1
|
Atatreh N, Mahgoub RE, Ghattas MA. Exploring covalent inhibitors of SARS-CoV-2 main protease: from peptidomimetics to novel scaffolds. J Enzyme Inhib Med Chem 2025; 40:2460045. [PMID: 39912405 PMCID: PMC11803818 DOI: 10.1080/14756366.2025.2460045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
Peptidomimetic inhibitors mimic natural peptide substrates, employing electrophilic warheads to covalently interact with the catalytic Cys145 of Mpro. Examples include aldehydes, α-ketoamides, and aza-peptides, with discussions on their mechanisms of action, potency, and structural insights. Non-peptidomimetic inhibitors utilise diverse scaffolds and mechanisms, achieving covalent modification of Mpro.
Collapse
Affiliation(s)
- Noor Atatreh
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Radwa E. Mahgoub
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Mohammad A. Ghattas
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Centre, Al Ain University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
2
|
Soto‐Ponce A, De Ita M, Castro‐Obregón S, Cortez D, Landesman Y, Magaña JJ, Gonzalo S, Zavaleta T, Soberano‐Nieto A, Unzueta J, Arrieta‐Cruz I, Nava P, Candelario‐Martínez A, García‐Aguirre I, Cisneros B. Targeting CRM1 for Progeria Syndrome Therapy. Aging Cell 2025; 24:e14495. [PMID: 39871520 PMCID: PMC12073922 DOI: 10.1111/acel.14495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/02/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disease caused by progerin, a mutant variant of lamin A. Progerin anchors aberrantly to the nuclear envelope disrupting a plethora of cellular processes, which in turn elicits senescence. We previously showed that the chromosomal region maintenance 1 (CRM1)-driven nuclear export pathway is abnormally enhanced in patient-derived fibroblasts, due to overexpression of CRM1. Interestingly, pharmacological inhibition of CRM1 using leptomycin B rescues the senescent phenotype of HGPS fibroblasts, delineating CRM1 as a potential therapeutic target against HGPS. As a proof of concept, we analyzed the beneficial effects of pharmacologically modulating CRM1 in dermal fibroblasts from HGPS patients and the LMNAG609G/G609G mouse, using the first-in-class selective inhibitor of CRM1 termed selinexor. Remarkably, treatment of HGPS fibroblasts with selinexor mitigated senescence and promoted progerin clearance via autophagy, while at the transcriptional level restored the expression of numerous differentially-expressed genes and rescued cellular processes linked to aging. In vivo, oral administration of selinexor to the progeric mouse resulted in decreased progerin immunostaining in the liver and aorta, decreased progerin levels in most liver, lung and kidney samples analyzed by immunoblotting, and improved aortic histopathology. Collectively our data indicate that selinexor exerts its geroprotective action by at least two mechanisms: normalizing the nucleocytoplasmic partition of proteins with a downstream effect on the aging-associated transcriptome and decreasing progerin levels. Further investigation of the overall effect of selinexor on LmnaG609G/G609G mouse physiology, with emphasis in cardiovascular function is warranted, to determine its therapeutic utility for HGPS and aging-associated disorders characterized by CRM1 overactivity.
Collapse
Affiliation(s)
- Adriana Soto‐Ponce
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios AvanzadosCiudad de MéxicoMexico
| | - Marlon De Ita
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios AvanzadosCiudad de MéxicoMexico
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSSSCiudad de MéxicoMexico
| | | | - Diego Cortez
- Centro de Ciencias Genómicas, UNAMCuernavacaMexico
| | | | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética (CENIAQ)Instituto Nacional de Rehabilitación‐Luis Guillermo Ibarra (INR‐LGII)Ciudad de MéxicoMexico
- Departamento de BioingenieríaEscuela de Ingeniería y Ciencias, Tecnologico de MonterreyCiudad de MéxicoMexico
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisMissouriUSA
| | - Tania Zavaleta
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios AvanzadosCiudad de MéxicoMexico
| | - Angelica Soberano‐Nieto
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios AvanzadosCiudad de MéxicoMexico
| | - Juan Unzueta
- Unidad Iztapalapa, División de Ciencias Biológicas y de la SaludUniversidad Autónoma MetropolitanaCiudad de MéxicoMexico
| | - Isabel Arrieta‐Cruz
- Departamento de Investigación Básica, División de InvestigaciónInstituto Nacional de Geriatría, Secretaría de SaludCiudad de MéxicoMexico
| | - Porfirio Nava
- Departamento de Fisiología, Biofísica y NeurocienciasCentro de Investigación y de Estudios AvanzadosCiudad de MéxicoMexico
| | - Aurora Candelario‐Martínez
- Departamento de Fisiología, Biofísica y NeurocienciasCentro de Investigación y de Estudios AvanzadosCiudad de MéxicoMexico
| | - Ian García‐Aguirre
- Departamento de BioingenieríaEscuela de Ingeniería y Ciencias, Tecnologico de MonterreyCiudad de MéxicoMexico
| | - Bulmaro Cisneros
- Departamento de Genética y Biología MolecularCentro de Investigación y de Estudios AvanzadosCiudad de MéxicoMexico
| |
Collapse
|
3
|
Han L, Gao C, Jin X, Li Y, Chen L, Li D, Deng Q, Bian X. Bioactive natural alkaloid 6-Methoxydihydrosanguinarine exerts anti-tumor effects in hepatocellular carcinoma cells via ferroptosis. Front Pharmacol 2025; 16:1500461. [PMID: 40343005 PMCID: PMC12058669 DOI: 10.3389/fphar.2025.1500461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 04/11/2025] [Indexed: 05/11/2025] Open
Abstract
Introduction Ferroptosis is a form of regulated cell death driven by the accumulation of iron-dependent lipid peroxides, and ferroptosis-mediated cancer therapy has gained considerable attention. Despite emerging evidence that ferroptosis induction effectively suppresses hepatocellular carcinoma (HCC) progression and enhances chemosensitivity, the development of resistance to ferroptosis-targeting therapies remains a critical challenge. Natural active compounds have great potential in cancer treatment. Methods The impact of 6-ME on the cell viability of HCC cells was assessed using the Cell Counting Kit-8 (CCK-8) assay and colony formation assay. Furthermore, cellular morphology of HCC cells was visualized under inverted fluorescence microscopy. Intracellular reactive oxygen species (ROS) and lipid peroxidation levels were quantified using fluorescence probes and determined by flow cytometry analysis. The expression of ferroptosis-related proteins and genes was determined via Western blot and quantitative real-time PCR analyses. Results Here, we demonstrate that 6-Methoxydihydrosanguinarine (6-ME), an alkaloid from Macleaya cordata, exerts anti-tumor functions in HCC cells via ferroptosis. Stimulation with 6-ME induces intracellular ROS production, cell growth inhibition, and cell death in HCC cells, and these effects can be weakened by the ROS scavenger GSH or NAC and ferroptosis inhibitors deferoxamine mesylate (DFO) or ferrostatin-1 (Fer-1). Mechanistically, 6-ME downregulates the expression of the key ferroptosis defense enzyme GPX4 at the transcriptional level, leading to excessive lipid peroxidation and ferroptosis in HCC cells. Importantly, low concentrations of 6-ME also enhanced the ferroptosis sensitivity induced by RSL3 and IKE in HCC cells. Conclusion These findings reveal that the natural product 6-ME exerts anti-tumor functions in HCC cells via ferroptosis and underscore the potential of 6-ME administered alone or in combination with canonical ferroptosis inducers for the treatment of HCC patients.
Collapse
Affiliation(s)
- Linfen Han
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Department of Nutrition, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chengchang Gao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaorui Jin
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yingping Li
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Liangjie Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Donglin Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qinqin Deng
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xueli Bian
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Department of Nutrition, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Gao A, Zou J, Zeng T, Qin M, Tang X, Yi T, Song G, Zhong J, Zeng Y, Zhou W, Gao Q, Zhang Q, Zhang J, Li Y. IGF2BP3/ESM1/KLF10/BECN1 positive feedback loop: a novel therapeutic target in ovarian cancer via lipid metabolism reprogramming. Cell Death Dis 2025; 16:308. [PMID: 40240362 PMCID: PMC12003649 DOI: 10.1038/s41419-025-07571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 02/28/2025] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
Ovarian cancer (OC) is often detected at an advanced stage and has a high recurrence rate after surgery or chemotherapy. Thus, it is essential to develop new strategies for OC treatment. This study tended to investigate the effects of endothelial cell-specific molecule 1 (ESM1) in OC. The impact of ESM1 on lipid metabolism was investigated through the regulation of ESM1 expression. Differential genes regulated by ESM1 were screened by mRNA sequencing. The role of autophagy in ESM1 regulation on lipid metabolism was explored using autophagy inhibitor chloroquine (CQ). Co-IP, dual-luciferase reporter assay, actinomycin D treatment assay, and others were used to analyze the mechanism of ESM1 regulation on lipid metabolism. The xenograft mouse model was constructed to explore the impact of ESM1 regulation on OC development. The regulatory mechanism of ESM1 in OC patient samples was verified by using microarray analysis and the Log-rank (Mantel-Cox) test. After ESM1 silencing, cholesterol synthesis decreased and lipolysis increased. mRNA sequencing revealed that ESM1 regulation on lipid metabolism was related to Beclin 1 (BECN1). In vitro experiments, ESM1 inhibited lipolysis by suppressing BECN1-mediated autophagy. BECN1 expression was regulated by the transcription factor Kruppel-like factor 10 (KLF10). The competitive binding between BECN1 and HSPA5 promoted the ubiquitination degradation of HMGCR, thereby inhibiting cholesterol production. The intervention experiment with exogenous cholesterol showed a positive correlation between m6A reader IGF2BP3 expression and cholesterol content. Mechanistically, IGF2BP3 regulated the stability of ESM1 mRNA. In vivo experiments, ESM1 modified by m6A methylation promoted cholesterol synthesis and inhibited lipolysis. High expression of ESM1 predicted poor prognosis in OC patients. ESM1 regulated lipid metabolism through IGF2BP3/ESM1/KLF10/BECN1 positive feedback, which was a promising target for OC treatment.
Collapse
Affiliation(s)
- Anbo Gao
- Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Juan Zou
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Tian Zeng
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Mei Qin
- Department of Gynecology, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Xing Tang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
- Department of Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Ting Yi
- Department of Trauma Center, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Guangming Song
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Jie Zhong
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Yuhuan Zeng
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China
| | - Wenchao Zhou
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
| | - Qin Gao
- Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qunfeng Zhang
- Hengyang Medical School, University of South China, Hengyang, Hunan, China.
- Department of Gynecology, The Second Affiliated Hospital, University of South China, Hengyang, Hunan, China.
| | - Juan Zhang
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China.
| | - Yukun Li
- Hengyang Medical School, University of South China, Hengyang, Hunan, China.
- Department of Assisted Reproductive Centre, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, Hunan, China.
| |
Collapse
|
5
|
Li S, Wang X, Huang J, Cao X, Liu Y, Bai S, Zeng T, Chen Q, Li C, Lu C, Yang H. Decoy-PROTAC for specific degradation of "Undruggable" STAT3 transcription factor. Cell Death Dis 2025; 16:197. [PMID: 40118821 PMCID: PMC11928565 DOI: 10.1038/s41419-025-07535-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/18/2025] [Accepted: 03/12/2025] [Indexed: 03/24/2025]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is widely recognized as an attractive target for cancer therapy due to its significant role in the initiation and progression of tumorigenesis. However, existing STAT3 inhibitors have suffered from drawbacks including poor efficacy, limited specificity, and undesirable off-target effects, due to the challenging nature of identifying active sites or allosteric regulatory pockets on STAT3 amenable to small-molecule inhibition. In response to these obstacles, we utilize the innovative proteolysis targeting chimera (PROTAC) technology to create a highly specific decoy-targeted protein degradation system for STAT3 protein, termed D-PROTAC. This system fuses DNA decoy that targets STAT3 with an E3 ligase ligand, utilizing a click chemistry approach. Experimental results demonstrate that D-PROTAC efficiently mediates the degradation of the STAT3 protein across various cancer cell types, leading to the downregulation of crucial downstream STAT3 targets, inhibiting tumor cell growth, triggering cell cycle arrest and apoptosis, and suppressing tumor immune evasion. Furthermore, D-PROTAC is capable of achieving significant tumor suppression in xenograft models. Overall, our research validates that D-PROTAC can successfully target and eliminate the "undruggable" STAT3, showcasing specificity and potent antitumor effects. This strategy will suggest a promising avenue for the development of targeted therapies against the critical functions of STAT3 in human cancers and potentially other diseases.
Collapse
Affiliation(s)
- Shiqing Li
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China
| | - Xin Wang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China
| | - Jiabao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, People's Republic of China
| | - Xiuping Cao
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China
| | - Yana Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China
| | - Shiyan Bai
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China
| | - Tao Zeng
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, People's Republic of China
| | - Chunsen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, People's Republic of China
| | - Chunhua Lu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China.
