1
|
Wei F, Li W, Zhou T, Yuan X, Zhang L. Unveiling FAM111B: A Pan-Cancer Biomarker for DNA Repair and Immune Infiltration. Int J Mol Sci 2025; 26:3151. [PMID: 40243892 PMCID: PMC11989846 DOI: 10.3390/ijms26073151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Recent evidence indicates that FAM111B is significantly involved in the progression of various cancers. Nonetheless, the potential pan-cancer implications of FAM111B have not been systematically investigated. In this study, FAM111B's expression and oncogenic potential were studied using TCGA and GTEx data via GEPIA2, TIMER2.0, and STRING tools. Pathway enrichment analyses with the GO, KEGG, Reactome, and WikiPathways databases were conducted to explore its role in cancer development. The results were validated via multiplex immunofluorescence assays of pancreatic cancer tissues, microarray assays of ovarian cancer tissues, and protein transcriptomics of ovarian cancer cells. The expression levels of FAM111B were elevated in most cancer types and were associated with poor prognostic outcomes. Mechanistically, FAM111B expression was positively correlated with the expression of genes involved in DNA homologous recombination repair and with the infiltration of Th2 CD4+ T cells. These observations were further substantiated in ovarian cancer cell lines and tissue specimens from pancreatic and ovarian cancers. FAM111B functions as a biomarker for the DNA repair pathway and Th2 CD4+ T-cell infiltration in human malignancies.
Collapse
Affiliation(s)
| | | | | | | | - Lihong Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (F.W.); (W.L.); (T.Z.); (X.Y.)
| |
Collapse
|
2
|
Takaya H, Takamatsu S, Nakai H, Matsumura N. Homologous recombination deficiency: a reliable biomarker or a misleading indicator? Expert Rev Mol Diagn 2025:1-3. [PMID: 40131248 DOI: 10.1080/14737159.2025.2485212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 03/26/2025]
Affiliation(s)
- Hisamitsu Takaya
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Shiro Takamatsu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hidekatsu Nakai
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
3
|
Morris BB, Heeke S, Xi Y, Diao L, Wang Q, Rocha P, Arriola E, Lee MC, Tyson DR, Concannon K, Ramkumar K, Stewart CA, Cardnell RJ, Wang R, Quaranta V, Wang J, Heymach JV, Nabet BY, Shames DS, Gay CM, Byers LA. DNA damage response signatures are associated with frontline chemotherapy response and routes of tumor evolution in extensive stage small cell lung cancer. Mol Cancer 2025; 24:90. [PMID: 40114214 PMCID: PMC11924755 DOI: 10.1186/s12943-025-02291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
INTRODUCTION A hallmark of small cell lung cancer (SCLC) is its recalcitrance to therapy. While most SCLCs respond to frontline therapy, resistance inevitably develops. Identifying phenotypes potentiating chemoresistance and immune evasion is a crucial unmet need. Previous reports have linked upregulation of the DNA damage response (DDR) machinery to chemoresistance and immune evasion across cancers. However, it is unknown if SCLCs exhibit distinct DDR phenotypes. METHODS To study SCLC DDR phenotypes, we developed a new DDR gene analysis method and applied it to SCLC clinical samples, in vitro, and in vivo model systems. We then investigated how DDR regulation is associated with SCLC biology, chemotherapy response, and tumor evolution following therapy. RESULTS Using multi-omic profiling, we demonstrate that SCLC tumors cluster into three DDR phenotypes with unique molecular features. Hallmarks of these DDR clusters include differential expression of DNA repair genes, increased replication stress, and heightened G2/M cell cycle arrest. SCLCs with elevated DDR phenotypes exhibit increased neuroendocrine features and decreased "inflamed" biomarkers, both within and across SCLC subtypes. Clinical analyses demonstrated treatment naive DDR status was associated with different responses to frontline chemotherapy. Using longitudinal liquid biopsies, we found that DDR Intermediate and High tumors exhibited subtype switching and coincident emergence of heterogenous phenotypes following frontline treatment. CONCLUSIONS We establish that SCLC can be classified into one of three distinct, clinically relevant DDR clusters. Our data demonstrates that DDR status plays a key role in shaping SCLC phenotypes and may be associated with different chemotherapy responses and patterns of tumor evolution. Future work targeting DDR specific phenotypes will be instrumental in improving patient outcomes.
Collapse
Affiliation(s)
- Benjamin B Morris
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Simon Heeke
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Yuanxin Xi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pedro Rocha
- Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Edurne Arriola
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Myung Chang Lee
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, CA, USA
| | - Darren R Tyson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kyle Concannon
- Department of Hematology/Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kavya Ramkumar
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - C Allison Stewart
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Robert J Cardnell
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Runsheng Wang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Vito Quaranta
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Barzin Y Nabet
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, CA, USA
| | - David S Shames
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, CA, USA
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
| | - Lauren A Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Sun C, Li X, Teng Q, Liu X, Song L, Schiöth HB, Wu H, Ma X, Zhang Z, Qi C, Zhang H, Song K, Zhang Q, Kong B. Targeting platinum-resistant ovarian cancer by disrupting histone and RAD51 lactylation. Theranostics 2025; 15:3055-3075. [PMID: 40083924 PMCID: PMC11898288 DOI: 10.7150/thno.104858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/29/2025] [Indexed: 03/16/2025] Open
Abstract
Rationale: Ovarian cancer is a highly lethal gynecological malignancy with common platinum resistance. Lactylation is involved in multiple biological processes. Thus, we explored the role of histone and non-histone lactylation in platinum resistance, providing a potential therapeutic target to overcome platinum resistance in ovarian cancer. Methods: We utilized gene set enrichment analysis to investigate lactylation-related pathway alterations between platinum-resistant and platinum-sensitive patients from the TCGA cohort. Differential expression of H3K9la was demonstrated using Western blotting and immunohistochemistry. Progression-free and overall survival were determined using a log-rank test. Drug response to cisplatin was evaluated by CCK8, apoptosis flow cytometry, and clonogenic assays in vitro. ChIP-seq and ChIP-qPCR assays were performed to identify downstream targets of H3K9la, which was further confirmed by qRT-PCR. LC-MS/MS was conducted to identify specific lactylation sites for RAD51. Co-IP was used to reveal the interaction between GCN5 and H3K9la or RAD51la. Cell line-derived and patient-derived xenograft (PDX) models of ovarian cancer were constructed for the in vivo experiments. Results: Our study showed elevated histone lactylation, especially of H3K9la, in platinum-resistant ovarian cancer. Moreover, high H3K9la indicated platinum resistance and poor prognosis of ovarian cancer. Impairing H3K9la enhanced response to cisplatin. Mechanistically, H3K9la directly activated RAD51 and BRCA2 expression to facilitate homologous recombination (HR) repair. Furthermore, RAD51K73la enhanced HR repair and subsequently conferred cisplatin resistance. H3K9la and RAD51K73la shared the same upstream regulator, GCN5. Notably, a GCN5 inhibitor remarkably improved the tumor-killing ability of cisplatin in PDX models of ovarian cancer. Conclusions: Our study demonstrated the essential role of histone and RAD51 lactylation in HR repair and platinum resistance. It also identified a potential therapeutic strategy to overcome platinum resistance and improve prognosis in ovarian cancer.
Collapse
Affiliation(s)
- Chenggong Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Division of Gynecology Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Division of Gynecology Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Qiuli Teng
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Xihan Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Division of Gynecology Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Li Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Division of Gynecology Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, 751 24 Uppsala, Sweden
| | - Huan Wu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Xinyue Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Zhaoyang Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Changjian Qi
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Haocheng Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Division of Gynecology Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Qing Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Division of Gynecology Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Gynecology Oncology Key Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
- Division of Gynecology Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| |
Collapse
|
5
|
Milella M, Orsi G, di Marco M, Salvatore L, Procaccio L, Noventa S, Bozzarelli S, Garajova I, Vasile E, Giordano G, Macchini M, Cavaliere A, Gaule M, Bergamo F, Chiaravalli M, Palloni A, Carloni R, Bittoni A, Niger M, Rapposelli IG, Rodriquenz MG, Scartozzi M, Mosconi S, Giommoni E, Bernardini I, Paratore C, Spallanzani A, Bencardino K, Forti L, Tamburini E, Lonardi S, Scarpa A, Cascinu S, Tortora G, Sperduti I, Reni M. Real-World Impact of Olaparib Exposure in Advanced Pancreatic Cancer Patients Harboring Germline BRCA1-2 Pathogenic Variants. Cancer Med 2025; 14:e70364. [PMID: 39861955 PMCID: PMC11761426 DOI: 10.1002/cam4.70364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/07/2024] [Accepted: 10/13/2024] [Indexed: 01/27/2025] Open
Abstract
INTRODUCTION Pancreatic cancer arising in the context of BRCA predisposition may benefit from poly(ADP-ribose) polymerase inhibitors. We analyzed real-world data on the impact of olaparib on survival in metastatic pancreatic cancer patients harboring germline BRCA mutations in Italy, where olaparib is not reimbursed for this indication. METHODS Clinico/pathological data of pancreatic cancer patients with documented BRCA1-2 germline pathogenic variants who had received first-line chemotherapy for metastatic disease were collected from 23 Italian oncology departments and the impact of olaparib exposure on overall survival (OS) was analyzed. RESULTS Of 114, 53 BRCA-mutant pancreatic cancer patients had received olaparib for metastatic disease. OS was significantly longer in patients who were exposed to olaparib (hazard ratio [HR] 0.568, 95% confidence interval [CI] 0.351-0.918, log-rank p = 0.02) in any setting/line of treatment; similar results were obtained for patients who received olaparib as maintenance treatment (in any line of treatment), patients who had stage IV disease at diagnosis, and patients who did not experience progressive disease as their best response to first-line chemotherapy. Exposure to olaparib in the first-line maintenance setting after platinum-based chemotherapy, however, did not significantly impact survival. At multivariate analysis, CA19.9 levels at diagnosis and response to first-line chemotherapy were independently prognostic; however, when response to chemotherapy was excluded, any exposure to olaparib was a significant independent predictor of longer OS, together with CA19.9 levels. CONCLUSION The real-world data presented here support the use of olaparib for metastatic disease in germline BRCA-mutant pancreatic cancer patients, as it may significantly prolong survival.
