry seasons in 2012-2013 for a cohort of 1541 residents aged from 1 to 91 years in an area characterised by high seasonal malaria transmission in Ghana. By sequencing the near ubiquitous Duffy-binding-like alpha domain (DBLα) that encodes immunogenic domains, we defined var gene diversity in an estimated 1096 genomes detected in sequential wet and dry season sampling of this cohort. Unprecedented var (DBLα) diversity was observed in all ages with 42,399 unique var types detected. There was a high degree of maintenance of types between seasons (>40% seen more than once), with many of the same types, especially upsA, appearing multiple times in isolates from different individuals. Children and adolescents were found to be significant reservoirs of var DBLα diversity compared with adults. Var repertoires within individuals were highly variable, with children having more related var repertoires compared to adolescents and adults. Individuals of all ages harboured multiple genomes with var repertoires unrelated to those infecting other hosts. High turnover of parasites with diverse isolate var repertoires was also observed in all ages. These age-specific patterns are best explained by variant-specific immune selection. The observed level of var diversity for the population was then used to simulate the development of variant-specific immunity to the diverse var types under conservative assumptions. Simulations showed that the extent of observed var diversity with limited repertoire relatedness was sufficient to explain why adolescents and adults in this community remain susceptible to blood stage infection, even with multiple genomes.
Collapse
Affiliation(s)
| | - Kathryn E. Tiedje
- School of BioSciences, Bio21 Institute, The University of Melbourne, Australia,Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Australia
| | - Shai Pilosof
- Department of Ecology and Evolution, University of Chicago, USA,Department of Life Sciences, Ben-Gurion University, Be’er-Sheva, Israel
| | - Gerry Tonkin-Hill
- School of BioSciences, Bio21 Institute, The University of Melbourne, Australia,Bioinformatics Division, Walter and Eliza Hall Institute of Medial Research, Australia
| | - Qixin He
- Department of Ecology and Evolution, University of Chicago, USA
| | - Thomas S. Rask
- School of BioSciences, Bio21 Institute, The University of Melbourne, Australia
| | - Lucas Amenga-Etego
- West African Centre for Cell Biology and Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Ghana,Navrongo Health Research Centre, Ghana Health Service, Ghana
| | | | - Kwadwo A. Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Ghana
| | | | - Karen P. Day
- School of BioSciences, Bio21 Institute, The University of Melbourne, Australia,Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Australia,Corresponding author. (K.P. Day)
| |
Collapse
|
15
|
Identifying Targets of Protective Antibodies against Severe Malaria in Papua, Indonesia, Using Locally Expressed Domains of Plasmodium falciparum Erythrocyte Membrane Protein 1. Infect Immun 2022; 90:e0043521. [PMID: 34871039 PMCID: PMC8853675 DOI: 10.1128/iai.00435-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a diverse family of multidomain proteins expressed on the surface of malaria-infected erythrocytes, is an important target of protective immunity against malaria. Our group recently studied transcription of the var genes encoding PfEMP1 in individuals from Papua, Indonesia, with severe or uncomplicated malaria. We cloned and expressed domains from 32 PfEMP1s, including 22 that were upregulated in severe malaria and 10 that were upregulated in uncomplicated malaria, using a wheat germ cell-free expression system. We used Luminex technology to measure IgG antibodies to these 32 domains and control proteins in 63 individuals (11 children). At presentation to hospital, levels of antibodies to PfEMP1 domains were either higher in uncomplicated malaria or were not significantly different between groups. Using principal component analysis, antibodies to 3 of 32 domains were highly discriminatory between groups. These included two domains upregulated in severe malaria, a DBLβ13 domain and a CIDRα1.6 domain (which has been previously implicated in severe malaria pathogenesis), and a DBLδ domain that was upregulated in uncomplicated malaria. Antibody to control non-PfEMP1 antigens did not differ with disease severity. Antibodies to PfEMP1 domains differ with malaria severity. Lack of antibodies to locally expressed PfEMP1 types, including both domains previously associated with severe malaria and newly identified targets, may in part explain malaria severity in Papuan adults.
Collapse
|
16
|
Mackenzie G, Jensen RW, Lavstsen T, Otto TD. Varia: a tool for prediction, analysis and visualisation of variable genes. BMC Bioinformatics 2022; 23:52. [PMID: 35073845 PMCID: PMC8785495 DOI: 10.1186/s12859-022-04573-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 01/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background Parasites use polymorphic gene families to evade the immune system or interact with the host. Assessing the diversity and expression of such gene families in pathogens can inform on the repertoire or host interaction phenotypes of clinical relevance. However, obtaining the sequences and quantifying their expression is a challenge. In Plasmodium falciparum, the highly polymorphic var genes encode the major virulence protein, PfEMP1, which bind a range of human receptors through varying combinations of DBL and CIDR domains. Here we present a tool, Varia, to predict near full-length gene sequences and domain compositions of query genes from database genes sharing short sequence tags. Varia generates output through two complementary pipelines. Varia_VIP returns all putative gene sequences and domain compositions of the query gene from any partial sequence provided, thereby enabling experimental validation of specific genes of interest and detailed assessment of their putative domain structure. Varia_GEM accommodates rapid profiling of var gene expression in complex patient samples from DBLα expression sequence tags (EST), by computing a sample overall transcript profile stratified by PfEMP1 domain types. Results Varia_VIP was tested querying sequence tags from all DBL domain types using different search criteria. On average 92% of query tags had one or more 99% identical database hits, resulting in the full-length query gene sequence being identified (> 99% identical DNA > 80% of query gene) among the five most prominent database hits, for ~ 33% of the query genes. Optimized Varia_GEM settings allowed correct prediction of > 90% of domains placed among the four most N-terminal domains, including the DBLα domain, and > 70% of C-terminal domains. With this accuracy, N-terminal domains could be predicted for > 80% of queries, whereas prediction rates of C-terminal domains dropped with the distance from the DBLα from 70 to 40%. Conclusion Prediction of var sequence and domain composition is possible from short sequence tags. Varia can be used to guide experimental validation of PfEMP1 sequences of interest and conduct high-throughput analysis of var type expression in patient samples. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-022-04573-6.
Collapse
|
17
|
Successful Profiling of Plasmodium falciparum var Gene Expression in Clinical Samples via a Custom Capture Array. mSystems 2021; 6:e0022621. [PMID: 34846163 PMCID: PMC8631312 DOI: 10.1128/msystems.00226-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
var genes encode Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) antigens. These highly diverse antigens are displayed on the surface of infected erythrocytes and play a critical role in immune evasion and sequestration of infected erythrocytes. Studies of var expression using non-leukocyte-depleted blood are challenging because of the predominance of host genetic material and lack of conserved var segments. Our goal was to enrich for parasite RNA, allowing de novo assembly of var genes and detection of expressed novel variants. We used two overall approaches: (i) enriching for total mRNA in the sequencing library preparations and (ii) enriching for parasite RNA with a custom capture array based on Roche’s SeqCap EZ enrichment system. The capture array was designed with probes based on the whole 3D7 reference genome and an additional >4,000 full-length var gene sequences from other P. falciparum strains. We tested each method on RNA samples from Malian children with severe or uncomplicated malaria infections. All reads mapping to the human genome were removed, the remaining reads were assembled de novo into transcripts, and from these, var-like transcripts were identified and annotated. The capture array produced the longest maximum length and largest numbers of var gene transcripts in each sample, particularly in samples with low parasitemia. Identifying the most-expressed var gene sequences in whole-blood clinical samples without the need for extensive processing or generating sample-specific reference genome data is critical for understanding the role of PfEMP1s in malaria pathogenesis. IMPORTANCE Malaria parasites display antigens on the surface of infected red blood cells in the human host that facilitate attachment to blood vessels, contributing to the severity of infection. These antigens are highly variable, allowing the parasite to evade the immune system. Identifying these expressed antigens is critical to understanding the development of severe malarial disease. However, clinical samples contain limited amounts of parasite genetic material, a challenge for sequencing efforts further compounded by the extreme diversity of the parasite surface antigens. We present a method that enriches for these antigen sequences in clinical samples using a custom capture array, requiring minimal processing in the field. While our results are focused on the malaria parasite Plasmodium falciparum, this approach has broad applicability to other highly diverse antigens from other parasites and pathogens such as those that cause giardiasis and leishmaniasis.
Collapse
|
18
|
Sahu PK, Duffy FJ, Dankwa S, Vishnyakova M, Majhi M, Pirpamer L, Vigdorovich V, Bage J, Maharana S, Mandala W, Rogerson SJ, Seydel KB, Taylor TE, Kim K, Sather DN, Mohanty A, Mohanty RR, Mohanty A, Pattnaik R, Aitchison JD, Hoffman A, Mohanty S, Smith JD, Bernabeu M, Wassmer SC. Determinants of brain swelling in pediatric and adult cerebral malaria. JCI Insight 2021; 6:145823. [PMID: 34549725 PMCID: PMC8492338 DOI: 10.1172/jci.insight.145823] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/28/2021] [Indexed: 01/08/2023] Open
Abstract
Cerebral malaria (CM) affects children and adults, but brain swelling is more severe in children. To investigate features associated with brain swelling in malaria, we performed blood profiling and brain MRI in a cohort of pediatric and adult patients with CM in Rourkela, India, and compared them with an African pediatric CM cohort in Malawi. We determined that higher plasma Plasmodium falciparum histidine rich protein 2 (PfHRP2) levels and elevated var transcripts that encode for binding to endothelial protein C receptor (EPCR) were linked to CM at both sites. Machine learning models trained on the African pediatric cohort could classify brain swelling in Indian children CM cases but had weaker performance for adult classification, due to overall lower parasite var transcript levels in this age group and more severe thrombocytopenia in Rourkela adults. Subgrouping of patients with CM revealed higher parasite biomass linked to severe thrombocytopenia and higher Group A–EPCR var transcripts in mild thrombocytopenia. Overall, these findings provide evidence that higher parasite biomass and a subset of Group A–EPCR binding variants are common features in children and adult CM cases, despite age differences in brain swelling.