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, People's Republic of China.
| |
Collapse
|
6
|
Yu XJ, Chen LL, Ren ZJ, Li YP, Chen JY, Zhao YX, Jiang JB. Aspirin-based PROTACs as COX-2 degraders for anti-inflammation. Bioorg Med Chem 2025; 119:118061. [PMID: 39793401 DOI: 10.1016/j.bmc.2025.118061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025]
Abstract
Cyclooxygenase-2 (COX-2) is a key enzyme in the biosynthesis of prostaglandins and plays a special role in the process of inflammatory response. COX-2 is a target of non-steroidal anti-inflammatory drugs (NSAIDs), which can effectively relieve inflammation, pain and fever responses by inhibiting COX-2. Despite the significant study progress of inhibitors targeting COX-2, the development of COX-2 degraders remains insufficient. Proteolysis targeting chimaeras (PROTACs) have recently emerged as a fascinating technology for targeted protein degradation and drug discovery. In this report, we present the design, synthesis and detection of aspirin-based PROTACs that demonstrate effective ubiquitin-proteasome pathway degradation of COX-2 in lipopolysaccharide-stimulated RAW264.7 cells, and the aspirin-based negative PROTACs does not promote the degradation of COX-2. Moreover, we show AspPROTACs could significantly affect proteasome degradation and inflammatory signaling pathways through quantitative proteomic data analysis. These COX-2 degraders offer valuable chemical tools and novel insights for research in anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xuan-Jie Yu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Li-Li Chen
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zhi-Jie Ren
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yan-Peng Li
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Jia-Yu Chen
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Yu-Xi Zhao
- Shenzhen Wininnovate Bio-Tech Co., Ltd, 410034 Shenzhen, China
| | - Jian-Bing Jiang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
7
|
Monterrubio-Ledezma F, Salcido-Gómez A, Zavaleta-Vásquez T, Navarro-García F, Cisneros B, Massieu L. The anti-senescence effect of D-β-hydroxybutyrate in Hutchinson-Gilford progeria syndrome involves progerin clearance by the activation of the AMPK-mTOR-autophagy pathway. GeroScience 2025:10.1007/s11357-024-01501-9. [PMID: 39821043 DOI: 10.1007/s11357-024-01501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025] Open
Abstract
D-β-hydroxybutyrate, BHB, has been previously proposed as an anti-senescent agent in vitro and in vivo in several tissues including vascular smooth muscle. Moreover, BHB derivatives as ketone esters alleviate heart failure. Here, we provide evidence of the potential therapeutic effect of BHB on Hutchinson-Gilford progeria syndrome (HGPS), a rare condition characterized by premature aging and heart failure, caused by the presence of progerin, the aberrant protein derived from LMNA/C gene c.1824C > T mutation. We have assessed several hallmarks of HGPS-senescent phenotype in vitro, such as progerin levels, nuclear morphometric aberrations, nucleolar expansion, cellular senescent morphology, SA-βGal-positive cells, H3K9me3 heterochromatin, γH2AX foci, Lamin B1, p21Waf1/Cip1 and p16CDKN2A abundance, and autophagy. Strikingly, BHB improved nuclear and nucleolar morphometrics, diminished the senescence-phenotype, and unstuck autophagy in HGPS as observed by an enhanced degradation of the cargo protein receptor SQSTM1/p62, suggesting the stimulation of the autophagic flux. Additionally, we observed a decrease in progerin abundance, the cause of senescence in HGPS. Furthermore, compound C, an inhibitor of AMPK, and SBI-0206965, an inhibitor of ULK1/2 and AMPK, which prevent autophagy activation, reversed BHB-induced progerin decline as well as its anti-senescent effect in an AMPK-mTORC1 dependent manner. Altogether, these results suggest that the anti-senescence effect of BHB involves progerin clearance by autophagy activation supporting the potential of BHB for HGPS therapeutics and further preclinical trials.
Collapse
Affiliation(s)
- Feliciano Monterrubio-Ledezma
- Department of Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Ashley Salcido-Gómez
- Department of Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico
| | - Tania Zavaleta-Vásquez
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Fernando Navarro-García
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Bulmaro Cisneros
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 07360, Mexico City, Mexico
| | - Lourdes Massieu
- Department of Neuropathology, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), 04510, Mexico City, Mexico.
| |
Collapse
|
8
|
Li S, Zeng T, Wu Z, Huang J, Cao X, Liu Y, Bai S, Chen Q, Li C, Lu C, Yang H. DNA Tetrahedron-Driven Multivalent Proteolysis-Targeting Chimeras: Enhancing Protein Degradation Efficiency and Tumor Targeting. J Am Chem Soc 2025; 147:2168-2181. [PMID: 39749585 DOI: 10.1021/jacs.4c16438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Proteolysis-targeting chimeras (PROTACs) are dual-functional molecules composed of a protein of interest (POI) ligand and an E3 ligase ligand connected by a linker, which can recruit POI and E3 ligases simultaneously, thereby inducing the degradation of POI and showing great potential in disease treatment. A challenge in developing PROTACs is the design of linkers and the modification of ligands to establish a multifunctional platform that enhances degradation efficiency and antitumor activity. As a programmable and modifiable nanomaterial, DNA tetrahedron can precisely assemble and selectively recognize molecules and flexibly adjust the distance between molecules, making them ideal linkers. Herein, we developed a multivalent PROTAC based on a DNA tetrahedron, named AS-TD2-PRO. Using DNA tetrahedron as a linker, we combined modules targeting tumor cells, recognizing E3 ligases, and multiple POI together. We took the undruggable target protein signal transducer and activator of transcription 3 (STAT3), associated with the etiology and progression in a variety of malignant tumors, as an example in this study. AS-TD2-PRO with two STAT3 recognition modules demonstrated good potential in enhancing tumor-specific targeting and degradation efficiency compared to traditional bivalent PROTACs. Furthermore, in a mouse tumor model, the superior therapeutic activity of AS-TD2-PRO was observed. Overall, DNA tetrahedron-driven multivalent PROTACs both serve as a proof of principle for multifunctional PROTAC design and introduce a promising avenue for cancer treatment strategies.
Collapse
Affiliation(s)
- Shiqing Li
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Tao Zeng
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Zhixing Wu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jiabao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Xiuping Cao
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Yana Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shiyan Bai
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Chunsen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Chunhua Lu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
- School of Medicine, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
- School of Medicine, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
9
|
Soggia G, ElMaghloob Y, Boromangnaeva AK, Al Jord A. Mechanical Remodeling of Nuclear Biomolecular Condensates. Physiology (Bethesda) 2025; 40:0. [PMID: 39109673 DOI: 10.1152/physiol.00027.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Organism health relies on cell proliferation, migration, and differentiation. These universal processes depend on cytoplasmic reorganization driven notably by the cytoskeleton and its force-generating motors. Their activity generates forces that mechanically agitate the cell nucleus and its interior. New evidence from reproductive cell biology revealed that these cytoskeletal forces can be tuned to remodel nuclear membraneless compartments, known as biomolecular condensates, and regulate their RNA processing function for the success of subsequent cell division that is critical for fertility. Both cytoskeletal and nuclear condensate reorganization are common to numerous physiological and pathological contexts, raising the possibility that mechanical remodeling of nuclear condensates may be a much broader mechanism regulating their function. Here, we review this newfound mechanism of condensate remodeling and venture into the contexts of health and disease where it may be relevant, with a focus on reproduction, cancer, and premature aging.
Collapse
Affiliation(s)
- Giulia Soggia
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Yasmin ElMaghloob
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Systems Biology and Immunology Lab, Children's Cancer Hospital Egypt, Cairo, Egypt
| | | | - Adel Al Jord
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
10
|
Wang Y, Liu G, Qiu F, Li X, Diao Y, Yang M, Yang S, Li B, Han Q, Liu J. Corilagin alleviated intestinal ischemia-reperfusion injury by modulating endoplasmic reticulum stress via bonding with Bip. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156011. [PMID: 39265205 DOI: 10.1016/j.phymed.2024.156011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Intestinal ischemia-reperfusion (II/R) injury is a common clinical emergency with high morbidity and mortality. Given the absence of efficacious prophylactic and therapeutic interventions and specific drugs, sustained efforts are essential to develop new targeted drugs. Corilagin, a naturally polyphenolic tannic acid widespread in longan, rambutan and many other edible economic crops with medicinal properties in China, is of interest due to its multiple bioactivities, including the potential to mitigate II/R injuries. Nevertheless, a clear understanding of its molecular targets and the intricate mechanisms against II/R injury remains obscure and requires further elucidation. OBJECTIVE This study aimed to investigate corilagin's pharmacological impact and molecular mechanism for II/R injury. METHODS An animal II/R model was established by clamping superior mesenteric artery (SMA), and the therapeutic efficacy of corilagin against II/R was evaluated by biochemical and pathological analysis. Next, integrated transcriptomic and proteomic analyses was performed to identify key targets. Moreover, endoplasmic reticulum stress (ERS) damage was respectively observed by transmission electron microscope (TEM), immunohistochemistry, TUNEL, flow cytometry and western blotting (WB). Finally, molecular docking, molecular dynamics (MD) simulation, cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) assays were utilized to assess the interaction between corilagin and binding immunoglobulin protein (Bip, Grp78 or Hspa5), and co-IP assay was conducted to investigate the interaction between Bip and its substrate proteins. RESULTS Corilagin exhibited robust protection against II/R injuries, effectively alleviating intestinal tissue damage and oxidative stress induced by II/R. The modulation of ERS as a potential regulatory mechanism was investigated through an integrated transcriptomic and proteomic analysis, identifying Bip as a key target contributing to corilagin's protective effects. Further experimental evidence using molecular docking, MD simulation, CETSA, and DARTS assays confirmed the potentially direct interaction of corilagin with Bip. This interaction promoted the ubiquitin-dependent degradation of the Bip-substrate complex, thereby suppressing ERS-related signalling pathways, including the IRE1 branch, PERK branch, and ATF6 branch, to alleviate tissue damage. CONCLUSION This study confirmed that corilagin could selectively bind to Bip, facilitating its ubiquitin-dependent recognition and degradation, thereby inhibiting severe endoplasmic reticulum stress signalling and alleviating II/R injury. A detailed mechanistic insight into the action mode of corilagin had been proposed, supporting its potential usage as an ERS inhibitor.
Collapse
Affiliation(s)
- Yunxiang Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Guanting Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Feng Qiu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Xinyi Li
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Yunpeng Diao
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China; Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian 116044, PR China; Technical Innovation Center of New Traditional Chinese Medicine Development and Transformation of Liaoning Province, Dalian 116044, PR China.
| | - Mengjing Yang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Shuhui Yang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Bin Li
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China; Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian 116044, PR China; Technical Innovation Center of New Traditional Chinese Medicine Development and Transformation of Liaoning Province, Dalian 116044, PR China.
| | - Qipeng Han
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China; Dalian Anti-Infective Traditional Chinese Medicine Development Engineering Technology Research Center, Dalian 116044, PR China.
| |
Collapse
|
11
|
Shu Z, Li X, Zhang W, Huyan Z, Cheng D, Xie S, Cheng H, Wang J, Du B. MG-132 activates sodium palmitate-induced autophagy in human vascular smooth muscle cells and inhibits senescence via the PI3K/AKT/mTOR axis. Lipids Health Dis 2024; 23:282. [PMID: 39232759 PMCID: PMC11373134 DOI: 10.1186/s12944-024-02268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024] Open
Abstract
OBJECTIVE This study aimed to reveal the role and mechanism of MG-132 in delaying hyperlipidemia-induced senescence of vascular smooth muscle cells (VSMCs). METHODS Immunohistochemistry and hematoxylin-eosin staining confirmed the therapeutic effect of MG-132 on arterial senescence in vivo and its possible mechanism. Subsequently, VSMCs were treated with sodium palmitate (PA), an activator (Recilisib) or an inhibitor (Pictilisib) to activate or inhibit PI3K, and CCK-8 and EdU staining, wound healing assays, Transwell cell migration assays, autophagy staining assays, reactive oxygen species assays, senescence-associated β-galactosidase staining, and Western blotting were performed to determine the molecular mechanism by which MG-132 inhibits VSMC senescence. Validation of the interaction between MG-132 and PI3K using molecular docking. RESULTS Increased expression of p-PI3K, a key protein of the autophagy regulatory system, and decreased expression of the autophagy-associated proteins Beclin 1 and ULK1 were observed in the aortas of C57BL/6J mice fed a high-fat diet (HFD), and autophagy was inhibited in aortic smooth muscle. MG-132 inhibits atherosclerosis by activating autophagy in VSMCs to counteract PA-induced cell proliferation, migration, oxidative stress, and senescence, thereby inhibiting VSMC senescence in the aorta. This process is achieved through the PI3K/AKT/mTOR signaling pathway. CONCLUSION MG-132 activates autophagy by inhibiting the PI3K/AKT/mTOR pathway, thereby inhibiting palmitate-induced proliferation, migration, and oxidative stress in vascular smooth muscle cells and suppressing their senescence.