Collapse
|
6
|
Feng Z, Zhu C, Zhang X, Huang Z, Ju X, Guo Q, Li X, Wu X, Wen H. Comprehensive evaluation of genomic and functional assays for homologous recombination deficiency with high-grade epithelial ovarian cancer: Platinum sensitivity and prognosis. Int J Gynecol Cancer 2025; 35:100031. [PMID: 39878284 DOI: 10.1016/j.ijgc.2024.100031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Indexed: 01/31/2025] Open
Abstract
OBJECTIVE Homologous recombination deficiency assays, guiding treatment of poly (adenosine diphosphate ribose) polymerase inhibitors, are increasingly applied in clinics. This study aimed to evaluate the predictive performance of homologous recombination deficiency status at genomic and functional perspective on the efficacy of platinum-based chemotherapy in ovarian cancer. METHODS Between 2016 and 2019, 134 patients with high-grade ovarian cancer were retrospectively analyzed. Formalin-fixed paraffin-embedded tissues were subjected to DNA sequencing using the AmoyDx HRD Complete Panel. The genomic scar score and the genomic instability score were calculated based on copy number variation events. Furthermore, the RAD51 and SLFN11 protein levels in tumors were assessed by immunohistochemistry. RESULTS Of all patients, 106 of 134 (79.1%) were homologous recombination deficiency (genomic scar score)-positive, with a higher platinum sensitivity rate than those who were homologous recombination deficiency (genomic scar score)-negative (78.3% vs 57.1%, p = .023). Similarly, 104 of 134 (77.6%) were homologous recombination deficiency (genomic instability score)-positive, with increased platinum sensitivity compared with homologous recombination deficiency (genomic instability score)-negative (77.9% vs 60.0%, p = .049). The overall concordance rate of homologous recombination deficiency status defined by the 2 scores was 98.5%. Genomic scar score and genomic instability score determined homologous recombination deficiency-positive statuses correlated with better progression-free survival (p = .0019, p = .0041) and overall survival (p = .018, p = .031). Patients with nuclear RAD51-loss or SLFN11-positive expression were likely to be homologous recombination deficiency-positive by genomic scar score/genomic instability score (94.1% and 97.6%; 94.1% and 95.2%, respectively). Patients with nuclear RAD51-loss and SLFN11-positive expression had better overall survival than those with RAD51-positive and SLFN11-negative expression. Among homologous recombination deficiency statuses, RAD51 and SLFN11 expressions, homologous recombination deficiency (genomic scar score)-positive was most associated with progression-free survival and platinum sensitivity. Multivariate regression analysis showed that homologous recombination deficiency (genomic scar score)-positive status was a good prognostic factor, implying a higher possibility of platinum sensitivity. CONCLUSION Genomic scar score, given by AmoyDx HRD Complete Panel, was most associated with the efficacy of platinum treatment in patients with high-grade ovarian cancer. Validation is warranted via prospective studies.
Collapse
Affiliation(s)
- Zheng Feng
- Fudan University Shanghai Cancer Center, Department of Gynecologic Oncology, Shanghai, China; Fudan University, Shanghai Medical College, Department of Oncology, Shanghai, China
| | - Changbin Zhu
- Amoy Diagnostics Co, Ltd, Department of Translational Medicine, Xiamen, China
| | - Xiaotian Zhang
- Amoy Diagnostics Co, Ltd, Department of Translational Medicine, Xiamen, China
| | - Zhan Huang
- Amoy Diagnostics Co, Ltd, Department of Translational Medicine, Xiamen, China
| | - Xingzhu Ju
- Fudan University Shanghai Cancer Center, Department of Gynecologic Oncology, Shanghai, China; Fudan University, Shanghai Medical College, Department of Oncology, Shanghai, China
| | - Qinhao Guo
- Fudan University Shanghai Cancer Center, Department of Gynecologic Oncology, Shanghai, China; Fudan University, Shanghai Medical College, Department of Oncology, Shanghai, China
| | - Xing Li
- Amoy Diagnostics Co, Ltd, Department of Translational Medicine, Xiamen, China
| | - Xiaohua Wu
- Fudan University Shanghai Cancer Center, Department of Gynecologic Oncology, Shanghai, China; Fudan University, Shanghai Medical College, Department of Oncology, Shanghai, China
| | - Hao Wen
- Fudan University Shanghai Cancer Center, Department of Gynecologic Oncology, Shanghai, China; Fudan University, Shanghai Medical College, Department of Oncology, Shanghai, China.
| |
Collapse
|
7
|
Schab A, Compadre A, Drexler R, Loeb M, Rodriguez K, Brill J, Harrington S, Sandoval C, Sanders B, Kuroki L, McCourt C, Hagemann AR, Thaker P, Mutch D, Powell M, Serra V, Hagemann IS, Walts AE, Karlan BY, Orsulic S, Fuh K, Sun L, Verma P, Lomonosova E, Zhao P, Khabele D, Mullen M. Replication stress marker phospho-RPA2 predicts response to platinum and PARP inhibitors in homologous recombination-proficient ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624682. [PMID: 39651311 PMCID: PMC11623540 DOI: 10.1101/2024.11.21.624682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background Ovarian cancer treatment includes cytoreductive surgery, platinum-based chemotherapy, and often poly (ADP-ribose) polymerase (PARP) inhibitors. Homologous recombination (HR)-deficiency is a well-established predictor of therapy sensitivity. However, over 50% of HR-proficient tumors also exhibit sensitivity to standard-of-care treatments. Currently, there are no biomarkers to identify which HR-proficient tumors will be sensitive to standard-of-care therapy. Replication stress may serve as a key determinant of response. Methods We evaluated phospho-RPA2-T21 (pRPA2) foci via immunofluorescence as a potential biomarker of replication stress in formalin-fixed, paraffin-embedded tumor samples collected at diagnosis from patients treated with platinum chemotherapy (discovery cohort: n = 31, validation cohort: n = 244) or PARP inhibitors (n = 87). Recurrent tumors (n = 37) were also analyzed. pRPA2 scores were calculated using automated imaging analysis. Samples were defined as pRPA2-High if > 16% of cells had ≥ 2 pRPA2 foci. Results In the discovery cohort, HR-proficient, pRPA2-High tumors demonstrated significantly higher rates of pathologic complete response to platinum chemotherapy than HR-proficient, pRPA2-Low tumors. In the validation cohort, patients with HR-proficient, pRPA2-High tumors had significantly longer survival after platinum treatment than those with HR-proficient, pRPA2-Low tumors. Additionally, the pRPA2 assay effectively predicted survival outcomes in patients treated with PARP inhibitors and in recurrent tumor samples. Conclusion Our study underscores the importance of considering replication stress markers alongside HR status in therapeutic planning. Our work suggest that this assay could be used throughout a patient's treatment course to expand the number of patients receiving effective therapy while reducing unnecessary toxicity.
Collapse
|
8
|
Morris BB, Heeke S, Xi Y, Diao L, Wang Q, Rocha P, Arriola E, Lee MC, Tyson DR, Concannon K, Ramkumar K, Stewart CA, Cardnell RJ, Wang R, Quaranta V, Wang J, Heymach JV, Nabet BY, Shames DS, Gay CM, Byers LA. DNA damage response signatures are associated with frontline chemotherapy response and routes of tumor evolution in extensive stage small cell lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605595. [PMID: 39211077 PMCID: PMC11360952 DOI: 10.1101/2024.07.29.605595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Introduction A hallmark of small cell lung cancer (SCLC) is its recalcitrance to therapy. While most SCLCs respond to frontline therapy, resistance inevitably develops. Identifying phenotypes potentiating chemoresistance and immune evasion is a crucial unmet need. Previous reports have linked upregulation of the DNA damage response (DDR) machinery to chemoresistance and immune evasion across cancers. However, it is unknown if SCLCs exhibit distinct DDR phenotypes. Methods To study SCLC DDR phenotypes, we developed a new DDR gene analysis method and applied it to SCLC clinical samples, in vitro , and in vivo model systems. We then investigated how DDR regulation is associated with SCLC biology, chemotherapy response, and tumor evolution following therapy. Results Using multi-omic profiling, we demonstrate that SCLC tumors cluster into three DDR phenotypes with unique molecular features. Hallmarks of these DDR clusters include differential expression of DNA repair genes, increased replication stress, and heightened G2/M cell cycle arrest. SCLCs with elevated DDR phenotypes exhibit increased neuroendocrine features and decreased "inflamed" biomarkers, both within and across SCLC subtypes. Treatment naive DDR status identified SCLC patients with different responses to frontline chemotherapy. Tumors with initial DDR Intermediate and DDR High phenotypes demonstrated greater tendency for subtype switching and emergence of heterogeneous phenotypes following treatment. Conclusions We establish that SCLC can be classified into one of three distinct, clinically relevant DDR clusters. Our data demonstrates that DDR status plays a key role in shaping SCLC phenotypes, chemotherapy response, and patterns of tumor evolution. Future work targeting DDR specific phenotypes will be instrumental in improving patient outcomes.
Collapse
|
9
|
Hoang PM, Torre D, Jaynes P, Ho J, Mohammed K, Alvstad E, Lam WY, Khanchandani V, Lee JM, Toh CMC, Lee RX, Anbuselvan A, Lee S, Sebra RP, Martin J. Walsh, Marazzi I, Kappei D, Guccione E, Jeyasekharan AD. A PRMT5-ZNF326 axis mediates innate immune activation upon replication stress. SCIENCE ADVANCES 2024; 10:eadm9589. [PMID: 38838142 PMCID: PMC11804791 DOI: 10.1126/sciadv.adm9589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/25/2024] [Indexed: 06/07/2024]
Abstract
DNA replication stress (RS) is a widespread phenomenon in carcinogenesis, causing genomic instability and extensive chromatin alterations. DNA damage leads to activation of innate immune signaling, but little is known about transcriptional regulators mediating such signaling upon RS. Using a chemical screen, we identified protein arginine methyltransferase 5 (PRMT5) as a key mediator of RS-dependent induction of interferon-stimulated genes (ISGs). This response is also associated with reactivation of endogenous retroviruses (ERVs). Using quantitative mass spectrometry, we identify proteins with PRMT5-dependent symmetric dimethylarginine (SDMA) modification induced upon RS. Among these, we show that PRMT5 targets and modulates the activity of ZNF326, a zinc finger protein essential for ISG response. Our data demonstrate a role for PRMT5-mediated SDMA in the context of RS-induced transcriptional induction, affecting physiological homeostasis and cancer therapy.