Collapse
Affiliation(s)
- Praveen K Sahu
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Fergal J Duffy
- Seattle Children's Research Institute, Seattle, Washington, USA
| | - Selasi Dankwa
- Seattle Children's Research Institute, Seattle, Washington, USA
| | | | | | - Lukas Pirpamer
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Jabamani Bage
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Sameer Maharana
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Wilson Mandala
- Malawi University of Science and Technology, Limbe, Malawi
| | - Stephen J Rogerson
- Department of Medicine, The Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Karl B Seydel
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA.,Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Terrie E Taylor
- Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA.,Blantyre Malaria Project, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Kami Kim
- Division of Infectious Diseases and International Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - D Noah Sather
- Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Akshaya Mohanty
- Infectious Diseases Biology Unit, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | - Anita Mohanty
- Department of Intensive Care, IGH, Rourkela, Odisha, India
| | | | - John D Aitchison
- Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Angelika Hoffman
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany.,University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Sanjib Mohanty
- Center for the Study of Complex Malaria in India, Ispat General Hospital (IGH), Rourkela, Odisha, India
| | - Joseph D Smith
- Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Maria Bernabeu
- Seattle Children's Research Institute, Seattle, Washington, USA.,European Molecular Biology Laboratory (EMBL), Barcelona, Spain
| | - Samuel C Wassmer
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
19
|
Batte A, Berrens Z, Murphy K, Mufumba I, Sarangam ML, Hawkes MT, Conroy AL. Malaria-Associated Acute Kidney Injury in African Children: Prevalence, Pathophysiology, Impact, and Management Challenges. Int J Nephrol Renovasc Dis 2021; 14:235-253. [PMID: 34267538 PMCID: PMC8276826 DOI: 10.2147/ijnrd.s239157] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/26/2021] [Indexed: 01/02/2023] Open
Abstract
Acute kidney injury (AKI) is emerging as a complication of increasing clinical importance associated with substantial morbidity and mortality in African children with severe malaria. Using the Kidney Disease: Improving Global Outcomes (KDIGO) criteria to define AKI, an estimated 24–59% of African children with severe malaria have AKI with most AKI community-acquired. AKI is a risk factor for mortality in pediatric severe malaria with a stepwise increase in mortality across AKI stages. AKI is also a risk factor for post-discharge mortality and is associated with increased long-term risk of neurocognitive impairment and behavioral problems in survivors. Following injury, the kidney undergoes a process of recovery and repair. AKI is an established risk factor for chronic kidney disease and hypertension in survivors and is associated with an increased risk of chronic kidney disease in severe malaria survivors. The magnitude of the risk and contribution of malaria-associated AKI to chronic kidney disease in malaria-endemic areas remains undetermined. Pathways associated with AKI pathogenesis in the context of pediatric severe malaria are not well understood, but there is emerging evidence that immune activation, endothelial dysfunction, and hemolysis-mediated oxidative stress all directly contribute to kidney injury. In this review, we outline the KDIGO bundle of care and highlight how this could be applied in the context of severe malaria to improve kidney perfusion, reduce AKI progression, and improve survival. With increased recognition that AKI in severe malaria is associated with substantial post-discharge morbidity and long-term risk of chronic kidney disease, there is a need to increase AKI recognition through enhanced access to creatinine-based and next-generation biomarker diagnostics. Long-term studies to assess severe malaria-associated AKI’s impact on long-term health in malaria-endemic areas are urgently needed.
Collapse
Affiliation(s)
- Anthony Batte
- Child Health and Development Centre, Makerere University College of Health Sciences, Kampala, Uganda
| | - Zachary Berrens
- Department of Pediatrics, Pediatric Critical Care Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristin Murphy
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ivan Mufumba
- CHILD Research Laboratory, Global Health Uganda, Kampala, Uganda
| | | | - Michael T Hawkes
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Andrea L Conroy
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
20
|
Petersen JEV, Saelens JW, Freedman E, Turner L, Lavstsen T, Fairhurst RM, Diakité M, Taylor SM. Sickle-trait hemoglobin reduces adhesion to both CD36 and EPCR by Plasmodium falciparum-infected erythrocytes. PLoS Pathog 2021; 17:e1009659. [PMID: 34115805 PMCID: PMC8221791 DOI: 10.1371/journal.ppat.1009659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/23/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023] Open
Abstract
Sickle-trait hemoglobin protects against severe Plasmodium falciparum malaria. Severe malaria is governed in part by the expression of the Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) that are encoded by var genes, specifically those variants that bind Endothelial Protein C Receptor (EPCR). In this study, we investigate the effect of sickle-trait on parasite var gene expression and function in vitro and in field-collected parasites. We mapped var gene reads generated from RNA sequencing in parasite cultures in normal and sickle-cell trait blood throughout the asexual lifecycle. We investigated sickle-trait effect on PfEMP1 interactions with host receptors CD36 and EPCR using static adhesion assays and flow cytometry. Var expression in vivo was compared by assembling var domains sequenced from total RNA in parasites infecting Malian children with HbAA and HbAS. Sickle-trait did not alter the abundance or type of var gene transcripts in vitro, nor the abundance of overall transcripts or of var functional domains in vivo. In adhesion assays using recombinant host receptors, sickle-trait reduced adhesion by 73-86% to CD36 and 83% to EPCR. Similarly, sickle-trait reduced the surface expression of EPCR-binding PfEMP1. In conclusion, Sickle-cell trait does not directly affect var gene transcription but does reduce the surface expression and function of PfEMP1. This provides a direct mechanism for protection against severe malaria conferred by sickle-trait hemoglobin. Trial Registration: ClinicalTrials.gov Identifier: NCT02645604.
Collapse
Affiliation(s)
- Jens E. V. Petersen
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| | - Joseph W. Saelens
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Elizabeth Freedman
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Louise Turner
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mahamadou Diakité
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Steve M. Taylor
- Division of Infectious Diseases, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Global Health Institute, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
21
|
Azasi Y, Low LM, Just AN, Raghavan SSR, Wang CW, Valenzuela-Leon P, Rowe JA, Smith JD, Lavstsen T, Turner L, Calvo E, Miller LH. Complement C1s cleaves PfEMP1 at interdomain conserved sites inhibiting Plasmodium falciparum cytoadherence. Proc Natl Acad Sci U S A 2021; 118:e2104166118. [PMID: 34035177 PMCID: PMC8179237 DOI: 10.1073/pnas.2104166118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023] Open
Abstract
Cytoadhesion of Plasmodium falciparum-infected erythrocytes (IEs) to the endothelial lining of blood vessels protects parasites from splenic destruction, but also leads to detrimental inflammation and vessel occlusion. Surface display of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion ligands exposes them to host antibodies and serum proteins. PfEMP1 are important targets of acquired immunity to malaria, and through evolution, the protein family has expanded and diversified to bind a select set of host receptors through antigenically diversified receptor-binding domains. Here, we show that complement component 1s (C1s) in serum cleaves PfEMP1 at semiconserved arginine motifs located at interdomain regions between the receptor-binding domains, rendering the IE incapable of binding the two main PfEMP1 receptors, CD36 and endothelial protein C receptor (EPCR). Bioinformatic analyses of PfEMP1 protein sequences from 15 P. falciparum genomes found the C1s motif was present in most PfEMP1 variants. Prediction of C1s cleavage and loss of binding to endothelial receptors was further corroborated by testing of several different parasite lines. These observations suggest that the parasites have maintained susceptibility for cleavage by the serine protease, C1s, and provides evidence for a complex relationship between the complement system and the P. falciparum cytoadhesion virulence determinant.
Collapse
Affiliation(s)
- Yvonne Azasi
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852
| | - Leanne M Low
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852
| | - Ashley N Just
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Sai S R Raghavan
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Christian W Wang
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Paola Valenzuela-Leon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852
| | - J Alexandra Rowe
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Joseph D Smith
- Center for Global Infectious Disease Resesarch, Seattle Children's Research Institute, Seattle, WA 98109
- Department of Pediatrics, University of Washington, Seattle, WA 98195
- Department of Global Health, University of Washington, Seattle, WA 98195
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Louise Turner
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Infectious Diseases, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852;
| | - Louis H Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852;
| |
Collapse
|
22
|
Sirisabhabhorn K, Chai่jaroenkul W, Muhamad P, Na-Bangchang K. Genetic diversity and distribution patterns of PfEMP1 in Plasmodium falciparum isolates along the Thai-Myanmar border. Parasitol Int 2021; 84:102397. [PMID: 34033864 DOI: 10.1016/j.parint.2021.102397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/15/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Duffy binding-like domain (DBL) and cysteine-rich interdomain region (CIDR) domain genes of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) encode malaria virulence proteins. The variants of these genes have been reported to be associated with severe/complicated malaria. The present study investigated the prevalence and distribution patterns of DBLα0.6/9, DBLα1.1, DBLα1 not var3 genes, DBLα2/α1.1/2/4/7, DBLβ12 & DBLβ3/5, DBLε8, CIDRα1.4, and CIDRα1.6 of P. falciparum isolates along the Thai-Myanmar border. The association between PfEMP1 variants and parasite density was also investigated. Two hundred and thirteen finger-prick dried blood spot (DBS) or whole blood samples were collected in 2007 and 2015, from patients with acute uncomplicated P. falciparum in Tak, Kanchanaburi, and Ranong provinces. Analysis of the variant genes was performed using polymerase chain reaction (PCR). The DBLs variant which was found at the highest and lowest frequencies in the three provinces were DBLα1 not var3 (72.77%), and DBLε8 (17.37%). The two CIDR domain variants were found at relatively lower frequencies compared with DBL domain variants (9.9% and 30.1%). P. falciparum isolates carrying the four PfEMP1 variants, i.e., DBLα0.6/9, DBLα1.1, DBLα2/α.1.1/2/4/7, and DBLε8 were found to be significantly associated with low parasitemia. Both DBLα0.6/9 and DBLα2/α1.1/2/4/7 variant genes which were present at high frequencies in this border area could be potential candidate markers for predicting P. falciparum hyperparasitemia and in this border area. Furthermore, the information could be exploited as candidate proteins for the development of an effective malaria vaccine in specific malaria-endemic areas.