Collapse
MESH Headings
- Autophagy/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- TOR Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Animals
- Cellular Senescence/drug effects
- Humans
- Phosphatidylinositol 3-Kinases/metabolism
- Mice
- Signal Transduction/drug effects
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Leupeptins/pharmacology
- Male
- Mice, Inbred C57BL
- Palmitic Acid/pharmacology
- Cell Proliferation/drug effects
- Cell Movement/drug effects
- Diet, High-Fat/adverse effects
Collapse
Affiliation(s)
- Zhiyun Shu
- Department of Cardiology, First Hospital of Jilin University, Changchun, Jilin, 130000, China
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Rd, Changchun, Jilin, 130000, China
| | - Xiangjun Li
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Rd, Changchun, Jilin, 130000, China
| | - Wenqing Zhang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Rd, Changchun, Jilin, 130000, China
| | - Zixu Huyan
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Rd, Changchun, Jilin, 130000, China
| | - Dong Cheng
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Shishun Xie
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Rd, Changchun, Jilin, 130000, China
| | - Hongyuan Cheng
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, 1266 Fujin Rd, Changchun, Jilin, 130000, China
| | - Jiajia Wang
- Department of Cardiology, First Hospital of Jilin University, Changchun, Jilin, 130000, China
| | - Bing Du
- Department of Cardiology, First Hospital of Jilin University, Changchun, Jilin, 130000, China.
| |
Collapse
|
12
|
Wang X, Zhang XY, Liao NQ, He ZH, Chen QF. Identification of ribosome biogenesis genes and subgroups in ischaemic stroke. Front Immunol 2024; 15:1449158. [PMID: 39290696 PMCID: PMC11406505 DOI: 10.3389/fimmu.2024.1449158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Background Ischaemic stroke is a leading cause of death and severe disability worldwide. Given the importance of protein synthesis in the inflammatory response and neuronal repair and regeneration after stroke, and that proteins are acquired by ribosomal translation of mRNA, it has been theorised that ribosome biogenesis may have an impact on promoting and facilitating recovery after stroke. However, the relationship between stroke and ribosome biogenesis has not been investigated. Methods In the present study, a ribosome biogenesis gene signature (RSG) was developed using Cox and least absolute shrinkage and selection operator (LASSO) analysis. We classified ischaemic stroke patients into high-risk and low-risk groups using the obtained relevant genes, and further elucidated the immune infiltration of the disease using ssGSEA, which clarified the close relationship between ischaemic stroke and immune subgroups. The concentration of related proteins in the serum of stroke patients was determined by ELISA, and the patients were divided into groups to evaluate the effect of the ribosome biogenesis gene on patients. Through bioinformatics analysis, we identified potential IS-RSGs and explored future therapeutic targets, thereby facilitating the development of more effective therapeutic strategies and novel drugs against potential therapeutic targets in ischaemic stroke. Results We obtained a set of 12 ribosome biogenesis-related genes (EXOSC5, MRPS11, MRPS7, RNASEL, RPF1, RPS28, C1QBP, GAR1, GRWD1, PELP1, UTP, ERI3), which play a key role in assessing the prognostic risk of ischaemic stroke. Importantly, risk grouping using ribosome biogenesis-related genes was also closely associated with important signaling pathways in stroke. ELISA detected the expression of C1QBP, RPS28 and RNASEL proteins in stroke patients, and the proportion of neutrophils was significantly increased in the high-risk group. Conclusions The present study demonstrates the involvement of ribosomal biogenesis genes in the pathogenesis of ischaemic stroke, providing novel insights into the underlying pathogenic mechanisms and potential therapeutic strategies for ischaemic stroke.
Collapse
Affiliation(s)
- Xi Wang
- School of Medicine, Guangxi University, Nanning, China
| | - Xiao-Yu Zhang
- The College of Life Sciences, Northwest University, Xian, China
| | - Nan-Qing Liao
- School of Medicine, Guangxi University, Nanning, China
| | - Ze-Hua He
- Department of General Surgery, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, China
| | - Qing-Feng Chen
- School of Computer, Electronics and Information, Guangxi University, Nanning, China
| |
Collapse
|
13
|
Nie P, Cao Z, Yu R, Dong C, Zhang W, Meng Y, Zhang H, Pan Y, Tong Z, Jiang X, Wang S, Zhu M, Han Y, Wang W, Zhang Y, Tan L, Li C, Xu Y, An L, Li B, Jiao S, Zhou Z. Targeting p97-Npl4 interaction inhibits tumor T reg cell development to enhance tumor immunity. Nat Immunol 2024; 25:1623-1636. [PMID: 39107403 DOI: 10.1038/s41590-024-01912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 06/28/2024] [Indexed: 09/01/2024]
Abstract
Targeting tumor-infiltrating regulatory T (TI-Treg) cells is a potential strategy for cancer therapy. The ATPase p97 in complex with cofactors (such as Npl4) has been investigated as an antitumor drug target; however, it is unclear whether p97 has a function in immune cells or immunotherapy. Here we show that thonzonium bromide is an inhibitor of the interaction of p97 and Npl4 and that this p97-Npl4 complex has a critical function in TI-Treg cells. Thonzonium bromide boosts antitumor immunity without affecting peripheral Treg cell homeostasis. The p97-Npl4 complex bridges Stat3 with E3 ligases PDLIM2 and PDLIM5, thereby promoting Stat3 degradation and enabling TI-Treg cell development. Collectively, this work shows an important role for the p97-Npl4 complex in controlling Treg-TH17 cell balance in tumors and identifies possible targets for immunotherapy.
Collapse
Affiliation(s)
- Pingping Nie
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Zhifa Cao
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Ruixian Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Dong
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Weihong Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Yan Meng
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Pan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenzhu Tong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoya Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shilong Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengwen Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Han
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiming Zhang
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Lijie Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanchuan Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuanzhi Xu
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine, Shanghai, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Pach N, Basler M. Cellular stress increases DRIP production and MHC Class I antigen presentation. Front Immunol 2024; 15:1445338. [PMID: 39247192 PMCID: PMC11377247 DOI: 10.3389/fimmu.2024.1445338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Background Defective ribosomal products (DRiPs) are non-functional proteins rapidly degraded during or after translation being an essential source for MHC class I ligands. DRiPs are characterized to derive from a substantial subset of nascent gene products that degrade more rapidly than their corresponding native retiree pool. So far, mass spectrometry analysis revealed that a large number of HLA class I peptides derive from DRiPs. However, a specific viral DRiP on protein level was not described. In this study, we aimed to characterize and identify DRiPs derived from a viral protein. Methods Using the nucleoprotein (NP) of the lymphocytic choriomeningitis virus (LCMV) which is conjugated N-terminally to ubiquitin, or the ubiquitin-like modifiers FAT10 or ISG15 the occurrence of DRiPs was studied. The formation and degradation of DRiPs was monitored by western blot with the help of a FLAG tag. Flow cytometry and cytotoxic T cells were used to study antigen presentation. Results We identified several short lived DRiPs derived from LCMV-NP. Of note, these DRiPs could only be observed when the LCMV-NP was modified with ubiquitin or ubiquitin-like modifiers, but not in the wild type form. Using proteasome inhibitors, we could show that degradation of LCMV-NP derived DRiPs were proteasome dependent. Interestingly, the synthesis of DRiPs could be enhanced when cells were stressed with the help of FCS starvation. An enhanced NP118-126 presentation was observed when the LCMV-NP was modified with ubiquitin or ubiquitin-like modifiers, or under FCS starvation. Conclusion Taken together, we visualize for the first time DRiPs derived from a viral protein. Furthermore, DRiPs formation, and therefore MHC-I presentation, is enhanced under cellular stress conditions. Our investigations on DRiPs in MHC class I antigen presentation open up new approaches for the development of vaccination strategies.
Collapse
Affiliation(s)
- Natalie Pach
- Institute of Cell Biology and Immunology Thurgau (BITG) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Michael Basler
- Institute of Cell Biology and Immunology Thurgau (BITG) at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
15
|
Ji J, Jin Y, Ma S, Zhu Y, Bi X, You Q, Jiang Z. Discovery of a NCOA4 Degrader for Labile Iron-Dependent Ferroptosis Inhibition. J Med Chem 2024; 67:12521-12533. [PMID: 39047113 DOI: 10.1021/acs.jmedchem.4c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Ferroptosis, a distinctive form of programmed cell death, has been implicated in numerous pathological conditions, and its inhibition is considered a promising therapeutic strategy. Currently, there is a scarcity of efficient antagonists for directly regulating intracellular ferrous iron. Ferritinophagy, an essential process for supplying intracellular labile iron, relies on nuclear receptor coactivator 4 (NCOA4), a selective autophagy receptor for the ferritin iron storage complex, thus playing a pivotal role in ferritinophagy. In this study, we reported a novel von Hippel-Lindau-based NCOA4 degrader, V3, as a potent ferroptosis inhibitor with an intracellular ferrous iron inhibition mechanism. V3 significantly reduced NCOA4 levels and downregulated intracellular ferrous iron (Fe2+) levels, thereby effectively suppressing ferroptosis induced by multiple pathways within cells and alleviating liver damage. This research presents a chemical knockdown tool targeting NCOA4 for further exploration into intracellular ferrous iron in ferroptosis, offering a promising therapeutic avenue for ferroptosis-related acute liver injury.
Collapse
Affiliation(s)
- Jian'ai Ji
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- School of Pharmacy, Jiangsu Health Vocational College, Nanjing 210009, Jiangsu, China
| | - Yuhui Jin
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Sinan Ma
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Zhu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Xinyu Bi
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
16
|
Sun Y, Xu L, Li Y, Jia S, Wang G, Cen X, Xu Y, Cao Z, Wang J, Shen N, Hu L, Zhang J, Mao J, Xia H, Liu Z, Fu X. Mitophagy defect mediates the aging-associated hallmarks in Hutchinson-Gilford progeria syndrome. Aging Cell 2024; 23:e14143. [PMID: 38482753 PMCID: PMC11296130 DOI: 10.1111/acel.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/03/2024] [Accepted: 03/01/2024] [Indexed: 06/13/2024] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a rare and fatal disease manifested by premature aging and aging-related phenotypes, making it a disease model for aging. The cellular machinery mediating age-associated phenotypes in HGPS remains largely unknown, resulting in limited therapeutic targets for HGPS. In this study, we showed that mitophagy defects impaired mitochondrial function and contributed to cellular markers associated with aging in mesenchymal stem cells derived from HGPS patients (HGPS-MSCs). Mechanistically, we discovered that mitophagy affected the aging-associated phenotypes of HGPS-MSCs by inhibiting the STING-NF-ĸB pathway and the downstream transcription of senescence-associated secretory phenotypes (SASPs). Furthermore, by utilizing UMI-77, an effective mitophagy inducer, we showed that mitophagy induction alleviated aging-associated phenotypes in HGPS and naturally aged mice. Collectively, our results uncovered that mitophagy defects mediated the aging-associated markers in HGPS, highlighted the function of mitochondrial homeostasis in HGPS progression, and suggested mitophagy as an intervention target for HGPS and aging.
Collapse
Affiliation(s)
- Yingying Sun
- The First Affiliated HospitalZhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
| | - Le Xu
- The First Affiliated HospitalZhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang UniversityHangzhouZhejiangChina
| | - Yi Li
- The First Affiliated HospitalZhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
| | - Shunze Jia
- The First Affiliated HospitalZhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
| | - Gang Wang
- National Clinical Research Center of Kidney Diseases, Jinling HospitalNanjing University School of MedicineNanjingJiangsuChina
| | - Xufeng Cen
- The First Affiliated HospitalZhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang UniversityHangzhouZhejiangChina
| | - Yuyan Xu
- The First Affiliated HospitalZhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang UniversityHangzhouZhejiangChina
| | - Zhongkai Cao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiangChina
| | - Jingjing Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiangChina
| | - Ning Shen
- The First Affiliated HospitalZhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang UniversityHangzhouZhejiangChina
| | - Lidan Hu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiangChina
| | - Jin Zhang
- The First Affiliated HospitalZhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical SciencesZhejiang University School of MedicineHangzhouChina
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiangChina
| | - Hongguang Xia
- The First Affiliated HospitalZhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang UniversityHangzhouZhejiangChina
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling HospitalNanjing University School of MedicineNanjingJiangsuChina
| | - Xudong Fu
- The First Affiliated HospitalZhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang UniversityHangzhouZhejiangChina
- Institute of HematologyZhejiang UniversityHangzhouZhejiangChina
- Department of Geriatrics, The First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
17
|
Zheng K, Li Q, Jiang N, Zhang Y, Zheng Y, Zhang Y, Feng Y, Chen R, Sang X, Chen Q. Plasmodium falciparum selectively degrades α-spectrin of infected erythrocytes after invasion. mBio 2024; 15:e0351023. [PMID: 38470053 PMCID: PMC11005373 DOI: 10.1128/mbio.03510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Remodeling the erythrocyte membrane and skeleton by the malarial parasite Plasmodium falciparum is closely associated with intraerythrocytic development. However, the mechanisms underlying this association remain unclear. In this study, we present evidence that erythrocytic α-spectrin, but not β-spectrin, was dynamically ubiquitinated and progressively degraded during the intraerythrocytic development of P. falciparum, from the ring to the schizont stage. We further observed an upregulated expression of P. falciparum phosphatidylinositol 3-kinase (PfPI3K) in the infected red blood cells during the intraerythrocytic development of the parasite. The data indicated that PfPI3K phosphorylated and activated erythrocytic ubiquitin-protein ligase, leading to increased α-spectrin ubiquitination and degradation during P. falciparum development. We further revealed that inhibition of the activity of PfPI3K impaired P. falciparum development in vitro and Plasmodium berghei infectivity in mice. These findings collectively unveil an important mechanism of PfPI3K-ubiquitin-mediated degradation of α-spectrin during the intraerythrocytic development of Plasmodium species. Proteins in the PfPI3K regulatory pathway are novel targets for effective treatment of severe malaria. IMPORTANCE Plasmodium falciparum is the causative agent of severe malaria that causes millions of deaths globally. The parasite invades human red blood cells and induces a cascade of alterations in erythrocytes for development and proliferation. Remodeling the host erythrocytic cytoskeleton is a necessary process during parasitization, but its regulatory mechanisms remain to be elucidated. In this study, we observed that erythrocytic α-spectrin is selectively degraded after P. falciparum invasion, while β-spectrin remained intact. We found that the α-spectrin chain was profoundly ubiquitinated by E3 ubiquitin ligase and degraded by the 26S proteasome. E3 ubiquitin ligase activity was regulated by P. falciparum phosphatidylinositol 3-kinase (PfPI3K) signaling. Additionally, blocking the PfPI3K-ubiquitin-proteasome pathway in P. falciparum-infected red blood cells reduced parasite proliferation and infectivity. This study deepens our understanding of the regulatory mechanisms of host and malarial parasite interactions and paves the way for the exploration of novel antimalarial drugs.