Collapse
Affiliation(s)
- Phuong Mai Hoang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Denis Torre
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jessica Ho
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Kevin Mohammed
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Erik Alvstad
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Wan Yee Lam
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vartika Khanchandani
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jie Min Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chin Min Clarissa Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Rui Xue Lee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Akshaya Anbuselvan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, South Korea
| | - Robert P. Sebra
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Martin J. Walsh
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ivan Marazzi
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
- Center for Epigenetics and Metabolism, University of California Irvine, Irvine, CA 92697, USA
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ernesto Guccione
- Center for OncoGenomics and Innovative Therapeutics (COGIT), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetic and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anand D. Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Hospital, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Kim YN, Kim K, Joung JG, Kim SW, Kim S, Lee JY, Park E. RAD51 as an immunohistochemistry-based marker of poly(ADP-ribose) polymerase inhibitor resistance in ovarian cancer. Front Oncol 2024; 14:1351778. [PMID: 38725623 PMCID: PMC11079140 DOI: 10.3389/fonc.2024.1351778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Objective Effective functional biomarkers that can be readily used in clinical practice to predict poly(ADP-ribose) polymerase inhibitor (PARPi) sensitivity are lacking. With the widespread adoption of PARPi maintenance therapy in ovarian cancer, particularly in patients with BRCA mutation or HR deficiencies, accurately identifying de novo or acquired resistance to PARPi has become critical in clinical practice. We investigated RAD51 immunohistochemistry (IHC) as a functional biomarker for predicting PARPi sensitivity in ovarian cancer. Methods Ovarian cancer patients who had received PARPi and had archival tissue samples prior to PARPi exposure ("pre-PARPi") and/or after progression on PARPi ("post-PARPi") were selected. RAD51 IHC expression was semi-quantitatively evaluated using the H-score in geminin (a G2/S phase marker)- and γH2AX (a DNA damage marker)-positive tissues. A RAD51 H-score of 20 was used as the cutoff value. Results In total, 72 samples from 56 patients were analyzed. The median RAD51 H-score was 20 (range: 0-90) overall, 10 (0-190) in pre-PARPi samples (n = 34), and 25 (1-170) in post-PARPi samples (n = 19). Among patients with BRCA mutations, RAD51-low patients had better progression-free survival (PFS) after PARPi treatment than RAD51-high patients (P = 0.029). No difference was found in PFS with respect to the genomic scar score (P = 0.930). Analysis of matched pre- and post-PARPi samples collected from 15 patients indicated an increase in the RAD51 H-score upon progression on PARPi, particularly among pre-PARPi low-RAD51-expressing patients. Conclusion RAD51 is a potential functional IHC biomarker of de novo and acquired PARPi resistance in BRCA-mutated ovarian cancer and can be used to fine-tune ovarian cancer treatment.
Collapse
Affiliation(s)
- Yoo-Na Kim
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyeongmin Kim
- Graduate School of Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Pathology, Soonchunhyang University, Seoul, Republic of Korea
| | - Je-Gun Joung
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - Sang Wun Kim
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sunghoon Kim
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Institute of Women’s Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Eunhyang Park
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
de la Peña Avalos B, Paquet N, Tropée R, Coulombe Y, Palacios H, Leung J, Masson JY, Duijf PG, Dray E. The protein phosphatase EYA4 promotes homologous recombination (HR) through dephosphorylation of tyrosine 315 on RAD51. Nucleic Acids Res 2024; 52:1173-1187. [PMID: 38084915 PMCID: PMC10853800 DOI: 10.1093/nar/gkad1177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024] Open
Abstract
Efficient DNA repair and limitation of genome rearrangements rely on crosstalk between different DNA double-strand break (DSB) repair pathways, and their synchronization with the cell cycle. The selection, timing and efficacy of DSB repair pathways are influenced by post-translational modifications of histones and DNA damage repair (DDR) proteins, such as phosphorylation. While the importance of kinases and serine/threonine phosphatases in DDR have been extensively studied, the role of tyrosine phosphatases in DNA repair remains poorly understood. In this study, we have identified EYA4 as the protein phosphatase that dephosphorylates RAD51 on residue Tyr315. Through its Tyr phosphatase activity, EYA4 regulates RAD51 localization, presynaptic filament formation, foci formation, and activity. Thus, it is essential for homologous recombination (HR) at DSBs. DNA binding stimulates EYA4 phosphatase activity. Depletion of EYA4 decreases single-stranded DNA accumulation following DNA damage and impairs HR, while overexpression of EYA4 in cells promotes dephosphorylation and stabilization of RAD51, and thereby nucleoprotein filament formation. Our data have implications for a pathological version of RAD51 in EYA4-overexpressing cancers.
Collapse
Affiliation(s)
- Bárbara de la Peña Avalos
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX, USA
| | - Nicolas Paquet
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Romain Tropée
- Queensland University of Technology, Translational Research Institute, Brisbane, QLD, Australia
| | - Yan Coulombe
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, Canada
| | - Hannah Palacios
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Justin W Leung
- Department of Radiation Oncology, University of Texas Health and Science Center, San Antonio, TX 78229, USA
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Québec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, Canada
| | - Pascal H G Duijf
- Centre for Cancer Biology, Clinical and Health Sciences, University of South Australia & SA Pathology, Adelaide SA, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Eloïse Dray
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
12
|
Korsholm LM, Kjeldsen M, Perino L, Mariani L, Nyvang GB, Kristensen E, Bagger FO, Mirza MR, Rossing M. Combining Homologous Recombination-Deficient Testing and Functional RAD51 Analysis Enhances the Prediction of Poly(ADP-Ribose) Polymerase Inhibitor Sensitivity. JCO Precis Oncol 2024; 8:e2300483. [PMID: 38427930 PMCID: PMC10919475 DOI: 10.1200/po.23.00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/03/2023] [Accepted: 12/21/2023] [Indexed: 03/03/2024] Open
Abstract
PURPOSE To meet the urgent need for accessible homologous recombination-deficient (HRD) test options, we validated a laboratory-developed test (LDT) and a functional RAD51 assay to assess patients with ovarian cancer and predict the clinical benefit of poly(ADP-ribose) polymerase inhibitor therapy. METHODS Optimization of the LDT cutoff and validation on the basis of samples from 91 patients enrolled in the ENGOT-ov24/NSGO-AVANOVA1&2 trial (ClinicalTrials.gov identifier: NCT02354131), previously subjected to commercial CDx HRD testing (CDx). RAD51 foci analysis was performed and tumors with ≥five foci/nucleus were classified as RAD51-positive (homologous recombination-proficient). RESULTS The optimal LDT cutoff is 54. Comparing CDx genome instability score and LDT HRD scores show a Spearman's correlation of rho = 0.764 (P < .0001). Cross-tabulation analysis shows that the sensitivity of the LDT HRD score is 86% and of the LDT HRD status is 91.8% (Fisher's exact test P < .001). Survival analysis on progression-free survival (PFS) of LDT-assessed patients show a Cox regression P < .05. RAD51 assays show a correlation between low RAD51 foci detection (<20% RAD51+ cells) and significantly prolonged PFS (P < .001). CONCLUSION The robust concordance between the open standard LDT and the CDx, especially the correlation with PFS, warrants future validation and implementation of the open standard LDT for HRD testing in diagnostic settings.
Collapse
Affiliation(s)
- Lea M. Korsholm
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Maj Kjeldsen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lorenzo Perino
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Luca Mariani
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Elisabeth Kristensen
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Frederik O. Bagger
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mansoor Raza Mirza
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Maria Rossing
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Ratnaparkhi R, Javellana M, Jewell A, Spoozak L. Evaluation of Homologous Recombination Deficiency in Ovarian Cancer. Curr Treat Options Oncol 2024; 25:237-260. [PMID: 38300479 DOI: 10.1007/s11864-024-01176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 02/02/2024]
Abstract
OPINION STATEMENT Homologous recombination deficiency (HRD) is an important biomarker guiding selection of ovarian cancer patients who will derive the most benefit from poly(ADP-ribose) polymerase inhibitors (PARPi). HRD prevents cells from repairing double-stranded DNA damage with high fidelity, PARPis limit single-stranded repair, and together these deficits induce synthetic lethality. Germline or somatic BRCA mutations represent the narrowest definition of HRD, but do not reflect all patients who will have a durable PARPi response. HRD can also be defined by its downstream consequences, which are measured by different metrics depending on the test used. Ideally, all patients will undergo genetic counseling and germline testing shortly after diagnosis and have somatic testing sent once an adequate tumor sample is available. Should barriers to one test be higher, pursuing germline testing with reflex to somatic testing for BRCA wildtype patients or somatic testing first strategies are both evidence-based. Ultimately both tests offer complementary information, germline testing should be pursued for any patient with a history of ovarian cancer, and somatic testing is valuable at recurrence if not performed in the upfront setting. There is a paucity of data to suggest superiority of one germline or somatic assay; therefore, selection should optimize turnaround time, cost to patients, preferred result format, and logistical burden. Each clinic should implement a standard testing strategy for all ovarian cancer patients that ensures HRD status is known at the time of upfront chemotherapy completion to facilitate comprehensive counseling about anticipated maintenance PARPi benefit.