Collapse
Affiliation(s)
- Kridsada Sirisabhabhorn
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Wanna Chai่jaroenkul
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Phunuch Muhamad
- Drug Discovery and Development Center, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|
23
|
Wichers JS, Tonkin-Hill G, Thye T, Krumkamp R, Kreuels B, Strauss J, von Thien H, Scholz JAM, Smedegaard Hansson H, Weisel Jensen R, Turner L, Lorenz FR, Schöllhorn A, Bruchhaus I, Tannich E, Fendel R, Otto TD, Lavstsen T, Gilberger TW, Duffy MF, Bachmann A. Common virulence gene expression in adult first-time infected malaria patients and severe cases. eLife 2021; 10:e69040. [PMID: 33908865 PMCID: PMC8102065 DOI: 10.7554/elife.69040] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 12/22/2022] Open
Abstract
Sequestration of Plasmodium falciparum(P. falciparum)-infected erythrocytes to host endothelium through the parasite-derived P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion proteins is central to the development of malaria pathogenesis. PfEMP1 proteins have diversified and expanded to encompass many sequence variants, conferring each parasite a similar array of human endothelial receptor-binding phenotypes. Here, we analyzed RNA-seq profiles of parasites isolated from 32 P. falciparum-infected adult travellers returning to Germany. Patients were categorized into either malaria naive (n = 15) or pre-exposed (n = 17), and into severe (n = 8) or non-severe (n = 24) cases. For differential expression analysis, PfEMP1-encoding var gene transcripts were de novo assembled from RNA-seq data and, in parallel, var-expressed sequence tags were analyzed and used to predict the encoded domain composition of the transcripts. Both approaches showed in concordance that severe malaria was associated with PfEMP1 containing the endothelial protein C receptor (EPCR)-binding CIDRα1 domain, whereas CD36-binding PfEMP1 was linked to non-severe malaria outcomes. First-time infected adults were more likely to develop severe symptoms and tended to be infected for a longer period. Thus, parasites with more pathogenic PfEMP1 variants are more common in patients with a naive immune status, and/or adverse inflammatory host responses to first infections favor the growth of EPCR-binding parasites.
Collapse
Affiliation(s)
- J Stephan Wichers
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | | | - Thorsten Thye
- Epidemiology and Diagnostics, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
| | - Ralf Krumkamp
- Epidemiology and Diagnostics, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-RiemsHamburgGermany
| | - Benno Kreuels
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, GermanyHamburgGermany
- Department of Medicine, College of MedicineBlantyreMalawi
- Department of Medicine, University Medical Center Hamburg-EppendorfHamburgGermany
| | - Jan Strauss
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Heidrun von Thien
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Judith AM Scholz
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
| | | | | | | | | | - Anna Schöllhorn
- Institute of Tropical Medicine, University of TübingenTübingenGermany
| | - Iris Bruchhaus
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Egbert Tannich
- Epidemiology and Diagnostics, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-RiemsHamburgGermany
| | - Rolf Fendel
- Institute of Tropical Medicine, University of TübingenTübingenGermany
- German Center for Infection Research (DZIF), Partner Site TübingenTübingenGermany
| | - Thomas D Otto
- Institute of Infection, Immunity and Inflammation, University of GlasgowGlasgowUnited Kingdom
| | | | - Tim W Gilberger
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
| | - Michael F Duffy
- Department of Microbiology and Immunology, University of MelbourneMelbourneAustralia
| | - Anna Bachmann
- Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical MedicineHamburgGermany
- Centre for Structural Systems BiologyHamburgGermany
- Biology Department, University of HamburgHamburgGermany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-RiemsHamburgGermany
| |
Collapse
|
24
|
Milne K, Ivens A, Reid AJ, Lotkowska ME, O'Toole A, Sankaranarayanan G, Munoz Sandoval D, Nahrendorf W, Regnault C, Edwards NJ, Silk SE, Payne RO, Minassian AM, Venkatraman N, Sanders MJ, Hill AVS, Barrett M, Berriman M, Draper SJ, Rowe JA, Spence PJ. Mapping immune variation and var gene switching in naive hosts infected with Plasmodium falciparum. eLife 2021; 10:e62800. [PMID: 33648633 PMCID: PMC7924948 DOI: 10.7554/elife.62800] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Falciparum malaria is clinically heterogeneous and the relative contribution of parasite and host in shaping disease severity remains unclear. We explored the interaction between inflammation and parasite variant surface antigen (VSA) expression, asking whether this relationship underpins the variation observed in controlled human malaria infection (CHMI). We uncovered marked heterogeneity in the host response to blood challenge; some volunteers remained quiescent, others triggered interferon-stimulated inflammation and some showed transcriptional evidence of myeloid cell suppression. Significantly, only inflammatory volunteers experienced hallmark symptoms of malaria. When we tracked temporal changes in parasite VSA expression to ask whether variants associated with severe disease rapidly expand in naive hosts, we found no transcriptional evidence to support this hypothesis. These data indicate that parasite variants that dominate severe malaria do not have an intrinsic growth or survival advantage; instead, they presumably rely upon infection-induced changes in their within-host environment for selection.
Collapse
Affiliation(s)
- Kathryn Milne
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
| | - Adam J Reid
- Wellcome Sanger InstituteCambridgeUnited Kingdom
| | | | - Aine O'Toole
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
- Institute of Evolutionary Biology, University of EdinburghEdinburghUnited Kingdom
| | | | - Diana Munoz Sandoval
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Instituto de Microbiologia, Universidad San Francisco de QuitoQuitoEcuador
| | - Wiebke Nahrendorf
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
| | - Clement Regnault
- Wellcome Centre for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Glasgow Polyomics, University of GlasgowGlasgowUnited Kingdom
| | - Nick J Edwards
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - Sarah E Silk
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - Ruth O Payne
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | | | | | | | - Adrian VS Hill
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - Michael Barrett
- Wellcome Centre for Integrative Parasitology, University of GlasgowGlasgowUnited Kingdom
- Glasgow Polyomics, University of GlasgowGlasgowUnited Kingdom
| | | | - Simon J Draper
- The Jenner Institute, University of OxfordOxfordUnited Kingdom
| | - J Alexandra Rowe
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
| | - Philip J Spence
- Institute of Immunology and Infection Research, University of EdinburghEdinburghUnited Kingdom
- Centre for Immunity, Infection and Evolution, University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
25
|
Structure-Guided Design of a Synthetic Mimic of an Endothelial Protein C Receptor-Binding PfEMP1 Protein. mSphere 2021; 6:6/1/e01081-20. [PMID: 33408232 PMCID: PMC7845591 DOI: 10.1128/msphere.01081-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccines train our immune systems to generate antibodies which recognize pathogens. Some of these antibodies are highly protective, preventing infection, while others are ineffective. Structure-guided vaccine design provides a route to elicit a focused immune response against the most functionally important regions of a pathogen surface. This can be achieved by identifying epitopes for neutralizing antibodies through structural methods and recapitulating these epitopes by grafting their core structural features onto smaller scaffolds. In this study, we conducted a modified version of this protocol. We focused on the PfEMP1 protein family found on the surfaces of erythrocytes infected with Plasmodium falciparum. A subset of PfEMP1 proteins bind to endothelial protein C receptor (EPCR), and their expression correlates with development of the symptoms of severe malaria. Structural studies revealed that PfEMP1 molecules present a helix-kinked-helix motif that forms the core of the EPCR-binding site. Using Rosetta-based design, we successfully grafted this motif onto a three-helical bundle scaffold. We show that this synthetic binder interacts with EPCR with nanomolar affinity and adopts the expected structure. We also assessed its ability to bind to antibodies found in immunized animals and in humans from malaria-endemic regions. Finally, we tested the capacity of the synthetic binder to effectively elicit antibodies that prevent EPCR binding and analyzed the degree of cross-reactivity of these antibodies across a diverse repertoire of EPCR-binding PfEMP1 proteins. Despite our synthetic binder adopting the correct structure, we find that it is not as effective as the CIDRα domain on which it is based for inducing adhesion-inhibitory antibodies. This cautions against the rational design of focused immunogens that contain the core features of a ligand-binding site of a protein family, rather than those of a neutralizing antibody epitope. IMPORTANCE Vaccines train our immune systems to generate antibodies which recognize pathogens. Some of these antibodies are highly protective, preventing infection, while others are ineffective. Structure-guided rational approaches allow design of synthetic molecules which contain only the regions of a pathogen required to induce production of protective antibodies. On the surfaces of red blood cells infected by the malaria parasite Plasmodium falciparum are parasite molecules called PfEMP1 proteins. PfEMP1 proteins, which bind to human receptor EPCR, are linked to development of severe malaria. We have designed a synthetic protein on which we grafted the EPCR-binding surface of a PfEMP1 protein. We use this molecule to show which fraction of protective antibodies recognize the EPCR-binding surface and test its effectiveness as a vaccine immunogen.
Collapse
|
26
|
Patel H, Dunican C, Cunnington AJ. Predictors of outcome in childhood Plasmodium falciparum malaria. Virulence 2020; 11:199-221. [PMID: 32063099 PMCID: PMC7051137 DOI: 10.1080/21505594.2020.1726570] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/16/2022] Open
Abstract
Plasmodium falciparum malaria is classified as either uncomplicated or severe, determining clinical management and providing a framework for understanding pathogenesis. Severe malaria in children is defined by the presence of one or more features associated with adverse outcome, but there is wide variation in the predictive value of these features. Here we review the evidence for the usefulness of these features, alone and in combination, to predict death and other adverse outcomes, and we consider the role that molecular biomarkers may play in augmenting this prediction. We also examine whether a more personalized approach to predicting outcome for specific presenting syndromes of severe malaria, particularly cerebral malaria, has the potential to be more accurate. We note a general need for better external validation in studies of outcome predictors and for the demonstration that predictors can be used to guide clinical management in a way that improves survival and long-term health.
Collapse
Affiliation(s)
- Harsita Patel
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Claire Dunican
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| | - Aubrey J. Cunnington
- Section of Paediatric Infectious Disease, Department of Infectious Disease, Imperial College London, London, UK
| |
Collapse
|
27
|
Gonzales SJ, Reyes RA, Braddom AE, Batugedara G, Bol S, Bunnik EM. Naturally Acquired Humoral Immunity Against Plasmodium falciparum Malaria. Front Immunol 2020; 11:594653. [PMID: 33193447 PMCID: PMC7658415 DOI: 10.3389/fimmu.2020.594653] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
Malaria remains a significant contributor to the global burden of disease, with around 40% of the world's population at risk of Plasmodium infections. The development of an effective vaccine against the malaria parasite would mark a breakthrough in the fight to eradicate the disease. Over time, natural infection elicits a robust immune response against the blood stage of the parasite, providing protection against malaria. In recent years, we have gained valuable insight into the mechanisms by which IgG acts to prevent pathology and inhibit parasite replication, as well as the potential role of immunoglobulin M (IgM) in these processes. Here, we discuss recent advances in our understanding of the mechanisms, acquisition, and maintenance of naturally acquired immunity, and the relevance of these discoveries for the development of a potential vaccine against the blood stage of Plasmodium falciparum.