Collapse
Affiliation(s)
- Kexin Zheng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
- Engineering Research Center of Food Fermentation Technology, College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Qilong Li
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yanxin Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yuxin Zheng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| |
Collapse
|
18
|
Zhang F, Liu C, Chen Z, Zhao C. A novel PDIA3/FTO/USP20 positive feedback regulatory loop induces osteogenic differentiation of preosteoblast in osteoporosis. Cell Biol Int 2024; 48:541-550. [PMID: 38321831 DOI: 10.1002/cbin.12134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 02/08/2024]
Abstract
Osteoporosis is a chronic skeletal disease and the major source of risk for fractures in aged people. It is urgent to investigate the mechanism regulating osteoporosis for developing potential treatment and prevention strategies. Osteogenic differentiation of preosteoblast enhances bone formation, which might be a promising strategy for treatment and prevention of osteoporosis. Protein disulfide isomerase family A, member 3 (PDIA3) could induce bone formation, yet the role of PDIA3 in osteogenic differentiation of preosteoblast remains unknown. In this study, m6 A RNA methylation was detected by methylated RNA immunoprecipitation (MeRIP), while mRNA stability was identified by RNA decay assay. Besides, protein-protein interaction and protein phosphorylation were determined using co-immunoprecipitation (Co-IP). Herein, results revealed that PDIA3 promoted osteogenic differentiation of preosteoblast MC3T3-E1. Besides, PDIA3 mRNA methylation was suppressed by FTO alpha-ketoglutarate dependent dioxygenase (FTO) as RNA methylation reduced PDIA3 mRNA stability during osteogenic differentiation of MC3T3-E1 cells. Moreover, ubiquitin specific peptidase 20 (USP20) improved FTO level through inhibiting FTO degradation while PDIA3 increased FTO level by enhancing USP20 phosphorylation during osteogenic differentiation of MC3T3-E1 cells, suggesting a positive feedback regulatory loop between PDIA3 and FTO. In summary, these findings indicated the mechanism of PDIA3 regulating osteogenic differentiation of preosteoblast and provided potential therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Fei Zhang
- First Department of Orthopaedics, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Chen Liu
- Surgery Department, Zhongshan Port Hospital, Zhongshan, Guangdong, China
| | - Zhiyong Chen
- Department of Neurosurgery, The Affiliated Hospital of Jinan University, Guangzhou, China
- Minimally Invasive Treatment Center for Pituitary Adenoma of Jinan University, Guangzhou, China
| | - Chengyi Zhao
- Second Department of Orthopaedics, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| |
Collapse
|
19
|
Tiwari V, Alam MJ, Bhatia M, Navya M, Banerjee SK. The structure and function of lamin A/C: Special focus on cardiomyopathy and therapeutic interventions. Life Sci 2024; 341:122489. [PMID: 38340979 DOI: 10.1016/j.lfs.2024.122489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/21/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
Lamins are inner nuclear membrane proteins that belong to the intermediate filament family. Lamin A/C lie adjacent to the heterochromatin structure in polymer form, providing skeletal to the nucleus. Based on the localization, lamin A/C provides nuclear stability and cytoskeleton to the nucleus and modulates chromatin organization and gene expression. Besides being the structural protein making the inner nuclear membrane in polymer form, lamin A/C functions as a signalling molecule involved in gene expression as an enhancer inside the nucleus. Lamin A/C regulates various cellular pathways like autophagy and energy balance in the cytoplasm. Its expression is highly variable in differentiated tissues, higher in hard tissues like bone and muscle cells, and lower in soft tissues like the liver and brain. In muscle cells, including the heart, lamin A/C must be expressed in a balanced state. Lamin A/C mutation is linked with various diseases, such as muscular dystrophy, lipodystrophy, and cardiomyopathies. It has been observed that a good number of mutations in the LMNA gene impact cardiac activity and its function. Although several works have been published, there are still several unexplored areas left regarding the lamin A/C function and structure in the cardiovascular system and its pathological state. In this review, we focus on the structural organization, expression pattern, and function of lamin A/C, its interacting partners, and the pathophysiology associated with mutations in the lamin A/C gene, with special emphasis on cardiovascular diseases. With the recent finding on lamin A/C, we have summarized the possible therapeutic interventions to treat cardiovascular symptoms and reverse the molecular changes.
Collapse
Affiliation(s)
- Vikas Tiwari
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Md Jahangir Alam
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India; Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Madhavi Bhatia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Malladi Navya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India
| | - Sanjay K Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Guwahati 781101, Assam, India.
| |
Collapse
|
20
|
Chen K, Tang Y, Lan L, Li M, Lu Z. Autophagy mediated FTH1 degradation activates gasdermin E dependent pyroptosis contributing to diquat induced kidney injury. Food Chem Toxicol 2024; 184:114411. [PMID: 38128689 DOI: 10.1016/j.fct.2023.114411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Acute kidney injury (AKI) induced by diquat (DQ) progresses rapidly, leading to high mortality, and there is no specific antidote for this chemical. Our limited knowledge of the pathogenic toxicological mechanisms of DQ has hindered the development of treatments against DQ poisoning. Pyroptosis is a form of programmed cell death and was recently identified as a novel molecular mechanism of drug-induced AKI. To explore the role of pyroptosis in HK-2 cells exposed to DQ, the plasma membrane damage of the cells was detected by LDH release assay. Western blot was performed to detect the cleavage of GSDME. Proteomics analysis was performed to explore the mechanism of DQ induced nephrotoxicity. FerroOrange probe was used to measure the intracellular Fe2+ levels. Herein, we show that DQ induces pyroptosis in HK-2 cells. Mechanistically, DQ induces the accumulation of mitochondrial ROS and initiates the cleavage of gasdermin E (GSDME) in an intrinsic mitochondrial pathway. Knockout of GSDME attenuated DQ-induced cell death. Further analysis revealed that loss of FTH1 induces Fe2+ accumulation, contributing to DQ-induced pyroptosis. Knockdown LC3B could help restore the expression of FTH1 and improve cell viability. Moreover, we found DFO, an iron chelator, could reduce cellular Fe2+ levels and inhibit pyroptosis. Collectively, these findings suggest an unrecognized mechanism for GSDME-dependent pyroptosis in DQ-induced AKI.
Collapse
Affiliation(s)
- Kaiyuan Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| | - Yahui Tang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Mengxuan Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Wenzhou Key Laboratory of Emergency and Disaster Medicine, Wenzhou, 325000, China.
| |
Collapse
|
21
|
Li X, Zhao M, Yang W, Zhou X, Xie Y. The C4 Protein of TbLCYnV Promotes SnRK1 β2 Degradation Via the Autophagy Pathway to Enhance Viral Infection in N. benthamiana. Viruses 2024; 16:234. [PMID: 38400010 PMCID: PMC10892878 DOI: 10.3390/v16020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Geminiviruses are a group of single-stranded DNA viruses that have developed multiple strategies to overcome host defenses and establish viral infections. Sucrose nonfermenting-1-related kinase 1 (SnRK1) is a key regulator of energy balance in plants and plays an important role in plant development and immune defenses. As a heterotrimeric complex, SnRK1 is composed of a catalytic subunit α (SnRK1 α) and two regulatory subunits, β and γ. Previous studies on SnRK1 in plant defenses against microbial pathogens have mainly focused on SnRK1 α. In this study, we validated the interaction between the C4 protein encoded by tobacco leaf curl Yunnan virus (TbLCYnV) and the regulatory subunit β of Nicotiana benthamiana SnRK1, i.e., NbSnRK1 β2, and identified that the Asp22 of C4 is critical for TbLCYnV C4-NbSnRK1 β2 interactions. NbSnRK1 β2 silencing in N. benthamiana enhances susceptibility to TbLCYnV infection. Plants infected with viral mutant TbLCYnV (C4D22A), which contains the mutant version C4 (D22A) that is incapable of interacting with NbSnRK1 β2, display milder symptoms and lower viral accumulation. Furthermore, we discovered that C4 promotes NbSnRK1 β2 degradation via the autophagy pathway. We herein propose a model by which the geminivirus C4 protein causes NbSnRK1 β2 degradation via the TbLCYnV C4-NbSnRK1 β2 interaction to antagonize host antiviral defenses and facilitates viral infection and symptom development in N. benthamiana.
Collapse
Affiliation(s)
- Xinquan Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.L.); (X.Z.)
| | - Min Zhao
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.L.); (X.Z.)
| | - Wanyi Yang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.L.); (X.Z.)
| | - Xueping Zhou
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.L.); (X.Z.)
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yan Xie
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (X.L.); (X.Z.)
| |
Collapse
|
22
|
Fan L, Liang Z, Ren J, Chen Y, Zhu H, Chen Y, Xiang B, Lin Q, Ding C, Chen L, Ren T. Newcastle disease virus activates the PI3K/AKT signaling pathway by targeting PHLPP2 degradation to delay cell apoptosis and promote viral replication. Vet Microbiol 2024; 289:109949. [PMID: 38128444 DOI: 10.1016/j.vetmic.2023.109949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/27/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Newcastle disease (ND) is a highly pathogenic, contagious, and fatal infectious disease in poultry caused by the Newcastle disease virus (NDV). The PI3K/AKT signaling pathway is a phosphorylation cascade that participates in regulating several cellular functions. Viruses reportedly regulate the course of infection through the PI3K/AKT axis. Here, we aimed to analyze the pathogenesis of NDV infection mediated by the PI3K/AKT signaling pathway activation. We found that NDV infection can phosphorylate AKT to activate the PI3K/AKT axis both in vitro and in vivo. Flow cytometry and Caspase-3 activity assay showed that NDV infection could inhibit cell apoptosis. The activation or inhibition of the PI3K/AKT signaling pathway activity significantly inhibited or promoted NDV-mediated apoptosis. Furthermore, inhibition of cell apoptosis significantly promoted NDV replication. Overall, our results showed that NDV infection activates the PI3K/AKT signaling pathway and inhibits cell apoptosis, thus promoting viral replication. In this context, the reduced expression of PHLPP2 protein mediated by NDV infection could be inhibited by MG132. PHLPP2 expression reversely and positively regulated NDV replication and cell apoptosis, respectively. These results indicated that NDV infection-mediated activation of the PI3K/AKT signaling pathway and the inhibition of apoptosis depend on the ubiquitin-proteasome degradation of the PHLPP2 protein. Co-IP and indirect immunofluorescence results showed that NDV V protein could interact with PHLPP2 protein, indicating that NDV targeted PHLPP2 protein degradation through V protein to activate the PI3K/AKT signaling pathway. This study deepens our understanding of the molecular mechanisms of NDV infection, providing a theoretical basis for ND prevention and control.
Collapse
Affiliation(s)
- Lei Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Zhaoping Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jinlian Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yichun Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - He Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Yanan Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Bin Xiang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201 Yunnan, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Chan Ding
- Shanghai Veterinary Research Institute (SHVRI), Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.
| |
Collapse
|
23
|
Bai JQ, Li PB, Li CM, Li HH. N-arachidonoylphenolamine alleviates ischaemia/reperfusion-induced cardiomyocyte necroptosis by restoring proteasomal activity. Eur J Pharmacol 2024; 963:176235. [PMID: 38096967 DOI: 10.1016/j.ejphar.2023.176235] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
Necroptosis and apoptosis contribute to the pathogenesis of myocardial ischaemia/reperfusion (I/R) injury and subsequent heart failure. N-arachidonoylphenolamine (AM404) is a paracetamol lipid metabolite that has pleiotropic activity to modulate the endocannabinoid system. However, the protective role of AM404 in modulating I/R-mediated myocardial damage and the underlying mechanism remain largely unknown. A murine I/R model was generated by occlusion of the left anterior descending artery. AM404 (20 mg/kg) was injected intraperitoneally into mice at 2 and 24 h before the I/R operation. Our data revealed that AM404 administration to mice greatly ameliorated I/R-triggered impairment of myocardial performance and reduced infarct area, myocyte apoptosis, oxidative stress and inflammatory response accompanied by the reduction of receptor interacting protein kinase (RIPK)1/3- mixed lineage kinase domain-like (MLKL)-mediated necroptosis and upregulation of the immunosubunits (β2i and β5i). In contrast, administration of epoxomicin (a proteasome inhibitor) dramatically abolished AM404-dependent protection against myocardial I/R damage. Mechanistically, AM404 treatment increases β5i expression, which interacts with Pellino-1 (Peli1), an E3 ligase, to form a complex with RIPK1/3, thereby promoting their degradation, which leads to inhibition of cardiomyocyte necroptosis in the I/R heart. In conclusion, these findings demonstrate that AM404 could prevent cardiac I/R damage and may be a promising drug for the treatment of ischaemic heart disease.