Collapse
Affiliation(s)
- Rubina Ratnaparkhi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Melissa Javellana
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrea Jewell
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lori Spoozak
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
14
|
Li J, Hu H, He J, Hu Y, Liu M, Cao B, Chen D, Ye X, Zhang J, Zhang Z, Long W, Lian H, Chen D, Chen L, Yang L, Zhang Z. Effective sequential combined therapy with carboplatin and a CDC7 inhibitor in ovarian cancer. Transl Oncol 2024; 39:101825. [PMID: 37992591 PMCID: PMC10687335 DOI: 10.1016/j.tranon.2023.101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/27/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND The enhancement of DNA damage repair is one of the important mechanisms of platinum resistance. Protein cell division cycle 7 (CDC7) is a conserved serine/threonine kinase that plays important roles in the initiation of DNA replication and is associated with chemotherapy resistance in ovarian cancer. However, whether the CDC7 inhibitor XL413 has antitumor activity against ovarian cancer and its relationship with chemosensitivity remain poorly elucidated. METHODS We evaluated the antitumor effects of carboplatin combined with XL413 for ovarian cancer in vitro and in vivo. Cell viability inhibition, colony formation and apoptosis were assessed. The molecules related to DNA repair and damage were investigated. The antitumor effects of carboplatin combined with XL413 were also evaluated in SKOV-3 and OVCAR-3 xenografts in subcutaneous and intraperitoneal tumor models. RESULTS Sequential administration of XL413 after carboplatin (CBP) prevented cellular proliferation and promoted apoptosis in ovarian cancer (OC) cells. Compared with the CBP group, the expression level of RAD51 was significantly decreased and the expression level of γH2AX was significantly increased in the sequential combination treatment group. The equential combination treatment could significantly inhibit tumor growth in the subcutaneous and intraperitoneal tumor models, with the expression of RAD51 and Ki67 significantly decreased and the expression of γH2AX increased. CONCLUSIONS Sequential administration of CDC7 inhibitor XL413 after carboplatin can enhance the chemotherapeutic effect of carboplatin on ovarian cancer cells. The mechanism may be that CDC7 inhibitor XL413 increases the accumulation of chemotherapy-induced DNA damage by inhibiting homologous recombination repair activity.
Collapse
Affiliation(s)
- Junping Li
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, China
| | - Hong Hu
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China; Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, China
| | - Jinping He
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Yuling Hu
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Manting Liu
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Bihui Cao
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Dongni Chen
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Xiaodie Ye
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Jian Zhang
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Zhiru Zhang
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Wen Long
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Hui Lian
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Deji Chen
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Likun Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510200, China.
| | - Lili Yang
- Department of Nutrition, Guangdong Provincial Key Laboratory of Food, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Zhenfeng Zhang
- Department of Radiology, Translational Medicine Center, Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China.
| |
Collapse
|
15
|
Blanc-Durand F, Clemence Wei Xian L, Tan DSP. Targeting the immune microenvironment for ovarian cancer therapy. Front Immunol 2023; 14:1328651. [PMID: 38164130 PMCID: PMC10757966 DOI: 10.3389/fimmu.2023.1328651] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
Ovarian cancer (OC) is an aggressive malignancy characterized by a complex immunosuppressive tumor microenvironment (TME). Immune checkpoint inhibitors have emerged as a breakthrough in cancer therapy by reactivating the antitumor immune response suppressed by tumor cells. However, in the case of OC, these inhibitors have failed to demonstrate significant improvements in patient outcomes, and existing biomarkers have not yet identified promising subgroups. Consequently, there remains a pressing need to understand the interplay between OC tumor cells and their surrounding microenvironment to develop effective immunotherapeutic approaches. This review aims to provide an overview of the OC TME and explore its potential as a therapeutic strategy. Tumor-infiltrating lymphocytes (TILs) are major actors in OC TME. Evidence has been accumulating regarding the spontaneous TILS response against OC antigens. Activated T-helpers secrete a wide range of inflammatory cytokines with a supportive action on cytotoxic T-cells. Simultaneously, mature B-cells are recruited and play a significant antitumor role through opsonization of target antigens and T-cell recruitment. Macrophages also form an important subset of innate immunity (M1-macrophages) while participating in the immune-stimulation context. Finally, OC has shown to engage a significant natural-killer-cells immune response, exerting direct cytotoxicity without prior sensitization. Despite this initial cytotoxicity, OC cells develop various strategies to induce an immune-tolerant state. To this end, multiple immunosuppressive molecules are secreted to impair cytotoxic cells, recruit regulatory cells, alter antigen presentation, and effectively evade immune response. Consequently, OC TME is predominantly infiltrated by immunosuppressive cells such as FOXP3+ regulatory T-cells, M2-polarized macrophages and myeloid-derived suppressor cells. Despite this strong immunosuppressive state, PD-1/PD-L1 inhibitors have failed to improve outcomes. Beyond PD-1/PD-L1, OC expresses multiple other immune checkpoints that contribute to immune evasion, and each representing potential immune targets. Novel immunotherapies are attempting to overcome the immunosuppressive state and induce specific immune responses using antibodies adoptive cell therapy or vaccines. Overall, the OC TME presents both opportunities and obstacles. Immunotherapeutic approaches continue to show promise, and next-generation inhibitors offer exciting opportunities. However, tailoring therapies to individual immune characteristics will be critical for the success of these treatments.
Collapse
Affiliation(s)
- Felix Blanc-Durand
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine and Cancer Science Institute (CSI), National University of Singapore (NUS), Singapore, Singapore
| | - Lai Clemence Wei Xian
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine and Cancer Science Institute (CSI), National University of Singapore (NUS), Singapore, Singapore
| | - David S. P. Tan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), National University Hospital, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University Centre for Cancer Research (N2CR) and Cancer Science Institute (CSI), National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Alizzi Z, Saravi S, Khalique S, McDonald T, Karteris E, Hall M. Identification of RAD51 foci in cancer-associated circulating cells of patients with high-grade serous ovarian cancer: association with treatment outcomes. Int J Gynecol Cancer 2023; 33:1427-1433. [PMID: 37541687 PMCID: PMC10511972 DOI: 10.1136/ijgc-2023-004483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/20/2023] [Indexed: 08/06/2023] Open
Abstract
OBJECTIVE Fifty percent of patients with high-grade serous ovarian cancer harbor defects in the homologous recombination repair pathway. RAD51 foci form where DNA is damaged, indicating its involvement in repairing double-stranded breaks. High levels of RAD51 in ovarian cancer tissue have been associated with a poorer prognosis. OBJECTIVE To demonstrate RAD51 foci in circulating cancer-associated cells of patients with ovarian cancer and their association with clinical outcomes. METHODS One hundred and twenty-four patients with high-grade serous ovarian cancer had blood samples taken at strategic points during treatment and follow-up. Cells were stained using WT1 and RAD51 antibodies with immunofluorescence and reviewed under Leica camera microscopy; RAD51 foci were counted. Correlations were made between numbers of RAD51 foci and treatment response, BRCA status, and progression-free survival. RESULTS RAD51 foci were identified in all patients (n=42) with wild-type BRCA. BRCA mutant/homologous recombination deficiency-positive patients (n=8) had significantly lower numbers of RAD51 foci (p=0.009). Responders to treatment (n=32) had a reduction in circulating cells (p=0.02) and RAD51 foci (p=0.0007). Numbers of RAD51 foci were significantly higher in the platinum-resistant population throughout treatment: at the start of treatment, in 56 platinum-sensitive patients there was a mean of 3.6 RAD51 foci versus 6.2 in 15 platinum-resistant patients (p=0.02). Patients with a high number of RAD51 foci had worse median progression-free survival: in 39 patients with a mean of <3 RAD51 foci at treatment start, median progression-free survival had not been reached, compared with 32 patients with >3 RAD51 foci whose progression-free survival was 13 months (p=0.04). CONCLUSIONS Levels of RAD51 foci in circulating cancer-associated cells of patients with high-grade serous ovarian cancer are associated with clinical outcomes and may be a more pragmatic method of determining a homologous repair-deficient population.
Collapse
Affiliation(s)
- Zena Alizzi
- Cancer Biomarker and Cellular Endocrinology Laboratory, College of Life Sciences, Brunel University London, Uxbridge, UK
- Mount Vernon Cancer Centre, Northwood, UK
| | - Sayeh Saravi
- Cancer Biomarker and Cellular Endocrinology Laboratory, College of Life Sciences, Brunel University London, Uxbridge, UK
| | - Saira Khalique
- Cancer Biomarker and Cellular Endocrinology Laboratory, College of Life Sciences, Brunel University London, Uxbridge, UK
- Mount Vernon Cancer Centre, Northwood, UK
| | | | - Emmanouil Karteris
- Cancer Biomarker and Cellular Endocrinology Laboratory, College of Life Sciences, Brunel University London, Uxbridge, UK
| | - Marcia Hall
- Cancer Biomarker and Cellular Endocrinology Laboratory, College of Life Sciences, Brunel University London, Uxbridge, UK
- Mount Vernon Cancer Centre, Northwood, UK
| |
Collapse
|
17
|
Nakai H, Matsumura N. Selection of maintenance therapy during first-line treatment of advanced ovarian cancer based on pharmacologic characteristics. Expert Opin Pharmacother 2023; 24:2161-2173. [PMID: 38111255 DOI: 10.1080/14656566.2023.2295393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
INTRODUCTION Maintenance therapy with bevacizumab and the poly (ADP-ribose) polymerase (PARP) inhibitors olaparib and niraparib after first-line treatment of advanced ovarian cancer has been approved. However, it is not clear which one should be used for which patients. AREAS COVERED This paper presents a detailed analysis of data from phase 3 trials in ovarian cancer evaluating bevacizumab (ICON7, GOG-0218), olaparib (SOLO1, PAOLA-1), and niraparib (PRIMA, PRIME). We will discuss how the results of these trials relate to the 'rebound effect,' in which the risk of progression increases after discontinuation of bevacizumab in patients receiving bevacizumab, and to the significant difference in tissue permeability between olaparib and niraparib. EXPERT OPINION In patients with homologous recombination deficiency and no macroscopic residual disease (R0) after primary debulking surgery (PDS), the combination of bevacizumab plus olaparib seems to be the best regimen. Olaparib monotherapy is suitable for patients with BRCA mutations other than PDS R0. Bevacizumab is most useful in cases with a short duration of the rebound effect, i.e. short survival. Niraparib is useful in others but may be more useful in Asians.
Collapse
Affiliation(s)
- Hidekatsu Nakai
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| | - Noriomi Matsumura
- Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka-Sayama, Osaka, Japan
| |
Collapse
|
18
|
Garg V, Oza AM. Assessment of Homologous Recombination Deficiency in Ovarian Cancer. Clin Cancer Res 2023; 29:2957-2960. [PMID: 37347464 DOI: 10.1158/1078-0432.ccr-23-0563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023]
Abstract
Accurately assessing homologous recombination deficiency (HRD) to use as a predictive biomarker is an area of intense research in ovarian cancer. Validated assays have demonstrated utility in determining maintenance therapy following platinum sensitive chemotherapy. Novel functional assays promise the potential to reflect HRD in real time and predict response to PARP inhibitors. See related articles by Pikkusaari et al., p. 3110 and Blanc-Durand et al., p. 3124.