Collapse
Affiliation(s)
| | | | | | | | | | - Evelien M. Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
28
|
Nyarko PB, Claessens A. Understanding Host-Pathogen-Vector Interactions with Chronic Asymptomatic Malaria Infections. Trends Parasitol 2020; 37:195-204. [PMID: 33127332 DOI: 10.1016/j.pt.2020.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 01/06/2023]
Abstract
The last malaria parasite standing will display effective adaptations to selective forces. While substantial progress has been made in reducing malaria mortality, eradication will require elimination of all Plasmodium parasites, including those in asymptomatic infections. These typically chronic, low-density infections are difficult to detect, yet can persist for months. We argue that asymptomatic infection is the parasite's best asset for survival but it can be exploited if studied as a new model for host-pathogen-vector interactions. Regular sampling from cohorts of asymptomatic individuals can provide a means to investigate continuous parasite development within its natural host. State-of-the-art techniques can now be applied to such infections. This approach may reveal key molecular drivers of chronic infections - a critical step for malaria eradication.
Collapse
Affiliation(s)
- Prince B Nyarko
- Laboratory of Pathogen-Host Interaction (LPHI), CNRS, University of Montpellier, France
| | | |
Collapse
|
29
|
Obeng-Adjei N, Larremore DB, Turner L, Ongoiba A, Li S, Doumbo S, Yazew TB, Kayentao K, Miller LH, Traore B, Pierce SK, Buckee CO, Lavstsen T, Crompton PD, Tran TM. Longitudinal analysis of naturally acquired PfEMP1 CIDR domain variant antibodies identifies associations with malaria protection. JCI Insight 2020; 5:137262. [PMID: 32427581 DOI: 10.1172/jci.insight.137262] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/06/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUNDMalaria pathogenicity is determined, in part, by the adherence of Plasmodium falciparum-infected erythrocytes to the microvasculature mediated via specific interactions between P. falciparum erythrocyte membrane protein (PfEMP1) variant domains and host endothelial receptors. Naturally acquired antibodies against specific PfEMP1 variants can play an important role in clinical protection against malaria.METHODSWe evaluated IgG responses against a repertoire of PfEMP1 CIDR domain variants to determine the rate and order of variant-specific antibody acquisition and their association with protection against febrile malaria in a prospective cohort study conducted in an area of intense, seasonal malaria transmission.RESULTSUsing longitudinal data, we found that IgG antibodies against the pathogenic domain variants CIDRα1.7 and CIDRα1.8 were acquired the earliest. Furthermore, IgG antibodies against CIDRγ3 were associated with reduced prospective risk of febrile malaria and recurrent malaria episodes.CONCLUSIONThis study provides evidence that acquisition of IgG antibodies against PfEMP1 variants is ordered and demonstrates that antibodies against CIDRα1 domains are acquired the earliest in children residing in an area of intense, seasonal malaria transmission. Future studies will need to validate these findings in other transmission settings and determine the functional activity of these naturally acquired CIDR variant-specific antibodies.TRIAL REGISTRATIONClinicalTrials.gov NCT01322581.FUNDINGDivision of Intramural Research, National Institute of Allergy and Infectious Diseases, NIH.
Collapse
Affiliation(s)
- Nyamekye Obeng-Adjei
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA.,Innate Immunity Research Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Daniel B Larremore
- Department of Computer Science and.,BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Louise Turner
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark. Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | | | - Kassoum Kayentao
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | - Louis H Miller
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, Maryland, USA
| | - Boubacar Traore
- Mali International Center of Excellence in Research, University of Sciences, Technique and Technology of Bamako, Bamako, Mali
| | | | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark. Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Tuan M Tran
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA.,Division of Infectious Diseases, Department of Medicine, and.,Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
30
|
Harmsen C, Turner L, Thrane S, Sander AF, Theander TG, Lavstsen T. Immunization with virus-like particles conjugated to CIDRα1 domain of Plasmodium falciparum erythrocyte membrane protein 1 induces inhibitory antibodies. Malar J 2020; 19:132. [PMID: 32228596 PMCID: PMC7106694 DOI: 10.1186/s12936-020-03201-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/23/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND During the erythrocytic cycle, Plasmodium falciparum malaria parasites express P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) that anchor the infected erythrocytes (IE) to the vascular lining of the host. The CIDRα1 domain of PfEMP1 is responsible for binding host endothelial protein C receptor (EPCR), and increasing evidence support that this interaction triggers severe malaria, accounting for the majority of malaria-related deaths. In high transmission regions, children develop immunity to severe malaria after the first few infections. This immunity is believed to be mediated by antibodies targeting and inhibiting PfEMP1, causing infected erythrocytes to circulate and be cleared in the spleen. The development of immunity to malaria coincides with acquisition of broad antibody reactivity across the CIDRα1 protein family. Altogether, this identifies CIDRα1 as an important vaccine target. However, the antigenic diversity of the CIDRα1 domain family is a challenge for vaccine development. METHODS Immune responses in mice vaccinated with Virus-Like Particles (VLP) presenting CIDRα1 antigens were investigated. Antibody reactivity was tested to a panel of recombinant CIDRα1 domains, and the antibodies ability to inhibit EPCR binding by the recombinant CIDRα1 domains was tested in Luminex-based multiplex assays. RESULTS VLP-presented CIDRα1.4 antigens induced a rapid and strong IgG response capable of inhibiting EPCR-binding of multiple CIDRα1 domains mainly within the group A CIDRα1.4-7 subgroups. CONCLUSIONS The study observations mirror those from previous CIDRα1 vaccine studies using other vaccine constructs and platforms. This suggests that broad CIDRα1 antibody reactivity may be achieved through vaccination with a limited number of CIDRα1 variants. In addition, this study suggest that this may be achieved through vaccination with a human compatible VLP vaccine platform.
Collapse
Affiliation(s)
- Charlotte Harmsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Louise Turner
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Susan Thrane
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Adam F Sander
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Thor G Theander
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| |
Collapse
|
31
|
Cespedes JC, Hibbert J, Krishna S, Yan F, Bharti PK, Stiles JK, Liu M. Association of EPCR Polymorphism rs867186-GG With Severity of Human Malaria. Front Genet 2020; 11:56. [PMID: 32153634 PMCID: PMC7050639 DOI: 10.3389/fgene.2020.00056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/17/2020] [Indexed: 11/14/2022] Open
Abstract
Background Cerebral malaria (CM) is characterized by the sequestration of Plasmodium-infected erythrocytes (pRBCs) to host brain microvasculature beds via P. falciparum erythrocyte membrane protein 1 (PfEMP1). Under normal conditions, activated protein C (APC) bound to endothelial protein C receptor (EPCR) has cytoprotective properties via the activation of protease-activated receptor 1 (PAR1). During malaria infection, pRBCs transports PfEMP1 to the membranes to bind EPCR in the same region as APC. As a result, APC is less capable of inducing cytoprotective effects via PAR1. Two studies involving adult malaria patients revealed that EPCR rs867186-GG allele is associated with protection against severe malaria, while three other studies involving child malaria patients could not show association between EPCR rs867186-GG genotype and severe malaria or increased mortality among children with CM. Methods We examined the association between the EPCR rs867186-GG genotype and the protection against cerebral malaria. Peripheral blood samples were collected from 47 malaria patients and 34 healthy individuals from a study conducted from 2004 to 2007 at the NSCB Medical College Hospital in India. CM and malaria-associated complications were defined based on WHO criteria. Genomic DNA was isolated from the peripheral blood mononuclear cells. Primer sequences were designed to contain rs867186 of the PROCR gene (NM 006404) and were used to amplify a 660 bp product as described before. PCR products were purified, and DNA sequences were determined by Sanger Sequencing (Genewiz, NJ). Nonparametric tests were used to compare the groups. To analyze differences in allele frequencies, we used chi-squared or Fisher's exact tests for categorical variables if the expected values were less than 5. P-value <0.05 was considered statistically significant. Results Our results showed significantly higher rates of AG and GG genotypes in CM patients compared to mild malaria (P = 0.0034). Conclusion Our results indicate that rs867186-GG or rs867186-AG genotypes are not associated with protection against HCM.
Collapse
Affiliation(s)
- Juan Carlos Cespedes
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Jacqueline Hibbert
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Sri Krishna
- National Institute for Research in Tribal Health (NIRTH), Jabalpur, India
| | - Fengxia Yan
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Praveen K Bharti
- National Institute for Research in Tribal Health (NIRTH), Jabalpur, India
| | - Jonathan K Stiles
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
32
|
Jensen AR, Adams Y, Hviid L. Cerebral Plasmodium falciparum malaria: The role of PfEMP1 in its pathogenesis and immunity, and PfEMP1-based vaccines to prevent it. Immunol Rev 2020; 293:230-252. [PMID: 31562653 PMCID: PMC6972667 DOI: 10.1111/imr.12807] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Malaria, a mosquito-borne infectious disease caused by parasites of the genus Plasmodium continues to be a major health problem worldwide. The unicellular Plasmodium-parasites have the unique capacity to infect and replicate within host erythrocytes. By expressing variant surface antigens Plasmodium falciparum has evolved to avoid protective immune responses; as a result in endemic areas anti-malaria immunity develops gradually over many years of multiple and repeated infections. We are studying the role of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) expressed by asexual stages of P. falciparum responsible for the pathogenicity of severe malaria. The immunopathology of falciparum malaria has been linked to cyto-adhesion of infected erythrocytes to specific host receptors. A greater appreciation of the PfEMP1 molecules important for the development of protective immunity and immunopathology is a prerequisite for the rational discovery and development of a safe and protective anti-disease malaria vaccine. Here we review the role of ICAM-1 and EPCR receptor adhering falciparum-parasites in the development of severe malaria; we discuss our current research to understand the factors involved in the pathogenesis of cerebral malaria and the feasibility of developing a vaccine targeted specifically to prevent this disease.
