1
|
Wang H, Kang X, Yu L, Wang H, Müller A, Kehrenberg C, Li Y, Yue M. Developing a novel TaqMan qPCR assay for optimizing Salmonella Pullorum detection in chickens. Vet Q 2025; 45:1-13. [PMID: 39882692 PMCID: PMC11784030 DOI: 10.1080/01652176.2025.2454473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/06/2024] [Accepted: 01/12/2025] [Indexed: 01/31/2025] Open
Abstract
Salmonella Pullorum, the causative agent of pullorum disease, posing a significant threat to the global production of poultry meat and eggs. However, existing detection methods have substantial limitations in efficiency and accuracy. Herein, we developed a genomic deletion-targeted TaqMan qPCR assay for identification of Salmonella Pullorum, enabling precise differentiation from other Salmonella serovars. The assay's detection limit was 5 copies/μL of plasmid and 4 CFU/μL of bacterial DNA. Furthermore, we collected 676 chicken samples from an established infection model to compare the performance of the TaqMan qPCR assay with traditional bacterial culturing and antibody-based detection approaches. With superior sensitivity and specificity, the newly developed method detected over 80% of positive chickens, significantly outperforming the two conventional methods. Moreover, we proposed a combined framework that incorporates the advantages of TaqMan qPCR assay and antibody detection method, further enhancing the detection rate of positives to 92%. Additionally, to address the frequent aerosol contamination of amplification products in laboratory settings, we devised an easy-to-deploy anti-contamination system based on T7 exonuclease. Overall, the T7 exonuclease-assisted TaqMan qPCR assay will not only upgrade the current detection for pullorum disease, but also exemplify the feasibility of targeting specific genomic deletions for pathogen detection.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xiamei Kang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Longhai Yu
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Haijian Wang
- Hainan Institute of Zhejiang University, Sanya, China
| | - Anja Müller
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Yan Li
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Min Yue
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Jiang X, Siddique A, Chen L, Zhu L, Zhou H, Na L, Jia C, Li Y, Yue M. Genomic and resistome analysis of Salmonella enterica isolates from retail markets in Yichun city, China. One Health 2025; 20:100967. [PMID: 39906162 PMCID: PMC11791297 DOI: 10.1016/j.onehlt.2025.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/05/2025] [Accepted: 01/05/2025] [Indexed: 02/06/2025] Open
Abstract
Nontyphoidal Salmonella (NTS) causes global outbreaks of foodborne disease. The main source of Salmonella for humans is animal-borne foods; however, the monitoring of Salmonella in the food chain via genomic platforms was limited in China. This study evaluated the prevalence, resistome, and virulome diversity of Salmonella strains identified from pork, retail environment, aquatic products, and poultry eggs of retail markets in Yichun city, Jiangxi province. The overall incidence of Salmonella was 9.4 %, with a higher contamination rate observed in pork at 13.5 %, followed by the retail environment at 7.69 %. The genomic analysis of the isolates revealed a total of fifteen distinct serovars, with serovar Enteritidis being the most prevalent (64.3 %). The phenotypic resistance analysis conducted by the broth microdilution method, revealed that 81.12 % of the isolates exhibited multidrug resistance (MDR), with high resistance to trimethoprim/sulphonamides (100 %), followed by tetracycline (99.3 %) and streptomycin (99.3 %). Genotypic analysis of antimicrobial resistance identified 80 antimicrobial-resistant genes (ARGs), with mdf(A), aph(3')-Ib, tet(A), dfrA12, floR, bla TEM-1B , qnrS3, and sul2, conferring resistance to different antimicrobial classes, being the predominant ARGs. Additionally, forty ESBL genes, particularly critical genes such as bla CTX-M and bla NDM-1, were also identified in Salmonella isolates. The IncR, IncFIB (K), and IncX1 plasmid replicons were widely prevalent and served as significant reservoirs of horizontally acquired foreign genes. Moreover, key virulence genes such as cdtB, lpf and sef were also detected, in addition to Salmonella pathogenicity islands SPI-1 and SPI-2. This study reveals the prevalence of multidrug-resistant and virulent strains of Salmonella serovars in the markets of Yichuan city, posing a risk of human infections. The gained knowledge provided essential baseline information that may be utilized for regular tracking of MDR Salmonella transmission in the food chain to minimize potential future outbreaks.