Collapse
Affiliation(s)
- Jun-Qin Bai
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Pang-Bo Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Chun-Min Li
- Department of Vascular Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Hui-Hua Li
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
24
|
Li S, He RC, Wu SG, Song Y, Zhang KL, Tang ML, Bei YR, Zhang T, Lu JB, Ma X, Jiang M, Qin LJ, Xu Y, Dong XH, Wu J, Dai X, Hu YW. LncRNA PSMB8-AS1 Instigates Vascular Inflammation to Aggravate Atherosclerosis. Circ Res 2024; 134:60-80. [PMID: 38084631 DOI: 10.1161/circresaha.122.322360] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 11/20/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Increasing evidence suggests that long noncoding RNAs play significant roles in vascular biology and disease development. One such long noncoding RNA, PSMB8-AS1, has been implicated in the development of tumors. Nevertheless, the precise role of PSMB8-AS1 in cardiovascular diseases, particularly atherosclerosis, has not been thoroughly elucidated. Thus, the primary aim of this investigation is to assess the influence of PSMB8-AS1 on vascular inflammation and the initiation of atherosclerosis. METHODS We generated PSMB8-AS1 knockin and Apoe (Apolipoprotein E) knockout mice (Apoe-/-PSMB8-AS1KI) and global Apoe and proteasome subunit-β type-9 (Psmb9) double knockout mice (Apoe-/-Psmb9-/-). To explore the roles of PSMB8-AS1 and Psmb9 in atherosclerosis, we fed the mice with a Western diet for 12 weeks. RESULTS Long noncoding RNA PSMB8-AS1 is significantly elevated in human atherosclerotic plaques. Strikingly, Apoe-/-PSMB8-AS1KI mice exhibited increased atherosclerosis development, plaque vulnerability, and vascular inflammation compared with Apoe-/- mice. Moreover, the levels of VCAM1 (vascular adhesion molecule 1) and ICAM1 (intracellular adhesion molecule 1) were significantly upregulated in atherosclerotic lesions and serum of Apoe-/-PSMB8-AS1KI mice. Consistently, in vitro gain- and loss-of-function studies demonstrated that PSMB8-AS1 induced monocyte/macrophage adhesion to endothelial cells and increased VCAM1 and ICAM1 levels in a PSMB9-dependent manner. Mechanistic studies revealed that PSMB8-AS1 induced PSMB9 transcription by recruiting the transcription factor NONO (non-POU domain-containing octamer-binding protein) and binding to the PSMB9 promoter. PSMB9 (proteasome subunit-β type-9) elevated VCAM1 and ICAM1 expression via the upregulation of ZEB1 (zinc finger E-box-binding homeobox 1). Psmb9 deficiency decreased atherosclerotic lesion size, plaque vulnerability, and vascular inflammation in Apoe-/- mice in vivo. Importantly, endothelial overexpression of PSMB8-AS1-increased atherosclerosis and vascular inflammation were attenuated by Psmb9 knockout. CONCLUSIONS PSMB8-AS1 promotes vascular inflammation and atherosclerosis via the NONO/PSMB9/ZEB1 axis. Our findings support the development of new long noncoding RNA-based strategies to counteract atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Shu Li
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Run-Chao He
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Shao-Guo Wu
- Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangdong, China (S.-G.W.)
| | - Yu Song
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Ke-Lan Zhang
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Mao-Lin Tang
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Yan-Rou Bei
- Laboratory Medicine Center (Y.-R.B.), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ting Zhang
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Jin-Bo Lu
- Department of Peripheral Vascular Surgery, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen (J.-B.L.)
| | - Xin Ma
- Department of Anesthesiology (X.M.), Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Min Jiang
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Liang-Jun Qin
- Department of Pathology, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (L.J.Q.)
| | - Yudan Xu
- Laboratory Medicine Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China (Y.X.)
| | - Xian-Hui Dong
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Jia Wu
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
| | - Xiaoyan Dai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangdong, China (X.D.)
- Clinical Research Institute, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China (X.D.)
| | - Yan-Wei Hu
- Department of Clinical Laboratory, Guangzhou Women & Children Medical Center, Guangzhou Medical University, Guangdong, China (S.L., R.-C.H., Y.S., K.-L.Z., M.-L.T., T.Z., M.J., X.-H.D., J.W., Y.-W.H.)
- Department of Laboratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China (Y.-W.H.)
| |
Collapse
|
25
|
Li H, Dong J, Cui L, Liu K, Guo L, Li J, Wang H. The effect and mechanism of selenium supplementation on the proliferation capacity of bovine endometrial epithelial cells exposed to lipopolysaccharide in vitro under high cortisol background. J Anim Sci 2024; 102:skae021. [PMID: 38289713 PMCID: PMC10889726 DOI: 10.1093/jas/skae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/29/2024] [Indexed: 02/01/2024] Open
Abstract
Bovine endometritis severely inhibits uterine repair and causes considerable economic loss. Besides, parturition-induced high cortisol levels inhibit immune function, reduce cell proliferation, and further inhibit tissue repair. Selenium (Se) is an essential trace element for animals to maintain normal physiological function and has powerful antioxidant functions. This study investigated whether Se supplementation reduces endometrial damage and promotes tissue repair in cows with endometritis under stress and explored the underlying mechanism. Primary bovine endometrial epithelial cells were isolated and purified from healthy cows. The cells were treated with different combinations of lipopolysaccharide (LPS), cortisol, and various concentrations of Se. Data showed that LPS stimulation inhibited cell proliferation and increased cell apoptosis. High levels of cortisol further exacerbated these effects. Flow cytometry, scratch wound healing tests, and 5-ethynyl-2'-deoxyuridine (EdU) proliferation assays showed that Se supplementation promoted cell cycle progression, cell migration, and cell proliferation in the presence of LPS and cortisol. The quantitative PCR results showed that the expression of related growth factors was increased after Se supplementation. After administering various inhibitors, we further demonstrated that Se supplementation decreased the activity of glycogen synthetase kinase 3β (GSK-3β) through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway to reduce the degradation of β-catenin except the Wnt signal to promote cell proliferation. In conclusion, Se supplementation attenuated the cell damage induced by LPS at high cortisol levels and increased cell proliferation to promote uterine repair by elevating the mRNA expression of TGFB3 and VEGFA and activating the PI3K/AKT/GSK-3β/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Hanqing Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
26
|
Arun A, Nath AR, Thankachan B, Unnikrishnan MK. Hutchinson-Gilford progeria syndrome: unraveling the genetic basis, symptoms, and advancements in therapeutic approaches. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241305144. [PMID: 39691184 PMCID: PMC11650505 DOI: 10.1177/26330040241305144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Hutchinson-Gilford Progeria syndrome (HGPS) serves as a prominent model for Progeroid syndromes, a group of rare genetic disorders characterized by accelerated aging. This review explores the genetic basis, clinical presentation, and complications of HGPS. HGPS is caused by mutations in the LMNA gene, resulting in the production of a defective structural protein, prelamin A. This protein contains a "CAAX" motif, where C represents cysteine, and its abnormal processing is central to the disease's pathology. HGPS leads to multiple organ systems being affected, including cardiovascular, skeletal, neurological, and dermatological systems, causing severe disability and increased mortality. Cardiovascular issues are particularly significant in HGPS and are crucial for developing therapeutic strategies. Recent advances in treatment modalities offer promise for managing HGPS. Farnesyltransferase inhibitors and genetic interventions, such as CRISPR-Cas9, have shown potential in mitigating progerin-associated symptoms, with encouraging results observed in preclinical and clinical studies. Additionally, emerging therapies such as rapamycin, sulforaphane, and MG132 hold promise in targeting underlying disease mechanisms. Comprehensive management approaches, including growth hormone therapy, retinoids, and dental care, are emphasized to enhance overall patient well-being. Despite progress, further research is essential to unravel the complex pathophysiology of Progeroid syndromes and develop effective treatments. Continued focus on therapies that address progerin accumulation and its downstream effects is vital for improving patient care and outcomes for individuals affected by HGPS and related disorders. This review highlights ongoing efforts to understand and combat Progeroid syndromes, aiming to alleviate the burdens imposed by these debilitating conditions.
Collapse
Affiliation(s)
- Akhil Arun
- Department of Pharmacy Practice Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, AIMS Ponekkara P.O., Kochi, KL 682041, India
| | - Athira Rejith Nath
- Department of Pharmacy Practice Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, KL, India
| | - Bonny Thankachan
- Department of Pharmacy Practice Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, KL, India
| | - M. K. Unnikrishnan
- Department of Pharmacy Practice Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, KL, India
| |
Collapse
|
27
|
Silonov SA, Mokin YI, Nedelyaev EM, Smirnov EY, Kuznetsova IM, Turoverov KK, Uversky VN, Fonin AV. On the Prevalence and Roles of Proteins Undergoing Liquid-Liquid Phase Separation in the Biogenesis of PML-Bodies. Biomolecules 2023; 13:1805. [PMID: 38136675 PMCID: PMC10741438 DOI: 10.3390/biom13121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The formation and function of membrane-less organelles (MLOs) is one of the main driving forces in the molecular life of the cell. These processes are based on the separation of biopolymers into phases regulated by multiple specific and nonspecific inter- and intramolecular interactions. Among the realm of MLOs, a special place is taken by the promyelocytic leukemia nuclear bodies (PML-NBs or PML bodies), which are the intranuclear compartments involved in the regulation of cellular metabolism, transcription, the maintenance of genome stability, responses to viral infection, apoptosis, and tumor suppression. According to the accepted models, specific interactions, such as SUMO/SIM, the formation of disulfide bonds, etc., play a decisive role in the biogenesis of PML bodies. In this work, a number of bioinformatics approaches were used to study proteins found in the proteome of PML bodies for their tendency for spontaneous liquid-liquid phase separation (LLPS), which is usually caused by weak nonspecific interactions. A total of 205 proteins found in PML bodies have been identified. It has been suggested that UBC9, P53, HIPK2, and SUMO1 can be considered as the scaffold proteins of PML bodies. It was shown that more than half of the proteins in the analyzed proteome are capable of spontaneous LLPS, with 85% of the analyzed proteins being intrinsically disordered proteins (IDPs) and the remaining 15% being proteins with intrinsically disordered protein regions (IDPRs). About 44% of all proteins analyzed in this study contain SUMO binding sites and can potentially be SUMOylated. These data suggest that weak nonspecific interactions play a significantly larger role in the formation and biogenesis of PML bodies than previously expected.
Collapse
Affiliation(s)
- Sergey A. Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Yakov I. Mokin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene M. Nedelyaev
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene Y. Smirnov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| |
Collapse
|
28
|
Allemann MS, Lee P, Beer JH, Saeedi Saravi SS. Targeting the redox system for cardiovascular regeneration in aging. Aging Cell 2023; 22:e14020. [PMID: 37957823 PMCID: PMC10726899 DOI: 10.1111/acel.14020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023] Open
Abstract
Cardiovascular aging presents a formidable challenge, as the aging process can lead to reduced cardiac function and heightened susceptibility to cardiovascular diseases. Consequently, there is an escalating, unmet medical need for innovative and effective cardiovascular regeneration strategies aimed at restoring and rejuvenating aging cardiovascular tissues. Altered redox homeostasis and the accumulation of oxidative damage play a pivotal role in detrimental changes to stem cell function and cellular senescence, hampering regenerative capacity in aged cardiovascular system. A mounting body of evidence underscores the significance of targeting redox machinery to restore stem cell self-renewal and enhance their differentiation potential into youthful cardiovascular lineages. Hence, the redox machinery holds promise as a target for optimizing cardiovascular regenerative therapies. In this context, we delve into the current understanding of redox homeostasis in regulating stem cell function and reprogramming processes that impact the regenerative potential of the cardiovascular system. Furthermore, we offer insights into the recent translational and clinical implications of redox-targeting compounds aimed at enhancing current regenerative therapies for aging cardiovascular tissues.
Collapse
Affiliation(s)
- Meret Sarah Allemann
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Pratintip Lee
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Jürg H. Beer
- Center for Molecular CardiologyUniversity of ZurichSchlierenSwitzerland
- Department of Internal MedicineCantonal Hospital BadenBadenSwitzerland
| | - Seyed Soheil Saeedi Saravi
- Center for Translational and Experimental Cardiology, Department of CardiologyUniversity Hospital Zurich, University of ZurichSchlierenSwitzerland
| |
Collapse
|
29
|
Huang S, Hou D, Zhang L, Pei C, Liang J, Li J, Yang G, Yu D. LncRNA MALAT1 Promoted Neuronal Necroptosis in Cerebral Ischemia-reperfusion Mice by Stabilizing HSP90. Neurochem Res 2023; 48:3457-3471. [PMID: 37470906 DOI: 10.1007/s11064-023-03991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 07/03/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
The objective of this research was to investigate the role of lncRNA MALAT1 and HSP90 in the regulation of neuronal necroptosis in mice with cerebral ischemia-reperfusion (CIR). We used male C57BL/6J mice to establish a middle cerebral artery occlusion (MCAO) model and conducted in vitro experiments using the HT-22 mouse hippocampal neuron cell line. The cellular localization of NeuN and MLKL, as well as the expression levels of neuronal necroptosis factors, MALAT1, and HSP90 were analyzed. Cell viability and necroptosis were assessed, and we also investigated the relationship between MALAT1 and HSP90. The results showed that MALAT1 expression increased after MCAO and oxygen-glucose deprivation/re-oxygenation (OGD/R) treatment in both cerebral tissues and cells compared with the control group. The levels of neuronal necroptosis factors and the co-localization of NeuN and MLKL were also increased in MCAO mice compared with the Sham group. MALAT1 was found to interact with HSP90, and inhibition of HSP90 expression led to decreased phosphorylation levels of neuronal necroptosis factors. Inhibition of MALAT1 expression resulted in decreased co-localization levels of NeuN and MLKL, decreased phosphorylation levels of neuronal necroptosis factors, and reduced necroptosis rate in cerebral tissues. Furthermore, inhibiting MALAT1 expression also led to a shorter half-life of HSP90, increased ubiquitination level, and decreased phosphorylation levels of neuronal necroptosis factors in cells. In conclusion, this study demonstrated that lncRNA MALAT1 promotes neuronal necroptosis in CIR mice by stabilizing HSP90.