Collapse
Affiliation(s)
- Vikas Garg
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Pikkusaari S, Tumiati M, Virtanen A, Oikkonen J, Li Y, Perez-Villatoro F, Muranen T, Salko M, Huhtinen K, Kanerva A, Koskela H, Tapper J, Koivisto-Korander R, Joutsiniemi T, Haltia UM, Lassus H, Hautaniemi S, Färkkilä A, Hynninen J, Hietanen S, Carpén O, Kauppi L. Functional Homologous Recombination Assay on FFPE Specimens of Advanced High-Grade Serous Ovarian Cancer Predicts Clinical Outcomes. Clin Cancer Res 2023; 29:3110-3123. [PMID: 36805632 PMCID: PMC10425726 DOI: 10.1158/1078-0432.ccr-22-3156] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/29/2022] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
PURPOSE Deficiency in homologous recombination (HR) repair of DNA damage is characteristic of many high-grade serous ovarian cancers (HGSC). It is imperative to identify patients with homologous recombination-deficient (HRD) tumors as they are most likely to benefit from platinum-based chemotherapy and PARP inhibitors (PARPi). Existing methods measure historical, not necessarily current HRD and/or require high tumor cell content, which is not achievable for many patients. We set out to develop a clinically feasible assay for identifying functionally HRD tumors that can predict clinical outcomes. EXPERIMENTAL DESIGN We quantified RAD51, a key HR protein, in immunostained formalin-fixed, paraffin-embedded (FFPE) tumor samples obtained from chemotherapy-naïve and neoadjuvant chemotherapy (NACT)-treated HGSC patients. We defined cutoffs for functional HRD separately for these sample types, classified the patients accordingly as HRD or HR-proficient, and analyzed correlations with clinical outcomes. From the same specimens, genomics-based HRD estimates (HR gene mutations, genomic signatures, and genomic scars) were also determined, and compared with functional HR (fHR) status. RESULTS fHR status significantly predicted several clinical outcomes, including progression-free survival (PFS) and overall survival (OS), when determined from chemo-naïve (PFS, P < 0.0001; OS, P < 0.0001) as well as NACT-treated (PFS, P < 0.0001; OS, P = 0.0033) tumor specimens. The fHR test also identified as HRD those PARPi-at-recurrence-treated patients with longer OS (P = 0.0188). CONCLUSIONS We developed an fHR assay performed on routine FFPE specimens, obtained from either chemo-naïve or NACT-treated HGSC patients, that can significantly predict real-world platinum-based chemotherapy and PARPi response. See related commentary by Garg and Oza, p. 2957.
Collapse
Affiliation(s)
- Sanna Pikkusaari
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Manuela Tumiati
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anni Virtanen
- Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Jaana Oikkonen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Yilin Li
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Fernando Perez-Villatoro
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Taru Muranen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matilda Salko
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kaisa Huhtinen
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Kanerva
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Heidi Koskela
- Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland
| | - Johanna Tapper
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | | | - Titta Joutsiniemi
- Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland
| | - Ulla-Maija Haltia
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Heini Lassus
- Department of Obstetrics and Gynecology, Helsinki University Hospital, Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anniina Färkkilä
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN digital precision cancer medicine flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland
| | - Sakari Hietanen
- Department of Obstetrics and Gynecology, Turku University Hospital, Turku, Finland
| | - Olli Carpén
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki and HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Liisa Kauppi
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- iCAN digital precision cancer medicine flagship, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
20
|
Compadre AJ, van Biljon LN, Valentine MC, Llop-Guevara A, Graham E, Fashemi B, Herencia-Ropero A, Kotnik EN, Cooper I, Harrington SP, Kuroki LM, McCourt CK, Hagemann AR, Thaker PH, Mutch DG, Powell MA, Sun L, Mosammaparast N, Serra V, Zhao P, Lomonosova E, Khabele D, Mullen MM. RAD51 Foci as a Biomarker Predictive of Platinum Chemotherapy Response in Ovarian Cancer. Clin Cancer Res 2023; 29:2466-2479. [PMID: 37097615 PMCID: PMC10320470 DOI: 10.1158/1078-0432.ccr-22-3335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/31/2023] [Accepted: 04/20/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE To determine the ability of RAD51 foci to predict platinum chemotherapy response in high-grade serous ovarian cancer (HGSOC) patient-derived samples. EXPERIMENTAL DESIGN RAD51 and γH2AX nuclear foci were evaluated by immunofluorescence in HGSOC patient-derived cell lines (n = 5), organoids (n = 11), and formalin-fixed, paraffin-embedded tumor samples (discovery n = 31, validation n = 148). Samples were defined as RAD51-High if >10% of geminin-positive cells had ≥5 RAD51 foci. Associations between RAD51 scores, platinum chemotherapy response, and survival were evaluated. RESULTS RAD51 scores correlated with in vitro response to platinum chemotherapy in established and primary ovarian cancer cell lines (Pearson r = 0.96, P = 0.01). Organoids from platinum-nonresponsive tumors had significantly higher RAD51 scores than those from platinum-responsive tumors (P < 0.001). In a discovery cohort, RAD51-Low tumors were more likely to have a pathologic complete response (RR, 5.28; P < 0.001) and to be platinum-sensitive (RR, ∞; P = 0.05). The RAD51 score was predictive of chemotherapy response score [AUC, 0.90; 95% confidence interval (CI), 0.78-1.0; P < 0.001). A novel automatic quantification system accurately reflected the manual assay (92%). In a validation cohort, RAD51-Low tumors were more likely to be platinum-sensitive (RR, ∞; P < 0.001) than RAD51-High tumors. Moreover, RAD51-Low status predicted platinum sensitivity with 100% positive predictive value and was associated with better progression-free (HR, 0.53; 95% CI, 0.33-0.85; P < 0.001) and overall survival (HR, 0.43; 95% CI, 0.25-0.75; P = 0.003) than RAD51-High status. CONCLUSIONS RAD51 foci are a robust marker of platinum chemotherapy response and survival in ovarian cancer. The utility of RAD51 foci as a predictive biomarker for HGSOC should be tested in clinical trials.
Collapse
Affiliation(s)
- Amanda J. Compadre
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St Louis, Missouri
| | - Lillian N. van Biljon
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St Louis, Missouri
| | - Mark C. Valentine
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St Louis, Missouri
| | - Alba Llop-Guevara
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Emily Graham
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St Louis, Missouri
| | - Bisiayo Fashemi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St Louis, Missouri
| | - Andrea Herencia-Ropero
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Spain
| | - Emilee N. Kotnik
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St Louis, Missouri
| | - Isaac Cooper
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St Louis, Missouri
| | | | - Lindsay M. Kuroki
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St Louis, Missouri
| | - Carolyn K. McCourt
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St Louis, Missouri
| | - Andrea R. Hagemann
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St Louis, Missouri
| | - Premal H. Thaker
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St Louis, Missouri
| | - David G. Mutch
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St Louis, Missouri
| | - Matthew A. Powell
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St Louis, Missouri
| | - Lulu Sun
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Washington University, St. Louis, Missouri
| | - Violeta Serra
- Experimental Therapeutics Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Peinan Zhao
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University, St Louis, Missouri
| | - Elena Lomonosova
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St Louis, Missouri
| | - Dineo Khabele
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St Louis, Missouri
| | - Mary M. Mullen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Washington University, St Louis, Missouri
| |
Collapse
|
21
|
Hoppe MM, Jaynes P, Shuangyi F, Peng Y, Sridhar S, Hoang PM, Liu CX, De Mel S, Poon L, Chan EHL, Lee J, Ong CK, Tang T, Lim ST, Nagarajan C, Grigoropoulos NF, Tan SY, Hue SSS, Chang ST, Chuang SS, Li S, Khoury JD, Choi H, Harris C, Bottos A, Gay LJ, Runge HF, Moutsopoulos I, Mohorianu I, Hodson DJ, Farinha P, Mottok A, Scott DW, Pitt JJ, Chen J, Kumar G, Kannan K, Chng WJ, Chee YL, Ng SB, Tripodo C, Jeyasekharan AD. Patterns of Oncogene Coexpression at Single-Cell Resolution Influence Survival in Lymphoma. Cancer Discov 2023; 13:1144-1163. [PMID: 37071673 PMCID: PMC10157367 DOI: 10.1158/2159-8290.cd-22-0998] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/29/2022] [Accepted: 02/13/2023] [Indexed: 04/19/2023]
Abstract
Cancers often overexpress multiple clinically relevant oncogenes, but it is not known if combinations of oncogenes in cellular subpopulations within a cancer influence clinical outcomes. Using quantitative multispectral imaging of the prognostically relevant oncogenes MYC, BCL2, and BCL6 in diffuse large B-cell lymphoma (DLBCL), we show that the percentage of cells with a unique combination MYC+BCL2+BCL6- (M+2+6-) consistently predicts survival across four independent cohorts (n = 449), an effect not observed with other combinations including M+2+6+. We show that the M+2+6- percentage can be mathematically derived from quantitative measurements of the individual oncogenes and correlates with survival in IHC (n = 316) and gene expression (n = 2,521) datasets. Comparative bulk/single-cell transcriptomic analyses of DLBCL samples and MYC/BCL2/BCL6-transformed primary B cells identify molecular features, including cyclin D2 and PI3K/AKT as candidate regulators of M+2+6- unfavorable biology. Similar analyses evaluating oncogenic combinations at single-cell resolution in other cancers may facilitate an understanding of cancer evolution and therapy resistance. SIGNIFICANCE Using single-cell-resolved multiplexed imaging, we show that selected subpopulations of cells expressing specific combinations of oncogenes influence clinical outcomes in lymphoma. We describe a probabilistic metric for the estimation of cellular oncogenic coexpression from IHC or bulk transcriptomes, with possible implications for prognostication and therapeutic target discovery in cancer. This article is highlighted in the In This Issue feature, p. 1027.