Collapse
Affiliation(s)
- Xiaowu Jiang
- College of Medicine, Yichun University, 576 Xuefu Road, Yichun, Jiangxi 336000, China
- Jiangxi Provincial Key Laboratory of Active Component of Natural Drugs, Poster-Doctoral Research Center, 576 Xuefu Road, Yichun, Jiangxi 336000, China
| | - Abubakar Siddique
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572000, China
| | - Li Chen
- College of Medicine, Yichun University, 576 Xuefu Road, Yichun, Jiangxi 336000, China
| | - Lexin Zhu
- College of Medicine, Yichun University, 576 Xuefu Road, Yichun, Jiangxi 336000, China
| | - Haiyang Zhou
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572000, China
| | - Li Na
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Chenghao Jia
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572000, China
| | - Yan Li
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572000, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572000, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| |
Collapse
|
3
|
Jiang X, Siddique A, Zhu L, Teng L, Umar S, Li Y, Yue M. Ecological prevalence and genomic characterization of Salmonella isolated from selected poultry farms in Jiangxi province, China. Poult Sci 2025; 104:105197. [PMID: 40279690 DOI: 10.1016/j.psj.2025.105197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/27/2025] Open
Abstract
Non-typhoidal Salmonella (NTS), particularly antimicrobial-resistant serovars, remains the major source of foodborne bacterial illnesses. Raw chicken is the leading cause of human salmonellosis. In this study, we evaluated the prevalence, antimicrobial resistance profiles, and genomic features of 143/1,800 (7.94%) Salmonella strains isolated from poultry farms in five major regions of Jiangxi province, China, between 2022 and 2023 using Whole genome sequencing (WGS). Among Salmonella isolates, the most common serovars were Infantis (ST32) and Enteritidis (ST11). Resistance to amoxicillin and tetracycline was the most prevalent, with 60.84% of Salmonella isolates exhibiting a multi-drug resistance (MDR) pattern. The detection of antimicrobial-resistant genes (ARGs) examined was aligned with the resistant phenotypes found. A total of 61 ARGs were identified, with aph(3')-Ia, qnrS1, aph(3'')-Ib, and tetA being the prominent ARGs. Furthermore, 24 beta-lactam genes were also identified, including blaTEM, blaSHV, and blaCTX-M. The number of ARGs and the distribution of serovars varied according to the year, farms, and cities. Salmonella isolates carried 13 heavy metal resistance genes (HMRGs) and two biocide resistance genes, with pcoS being the most prevalent. A total of 145 virulence genes and 19 plasmids were found, with serovars Infantis and Enteritidis having the most virulence genes. The high occurrence of MDR Salmonella in this study, particularly carrying numerous mobile genetic elements (MGEs), posed a serious threat to food safety and public health, emphasizing the need to improve poultry farm hygiene to decrease contamination and transmission.
Collapse
Affiliation(s)
- Xiaowu Jiang
- College of Medicine, Yichun University, Yichun, Jiangxi, 336000, PR China; Laboratory of Animal Pathogenic Microbiology, Yichun University, Yichun, Jiangxi, 336000, PR China
| | - Abubakar Siddique
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University Hangzhou, 310058, PR China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China
| | - Lexin Zhu
- College of Medicine, Yichun University, Yichun, Jiangxi, 336000, PR China; Laboratory of Animal Pathogenic Microbiology, Yichun University, Yichun, Jiangxi, 336000, PR China
| | - Lin Teng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China
| | - Sajid Umar
- Global Health Research Center, Duke Kunshan University, Suzhou, 215316, Jiangsu, PR China
| | - Yan Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University Hangzhou, 310058, PR China
| | - Min Yue
- College of Medicine, Yichun University, Yichun, Jiangxi, 336000, PR China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, PR China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, PR China.
| |
Collapse
|
4
|
Jiang Z, Yaqoob MU, Siddique A, Guang J, Ed-Dra A, Yue M. Bergeyella zoohelcum: A first case report of its association with respiratory diseases in swine in China. Vet Res Commun 2025; 49:176. [PMID: 40266479 DOI: 10.1007/s11259-025-10735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025]
Abstract
The current investigation presents the first case report of Bergeyella zoohelcum associated with respiratory tract infections in pigs in China. Two Gram-negative bacterial isolates with bacillus morphology were isolated from the heart and lung samples of two pigs having respiratory symptoms in two separate cases. The isolates were identified as B. zoohelcum using morphological, biochemical, and molecular approaches, including 16 S rRNA sequencing. Antimicrobial susceptibility test (AST) revealed that the B. zoohelcum isolates exhibit multi-drug resistance (MDR) patterns, particularly the B. zoohelcum ZWSF strain, which showed resistance to several antibiotics including polymyxin B, tetracycline, chloramphenicol, erythromycin, fosfomycin, amikacin, and gentamicin. Therefore, further investigations are necessary to better understand the pathogenicity of B. zoohelcum in swine and to prevent its spread.