Collapse
Affiliation(s)
- Shan Huang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43 Renmin Avenue, Haikou, 570208, Hainan, China
| | - Dan Hou
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43 Renmin Avenue, Haikou, 570208, Hainan, China
| | - Lei Zhang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43 Renmin Avenue, Haikou, 570208, Hainan, China
| | - Chaoying Pei
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43 Renmin Avenue, Haikou, 570208, Hainan, China
| | - Ji Liang
- Department of Neurology, The First People's Hospital of Changde, Changde, 415000, Hunan, China
| | - Junqi Li
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43 Renmin Avenue, Haikou, 570208, Hainan, China
| | - Guoshuai Yang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43 Renmin Avenue, Haikou, 570208, Hainan, China.
| | - Dan Yu
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, No. 43 Renmin Avenue, Haikou, 570208, Hainan, China.
| |
Collapse
|
30
|
Zang L, Yang X, Chen Y, Huang F, Yuan Y, Chen X, Zuo Y, Miao Y, Gu J, Guo H, Xia W, Peng Y, Tang M, Huang Z, Wang Y, Ma J, Jiang J, Zhou W, Zheng H, Shi W. Ubiquitin E3 ligase SPOP is a host negative regulator of enterovirus 71-encoded 2A protease. J Virol 2023; 97:e0078623. [PMID: 37796126 PMCID: PMC10617436 DOI: 10.1128/jvi.00786-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/25/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE EV71 poses a significant health threat to children aged 5 and below. The process of EV71 infection and replication is predominantly influenced by ubiquitination modifications. Our previous findings indicate that EV71 prompts the activation of host deubiquitinating enzymes, thereby impeding the host interferon signaling pathway as a means of evading the immune response. Nevertheless, the precise mechanisms by which the host employs ubiquitination modifications to hinder EV71 infection remain unclear. The present study demonstrated that the nonstructural protein 2Apro, which is encoded by EV71, exhibits ubiquitination and degradation mediated by the host E3 ubiquitin ligase SPOP. In addition, it is the first report, to our knowledge, that SPOP is involved in the host antiviral response.
Collapse
Affiliation(s)
- Lichao Zang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Xinyu Yang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yan Chen
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Fan Huang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Yukang Yuan
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Xiangjie Chen
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Yibo Zuo
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Ying Miao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Jin Gu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Hui Guo
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Wenxin Xia
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yang Peng
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Mengyuan Tang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Ziwei Huang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Yangyang Wang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jinhong Ma
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Wei Zhou
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Weifeng Shi
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
31
|
Xiong R, Shao D, Do S, Chan WK. Activation of Chaperone-Mediated Autophagy Inhibits the Aryl Hydrocarbon Receptor Function by Degrading This Receptor in Human Lung Epithelial Carcinoma A549 Cells. Int J Mol Sci 2023; 24:15116. [PMID: 37894798 PMCID: PMC10606571 DOI: 10.3390/ijms242015116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor and a substrate protein of a Cullin 4B E3 ligase complex responsible for diverse cellular processes. In the lung, this receptor is responsible for the bioactivation of benzo[a]pyrene during tumorigenesis. Realizing that the AHR function is affected by its expression level, we are interested in the degradation mechanism of AHR in the lung. Here, we have investigated the mechanism responsible for AHR degradation using human lung epithelial A549 cells. We have observed that the AHR protein levels increase in the presence of chloroquine (CQ), an autophagy inhibitor, in a dose-dependent manner. Treatment with 6-aminonicotinamide (6-AN), a chaperone-mediated autophagy (CMA) activator, decreases AHR protein levels in a concentration-dependent and time-dependent manner. This decrease suppresses the ligand-dependent activation of the AHR target gene transcription, and can be reversed by CQ but not MG132. Knockdown of lysosome-associated membrane protein 2 (LAMP2), but not autophagy-related 5 (ATG5), suppresses the chloroquine-mediated increase in the AHR protein. AHR is resistant to CMA when its CMA motif is mutated. Suppression of the epithelial-to-mesenchymal transition in A549 cells is observed when the AHR gene is knocked out or the AHR protein level is reduced by 6-AN. Collectively, we have provided evidence supporting that AHR is continuously undergoing CMA and activation of CMA suppresses the AHR function in A549 cells.
Collapse
Affiliation(s)
| | | | | | - William K. Chan
- Department of Pharmaceutics & Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA; (R.X.); (D.S.); (S.D.)
| |
Collapse
|
32
|
Kim BH, Chung YH, Woo TG, Kang SM, Park S, Park BJ. Progerin, an Aberrant Spliced Form of Lamin A, Is a Potential Therapeutic Target for HGPS. Cells 2023; 12:2299. [PMID: 37759521 PMCID: PMC10527460 DOI: 10.3390/cells12182299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder caused by the mutant protein progerin, which is expressed by the abnormal splicing of the LMNA gene. HGPS affects systemic levels, with the exception of cognition or brain development, in children, showing that cellular aging can occur in the short term. Studying progeria could be useful in unraveling the causes of human aging (as well as fatal age-related disorders). Elucidating the clear cause of HGPS or the development of a therapeutic medicine could improve the quality of life and extend the survival of patients. This review aimed to (i) briefly describe how progerin was discovered as the causative agent of HGPS, (ii) elucidate the puzzling observation of the absence of primary neurological disease in HGPS, (iii) present several studies showing the deleterious effects of progerin and the beneficial effects of its inhibition, and (iv) summarize research to develop a therapy for HGPS and introduce clinical trials for its treatment.
Collapse
Affiliation(s)
- Bae-Hoon Kim
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - Yeon-Ho Chung
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - Tae-Gyun Woo
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
| | - So-Mi Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| | - Soyoung Park
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| | - Bum-Joon Park
- Rare Disease R&D Center, PRG S&T Co., Ltd., Busan 46274, Republic of Korea; (B.-H.K.); (Y.-H.C.); (T.-G.W.)
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46231, Republic of Korea; (S.-M.K.); (S.P.)
| |
Collapse
|
33
|
Cisneros B, García-Aguirre I, De Ita M, Arrieta-Cruz I, Rosas-Vargas H. Hutchinson-Gilford Progeria Syndrome: Cellular Mechanisms and Therapeutic Perspectives. Arch Med Res 2023; 54:102837. [PMID: 37390702 DOI: 10.1016/j.arcmed.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
In humans, aging is characterized by a gradual decline of physical and psychological functions, with the concomitant onset of chronic-degenerative diseases, which ultimately lead to death. The study of Hutchinson-Gilford progeria syndrome (HGPS), a premature aging disorder that recapitulates several features of natural aging, has provided important insights into deciphering the aging process. The genetic origin of HGPS is a de novo point mutation in the LMNA gene that drives the synthesis of progerin, mutant version of lamin A. Progerin is aberrantly anchored to the nuclear envelope disrupting a plethora of molecular processes; nonetheless, how progerin exerts a cascade of deleterious alterations at the cellular and systemic levels is not fully understood. Over the past decade, the use of different cellular and animal models for HGPS has allowed the identification of the molecular mechanisms underlying HGPS, paving the way towards the development of therapeutic treatments against the disease. In this review, we present an updated overview of the biology of HGPS, including its clinical features, description of key cellular processes affected by progerin (nuclear morphology and function, nucleolar activity, mitochondrial function, protein nucleocytoplasmic trafficking and telomere homeostasis), as well as discussion of the therapeutic strategies under development.
Collapse
Affiliation(s)
- Bulmaro Cisneros
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico
| | - Ian García-Aguirre
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico; Bioengineering Department, School of Engineering and Sciences, Tecnológico de Monterrey, Mexico City, Mexico
| | - Marlon De Ita
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico; Medical Research Unit in Human Genetics, Pediatrics Hospital, 21st Century National Medical Center, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Isabel Arrieta-Cruz
- Basic Research Department, Research Direction, National Institute of Geriatrics, Ministry of Health, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Medical Research Unit in Human Genetics, Pediatrics Hospital, 21st Century National Medical Center, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|
34
|
Ji J, Ma S, Zhu Y, Zhao J, Tong Y, You Q, Jiang Z. ARE-PROTACs Enable Co-degradation of an Nrf2-MafG Heterodimer. J Med Chem 2023; 66:6070-6081. [PMID: 36892138 DOI: 10.1021/acs.jmedchem.2c01909] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Proteolysis-targeting chimera (PROTAC) technology has emerged as a potential strategy to degrade "undruggable" proteins in recent years. Nrf2, an aberrantly activated transcription factor in cancer, is generally considered undruggable as lacking active sites or allosteric pockets. Here, we constructed the chimeric molecule C2, which consists of an Nrf2-binding element and a CRBN ligand, as a first-in-class Nrf2 degrader. Surprisingly, C2 was found to selectively degrade an Nrf2-MafG heterodimer simultaneously via the ubiquitin-proteasome system. C2 impeded Nrf2-ARE transcriptional activity significantly and improved the sensitivity of NSCLC cells to ferroptosis and therapeutic drugs. The degradation character of ARE-PROTACs suggests that the PROTAC hijacking the transcription element of TFs could achieve co-degradation of the transcription complex.
Collapse
Affiliation(s)
- Jianai Ji
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Sinan Ma
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Zhu
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jinglong Zhao
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanyuan Tong
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhengyu Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
35
|
Shi Y, Tao M, Chen H, Ma X, Wang Y, Hu Y, Zhou X, Li J, Cui B, Qiu A, Zhuang S, Liu N. Ubiquitin-specific protease 11 promotes partial epithelial-to-mesenchymal transition by deubiquitinating the epidermal growth factor receptor during kidney fibrosis. Kidney Int 2023; 103:544-564. [PMID: 36581018 DOI: 10.1016/j.kint.2022.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/17/2022] [Indexed: 12/27/2022]
Abstract
The aberrant expression of ubiquitin-specific protease 11 (USP11) is believed to be related to tumor progression. However, few studies have reported the biological function and clinical importance of USP11 in kidney fibrosis. Here, we demonstrated USP11 was highly upregulated in the kidneys from patients with chronic kidney disease and correlated positively with fibrotic lesion but negatively with kidney function. Conditional USP11 deletion or pharmacologic inhibition with Mitoxantrone attenuated pathological lesions and improved kidney function in both hyperuricemic nephropathy (HN)- and folic acid (FA)-induced mouse models of kidney fibrosis. Mechanistically, by RNA sequencing, USP11 was found to be involved in nuclear gene transcription of the epidermal growth factor receptor (EGFR). USP11 co-immunoprecipitated and co-stained with extra-nuclear EGFR and deubiquitinated and protected EGFR from proteasome-dependent degradation. Genetic or pharmacological depletion of USP11 facilitated EGFR degradation and abated augmentation of TGF-β1 and downstream signaling. This consequently alleviated the partial epithelial-mesenchymal transition, G2/M arrest and aberrant secretome of profibrogenic and proinflammatory factors in uric acid-stimulated tubular epithelial cells. Moreover, USP11 deletion had anti-fibrotic and anti-inflammatory kidney effects in the murine HN and FA models. Thus, our study provides evidence supporting USP11 as a promising target for minimizing kidney fibrosis and that inhibition of USP11 has potential to be an effective strategy for patients with chronic kidney disease.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xun Zhou
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinqing Li
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China; Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
36
|
Wang C, Zheng C, Wang H, Shui S, Jin H, Liu G, Xu F, Liu Z, Zhang L, Sun D, Xu P. Dual degradation mechanism of GPX4 degrader in induction of ferroptosis exerting anti-resistant tumor effect. Eur J Med Chem 2023; 247:115072. [PMID: 36603510 DOI: 10.1016/j.ejmech.2022.115072] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Targeting Glutathione peroxidase 4 (GPX4) has become a promising strategy for drug-resistant cancer therapy via ferroptosis induction. It was found that the GPX4 inhibitors such as RSL3 have GPX4 degradation ability via not only autophagy-lysosome pathway but also ubiquitin-proteasome system (UPS). Proteolysis targeting chimeras (PROTACs) using small molecule with both inhibition and degradation ability as the ligand of protein of interest (POI) have not been reported. To obtain better compounds with effective disturbance of GPX4 activity, and compare the difference between GPX4 inhibitors with degradation ability and their related PROTACs, we designed and synthesized a series of GPX4 degraders using PROTAC technology in terms of its excellent characteristics such as high efficiency and selectivity and the capacity of overcoming resistance. Hence, 8e was discovered as a potent and highly efficacious GPX4 degrader based upon the inhibitor RSL3. It was 2-3 times more potent than RSL3 in all the in vitro anti-tumor assays, indicating the importance of the PROTAC ternary complex of GPX4, 8e and E3 ligase ligand. 8e revealed better potency in resistant tumor cells than in wide type cells. Furthermore, we discovered for the first time that degrader 8e exhibit GPX4 degradation activity via ubiquitin-proteasome system (UPS) and autophagy-lysosome pathway with UPS plays the major role in the process. Our data also suggested that 8e and RSL3 could potently induce ferroptosis of HT1080 cells via GPX4 inhibition and degradation. In summary, our data revealed that the GPX4 degrader 8e achieves better degradation and anti-tumor effects compared to its related GPX4 inhibitor RSL3. Thus, an efficient strategy to induce GPX4 degradation and subsequent ferroptosis was established in this study for malignant cancer treatment in the future.