Collapse
Affiliation(s)
- Michal Marek Hoppe
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Fan Shuangyi
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yanfen Peng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Shruti Sridhar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Phuong Mai Hoang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Clementine Xin Liu
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
| | - Sanjay De Mel
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Limei Poon
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Esther Hian Li Chan
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Joanne Lee
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Choon Kiat Ong
- Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| | - Tiffany Tang
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Soon Thye Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | | | | | - Soo-Yong Tan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Susan Swee-Shan Hue
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sheng-Tsung Chang
- Department of Pathology, Chi-Mei Medical Center, Tainan City, Taiwan
| | - Shih-Sung Chuang
- Department of Pathology, Chi-Mei Medical Center, Tainan City, Taiwan
| | - Shaoying Li
- Department of Hematopathology, Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph D. Khoury
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Hyungwon Choi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Carl Harris
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Laura J. Gay
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | | | | | - Irina Mohorianu
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | - Daniel J. Hodson
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge, United Kingdom
| | | | - Anja Mottok
- BC Cancer Research Centre, Vancouver, Canada
| | | | - Jason J. Pitt
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Jinmiao Chen
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Gayatri Kumar
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kasthuri Kannan
- Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yen Lin Chee
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Claudio Tripodo
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
- IFOM ETS – The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Anand D. Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology-Oncology, National University Health System, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Devlin MJ, Miller R. Genomic testing in high-grade serous ovarian cancer: current options and future development. Int J Gynecol Cancer 2023; 33:358-363. [PMID: 36878563 DOI: 10.1136/ijgc-2022-003702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Understanding the genomic complexity of high-grade serous ovarian cancer is now essential in guiding patient management, particularly in the first-line setting. Our knowledge in this area has expanded rapidly in recent years, with biomarkers developing in parallel to agents designed to exploit cancer-associated genetic aberrations. In this review we will take stock of the current landscape of genetic testing and look towards the future with developments that aim to refine personalized treatment paradigms and track treatment resistance in real time.
Collapse
Affiliation(s)
- Michael-John Devlin
- Barts Cancer Institute, Queen Mary University of London, London, UK
- Department of Medical Oncology, St Bartholomew's Hospital, London, UK
| | - Rowan Miller
- Department of Medical Oncology, St Bartholomew's Hospital, London, UK
- Department of Medical Oncology, University College London Hospital, London, UK
| |
Collapse
|
23
|
Kim K, Kim SH, Lee JY, Kim YN, Lee ST, Park E. RAD51/geminin/γH2AX immunohistochemical expression predicts platinum-based chemotherapy response in ovarian high-grade serous carcinoma. J Gynecol Oncol 2023:34.e45. [PMID: 36807748 DOI: 10.3802/jgo.2023.34.e45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/28/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
OBJECTIVE The RAD51 assay is a recently developed functional assay for homologous recombination deficiency (HRD) that reflects real-time HRD status. We aimed to identify the applicability and predictive value of RAD51 immunohistochemical expression in pre- and post-neoadjuvant chemotherapy (NAC) samples of ovarian high-grade serous carcinoma (HGSC). METHODS We evaluated the immunohistochemical expression of RAD51/geminin/γH2AX in ovarian HGSC before and after NAC. RESULTS In pre-NAC tumors (n=51), 74.5% (39/51) showed at least 25% of γH2AX-positive tumor cells, suggesting endogenous DNA damage. The RAD51-high group (41.0%, 16/39) showed significantly worse progression-free survival (PFS) compared to the RAD51-low group (51.3%, 20/39) (p=0.032). In post-NAC tumors (n=50), the RAD51-high group (36.0%, 18/50) showed worse PFS (p=0.013) and tended to present worse overall survival (p=0.067) compared to the RAD51-low group (64.0%, 32/50). RAD51-high cases were more likely to progress than RAD51-low cases at both 6 months and 12 months (p=0.046 and p=0.019, respectively). Of 34 patients with matched pre- and post-NAC RAD51 results, 44% (15/34) of pre-NAC RAD51 results were changed in the post-NAC tissue, and the RAD51 high-to-high group showed the worst PFS, while the low-to-low group showed the best PFS (p=0.031). CONCLUSION High RAD51 expression was significantly associated with worse PFS in HGSC, and post-NAC RAD51 status showed higher association than pre-NAC RAD51 status. Moreover, RAD51 status can be evaluated in a significant proportion of treatment-naïve HGSC samples. As RAD51 status dynamically changes, sequential follow-up of RAD51 status might reflect the biological behavior of HGSCs.
Collapse
Affiliation(s)
- Kyeongmin Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Department of Pathology, Soonchunhyang University, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jung-Yun Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Yoo-Na Kim
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Eunhyang Park
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
24
|
Schoutrop E, Moyano-Galceran L, Lheureux S, Mattsson J, Lehti K, Dahlstrand H, Magalhaes I. Molecular, cellular and systemic aspects of epithelial ovarian cancer and its tumor microenvironment. Semin Cancer Biol 2022; 86:207-223. [PMID: 35395389 DOI: 10.1016/j.semcancer.2022.03.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Ovarian cancer encompasses a heterogeneous group of malignancies that involve the ovaries, fallopian tubes and the peritoneal cavity. Despite major advances made within the field of cancer, the majority of patients with ovarian cancer are still being diagnosed at an advanced stage of the disease due to lack of effective screening tools. The overall survival of these patients has, therefore, not substantially improved over the past decades. Most patients undergo debulking surgery and treatment with chemotherapy, but often micrometastases remain and acquire resistance to the therapy, eventually leading to disease recurrence. Here, we summarize the current knowledge in epithelial ovarian cancer development and metastatic progression. For the most common subtypes, we focus further on the properties and functions of the immunosuppressive tumor microenvironment, including the extracellular matrix. Current and future treatment modalities are discussed and finally we provide an overview of the different experimental models used to develop novel therapies.
Collapse
Affiliation(s)
- Esther Schoutrop
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lidia Moyano-Galceran
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Stephanie Lheureux
- University of Toronto, Toronto, Ontario, Canada; Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jonas Mattsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; University of Toronto, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Gloria and Seymour Epstein Chair in Cell Therapy and Transplantation, Toronto, Ontario, Canada
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; Department of Biomedical Laboratory Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Hanna Dahlstrand
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Medical unit Pelvic Cancer, Theme Cancer, Karolinska University Hospital, Stockholm, Sweden.
| | - Isabelle Magalhaes
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden; Department of Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
25
|
Imyanitov E, Sokolenko A. Integrative Genomic Tests in Clinical Oncology. Int J Mol Sci 2022; 23:13129. [PMID: 36361916 PMCID: PMC9656402 DOI: 10.3390/ijms232113129] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 09/12/2023] Open
Abstract
Many clinical decisions in oncology practice rely on the presence or absence of an alteration in a single genetic locus, be it a pathogenic variant in a hereditary cancer gene or activating mutation in a drug target. In addition, there are integrative tests that produce continuous variables and evaluate complex characteristics of the entire tumor genome. Microsatellite instability (MSI) analysis identifies tumors with the accumulation of mutations in short repetitive nucleotide sequences. This procedure is utilized in Lynch syndrome diagnostic pipelines and for the selection of patients for immunotherapy. MSI analysis is well-established for colorectal malignancies, but its applications in other cancer types lack standardization and require additional research. Homologous repair deficiency (HRD) indicates tumor sensitivity to PARP inhibitors and some cytotoxic drugs. HRD-related "genomic scars" are manifested by a characteristic pattern of allelic imbalances, accumulation of deletions with flanking homology, and specific mutation signatures. The detection of the genetic consequences of HRD is particularly sophisticated and expensive, as it involves either whole genome sequencing (WGS) or the utilization of large next-generation sequencing (NGS) panels. Tumor mutation burden (TMB) can be determined by whole exome sequencing (WES) or middle-throughput NGS multigene testing. Although TMB is regarded as an agnostic indicator of tumor sensitivity to immunotherapy, the clinical utility of this test is proven only for a few cancer types.
Collapse
Affiliation(s)
- Evgeny Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Anna Sokolenko
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia
- Department of Medical Genetics, St.-Petersburg Pediatric Medical University, 194100 St. Petersburg, Russia
| |
Collapse
|
26
|
Coelho R, Tozzi A, Disler M, Lombardo F, Fedier A, López MN, Freuler F, Jacob F, Heinzelmann-Schwarz V. Overlapping gene dependencies for PARP inhibitors and carboplatin response identified by functional CRISPR-Cas9 screening in ovarian cancer. Cell Death Dis 2022; 13:909. [PMID: 36307400 PMCID: PMC9616819 DOI: 10.1038/s41419-022-05347-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/23/2022]
Abstract
PARP inhibitors (PARPi) have revolutionized the therapeutic landscape of epithelial ovarian cancer (EOC) treatment with outstanding benefits in regard to progression-free survival, especially in patients either carrying BRCA1/2 mutations or harboring defects in the homologous recombination repair system. Yet, it remains uncertain which PARPi to apply and how to predict responders when platinum sensitivity is unknown. To shed light on the predictive power of genes previously suggested to be associated with PARPi response, we systematically reviewed the literature and identified 79 publications investigating a total of 93 genes. The top candidate genes were further tested using a comprehensive CRISPR-Cas9 mutagenesis screening in combination with olaparib treatment. Therefore, we generated six constitutive Cas9+ EOC cell lines and profiled 33 genes in a CRISPR-Cas9 cell competition assay using non-essential (AAVS1) and essential (RPA3 and PCNA) genes for cell fitness as negative and positive controls, respectively. We identified only ATM, MUS81, NBN, BRCA2, and RAD51B as predictive markers for olaparib response. As the major survival benefit of PARPi treatment was reported in platinum-sensitive tumors, we next assessed nine top candidate genes in combination with three PARPi and carboplatin. Interestingly, we observed similar dropout rates in a gene and compound independent manner, supporting the strong correlation of cancer cell response to compounds that rely on DNA repair for their effectiveness. In addition, we report on CDK12 as a common vulnerability for EOC cell survival and proliferation without altering the olaparib response, highlighting its potential as a therapeutic target in EOC.