Collapse
Affiliation(s)
- Anja Ramstedt Jensen
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Infectious DiseasesRigshospitaletCopenhagenDenmark
| |
Collapse
|
33
|
Rambhatla JS, Turner L, Manning L, Laman M, Davis TME, Beeson JG, Mueller I, Warrel J, Theander TG, Lavstsen T, Rogerson SJ. Acquisition of Antibodies Against Endothelial Protein C Receptor-Binding Domains of Plasmodium falciparum Erythrocyte Membrane Protein 1 in Children with Severe Malaria. J Infect Dis 2019; 219:808-818. [PMID: 30365003 DOI: 10.1093/infdis/jiy564] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/18/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates parasite sequestration in postcapillary venules in P. falciparum malaria. PfEMP1 types can be classified based on their cysteine-rich interdomain region (CIDR) domains. Antibodies to different PfEMP1 types develop gradually after repeated infections as children age, and antibodies to specific CIDR types may confer protection. METHODS Levels of immunoglobulin G to 35 recombinant CIDR domains were measured by means of Luminex assay in acute-stage (baseline) and convalescent-stage plasma samples from Papua New Guinean children with severe or uncomplicated malaria and in healthy age-matched community controls. RESULTS At baseline, antibody levels were similar across the 3 groups. After infection, children with severe malaria had higher antibody levels than those with uncomplicated malaria against the endothelial protein C receptor (EPCR) binding CIDRα1 domains, and this difference was largely confined to older children. Antibodies to EPCR-binding domains increased from presentation to follow-up in severe malaria, but not in uncomplicated malaria. CONCLUSIONS The acquisition of antibodies against EPCR-binding CIDRα1 domains of PfEMP1 after a severe malaria episode suggest that EPCR-binding PfEMP1 may have a role in the pathogenesis of severe malaria in Papua New Guinea.
Collapse
Affiliation(s)
- Janavi S Rambhatla
- Department of Medicine, The Peter Doherty Institute for Infection and Immunity, Parkville
| | - Louise Turner
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Denmark
| | - Laurens Manning
- School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Research Institute, Fiona Stanley Hospital, Murdoch
| | - Moses Laman
- Papua New Guinea Institute of Medical Research, Madang
| | - Timothy M E Davis
- School of Medicine and Pharmacology, University of Western Australia, Harry Perkins Research Institute, Fiona Stanley Hospital, Murdoch
| | - James G Beeson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Ivo Mueller
- Department of Medical Biology, University of Melbourne, Parkville.,Walter and Eliza Hall Institute of Medical Research, Parkville.,Parasite and Insect Vectors Department, Institut Pasteur, Paris, France
| | | | - Thor G Theander
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital, Denmark
| | - Stephen J Rogerson
- Department of Medicine, The Peter Doherty Institute for Infection and Immunity, Parkville
| |
Collapse
|
34
|
Olsen RW, Ecklu-Mensah G, Bengtsson A, Ofori MF, Kusi KA, Koram KA, Hviid L, Adams Y, Jensen ATR. Acquisition of IgG to ICAM-1-Binding DBLβ Domains in the Plasmodium falciparum Erythrocyte Membrane Protein 1 Antigen Family Varies between Groups A, B, and C. Infect Immun 2019; 87:e00224-19. [PMID: 31308082 PMCID: PMC6759304 DOI: 10.1128/iai.00224-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is an important malaria virulence factor. The protein family can be divided into clinically relevant subfamilies. ICAM-1-binding group A PfEMP1 proteins also bind endothelial protein C receptor and have been associated with cerebral malaria in children. IgG to these PfEMP1 proteins is acquired later in life than that to group A PfEMP1 not binding ICAM-1. The kinetics of acquisition of IgG to group B and C PfEMP1 proteins binding ICAM-1 is unclear and was studied here. Gene sequences encoding group B and C PfEMP1 with DBLβ domains known to bind ICAM-1 were used to identify additional binders. Levels of IgG specific for DBLβ domains from group A, B, and C PfEMP1 binding or not binding ICAM-1 were measured in plasma from Ghanaian children with or without malaria. Seven new ICAM-1-binding DBLβ domains from group B and C PfEMP1 were identified. Healthy children had higher levels of IgG specific for ICAM-1-binding DBLβ domains from group A than from groups B and C. However, the opposite pattern was found in children with malaria, particularly among young patients. Acquisition of IgG specific for DBLβ domains binding ICAM-1 differs between PfEMP1 groups.
Collapse
MESH Headings
- Antibodies, Protozoan/biosynthesis
- Child
- Child, Preschool
- Erythrocytes/immunology
- Erythrocytes/parasitology
- Female
- Gene Expression
- Ghana
- Humans
- Immunoglobulin G/biosynthesis
- Infant
- Intercellular Adhesion Molecule-1/genetics
- Intercellular Adhesion Molecule-1/immunology
- Malaria, Cerebral/genetics
- Malaria, Cerebral/immunology
- Malaria, Cerebral/parasitology
- Malaria, Cerebral/pathology
- Malaria, Falciparum/genetics
- Malaria, Falciparum/immunology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/pathology
- Male
- Plasmodium falciparum/immunology
- Plasmodium falciparum/pathogenicity
- Polymorphism, Genetic
- Protein Binding
- Protein Domains
- Protozoan Proteins/classification
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Seasons
- Severity of Illness Index
Collapse
Affiliation(s)
- Rebecca W Olsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gertrude Ecklu-Mensah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Anja Bengtsson
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael F Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kwadwo A Kusi
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kwadwo A Koram
- Department of Epidemiology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja T R Jensen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Lennartz F, Smith C, Craig AG, Higgins MK. Structural insights into diverse modes of ICAM-1 binding by Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci U S A 2019; 116:20124-20134. [PMID: 31527263 PMCID: PMC6778195 DOI: 10.1073/pnas.1911900116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A major determinant of pathogenicity in malaria caused by Plasmodium falciparum is the adhesion of parasite-infected erythrocytes to the vasculature or tissues of infected individuals. This occludes blood flow, leads to inflammation, and increases parasitemia by reducing spleen-mediated clearance of the parasite. This adhesion is mediated by PfEMP1, a multivariant family of around 60 proteins per parasite genome which interact with specific host receptors. One of the most common of these receptors is intracellular adhesion molecule-1 (ICAM-1), which is bound by 2 distinct groups of PfEMP1, A-type and B or C (BC)-type. Here, we present the structure of a domain from a B-type PfEMP1 bound to ICAM-1, revealing a complex binding site. Comparison with the existing structure of an A-type PfEMP1 bound to ICAM-1 shows that the 2 complexes share a globally similar architecture. However, while the A-type PfEMP1 bind ICAM-1 through a highly conserved binding surface, the BC-type PfEMP1 use a binding site that is more diverse in sequence, similar to how PfEMP1 interact with other human receptors. We also show that A- and BC-type PfEMP1 present ICAM-1 at different angles, perhaps influencing the ability of neighboring PfEMP1 domains to bind additional receptors. This illustrates the deep diversity of the PfEMP1 and demonstrates how variations in a single domain architecture can modulate binding to a specific ligand to control function and facilitate immune evasion.
Collapse
Affiliation(s)
- Frank Lennartz
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, United Kingdom
| | - Cameron Smith
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, United Kingdom
| | - Alister G Craig
- Liverpool School of Tropical Medicine, L3 5QA Liverpool, United Kingdom
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, OX1 3QU Oxford, United Kingdom;
| |
Collapse
|
36
|
Avril M, Benjamin M, Dols MM, Smith JD. Interplay of Plasmodium falciparum and thrombin in brain endothelial barrier disruption. Sci Rep 2019; 9:13142. [PMID: 31511575 PMCID: PMC6739390 DOI: 10.1038/s41598-019-49530-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/19/2019] [Indexed: 01/05/2023] Open
Abstract
Recent concepts suggest that both Plasmodium falciparum factors and coagulation contribute to endothelial activation and dysfunction in pediatric cerebral malaria (CM) pathology. However, there is still limited understanding of how these complex inflammatory stimuli are integrated by brain endothelial cells. In this study, we examined how mature-stage P. falciparum infected erythrocytes (IE) interact with tumor necrosis factor α (TNFα) and thrombin in the activation and permeability of primary human brain microvascular endothelial cell (HBMEC) monolayers. Whereas trophozoite-stage P. falciparum-IE have limited effect on the viability of HBMEC or the secretion of pro-inflammatory cytokines or chemokines, except at super physiological parasite-host cell ratios, schizont-stage P. falciparum-IE induced low levels of cell death. Additionally, schizont-stage parasites were more barrier disruptive than trophozoite-stage P. falciparum-IE and prolonged thrombin-induced barrier disruption in both resting and TNFα-activated HBMEC monolayers. These results provide evidence that parasite products and thrombin may interact to increase brain endothelial permeability.
Collapse
Affiliation(s)
- Marion Avril
- Seattle Children's Research Institute, Seattle, WA, 98109, USA
| | - Max Benjamin
- Seattle Children's Research Institute, Seattle, WA, 98109, USA
| | | | - Joseph D Smith
- Seattle Children's Research Institute, Seattle, WA, 98109, USA. .,Department of Global Health, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
37
|
Storm J, Jespersen JS, Seydel KB, Szestak T, Mbewe M, Chisala NV, Phula P, Wang CW, Taylor TE, Moxon CA, Lavstsen T, Craig AG. Cerebral malaria is associated with differential cytoadherence to brain endothelial cells. EMBO Mol Med 2019; 11:emmm.201809164. [PMID: 30610112 PMCID: PMC6365927 DOI: 10.15252/emmm.201809164] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sequestration of Plasmodium falciparum‐infected erythrocytes (IE) within the brain microvasculature is a hallmark of cerebral malaria (CM). Using a microchannel flow adhesion assay with TNF‐activated primary human microvascular endothelial cells, we demonstrate that IE isolated from Malawian paediatric CM cases showed increased binding to brain microvascular endothelial cells compared to IE from uncomplicated malaria (UM) cases. Further, UM isolates showed significantly greater adhesion to dermal than to brain microvascular endothelial cells. The major mediator of parasite adhesion is P. falciparum erythrocyte membrane protein 1, encoded by var genes. Higher levels of var gene transcripts predicted to bind host endothelial protein C receptor (EPCR) and ICAM‐1 were detected in CM isolates. These data provide further evidence for differential tissue binding in severe and uncomplicated malaria syndromes, and give additional support to the hypothesis that CM pathology is based on increased cytoadherence of IE in the brain microvasculature.