Collapse
Affiliation(s)
- Chao Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Cangxin Zheng
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Han Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Sufang Shui
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Guoquan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Fengrong Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Dan Sun
- Department of Geriatrics, Peking University First Hospital, Beijing, China.
| | - Ping Xu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
37
|
Fragoso-Luna A, Askjaer P. The Nuclear Envelope in Ageing and Progeria. Subcell Biochem 2023; 102:53-75. [PMID: 36600129 DOI: 10.1007/978-3-031-21410-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Development from embryo to adult, organismal homeostasis and ageing are consecutive processes that rely on several functions of the nuclear envelope (NE). The NE compartmentalises the eukaryotic cells and provides physical stability to the genetic material in the nucleus. It provides spatiotemporal regulation of gene expression by controlling nuclear import and hence access of transcription factors to target genes as well as organisation of the genome into open and closed compartments. In addition, positioning of chromatin relative to the NE is important for DNA replication and repair and thereby also for genome stability. We discuss here the relevance of the NE in two classes of age-related human diseases. Firstly, we focus on the progeria syndromes Hutchinson-Gilford (HGPS) and Nestor-Guillermo (NGPS), which are caused by mutations in the LMNA and BANF1 genes, respectively. Both genes encode ubiquitously expressed components of the nuclear lamina that underlines the nuclear membranes. HGPS and NGPS patients manifest symptoms of accelerated ageing and cells from affected individuals show similar defects as cells from healthy old donors, including signs of increased DNA damage and epigenetic alternations. Secondly, we describe how several age-related neurodegenerative diseases, such as amyotrophic lateral sclerosis and Huntington's disease, are related with defects in nucleocytoplasmic transport. A common feature of this class of diseases is the accumulation of nuclear pore proteins and other transport factors in inclusions. Importantly, genetic manipulations of the nucleocytoplasmic transport machinery can alleviate disease-related phenotypes in cell and animal models, paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Adrián Fragoso-Luna
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Sevilla, Spain
| | - Peter Askjaer
- Andalusian Centre for Developmental Biology, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Pablo de Olavide, Sevilla, Spain.
| |
Collapse
|
38
|
Heim X, Bermudez J, Joshkon A, Kaspi E, Bachelier R, Nollet M, Vélier M, Dou L, Brodovitch A, Foucault-Bertaud A, Leroyer AS, Benyamine A, Daumas A, Granel B, Sabatier F, Dignat-George F, Blot-Chabaud M, Bardin N. CD146 at the Interface between Oxidative Stress and the Wnt Signaling Pathway in Systemic Sclerosis. J Invest Dermatol 2022; 142:3200-3210.e5. [PMID: 35690141 DOI: 10.1016/j.jid.2022.03.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 01/05/2023]
Abstract
CD146 involvement was recently described in skin fibrosis of systemic sclerosis through its regulation of the Wnt pathway. Because the interaction between Wnt and ROS signaling plays a major role in fibrosis, we hypothesized that in systemic sclerosis, CD146 may regulate Wnt/ROS crosstalk. Using a transcriptomic and western blot analysis performed on CD146 wild-type or knockout mouse embryonic fibroblasts, we showed a procanonical Wnt hallmark in the absence of CD146 that is reversed when CD146 expression is restored. We found an elevated ROS content in knockout cells and an increase in DNA oxidative damage in the skin sections of knockout mice compared with those of wild-type mice. We also showed that ROS increased CD146 and its noncanonical Wnt ligand, WNT5A, only in wild-type cells. In humans, fibroblasts from patients with systemic sclerosis presented higher ROS content and expressed CD146, whereas control fibroblasts did not. Moreover, CD146 and its ligand were upregulated by ROS in both human fibroblasts. The increase in bleomycin-induced WNT5A expression was abrogated when CD146 was silenced. We showed an interplay between Wnt and ROS signaling in systemic sclerosis, regulated by CD146, which promotes the noncanonical Wnt pathway and prevents ROS signaling, opening the way for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xavier Heim
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Service d'immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France.
| | | | - Ahmad Joshkon
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Elise Kaspi
- Aix Marseille University, APHM, INSERM, MMG, Hôpital la Timone, Service de Biologie Cellulaire, Marseille, France
| | | | - Marie Nollet
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Mélanie Vélier
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Hematology and Vascular Biology Department, Hopital de la Conception, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Laetitia Dou
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Alexandre Brodovitch
- Service d'immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | | | | | - Audrey Benyamine
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Internal Medicine Department, Hopital Nord, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Aurélie Daumas
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Internal Medicine, Geriatric and Therapeutic Department, Hopital de la Timone, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Brigitte Granel
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Internal Medicine Department, Hopital Nord, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Florence Sabatier
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Cell Therapy Laboratory, INSERM CIC BT 1409, Hôpital de la Conception, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Françoise Dignat-George
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Hematology and Vascular Biology Department, Hopital de la Conception, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | | | - Nathalie Bardin
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France; Service d'immunologie, Biogénopôle, Hôpital de la Timone, Assistance Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| |
Collapse
|
39
|
Trani JP, Chevalier R, Caron L, El Yazidi C, Broucqsault N, Toury L, Thomas M, Annab K, Binetruy B, De Sandre-Giovannoli A, Levy N, Magdinier F, Robin JD. Mesenchymal stem cells derived from patients with premature aging syndromes display hallmarks of physiological aging. Life Sci Alliance 2022; 5:e202201501. [PMID: 36104080 PMCID: PMC9475049 DOI: 10.26508/lsa.202201501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 02/06/2023] Open
Abstract
Progeroid syndromes are rare genetic diseases with most of autosomal dominant transmission, the prevalence of which is less than 1/10,000,000. These syndromes caused by mutations in the <i>LMNA</i> gene encoding A-type lamins belong to a group of disorders called laminopathies. Lamins are implicated in the architecture and function of the nucleus and chromatin. Patients affected with progeroid laminopathies display accelerated aging of mesenchymal stem cells (MSCs)-derived tissues associated with nuclear morphological abnormalities. To identify pathways altered in progeroid patients' MSCs, we used induced pluripotent stem cells (hiPSCs) from patients affected with classical Hutchinson-Gilford progeria syndrome (HGPS, c.1824C>T-p.G608G), HGPS-like syndrome (HGPS-L; c.1868C>G-p.T623S) associated with farnesylated prelamin A accumulation, or atypical progeroid syndromes (APS; homozygous c.1583C> T-p.T528M; heterozygous c.1762T>C-p.C588R; compound heterozygous c.1583C>T and c.1619T>C-p.T528M and p.M540T) without progerin accumulation. By comparative analysis of the transcriptome and methylome of hiPSC-derived MSCs, we found that patient's MSCs display specific DNA methylation patterns and modulated transcription at early stages of differentiation. We further explored selected biological processes deregulated in the presence of <i>LMNA</i> variants and confirmed alterations of age-related pathways during MSC differentiation. In particular, we report the presence of an altered mitochondrial pattern; an increased response to double-strand DNA damage; and telomere erosion in HGPS, HGPS-L, and APS MSCs, suggesting converging pathways, independent of progerin accumulation, but a distinct DNA methylation profile in HGPS and HGPS-L compared with APS cells.
Collapse
Affiliation(s)
- Jean Philippe Trani
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
| | - Raphaël Chevalier
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
| | - Leslie Caron
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
| | - Claire El Yazidi
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
| | - Natacha Broucqsault
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
| | - Léa Toury
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
| | - Morgane Thomas
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
| | - Karima Annab
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
| | - Bernard Binetruy
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
| | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
- Assistance Publique Hôpitaux de Marseille (APHM), Département de Génétique Médicale, Hôpital d'Enfants de la Timone, Marseille, France
- Biological Resource Center (CRB-TAC), APHM, La Timone Children's Hospital, Marseille, France
| | - Nicolas Levy
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
- Assistance Publique Hôpitaux de Marseille (APHM), Département de Génétique Médicale, Hôpital d'Enfants de la Timone, Marseille, France
- Biological Resource Center (CRB-TAC), APHM, La Timone Children's Hospital, Marseille, France
| | | | - Jérôme D Robin
- Aix Marseille Univ, MMG, Marseille Medical Genetics U1251, Marseille, France
| |
Collapse
|
40
|
Lamis A, Siddiqui SW, Ashok T, Patni N, Fatima M, Aneef AN. Hutchinson-Gilford Progeria Syndrome: A Literature Review. Cureus 2022; 14:e28629. [PMID: 36196312 PMCID: PMC9524302 DOI: 10.7759/cureus.28629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 11/05/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging condition that involves genetic mutations, resulting in debilitating phenotypic features. The present state of knowledge on the molecular pathways that contribute to the pathophysiology of HGPS and the techniques being tested in vitro and in vivo to combat progerin toxicity have been discussed here. Nuclear morphological abnormalities, dysregulated gene expression, DNA repair deficiencies, telomere shortening, and genomic instability are all caused by progerin accumulation, all of which impair cellular proliferative capability. In addition, HGPS cells and preclinical animal models have revealed new information about the disease's molecular and cellular pathways and putative mechanisms involved in normal aging. This article has discussed the understanding of the molecular pathways by which progerin expression leads to HGPS and how the advanced therapy options for HGPS patients can help us understand and treat the condition.
Collapse
|
41
|
Impact of MnTBAP and Baricitinib Treatment on Hutchinson–Gilford Progeria Fibroblasts. Pharmaceuticals (Basel) 2022; 15:ph15080945. [PMID: 36015093 PMCID: PMC9415676 DOI: 10.3390/ph15080945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a rare premature aging disease. It is caused by a mutation in the LMNA gene, which results in a 50-amino-acid truncation of prelamin A. The resultant truncated prelamin A (progerin) lacks the cleavage site for the zinc-metallopeptidase ZMPSTE24. Progerin is permanently farnesylated, carboxymethylated, and strongly anchored to the nuclear envelope. This leads to abnormalities, such as altered nuclear shape, mitochondrial dysfunction, and inflammation. HGPS patients display symptoms of physiological aging, including atherosclerosis, alopecia, lipodystrophy, and arthritis. Currently, no cure for HGPS exists. Here we focus on a drug combination consisting of the superoxide dismutase mimetic MnTBAP and JAK1/2 inhibitor baricitinib (Bar) to restore phenotypic alterations in HGPS fibroblasts. Treating HGPS fibroblasts with the MnTBAP/Bar combination improved mitochondrial functions and sustained Bar’s positive effects on reducing progerin and pro-inflammatory factor levels. Collectively, MnTBAP/Bar combination treatment ameliorates the aberrant phenotype of HGPS fibroblasts and is a potential treatment strategy for patients with HGPS.
Collapse
|
42
|
Fu M, Liu Y, Wang G, Wang P, Zhang J, Chen C, Zhao M, Zhang S, Jiao J, Ouyang X, Yu Y, Wen B, He C, Wang J, Zhou D, Xiong X. A protein–protein interaction map reveals that the Coxiella burnetii effector CirB inhibits host proteasome activity. PLoS Pathog 2022; 18:e1010660. [PMID: 35816513 PMCID: PMC9273094 DOI: 10.1371/journal.ppat.1010660] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022] Open
Abstract
Coxiella burnetii is the etiological agent of the zoonotic disease Q fever, which is featured by its ability to replicate in acid vacuoles resembling the lysosomal network. One key virulence determinant of C. burnetii is the Dot/Icm system that transfers more than 150 effector proteins into host cells. These effectors function to construct the lysosome-like compartment permissive for bacterial replication, but the functions of most of these effectors remain elusive. In this study, we used an affinity tag purification mass spectrometry (AP-MS) approach to generate a C. burnetii-human protein-protein interaction (PPI) map involving 53 C. burnetii effectors and 3480 host proteins. This PPI map revealed that the C. burnetii effector CBU0425 (designated CirB) interacts with most subunits of the 20S core proteasome. We found that ectopically expressed CirB inhibits hydrolytic activity of the proteasome. In addition, overexpression of CirB in C. burnetii caused dramatic inhibition of proteasome activity in host cells, while knocking down CirB expression alleviated such inhibitory effects. Moreover, we showed that a region of CirB that spans residues 91–120 binds to the proteasome subunit PSMB5 (beta 5). Finally, PSMB5 knockdown promotes C. burnetii virulence, highlighting the importance of proteasome activity modulation during the course of C. burnetii infection. As the causative agent of Q fever, C. burnetii colonizes host cells by transferring effector proteins into the host cytoplasm through its Dot/Icm secretion system to construct a replicative vacuole. The function of effectors remains largely unknown. Here, we performed a large-scale AP-MS screen to analyze the interactions among C. burnetii effectors and human proteins. These analyses found that CirB functions as an inhibitor of host proteasome activity, revealing that proteasome activity is important for intracellular survival of C. burnetii. Our data have laid the foundation for future exploring the molecular mechanisms underlying the roles of C. burnetii effectors in its virulence and for the identification of novel potential drug targets for the development of novel therapeutic treatment for C. burnetii infection.