Collapse
Affiliation(s)
- Ricardo Coelho
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Alessandra Tozzi
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland ,grid.410567.1Hospital for Women, University Hospital Basel, Basel, Switzerland
| | - Muriel Disler
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Flavio Lombardo
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - André Fedier
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mónica Núñez López
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Florian Freuler
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Francis Jacob
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Viola Heinzelmann-Schwarz
- grid.410567.1Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland ,grid.410567.1Hospital for Women, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
27
|
Wang Z, Jia R, Wang L, Yang Q, Hu X, Fu Q, Zhang X, Li W, Ren Y. The Emerging Roles of Rad51 in Cancer and Its Potential as a Therapeutic Target. Front Oncol 2022; 12:935593. [PMID: 35875146 PMCID: PMC9300834 DOI: 10.3389/fonc.2022.935593] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/26/2022] [Indexed: 12/03/2022] Open
Abstract
Defects in DNA repair pathways are emerging hallmarks of cancer. Accurate DNA repairs and replications are essential for genomic stability. Cancer cells require residual DNA repair capabilities to repair the damage from replication stress and genotoxic anti-tumor agents. Defective DNA repair also promotes the accumulation of genomic changes that eventually lead to tumorigenesis, tumor progression, and therapeutic resistance to DNA-damaging anti-tumor agents. Rad51 recombinase is a critical effector of homologous recombination, which is an essential DNA repair mechanism for double-strand breaks. Rad51 has been found to be upregulated in many malignant solid tumors, and is correlated with poor prognosis. In multiple tumor types, Rad51 is critical for tumor metabolism, metastasis and drug resistance. Herein, we initially introduced the structure, expression pattern of Rad51 and key Rad51 mediators involved in homologous recombination. Additionally, we primarily discussed the role of Rad51 in tumor metabolism, metastasis, resistance to chemotherapeutic agents and poly-ADP ribose polymerase inhibitors.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Thoracic Surgery, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, China
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Renxiang Jia
- Department of Thoracic Surgery, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, China
| | - Linlin Wang
- Department of Thoracic Surgery, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, China
| | - Qiwei Yang
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaohai Hu
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qiang Fu
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinyu Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wenya Li
- Department of Thoracic Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi Ren
- Department of Thoracic Surgery, Shenyang Chest Hospital & Tenth People’s Hospital, Shenyang, China
| |
Collapse
|
28
|
Garner IM, Brown R. Is There a Role for Epigenetic Therapies in Modulating DNA Damage Repair Pathways to Enhance Chemotherapy and Overcome Drug Resistance? Cancers (Basel) 2022; 14:cancers14061533. [PMID: 35326684 PMCID: PMC8946236 DOI: 10.3390/cancers14061533] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/12/2022] [Indexed: 02/01/2023] Open
Abstract
Epigenetic therapies describe drug molecules such as DNA methyltransferase, histone methyltransferase and histone acetylase/deacetylase inhibitors, which target epigenetic mechanisms such as DNA methylation and histone modifications. Many DNA damage response (DDR) genes are epigenetically regulated in cancer leading to transcriptional silencing and the loss of DNA repair capacity. Epigenetic marks at DDR genes, such as DNA methylation at gene promoters, have the potential to be used as stratification biomarkers, identifying which patients may benefit from particular chemotherapy treatments. For genes such as MGMT and BRCA1, promoter DNA methylation is associated with chemosensitivity to alkylating agents and platinum coordination complexes, respectively, and they have use as biomarkers directing patient treatment options. In contrast to epigenetic change leading to chemosensitivity, DNA methylation of DDR genes involved in engaging cell death responses, such as MLH1, are associated with chemoresistance. This contrasting functional effect of epigenetic modification on chemosensitivity raises challenges in using DNA-demethylating agents, and other epigenetic approaches, to sensitise tumours to DNA-damaging chemotherapies and molecularly targeted agents. Demethylation of MGMT/BRCA1 could lead to drug resistance whereas demethylation of MLH1 could sensitise cells to chemotherapy. Patient selection based on a solid understanding of the disease pathway will be one means to tackle these challenges. The role of epigenetic modification of DDR genes during tumour development, such as causing a mutator phenotype, has different selective pressures and outcomes compared to epigenetic adaptation during treatment. The prevention of epigenetic adaptation during the acquisition of drug resistance will be a potential strategy to improve the treatment of patients using epigenetic therapies.
Collapse
|
29
|
Srinivas US, Tay NSC, Jaynes P, Anbuselvan A, Ramachandran GK, Wardyn JD, Hoppe MM, Hoang PM, Peng Y, Lim S, Lee MY, Peethala PC, An O, Shendre A, Tan BWQ, Jemimah S, Lakshmanan M, Hu L, Jakhar R, Sachaphibulkij K, Lim LHK, Pervaiz S, Crasta K, Yang H, Tan P, Liang C, Ho L, Khanchandani V, Kappei D, Yong WP, Tan DSP, Bordi M, Campello S, Tam WL, Frezza C, Jeyasekharan AD. PLK1 inhibition selectively induces apoptosis in ARID1A deficient cells through uncoupling of oxygen consumption from ATP production. Oncogene 2022; 41:1986-2002. [PMID: 35236967 DOI: 10.1038/s41388-022-02219-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 12/26/2022]
Abstract
Inhibitors of the mitotic kinase PLK1 yield objective responses in a subset of refractory cancers. However, PLK1 overexpression in cancer does not correlate with drug sensitivity, and the clinical development of PLK1 inhibitors has been hampered by the lack of patient selection marker. Using a high-throughput chemical screen, we discovered that cells deficient for the tumor suppressor ARID1A are highly sensitive to PLK1 inhibition. Interestingly this sensitivity was unrelated to canonical functions of PLK1 in mediating G2/M cell cycle transition. Instead, a whole-genome CRISPR screen revealed PLK1 inhibitor sensitivity in ARID1A deficient cells to be dependent on the mitochondrial translation machinery. We find that ARID1A knock-out (KO) cells have an unusual mitochondrial phenotype with aberrant biogenesis, increased oxygen consumption/expression of oxidative phosphorylation genes, but without increased ATP production. Using expansion microscopy and biochemical fractionation, we see that a subset of PLK1 localizes to the mitochondria in interphase cells. Inhibition of PLK1 in ARID1A KO cells further uncouples oxygen consumption from ATP production, with subsequent membrane depolarization and apoptosis. Knockdown of specific subunits of the mitochondrial ribosome reverses PLK1-inhibitor induced apoptosis in ARID1A deficient cells, confirming specificity of the phenotype. Together, these findings highlight a novel interphase role for PLK1 in maintaining mitochondrial fitness under metabolic stress, and a strategy for therapeutic use of PLK1 inhibitors. To translate these findings, we describe a quantitative microscopy assay for assessment of ARID1A protein loss, which could offer a novel patient selection strategy for the clinical development of PLK1 inhibitors in cancer.
Collapse
Affiliation(s)
- Upadhyayula S Srinivas
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Norbert S C Tay
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Patrick Jaynes
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Akshaya Anbuselvan
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Gokula K Ramachandran
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Joanna D Wardyn
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Michal M Hoppe
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Phuong Mai Hoang
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Yanfen Peng
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Sherlly Lim
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - May Yin Lee
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Praveen C Peethala
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Omer An
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Akshay Shendre
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Bryce W Q Tan
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Sherlyn Jemimah
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Longyu Hu
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Rekha Jakhar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
| | - Karishma Sachaphibulkij
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Lina H K Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Karen Crasta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Patrick Tan
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Chao Liang
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Lena Ho
- Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Vartika Khanchandani
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | - Wei Peng Yong
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
- National University Cancer Institute, Singapore (NCIS), National University Hospital (NUH), Singapore, Singapore
| | - David S P Tan
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
- National University Cancer Institute, Singapore (NCIS), National University Hospital (NUH), Singapore, Singapore
| | - Matteo Bordi
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Silvia Campello
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | - Wai Leong Tam
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore
- Genome Institute of Singapore (GIS), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore
| | | | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore (NUS), Singapore, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore.
- National University Cancer Institute, Singapore (NCIS), National University Hospital (NUH), Singapore, Singapore.
| |
Collapse
|
30
|
Yes-associated protein 1 exerts its tumor-promoting effects and increases cisplatin resistance in tongue squamous cell carcinoma cells by dysregulating Hippo signal pathway. Anticancer Drugs 2022; 33:352-361. [DOI: 10.1097/cad.0000000000001269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Li T, Shi W, Yao J, Hu J, Sun Q, Meng J, Wan J, Song H, Wang H. Combinatorial nanococktails via self-assembling lipid prodrugs for synergistically overcoming drug resistance and effective cancer therapy. Biomater Res 2022; 26:3. [PMID: 35101154 PMCID: PMC8805243 DOI: 10.1186/s40824-022-00249-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Background Combinatorial systemic chemotherapy is a powerful treatment paradigm against cancer, but it is fraught with problems due to the emergence of chemoresistance and additive systemic toxicity. In addition, coadministration of individual drugs suffers from uncontrollable pharmacokinetics and biodistribution, resulting in suboptimal combination synergy. Methods Toward the goal of addressing these unmet medical issues, we describe a unique strategy to integrate multiple structurally disparate drugs into a self-assembling nanococktail platform. Conjugation of a polyunsaturated fatty acid (e.g., linoleic acid) with two chemotherapies generated prodrug entities that were miscible with tunable drug ratios for aqueous self-assembly. In vitro and in vivo assays were performed to investigate the mechanism of combinatorial nanococktails in mitigating chemoresistance and the efficacy of nanotherapy. Results The coassembled nanoparticle cocktails were feasibly fabricated and further refined with an amphiphilic matrix to form a systemically injectable and PEGylated nanomedicine with minimal excipients. The drug ratio incorporated into the nanococktails was optimized and carefully examined in lung cancer cells to maximize therapeutic synergy. Mechanistically, subjugated resistance by nanococktail therapy was achieved through the altered cellular uptake pathway and compromised DNA repair via the ATM/Chk2/p53 cascade. In mice harboring cisplatin-resistant lung tumor xenografts, administration of the nanococktail outperformed free drug combinations in terms of antitumor efficacy and drug tolerability. Conclusion Overall, our study provides a facile and cost-effective approach for the generation of cytotoxic nanoparticles to synergistically treat chemoresistant cancers. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-022-00249-7.