Collapse
Affiliation(s)
- Janet Storm
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK .,Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,College of Medicine, University of Malawi, Blantyre, Malawi
| | - Jakob S Jespersen
- Department of International Health, Immunology & Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Karl B Seydel
- College of Medicine, University of Malawi, Blantyre, Malawi.,Blantyre Malaria Project, College of Medicine, University of Malawi, Blantyre, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Tadge Szestak
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Maurice Mbewe
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Ngawina V Chisala
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Patricia Phula
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Christian W Wang
- Department of International Health, Immunology & Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Terrie E Taylor
- Blantyre Malaria Project, College of Medicine, University of Malawi, Blantyre, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Christopher A Moxon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Thomas Lavstsen
- Department of International Health, Immunology & Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Alister G Craig
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
38
|
Bachmann A, Bruske E, Krumkamp R, Turner L, Wichers JS, Petter M, Held J, Duffy MF, Sim BKL, Hoffman SL, Kremsner PG, Lell B, Lavstsen T, Frank M, Mordmüller B, Tannich E. Controlled human malaria infection with Plasmodium falciparum demonstrates impact of naturally acquired immunity on virulence gene expression. PLoS Pathog 2019; 15:e1007906. [PMID: 31295334 PMCID: PMC6650087 DOI: 10.1371/journal.ppat.1007906] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/23/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of Plasmodium falciparum malaria is linked to the variant surface antigen PfEMP1, which mediates tethering of infected erythrocytes to the host endothelium and is encoded by approximately 60 var genes per parasite genome. Repeated episodes of malaria infection result in the gradual acquisition of protective antibodies against PfEMP1 variants. The antibody repertoire is believed to provide a selective pressure driving the clonal expansion of parasites expressing unrecognized PfEMP1 variants, however, due to the lack of experimental in vivo models there is only limited experimental evidence in support of this concept. To get insight into the impact of naturally acquired immunity on the expressed var gene repertoire early during infection we performed controlled human malaria infections of 20 adult African volunteers with life-long malaria exposure using aseptic, purified, cryopreserved P. falciparum sporozoites (Sanaria PfSPZ Challenge) and correlated serological data with var gene expression patterns from ex vivo parasites. Among the 10 African volunteers who developed patent infections, individuals with low antibody levels showed a steep rise in parasitemia accompanied by broad activation of multiple, predominantly subtelomeric var genes, similar to what we previously observed in naïve volunteers. In contrast, individuals with intermediate antibody levels developed asymptomatic infections and the ex vivo parasite populations expressed only few var gene variants, indicative of clonal selection. Importantly, in contrast to parasites from naïve volunteers, expression of var genes coding for endothelial protein C receptor (EPCR)-binding PfEMP1 that are associated with severe childhood malaria was rarely detected in semi-immune adult African volunteers. Moreover, we followed var gene expression for up to six parasite replication cycles and demonstrated for the first time in vivo a shift in the dominant var gene variant. In conclusion, our data suggest that P. falciparum activates multiple subtelomeric var genes at the onset of blood stage infection facilitating rapid expansion of parasite clones which express PfEMP1 variants unrecognized by the host's immune system, thus promoting overall parasite survival in the face of host immunity.
Collapse
Affiliation(s)
- Anna Bachmann
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
| | - Ellen Bruske
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Ralf Krumkamp
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
- Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Louise Turner
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen K, Denmark
| | - J. Stephan Wichers
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Michaela Petter
- Mikrobiologisches Institut–Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Jana Held
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Michael F. Duffy
- School of BioSciences, Bio21 Institute, University of Melbourne, Parkville, Victoria, Australia
| | | | | | - Peter G. Kremsner
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Bertrand Lell
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- German Center for Infection Research (DZIF), African partner institution, CERMEL, Gabon
| | - Thomas Lavstsen
- Centre for Medical Parasitology, University of Copenhagen, Copenhagen K, Denmark
| | - Matthias Frank
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Mordmüller
- Institute of Tropical Medicine, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Germany
| | - Egbert Tannich
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research (DZIF), partner site Hamburg-Borstel-Lübeck-Riems, Germany
| |
Collapse
|
39
|
Kamaliddin C, Rombaut D, Guillochon E, Royo J, Ezinmegnon S, Agbota G, Huguet S, Guemouri S, Peirera C, Coppée R, Broussard C, Alao JM, Aubouy A, Guillonneau F, Deloron P, Bertin GI. From genomic to LC-MS/MS evidence: Analysis of PfEMP1 in Benin malaria cases. PLoS One 2019; 14:e0218012. [PMID: 31251748 PMCID: PMC6599223 DOI: 10.1371/journal.pone.0218012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/23/2019] [Indexed: 11/18/2022] Open
Abstract
Background PfEMP1 is the major protein from parasitic origin involved in the pathophysiology of severe malaria, and PfEMP1 domain subtypes are associated with the infection outcome. In addition, PfEMP1 variability is endless and current publicly available protein repositories do not reflect the high diversity of the sequences of PfEMP1 proteins. The identification of PfEMP1 protein sequences expressed with samples remains challenging. The aim of our study is to identify the different PfEMP1 proteins variants expressed within patient samples, and therefore identify PfEMP1 proteins domains expressed by patients presenting uncomplicated malaria or severe malaria in malaria endemic setting in Cotonou, Benin. Methods We performed a multi-omic approach to decipher PfEMP1 expression at the patient’s level in different clinical settings. Using a combination of whole genome sequencing approach and RNA sequencing, we were able to identify new PfEMP1 sequences and created a new custom protein database. This database was used for protein identification in mass spectrometry analysis. Results The differential expression analysis of RNAsequencing data shows an increased expression of the var domains transcripts DBLα1.7, DBLα1.1, DBLα2 and DBLβ12 in samples from patients suffering from Cerebral Malaria compared to Uncomplicated Malaria. Our approach allowed us to attribute PfEMP1 sequences to each sample and identify new peptides associated to PfEMP1 proteins in mass spectrometry. Conclusion We highlighted the diversity of the PfEMP1 sequences from field sample compared to reference sequences repositories and confirmed the validity of our approach. These findings should contribute to further vaccine development strategies based on PfEMP1 proteins.
Collapse
Affiliation(s)
| | - David Rombaut
- 3p5 Proteomic Facility, Université de Paris, Paris, France
| | | | - Jade Royo
- UMR 152 – PHARMADEV, IRD, Paul Sabatier Toulouse III University, Toulouse, France
| | - Sem Ezinmegnon
- UMR 261 – MERIT, IRD, Université de Paris, Paris, France
- Centre pour la Recherche et l’Etude du paludisme associé à la grossesse et à l’enfance, Cotonou, Bénin
| | - Gino Agbota
- UMR 261 – MERIT, IRD, Université de Paris, Paris, France
- Centre pour la Recherche et l’Etude du paludisme associé à la grossesse et à l’enfance, Cotonou, Bénin
| | - Stéphanie Huguet
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-Sud, Université d’Evry, Université Paris-Saclay, Gif sur Yvette, France
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA Université Paris-Diderot, Sorbonne Paris-Cité, Gif sur Yvette, France
| | - Sayeh Guemouri
- UMR 261 – MERIT, IRD, Université de Paris, Paris, France
| | - Céline Peirera
- UMR 261 – MERIT, IRD, Université de Paris, Paris, France
| | - Romain Coppée
- UMR 261 – MERIT, IRD, Université de Paris, Paris, France
| | | | | | - Agnès Aubouy
- UMR 152 – PHARMADEV, IRD, Paul Sabatier Toulouse III University, Toulouse, France
| | | | | | | |
Collapse
|
40
|
Lee WC, Russell B, Rénia L. Sticking for a Cause: The Falciparum Malaria Parasites Cytoadherence Paradigm. Front Immunol 2019; 10:1444. [PMID: 31316507 PMCID: PMC6610498 DOI: 10.3389/fimmu.2019.01444] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 06/10/2019] [Indexed: 12/26/2022] Open
Abstract
After a successful invasion, malaria parasite Plasmodium falciparum extensively remodels the infected erythrocyte cellular architecture, conferring cytoadhesive properties to the infected erythrocytes. Cytoadherence plays a central role in the parasite's immune-escape mechanism, at the same time contributing to the pathogenesis of severe falciparum malaria. In this review, we discuss the cytoadhesive interactions between P. falciparum infected erythrocytes and various host cell types, and how these events are linked to malaria pathogenesis. We also highlight the limitations faced by studies attempting to correlate diversity in parasite ligands and host receptors with the development of severe malaria.
Collapse
Affiliation(s)
- Wenn-Chyau Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Laurent Rénia
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
41
|
Binding Heterogeneity of Plasmodium falciparum to Engineered 3D Brain Microvessels Is Mediated by EPCR and ICAM-1. mBio 2019; 10:mBio.00420-19. [PMID: 31138740 PMCID: PMC6538777 DOI: 10.1128/mbio.00420-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cerebral malaria research has been hindered by the inaccessibility of the brain. Here, we have developed an engineered 3D human brain microvessel model that mimics the blood flow rates and architecture of small blood vessels to study how P. falciparum-infected human erythrocytes attach to brain endothelial cells. By studying parasite lines with different adhesive properties, we show that the malaria parasite binding rate is heterogeneous and strongly influenced by physiological differences in flow and whether the endothelium has been previously activated by TNF-α, a proinflammatory cytokine that is linked to malaria disease severity. We also show the importance of human EPCR and ICAM-1 in parasite binding. Our model sheds new light on how P. falciparum binds within brain microvessels and provides a powerful method for future investigations of recruitment of human brain pathogens to the blood vessel lining of the brain. Cerebral malaria is a severe neurological complication associated with sequestration of Plasmodium falciparum-infected erythrocytes (IE) in the brain microvasculature, but the specific binding interactions remain under debate. Here, we have generated an engineered three-dimensional (3D) human brain endothelial microvessel model and studied P. falciparum binding under the large range of physiological flow velocities that occur in both health and disease. Perfusion assays on 3D microvessels reveal previously unappreciated phenotypic heterogeneity in parasite binding to tumor necrosis factor alpha (TNF-α)-activated brain endothelial cells. While clonal parasite lines expressing a group B P. falciparum erythrocyte membrane protein 1 (PfEMP1) present an increase in binding to activated 3D microvessels, P. falciparum-IE expressing DC8-PfEMP1 present a decrease in binding. The differential response to endothelium activation is mediated by surface expression changes of endothelial protein C receptor (EPCR) and intercellular adhesion molecule 1 (ICAM-1). These findings demonstrate heterogeneity in parasite binding and provide evidence for a parasite strategy to adapt to a changing microvascular environment during infection. The engineered 3D human brain microvessel model provides new mechanistic insight into parasite binding and opens opportunities for further studies on malaria pathogenesis and parasite-vessel interactions.