Collapse
Affiliation(s)
- Mengjiao Fu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Yuchen Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Guannan Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Peng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Jianing Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Chen Chen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Mingliang Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Shan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Xuan Ouyang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Yonghui Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Bohai Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
- * E-mail: , (DZ); (XX)
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medicine Sciences, Fengtai, Beijing,China
- * E-mail: , (DZ); (XX)
| |
Collapse
|
43
|
Zhu D, Zhang Z, Zhao J, Liu D, Gan L, Lau WB, Xie D, Meng Z, Yao P, Tsukuda J, Christopher TA, Lopez BL, Gao E, Koch WJ, Wang Y, Ma XL. Targeting Adiponectin Receptor 1 Phosphorylation Against Ischemic Heart Failure. Circ Res 2022; 131:e34-e50. [PMID: 35611695 PMCID: PMC9308652 DOI: 10.1161/circresaha.121.319976] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Despite significantly reduced acute myocardial infarction (MI) mortality in recent years, ischemic heart failure continues to escalate. Therapeutic interventions effectively reversing pathological remodeling are an urgent unmet medical need. We recently demonstrated that AdipoR1 (APN [adiponectin] receptor 1) phosphorylation by GRK2 (G-protein-coupled receptor kinase 2) contributes to maladaptive remodeling in the ischemic heart. The current study clarified the underlying mechanisms leading to AdipoR1 phosphorylative desensitization and investigated whether blocking AdipoR1 phosphorylation may restore its protective signaling, reversing post-MI remodeling. METHODS Specific sites and underlying molecular mechanisms responsible for AdipoR1 phosphorylative desensitization were investigated in vitro (neonatal and adult cardiomyocytes). The effects of AdipoR1 phosphorylation inhibition upon APN post-MI remodeling and heart failure progression were investigated in vivo. RESULTS Among 4 previously identified sites sensitive to GRK2 phosphorylation, alanine substitution of Ser205 (AdipoR1S205A), but not other 3 sites, rescued GRK2-suppressed AdipoR1 functions, restoring APN-induced cell salvage kinase activation and reducing oxidative cell death. The molecular investigation followed by functional determination demonstrated that AdipoR1 phosphorylation promoted clathrin-dependent (not caveolae) endocytosis and lysosomal-mediated (not proteasome) degradation, reducing AdipoR1 protein level and suppressing AdipoR1-mediated cytoprotective action. GRK2-induced AdipoR1 endocytosis and degradation were blocked by AdipoR1S205A overexpression. Moreover, AdipoR1S205E (pseudophosphorylation) phenocopied GRK2 effects, promoted AdipoR1 endocytosis and degradation, and inhibited AdipoR1 biological function. Most importantly, AdipoR1 function was preserved during heart failure development in AdipoR1-KO (AdipoR1 knockout) mice reexpressing hAdipoR1S205A. APN administration in the failing heart reversed post-MI remodeling and improved cardiac function. However, reexpressing hAdipoR1WT in AdipoR1-KO mice failed to restore APN cardioprotection. CONCLUSIONS Ser205 is responsible for AdipoR1 phosphorylative desensitization in the failing heart. Blockade of AdipoR1 phosphorylation followed by pharmacological APN administration is a novel therapy effective in reversing post-MI remodeling and mitigating heart failure progression.
Collapse
Affiliation(s)
- Di Zhu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Zhen Zhang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Jianli Zhao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Demin Liu
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Lu Gan
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Dina Xie
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Zhijun Meng
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Peng Yao
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Jumpei Tsukuda
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | | | - Bernard L. Lopez
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
| | - Erhe Gao
- Department of Cardiovascular Sciences, Center for Translational Medicine, Temple University, Philadelphia, PA 19104
| | - Walter J. Koch
- Department of Cardiovascular Sciences, Center for Translational Medicine, Temple University, Philadelphia, PA 19104
| | - Yajing Wang
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
- Corresponding Authors: Xinliang (Xin) Ma, M.D., Ph.D, Department of Medicine and, Department of Emergency Medicine, 1025 Walnut Street, College Building 300, Thomas Jefferson University, Philadelphia, PA 19107, Tel: 215-955-4994, Or Yajing Wang, MD,PhD, Department of Emergency Medicine, 1025 Walnut Street, College Building 325, Thomas Jefferson University, Philadelphia, PA 19107, Tel: 215-955-8895,
| | - Xin-Liang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107
- Corresponding Authors: Xinliang (Xin) Ma, M.D., Ph.D, Department of Medicine and, Department of Emergency Medicine, 1025 Walnut Street, College Building 300, Thomas Jefferson University, Philadelphia, PA 19107, Tel: 215-955-4994, Or Yajing Wang, MD,PhD, Department of Emergency Medicine, 1025 Walnut Street, College Building 325, Thomas Jefferson University, Philadelphia, PA 19107, Tel: 215-955-8895,
| |
Collapse
|
44
|
Ye S, Tan C, Yang X, Wang J, Li Q, Xu L, Wang Z, Mao J, Wang J, Cheng K, Chen A, Zhou P, Li S. Transcriptome Analysis of Retinoic Acid-Inducible Gene I Overexpression Reveals the Potential Genes for Autophagy-Related Negative Regulation. Cells 2022; 11:2009. [PMID: 35805093 PMCID: PMC9265583 DOI: 10.3390/cells11132009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) serves as an essential viral RNA sensor for innate immune. The activation of the RIG-I-like receptors (RLRs) pathway triggers many regulations for the outcome of type I interferon, including ubiquitination, dephosphorylation, ISGylation, and autophagy. However, the autophagy-related regulation of RIG-I is still not fully understood. To investigate the potentially unknown genes related to autophagy-related regulation of RIG-I, we firstly confirm the induction of autophagy derived by overexpression of RIG-I. Furthermore, the autophagy inducer and inhibitor drugs were used in different assays. The results showed autophagy could control the activation of RLRs pathway and expression of exogenous RIG-I. In addition, we carried out the transcriptome analysis of overexpression of RIG-I in vitro. Differentially expressed genes (DEGs) in GO and KEGG signaling pathways enrichment provided a newly complex network. Finally, the validation of qPCR indicated that the DEGs PTPN22, PRKN, OTUD7B, and SIRT2 were correlated to the negative regulation of excessive expression of RIG-I. Taken together, our study contributed new insights into a more comprehensive understanding of the regulation of excessive expression of RIG-I. It provided the potential candidate genes for autophagy-related negative regulation for further investigation.
Collapse
Affiliation(s)
- Shaotang Ye
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Chen Tan
- Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Science, Lanzhou 730046, China;
- Molecular and Cellular Epigenetics (GIGA) and Molecular Biology (TERRA), University of Liege, 4000 Liege, Belgium
| | - Xiaoyun Yang
- Zhaoqing Institute of Biotechnology Co., Ltd., Zhaoqing 526000, China;
| | - Ji Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Qi Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Liang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Zhen Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Jianwei Mao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Jingyu Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Kui Cheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Aolei Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Pei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| | - Shoujun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (S.Y.); (J.W.); (Q.L.); (L.X.); (Z.W.); (J.M.); (J.W.); (K.C.); (A.C.); (P.Z.)
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou 510642, China
- Guangdong Technological Engineering Research Center for Pet, Guangzhou 510642, China
| |
Collapse
|
45
|
Skeletal Muscle Cells Derived from Induced Pluripotent Stem Cells: A Platform for Limb Girdle Muscular Dystrophies. Biomedicines 2022; 10:biomedicines10061428. [PMID: 35740450 PMCID: PMC9220148 DOI: 10.3390/biomedicines10061428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Limb girdle muscular dystrophies (LGMD), caused by mutations in 29 different genes, are the fourth most prevalent group of genetic muscle diseases. Although the link between LGMD and its genetic origins has been determined, LGMD still represent an unmet medical need. Here, we describe a platform for modeling LGMD based on the use of human induced pluripotent stem cells (hiPSC). Thanks to the self-renewing and pluripotency properties of hiPSC, this platform provides a renewable and an alternative source of skeletal muscle cells (skMC) to primary, immortalized, or overexpressing cells. We report that skMC derived from hiPSC express the majority of the genes and proteins that cause LGMD. As a proof of concept, we demonstrate the importance of this cellular model for studying LGMDR9 by evaluating disease-specific phenotypes in skMC derived from hiPSC obtained from four patients.
Collapse
|
46
|
Effects of arsenic on the topology and solubility of promyelocytic leukemia (PML)-nuclear bodies. PLoS One 2022; 17:e0268835. [PMID: 35594310 PMCID: PMC9122205 DOI: 10.1371/journal.pone.0268835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/09/2022] [Indexed: 11/19/2022] Open
Abstract
Promyelocytic leukemia (PML) proteins are involved in the pathogenesis of acute promyelocytic leukemia (APL). Trivalent arsenic (As3+) is known to cure APL by binding to cysteine residues of PML and enhance the degradation of PML-retinoic acid receptor α (RARα), a t(15;17) gene translocation product in APL cells, and restore PML-nuclear bodies (NBs). The size, number, and shape of PML-NBs vary among cell types and during cell division. However, topological changes of PML-NBs in As3+-exposed cells have not been well-documented. We report that As3+-induced solubility shift underlies rapid SUMOylation of PML and late agglomeration of PML-NBs. Most PML-NBs were toroidal and granular dot-like in GFPPML-transduced CHO-K1 and HEK293 cells, respectively. Exposure to As3+ and antimony (Sb3+) greatly reduced the solubility of PML and enhanced SUMOylation within 2 h in the absence of changes in the number and size of PML-NBs. However, the prolonged exposure to As3+ and Sb3+ resulted in agglomeration of PML-NBs. Exposure to bismuth (Bi3+), another Group 15 element, did not induce any of these changes. ML792, a SUMO activation inhibitor, reduced the number of PML-NBs and increased the size of the NBs, but had little effect on the As3+-induced solubility change of PML. These results warrant the importance of As3+- or Sb3+-induced solubility shift of PML for the regulation intranuclear dynamics of PML-NBs.
Collapse
|
47
|
Benedicto I, Chen X, Bergo MO, Andrés V. Progeria: a perspective on potential drug targets and treatment strategies. Expert Opin Ther Targets 2022; 26:393-399. [DOI: 10.1080/14728222.2022.2078699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Ignacio Benedicto
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Xue Chen
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, China
| | - Martin O. Bergo
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, SE-141 83, Sweden
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Spain
| |
Collapse
|
48
|
Mosevitsky MI. Progerin and Its Role in Accelerated and Natural Aging. Mol Biol 2022. [DOI: 10.1134/s0026893322020091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
González-Blanco C, Marqués P, Burillo J, Jiménez B, García G, Benito M, Guillén C. Cell immortalization facilitates prelamin A clearance by increasing both cell proliferation and autophagic flux. Aging (Albany NY) 2022; 14:2047-2061. [PMID: 35306483 PMCID: PMC8954962 DOI: 10.18632/aging.203943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/25/2022] [Indexed: 12/03/2022]
Abstract
Hutchinson-Gilford Progeria Syndrome is an ultrarare disease which is characterized by an accelerated senescence phenotype with deleterious consequences to people suffering this pathology. The production of an abnormal protein derived from lamin A, called progerin, presents a farnesylated domain, which is not eliminated by the causal mutation of the disease, and accumulates in the interior of the nucleus, provoking a disruption of nuclear membrane, chromatin organization and an altered gene expression. The mutation in these patients occurs in a single nucleotide change, which creates a de novo splicing site, producing a shorter version of the protein. Apart from this mutation, an alteration in the metalloproteinase Zmpste24, involved in the maturation of lamin A, causing a similar alteration than in progeria. However, in this case, patients accumulate a protein, called prelamin A, which generates similar alterations in the nucleus than progerin. The reduction of prelamin A protein levels facilitates the recovery of the phenotype in different mice models of the disease, reducing the aging process. Different strategies have been studied for eliminating this toxic protein. Here, we report that immortalization of primary cells derived from the Zmpste24 KO mice, facilitates prelamin A degradation by different mechanisms, being essential, the enhancing proliferative capacity that the immortalized cells present. Then, these data suggest that using different treatments for increasing proliferative capacity of these cells, potentially could have a beneficial effect, facilitating prelamin A toxicity.
Collapse
Affiliation(s)
| | - Patricia Marqués
- Department of Biochemistry, Complutense University, Madrid, Spain
| | - Jesús Burillo
- Department of Biochemistry, Complutense University, Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), Madrid, Spain
| | - Beatriz Jiménez
- Department of Biochemistry, Complutense University, Madrid, Spain
| | - Gema García
- Department of Biochemistry, Complutense University, Madrid, Spain
| | - Manuel Benito
- Department of Biochemistry, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), Madrid, Spain
| | - Carlos Guillén
- Department of Biochemistry, Complutense University, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Mechanisms of Insulin Resistance (MOIR2), General Direction of Universities and Investigation (CCMM), Madrid, Spain
| |
Collapse
|
50
|
MG132 Induces Progerin Clearance and Improves Disease Phenotypes in HGPS-like Patients’ Cells. Cells 2022; 11:cells11040610. [PMID: 35203262 PMCID: PMC8870437 DOI: 10.3390/cells11040610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Progeroid syndromes (PS), including Hutchinson-Gilford Progeria Syndrome (HGPS), are premature and accelerated aging diseases, characterized by clinical features mimicking physiological aging. Most classical HGPS patients carry a de novo point mutation within exon 11 of the LMNA gene encoding A-type lamins. This mutation activates a cryptic splice site, leading to the production of a truncated prelamin A, called prelamin A ∆50 or progerin, that accumulates in HGPS cell nuclei and is a hallmark of the disease. Some patients with PS carry other LMNA mutations and are named “HGPS-like” patients. They produce progerin and/or other truncated prelamin A isoforms (∆35 and ∆90). We previously found that MG132, a proteasome inhibitor, induced progerin clearance in classical HGPS through autophagy activation and splicing regulation. Here, we show that MG132 induces aberrant prelamin A clearance and improves cellular phenotypes in HGPS-like patients’ cells other than those previously described in classical HGPS. These results provide preclinical proof of principle for the use of a promising class of molecules toward a potential therapy for children with HGPS-like or classical HGPS.
Collapse
|