Collapse
|
32
|
Wang Q, Wei X, Hu L, Zhuang L, Zhang H, Chen Q. Hedgehog-Gli2 Signaling Promotes Chemoresistance in Ovarian Cancer Cells by Regulating MDR1. Front Oncol 2022; 11:794959. [PMID: 35059317 PMCID: PMC8763667 DOI: 10.3389/fonc.2021.794959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/13/2021] [Indexed: 11/20/2022] Open
Abstract
Background Cisplatin (DDP) resistance remains a key challenge in improving the clinical outcome of patients with ovarian cancer (OC). Gli2 overexpression can lead to DDP resistance in OC cells, but the specific underlying regulatory mechanism remains unclear. The membrane transporter encoding gene MDR1 positively regulates chemotherapy resistance in various cancer types. We evaluated MDR1 as a potential Gli2 downstream target and the contribution of the Gli2/MDR1 axis in promoting DDP resistance in OC cells. Methods To generate drug-resistant SKOV3/DDP cells, SKOV3 cells were grown for six months under continuous induction wherein the DDP concentration was steadily increased. Gli2 expression in OC cells with varying DDP sensitivities was detected using western blot. Cell counting kit-8 assays were used to assess the DDP sensitivity of SKOV3, SKOV3/DDP, A2780, and A2780/DDP cells and reversal of DDP resistance in SKOV3/DDP and A2780/DDP cells. Cell proliferation was analyzed using 5-ethynyl-2′-deoxyuridine (EdU) incorporation assays. The transcriptional regulation of MDR1 by Gli2 was determined using luciferase reporter assays. Finally, xenograft OC tumors were generated in nude mice, which were then treated with intraperitoneal DDP or phosphate-buffered saline (PBS) injections to investigate if Gli2 affected DDP resistance in OC in vivo. Results DDP-resistant SKOV3/DDP and A2780/DDP cells showed higher expression of Gli2 and MDR1 as compared with that in DDP-sensitive OC cells. Gli2 knockdown in SKOV3/DDP cells significantly reduced MDR1 expression, whereas it increased DNA damage, thereby sensitizing OC cells to DDP. Similar results were obtained after targeting Gli2 expression with the Gli-antagonist 61 inhibitor (GANT61) in SKOV3/DDP and A2780/DDP cells. In cells stably overexpressing Gli2, treatment with gradient concentrations of verapamil, an MDR1 inhibitor, significantly inhibited MDR1 expression. Our findings indicate that downregulation of MDR1 expression may reverse OC cell resistance to DDP. Moreover, dual-luciferase reporter gene assays confirmed that MDR1 is a direct downstream target of Gli2, with Gli2 positively regulating MDR1 expression. Finally, subcutaneous xenotransplantation in nude mice demonstrated that Gli2 plays a key role in regulating OC drug resistance. Conclusions We identified a mechanism by which Hedgehog-Gli signaling regulates OC chemoresistance by modulating MDR1 expression. Hence, Gli2 and MDR1 are potential biomarkers and therapeutic targets in patients with chemoresistant OC.
Collapse
Affiliation(s)
- Qian Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xin Wei
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lanyan Hu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lingling Zhuang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong Zhang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qi Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
33
|
Guffanti F, Alvisi MF, Anastasia A, Ricci F, Chiappa M, Llop-Guevara A, Serra V, Fruscio R, Degasperi A, Nik-Zainal S, Bani MR, Lupia M, Giavazzi R, Rulli E, Damia G. Basal expression of RAD51 foci predicts olaparib response in patient-derived ovarian cancer xenografts. Br J Cancer 2022; 126:120-128. [PMID: 34732853 PMCID: PMC8727677 DOI: 10.1038/s41416-021-01609-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/07/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The search for biomarkers to evaluate ovarian cancer (OC) homologous recombination (HR) function and predict the response to therapy is an urgent clinical need to improve the selection of patients who could benefit from platinum- and olaparib (poly-ADP ribose polymerase inhibitors, PARPi)-based therapies. METHODS We used a large collection of OC patient-derived xenografts (PDXs) (n = 47) and evaluated their HR status based on BRCA1/2 mutations, BRCA1 promoter methylation and the HRDetect score. RAD51 foci were quantified in formalin-fixed, paraffin-embedded untreated tumour specimens by immunofluorescence and the messenger RNA expression of 21 DNA repair genes by real-time PCR. RESULTS Tumour HR deficiency predicted both platinum and olaparib responses. The basal level of RAD51 foci evaluated in geminin-positive/replicating cells strongly inversely correlated with olaparib response (p = 0.011); in particular, the lower the foci score, the greater the sensitivity to olaparib, while low RAD51 foci score seems to associate with platinum activity. CONCLUSIONS The basal RAD51 foci score is a candidate predictive biomarker of olaparib response in OC patients as it can be easily translatable in a clinical setting. Moreover, the findings corroborate the importance of OC-PDXs as a reliable tool to identify and validate biomarkers of response to therapy.
Collapse
Affiliation(s)
- F. Guffanti
- grid.4527.40000000106678902Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - M F Alvisi
- grid.4527.40000000106678902Laboratory of Methodology for Clinical Research, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - A. Anastasia
- grid.4527.40000000106678902Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - F. Ricci
- grid.4527.40000000106678902Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - M. Chiappa
- grid.4527.40000000106678902Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - A. Llop-Guevara
- grid.411083.f0000 0001 0675 8654Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - V. Serra
- grid.411083.f0000 0001 0675 8654Experimental Therapeutics Group, Vall d’Hebron Institute of Oncology, Barcelona, Spain
| | - R. Fruscio
- grid.7563.70000 0001 2174 1754Clinic of Obstetrics and Gynecology, Department of Medicine and Surgery, San Gerardo Hospital, University of Milan Bicocca, Monza, Italy
| | - A. Degasperi
- grid.5335.00000000121885934MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ UK ,grid.120073.70000 0004 0622 5016Academic Laboratory of Medical Genetics, Lv 6 Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Box 238, Cambridge, CB2 0QQ UK
| | - S. Nik-Zainal
- grid.5335.00000000121885934MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197, Cambridge Biomedical Campus, Cambridge, CB2 0XZ UK ,grid.120073.70000 0004 0622 5016Academic Laboratory of Medical Genetics, Lv 6 Addenbrooke’s Treatment Centre, Addenbrooke’s Hospital, Box 238, Cambridge, CB2 0QQ UK
| | - M R Bani
- grid.4527.40000000106678902Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - M. Lupia
- grid.15667.330000 0004 1757 0843Unit of Gynecological Oncology Research, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - R. Giavazzi
- grid.4527.40000000106678902Laboratory of Cancer Metastasis Therapeutics, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - E. Rulli
- grid.4527.40000000106678902Laboratory of Methodology for Clinical Research, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - G. Damia
- grid.4527.40000000106678902Laboratory of Molecular Pharmacology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
34
|
|
35
|
Hoppe MM, Jaynes P, Wardyn JD, Upadhyayula SS, Tan TZ, Lie S, Lim DGZ, Pang BNK, Lim S, P S Yeong J, Karnezis A, Chiu DS, Leung S, Huntsman DG, Sedukhina AS, Sato K, Topp MD, Scott CL, Choi H, Patel NR, Brown R, Kaye SB, Pitt JJ, Tan DSP, Jeyasekharan AD. Quantitative imaging of RAD51 expression as a marker of platinum resistance in ovarian cancer. EMBO Mol Med 2021; 13:e13366. [PMID: 33709473 PMCID: PMC8103098 DOI: 10.15252/emmm.202013366] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022] Open
Abstract
Early relapse after platinum chemotherapy in epithelial ovarian cancer (EOC) portends poor survival. A-priori identification of platinum resistance is therefore crucial to improve on standard first-line carboplatin-paclitaxel treatment. The DNA repair pathway homologous recombination (HR) repairs platinum-induced damage, and the HR recombinase RAD51 is overexpressed in cancer. We therefore designed a REMARK-compliant study of pre-treatment RAD51 expression in EOC, using fluorescent quantitative immunohistochemistry (qIHC) to overcome challenges in quantitation of protein expression in situ. In a discovery cohort (n = 284), RAD51-High tumours had shorter progression-free and overall survival compared to RAD51-Low cases in univariate and multivariate analyses. The association of RAD51 with relapse/survival was validated in a carboplatin monotherapy SCOTROC4 clinical trial cohort (n = 264) and was predominantly noted in HR-proficient cancers (Myriad HRDscore < 42). Interestingly, overexpression of RAD51 modified expression of immune-regulatory pathways in vitro, while RAD51-High tumours showed exclusion of cytotoxic T cells in situ. Our findings highlight RAD51 expression as a determinant of platinum resistance and suggest possible roles for therapy to overcome immune exclusion in RAD51-High EOC. The qIHC approach is generalizable to other proteins with a continuum instead of discrete/bimodal expression.
Collapse
Affiliation(s)
- Michal M Hoppe
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Patrick Jaynes
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Joanna D Wardyn
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | | | - Tuan Zea Tan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Stefanus Lie
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Diana G Z Lim
- Department of PathologyNational University HospitalSingapore
| | - Brendan N K Pang
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- Department of PathologyNational University HospitalSingapore
| | - Sherlly Lim
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Joe P S Yeong
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Anthony Karnezis
- British Columbia Cancer AgencyVancouverBCCanada
- Present address:
Pathology and Lab medicineUC Davis Medical CentreSacramentoCAUSA
| | | | | | | | - Anna S Sedukhina
- Department of PharmacogenomicsSt. Marianna UniversityKawasakiJapan
| | - Ko Sato
- Department of PharmacogenomicsSt. Marianna UniversityKawasakiJapan
| | - Monique D Topp
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia
| | - Hyungwon Choi
- Saw Swee Hock School of Public HealthNational University of SingaporeSingapore
| | | | - Robert Brown
- Division of CancerImperial College LondonLondonUK
| | - Stan B Kaye
- Department of Haematology‐OncologyNational University HospitalSingapore
| | - Jason J Pitt
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - David S P Tan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- Department of Haematology‐OncologyNational University HospitalSingapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- Department of Haematology‐OncologyNational University HospitalSingapore
| |
Collapse
|
36
|
Schwickert J, Zickgraf FM, Sprick MR. Therapy resistance on the RADar in ovarian cancer. EMBO Mol Med 2021; 13:e14010. [PMID: 33779077 PMCID: PMC8103092 DOI: 10.15252/emmm.202114010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 11/21/2022] Open
Abstract
Ovarian cancer has the worst prognosis of all gynecological cancers with high‐grade serous ovarian cancer (HGSOC) accounting for the majority of ovarian cancer deaths. Therapy resistance and the selection of effective therapies for patients remains a major challenge. In this issue of EMBO Molecular Medicine, Hoppe et al present RAD51 expression as a biomarker of platinum resistance in high‐grade serous ovarian cancer (HGSOC) patients (Hoppe et al, 2021).
Collapse
Affiliation(s)
- Jonas Schwickert
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Franziska M Zickgraf
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Martin R Sprick
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| |
Collapse
|