Collapse
|
42
|
Meta-analysis of Plasmodium falciparum var Signatures Contributing to Severe Malaria in African Children and Indian Adults. mBio 2019; 10:mBio.00217-19. [PMID: 31040236 PMCID: PMC6495371 DOI: 10.1128/mbio.00217-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The clinical presentation of severe Plasmodium falciparum malaria differs between children and adults, but the mechanistic basis for this remains unclear. Contributing factors to disease severity include total parasite biomass and the diverse cytoadhesive properties mediated by the polymorphic var gene parasite ligand family displayed on infected erythrocytes. To explore these factors, we performed a multicohort analysis of the contribution of var expression and parasite biomass to severe malaria in two previously published pediatric cohorts in Tanzania and Malawi and an adult cohort in India. Machine learning analysis revealed independent and complementary roles for var adhesion types and parasite biomass in adult and pediatric severe malaria and showed that similar var profiles, including upregulation of group A and DC8 var, predict severe malaria in adults and children. Among adults, patients with multiorgan complications presented infections with significantly higher parasite biomass without significant differences in var adhesion types. Conversely, pediatric patients with specific complications showed distinct var signatures. Cerebral malaria patients showed broadly increased expression of var genes, in particular group A and DC8 var, while children with severe malaria anemia were classified based on high transcription of DC8 var only. This study represents the first large multisite meta-analysis of var expression, and it demonstrates the presence of common var profiles in severe malaria patients of different ages across distant geographical sites, as well as syndrome-specific disease signatures. The complex associations between parasite biomass, var adhesion type, and clinical presentation revealed here represent the most comprehensive picture so far of the relationship between cytoadhesion, parasite load, and clinical syndrome.IMPORTANCE P. falciparum malaria can cause multiple disease complications that differ by patient age. Previous studies have attempted to address the roles of parasite adhesion and biomass in disease severity; however, these studies have been limited to single geographical sites, and there is limited understanding of how parasite adhesion and biomass interact to influence disease manifestations. In this meta-analysis, we compared parasite disease determinants in African children and Indian adults. This study demonstrates that parasite biomass and specific subsets of var genes are independently associated with detrimental outcomes in both childhood and adult malaria. We also explored how parasite var adhesion types and biomass play different roles in the development of specific severe malaria pathologies, including childhood cerebral malaria and multiorgan complications in adults. This work represents the largest study to date of the role of both var adhesion types and biomass in severe malaria.
Collapse
|
43
|
Fougeroux C, Turner L, Bojesen AM, Lavstsen T, Holst PJ. Modified MHC Class II-Associated Invariant Chain Induces Increased Antibody Responses against Plasmodium falciparum Antigens after Adenoviral Vaccination. THE JOURNAL OF IMMUNOLOGY 2019; 202:2320-2331. [PMID: 30833346 DOI: 10.4049/jimmunol.1801210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/01/2019] [Indexed: 01/04/2023]
Abstract
Adenoviral vectors can induce T and B cell immune responses to Ags encoded in the recombinant vector. The MHC class II invariant chain (Ii) has been used as an adjuvant to enhance T cell responses to tethered Ag encoded in adenoviral vectors. In this study, we modified the Ii adjuvant by insertion of a furin recognition site (Ii-fur) to obtain a secreted version of the Ii. To test the capacity of this adjuvant to enhance immune responses, we recombined vectors to encode Plasmodium falciparum virulence factors: two cysteine-rich interdomain regions (CIDR) α1 (IT4var19 and PFCLINvar30 var genes), expressed as a dimeric Ag. These domains are members of a highly polymorphic protein family involved in the vascular sequestration and immune evasion of parasites in malaria. The Ii-fur molecule directed secretion of both Ags in African green monkey cells and functioned as an adjuvant for MHC class I and II presentation in T cell hybridomas. In mice, the Ii-fur adjuvant induced a similar T cell response, as previously demonstrated with Ii, accelerated and enhanced the specific Ab response against both CIDR Ags, with an increased binding capacity to the cognate endothelial protein C receptor, and enhanced the breadth of the response toward different CIDRs. We also demonstrate that the endosomal sorting signal, secretion, and the C-terminal part of Ii were needed for the full adjuvant effect for Ab responses. We conclude that engineered secretion of Ii adjuvant-tethered Ags establishes a single adjuvant and delivery vehicle platform for potent T and B cell-dependent immunity.
Collapse
Affiliation(s)
- Cyrielle Fougeroux
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; and
| | - Louise Turner
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; and
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Thomas Lavstsen
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; and
| | - Peter Johannes Holst
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; and
| |
Collapse
|
44
|
Chan JA, Boyle MJ, Moore KA, Reiling L, Lin Z, Hasang W, Avril M, Manning L, Mueller I, Laman M, Davis T, Smith JD, Rogerson SJ, Simpson JA, Fowkes FJI, Beeson JG. Antibody Targets on the Surface of Plasmodium falciparum-Infected Erythrocytes That Are Associated With Immunity to Severe Malaria in Young Children. J Infect Dis 2019; 219:819-828. [PMID: 30365004 PMCID: PMC6376912 DOI: 10.1093/infdis/jiy580] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/15/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Sequestration of Plasmodium falciparum-infected erythrocytes (IEs) in the microvasculature contributes to pathogenesis of severe malaria in children. This mechanism is mediated by antigens expressed on the IE surface. However, knowledge of specific targets and functions of antibodies to IE surface antigens that protect against severe malaria is limited. METHODS Antibodies to IE surface antigens were examined in a case-control study of young children in Papua New Guinea presenting with severe or uncomplicated malaria (n = 448), using isolates with a virulent phenotype associated with severe malaria, and functional opsonic phagocytosis assays. We used genetically modified isolates and recombinant P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains to quantify PfEMP1 as a target of antibodies associated with disease severity. RESULTS Antibodies to the IE surface and recombinant PfEMP1 domains were significantly higher in uncomplicated vs severe malaria and were boosted following infection. The use of genetically modified P. falciparum revealed that PfEMP1 was a major target of antibodies and that PfEMP1-specific antibodies were associated with reduced odds of severe malaria. Furthermore, antibodies promoting the opsonic phagocytosis of IEs by monocytes were lower in those with severe malaria. CONCLUSIONS Findings suggest that PfEMP1 is a dominant target of antibodies associated with reduced risk of severe malaria, and function in part by promoting opsonic phagocytosis.
Collapse
Affiliation(s)
- Jo-Anne Chan
- Burnet Institute for Medical Research and Public Health, Melbourne
| | - Michelle J Boyle
- Burnet Institute for Medical Research and Public Health, Melbourne
| | - Kerryn A Moore
- Burnet Institute for Medical Research and Public Health, Melbourne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne
| | - Linda Reiling
- Burnet Institute for Medical Research and Public Health, Melbourne
| | - Zaw Lin
- Burnet Institute for Medical Research and Public Health, Melbourne
| | - Wina Hasang
- Department of Medicine, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Australia
| | - Marion Avril
- Center for Infectious Diseases Research, Seattle, Washington
| | - Laurens Manning
- Papua New Guinea Institute of Medical Research, Madang
- University of Western Australia, Perth
| | - Ivo Mueller
- Walter and Eliza Hall Institute of Medical Research, Parkville
| | - Moses Laman
- Papua New Guinea Institute of Medical Research, Madang
| | | | - Joseph D Smith
- Center for Infectious Diseases Research, Seattle, Washington
| | - Stephen J Rogerson
- Department of Medicine, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, Melbourne
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - James G Beeson
- Burnet Institute for Medical Research and Public Health, Melbourne
- Department of Medicine, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Australia
- Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
45
|
Immunization with Recombinant Plasmodium falciparum Erythrocyte Membrane Protein 1 CIDRα1 Domains Induces Domain Subtype Inhibitory Antibodies. Infect Immun 2018; 86:IAI.00435-18. [PMID: 30150256 DOI: 10.1128/iai.00435-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/22/2018] [Indexed: 12/19/2022] Open
Abstract
Plasmodium falciparum malaria pathogenesis is tied to the sequestration of parasites in the microvasculature. Parasite sequestration leading to severe malaria is mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1) binding to endothelial protein C receptor (EPCR) via its CIDRα1 domains. CIDRα1 domains are targets of naturally acquired immunity, and a vaccine eliciting antibodies inhibiting the EPCR binding of CIDRα1 could potentially prevent disease and death from malaria. CIDRα1 domains have diversified in sequence to escape immune recognition but preserved structure to maintain EPCR binding. The EPCR-binding CIDRα1 domains separate into six major sequence types predicted to form a conserved structure in which only the amino acids essential for EPCR binding are highly conserved. Here, we investigated whether antibodies elicited by vaccination with single or multiple recombinant CIDRα1 domains are able to bind and inhibit diverse CIDRα1 domains. We found that EPCR binding-inhibitory antibodies to CIDRα1 variants closely related to those used for vaccination are readily elicited, whereas antibodies binding distant CIDRα1 variants are sporadically generated and are rarely inhibitory. Despite this, sequence similarity correlated poorly with the ability of induced antibodies to inhibit across diverse variants, and no continuous sequence regions of importance for cross-inhibitory antibodies could be identified. This suggested that epitopes of cross-variant inhibitory antibodies were predominantly conformational. Vaccination with immunogens engineered to focus immune responses to specific epitopes or an optimal choice of multiple CIDRα1 variants may improve elicitation of broadly reactive and inhibitory antibody responses.
Collapse
|
46
|
Glennon EKK, Dankwa S, Smith JD, Kaushansky A. Opportunities for Host-targeted Therapies for Malaria. Trends Parasitol 2018; 34:843-860. [PMID: 30122551 PMCID: PMC6168423 DOI: 10.1016/j.pt.2018.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022]
Abstract
Despite the recent successes of artemisinin-based antimalarial drugs, many still die from severe malaria, and eradication efforts are hindered by the limited drugs currently available to target transmissible gametocyte parasites and liver-resident dormant Plasmodium vivax hypnozoites. Host-targeted therapy is a new direction for infectious disease drug development and aims to interfere with host molecules, pathways, or networks that are required for infection or that contribute to disease. Recent advances in our understanding of host pathways involved in parasite development and pathogenic mechanisms in severe malaria could facilitate the development of host-targeted interventions against Plasmodium infection and malaria disease. This review discusses new opportunities for host-targeted therapeutics for malaria and the potential to harness drug polypharmacology to simultaneously target multiple host pathways using a single drug intervention.
Collapse
Affiliation(s)
- Elizabeth K K Glennon
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA; These authors made an equal contribution
| | - Selasi Dankwa
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; These authors made an equal contribution
| | - Joseph D Smith
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA
| | - Alexis Kaushansky
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA.
| |
Collapse
|
47
|
Antibodies to Intercellular Adhesion Molecule 1-Binding Plasmodium falciparum Erythrocyte Membrane Protein 1-DBLβ Are Biomarkers of Protective Immunity to Malaria in a Cohort of Young Children from Papua New Guinea. Infect Immun 2018; 86:IAI.00485-17. [PMID: 29784862 DOI: 10.1128/iai.00485-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 05/18/2018] [Indexed: 11/20/2022] Open
Abstract
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) mediates parasite sequestration to the cerebral microvasculature via binding of DBLβ domains to intercellular adhesion molecule 1 (ICAM1) and is associated with severe cerebral malaria. In a cohort of 187 young children from Papua New Guinea (PNG), we examined baseline levels of antibody to the ICAM1-binding PfEMP1 domain, DBLβ3PF11_0521, in comparison to four control antigens, including NTS-DBLα and CIDR1 domains from another group A variant and a group B/C variant. Antibody levels for the group A antigens were strongly associated with age and exposure. Antibody responses to DBLβ3PF11_0521 were associated with a 37% reduced risk of high-density clinical malaria in the follow-up period (adjusted incidence risk ratio [aIRR] = 0.63 [95% confidence interval {CI}, 0.45 to 0.88; P = 0.007]) and a 25% reduction in risk of low-density clinical malaria (aIRR = 0.75 [95% CI, 0.55 to 1.01; P = 0.06]), while there was no such association for other variants. Children who experienced severe malaria also had significantly lower levels of antibody to DBLβ3PF11_0521 and the other group A domains than those that experienced nonsevere malaria. Furthermore, a subset of PNG DBLβ sequences had ICAM1-binding motifs, formed a distinct phylogenetic cluster, and were similar to sequences from other areas of endemicity. PfEMP1 variants associated with these DBLβ domains were enriched for DC4 and DC13 head structures implicated in endothelial protein C receptor (EPCR) binding and severe malaria, suggesting conservation of dual binding specificities. These results provide further support for the development of specific classes of PfEMP1 as vaccine candidates and as biomarkers for protective immunity against clinical P. falciparum malaria.
Collapse
|
48
|
Lee HJ, Georgiadou A, Otto TD, Levin M, Coin LJ, Conway DJ, Cunnington AJ. Transcriptomic Studies of Malaria: a Paradigm for Investigation of Systemic Host-Pathogen Interactions. Microbiol Mol Biol Rev 2018; 82:e00071-17. [PMID: 29695497 PMCID: PMC5968457 DOI: 10.1128/mmbr.00071-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analyses of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, the simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue- and systems-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria a paradigm for the transcriptomic assessment of systemic host-pathogen interactions in humans, because much of the direct host-pathogen interaction occurs within the blood, a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria and how these lessons may guide studies of host-pathogen interactions in other infectious diseases. We propose that the potential of transcriptomic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require the integration of transcriptomic data with analytical approaches from other scientific disciplines, including epidemiology and mathematical modeling.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | - Thomas D Otto
- Centre of Immunobiology, University of Glasgow, Glasgow, United Kingdom
| | - Michael Levin
- Section of Paediatrics, Imperial College, London, United Kingdom
| | - Lachlan J Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David J Conway
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
49
|
Kessler A, Campo JJ, Harawa V, Mandala WL, Rogerson SJ, Mowrey WB, Seydel KB, Kim K. Convalescent Plasmodium falciparum-specific seroreactivity does not correlate with paediatric malaria severity or Plasmodium antigen exposure. Malar J 2018; 17:178. [PMID: 29695240 PMCID: PMC5918990 DOI: 10.1186/s12936-018-2323-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/18/2018] [Indexed: 12/17/2022] Open
Abstract
Background Antibody immunity is thought to be essential to prevent severe Plasmodium falciparum infection, but the exact correlates of protection are unknown. Over time, children in endemic areas acquire non-sterile immunity to malaria that correlates with development of antibodies to merozoite invasion proteins and parasite proteins expressed on the surface of infected erythrocytes. Results A 1000 feature P. falciparum 3D7 protein microarray was used to compare P. falciparum-specific seroreactivity during acute infection and 30 days after infection in 23 children with uncomplicated malaria (UM) and 25 children with retinopathy-positive cerebral malaria (CM). All children had broad P. falciparum antibody reactivity during acute disease. IgM reactivity decreased and IgG reactivity increased in convalescence. Antibody reactivity to CIDR domains of “virulent” PfEMP1 proteins was low with robust reactivity to the highly conserved, intracellular ATS domain of PfEMP1 in both groups. Although children with UM and CM differed markedly in parasite burden and PfEMP1 exposure during acute disease, neither acute nor convalescent PfEMP1 seroreactivity differed between groups. Greater seroprevalence to a conserved Group A-associated ICAM binding extracellular domain was observed relative to linked extracellular CIDRα1 domains in both case groups. Pooled immune IgG from Malawian adults revealed greater reactivity to PfEMP1 than observed in children. Conclusions Children with uncomplicated and cerebral malaria have similar breadth and magnitude of P. falciparum antibody reactivity. The utility of protein microarrays to measure serological recognition of polymorphic PfEMP1 antigens needs to be studied further, but the study findings support the hypothesis that conserved domains of PfEMP1 are more prominent targets of cross reactive antibodies than variable domains in children with symptomatic malaria. Protein microarrays represent an additional tool to identify cross-reactive Plasmodium antigens including PfEMP1 domains that can be investigated as strain-transcendent vaccine candidates. Electronic supplementary material The online version of this article (10.1186/s12936-018-2323-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Kessler
- Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Visopo Harawa
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,College of Medicine, Biomedical Department, University of Malawi, Blantyre, Malawi
| | - Wilson L Mandala
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,College of Medicine, Biomedical Department, University of Malawi, Blantyre, Malawi.,Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
| | | | | | - Karl B Seydel
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA. .,Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi.
| | - Kami Kim
- Albert Einstein College of Medicine, Bronx, NY, USA. .,Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
50
|
Olsen RW, Ecklu-Mensah G, Bengtsson A, Ofori MF, Lusingu JPA, Castberg FC, Hviid L, Adams Y, Jensen ATR. Natural and Vaccine-Induced Acquisition of Cross-Reactive IgG-Inhibiting ICAM-1-Specific Binding of a Plasmodium falciparum PfEMP1 Subtype Associated Specifically with Cerebral Malaria. Infect Immun 2018; 86:e00622-17. [PMID: 29426042 PMCID: PMC5865037 DOI: 10.1128/iai.00622-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022] Open
Abstract
Cerebral malaria (CM) is a potentially deadly outcome of Plasmodium falciparum malaria that is precipitated by sequestration of infected erythrocytes (IEs) in the brain. The adhesion of IEs to brain endothelial cells is mediated by a subtype of parasite-encoded erythrocyte membrane protein 1 (PfEMP1) that facilitates dual binding to host intercellular adhesion molecule 1 (ICAM-1) and endothelial protein receptor C (EPCR). The PfEMP1 subtype is characterized by the presence of a particular motif (DBLβ_motif) in the constituent ICAM-1-binding DBLβ domain. The rate of natural acquisition of DBLβ_motif-specific IgG antibodies and the ability to induce such antibodies by vaccination are unknown, and the aim of this study was to provide such data. We used an enzyme-linked immunosorbent assay (ELISA) to measure DBLβ-specific IgG in plasma from Ghanaian children with malaria. The ability of human immune plasma and DBLβ-specific rat antisera to inhibit the interaction between ICAM-1 and DBLβ was assessed using ELISA and in vitro assays of IE adhesion under flow. The acquisition of DBLβ_motif-specific IgG coincided with age-specific susceptibility to CM. Broadly cross-reactive antibodies inhibiting the interaction between ICAM-1 and DBLβ_motif domains were detectable in immune plasma and in sera of rats immunized with specific DBLβ_motif antigens. Importantly, antibodies against the DBLβ_motif inhibited ICAM-1-specific in vitro adhesion of erythrocytes infected by four of five P. falciparum isolates from cerebral malaria patients. We conclude that natural exposure to P. falciparum as well as immunization with specific DBLβ_motif antigens can induce cross-reactive antibodies that inhibit the interaction between ICAM-1 and a broad range of DBLβ_motif domains. These findings raise hope that a vaccine designed specifically to prevent CM is feasible.
Collapse
MESH Headings
- Adolescent
- Amino Acid Motifs
- Antibodies, Neutralizing/immunology
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/immunology
- Binding Sites
- Child
- Child, Preschool
- Cross Reactions/immunology
- Ghana
- Humans
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Infant
- Intercellular Adhesion Molecule-1/metabolism
- Malaria Vaccines/immunology
- Malaria, Cerebral/immunology
- Malaria, Cerebral/metabolism
- Malaria, Cerebral/parasitology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/metabolism
- Malaria, Falciparum/parasitology
- Plasmodium falciparum/immunology
- Protein Binding/immunology
- Protein Interaction Domains and Motifs
- Protozoan Proteins/chemistry
- Protozoan Proteins/immunology
- Protozoan Proteins/metabolism
- Tanzania
Collapse
Affiliation(s)
- Rebecca W Olsen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gertrude Ecklu-Mensah
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Anja Bengtsson
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael F Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - John P A Lusingu
- National Institute for Medical Research, Tanga Centre, Tanga City, Tanzania
| | - Filip C Castberg
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja T R Jensen
- Centre for Medical Parasitology at Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|