Collapse
Affiliation(s)
- Zenghai Jiang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, P.R. China
- Henan Engineering and Technology Research Center of Veterinary Biotechnology, Zhengzhou, 450046, China
| | - Muhammad Umar Yaqoob
- Laboratory of Molecular Microbiology and Food Safety, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd, Hangzhou, 311107, China
| | - Abubakar Siddique
- Laboratory of Molecular Microbiology and Food Safety, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Juheng Guang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, P.R. China
| | - Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, Sultan Moulay Slimane University, M'ghila Campus, BP: 591, Beni Mellal, 23000, Morocco
| | - Min Yue
- Laboratory of Molecular Microbiology and Food Safety, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Laboratory of Molecular Microbiology and Food Safety, Institute of Animal Preventive Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Zhou H, Jia C, Shen P, Huang C, Teng L, Wu B, Wang Z, Wang H, Xiao Y, Baker S, Weill FX, Li Y, Yue M. Genomic census of invasive nontyphoidal Salmonella infections reveals global and local human-to-human transmission. Nat Med 2025:10.1038/s41591-025-03644-4. [PMID: 40205197 DOI: 10.1038/s41591-025-03644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
Extraintestinal infections caused by Enterobacteriaceae represent a global concern, further exacerbated by the growing prevalence of antimicrobial resistance (AMR). Among these, invasive nontyphoidal Salmonella (iNTS) infections have become increasingly challenging to manage, and their global spread remains poorly understood. Here we compiled 1,115 patient records and generated a comprehensive genomic dataset on iNTS. Age and sex emerged as significant risk factors, with Salmonella Enteritidis identified as a major cause. We observed serovar-specific AMR patterns, with notable resistance to fluoroquinolones and third-generation cephalosporins. A global phylogenomic analysis of Enteritidis revealed three distinct clades, highlighting the accumulation of AMR determinants during its international spread. Importantly, our genomic and transmission analyses suggest that iNTS infections may involve human-to-human transmission, with diarrheal patients acting as potential intermediaries, deviating from typical zoonotic pathways. Collectively, our newly generated cohort and iNTS genomic dataset provide a framework for precise local iNTS burden and underscore emerging transmission trends.
Collapse
Affiliation(s)
- Haiyang Zhou
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, People's Republic of China
| | - Chenghao Jia
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, People's Republic of China
| | - Ping Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Chenghu Huang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, People's Republic of China
| | - Lin Teng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, People's Republic of China
| | - Beibei Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, People's Republic of China
| | - Zining Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, People's Republic of China
| | - Haoqiu Wang
- Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Stephen Baker
- School of Clinical Medicine, University of Cambride, Cambridge, UK
| | - François-Xavier Weill
- Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Paris, France
| | - Yan Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China
- Hainan Institute of Zhejiang University, Sanya, People's Republic of China
| | - Min Yue
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, People's Republic of China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, People's Republic of China.
- Hainan Institute of Zhejiang University, Sanya, People's Republic of China.
| |
Collapse
|
6
|
Jia C, Huang C, Zhou H, Zhou X, Wang Z, Siddique A, Kang X, Cao Q, Huang Y, He F, Li Y, Yue M. Avian-specific Salmonella transition to endemicity is accompanied by localized resistome and mobilome interaction. eLife 2025; 13:RP101241. [PMID: 40035424 DOI: 10.7554/elife.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Bacterial regional demonstration after global dissemination is an essential pathway for selecting distinct finesses. However, the evolution of the resistome during the transition to endemicity remains unaddressed. Using the most comprehensive whole-genome sequencing dataset of Salmonella enterica serovar Gallinarum (S. Gallinarum) collected from 15 countries, including 45 newly recovered samples from two related local regions, we established the relationship among avian-specific pathogen genetic profiles and localization patterns. Initially, we revealed the international transmission and evolutionary history of S. Gallinarum to recent endemicity through phylogenetic analysis conducted using a spatiotemporal Bayesian framework. Our findings indicate that the independent acquisition of the resistome via the mobilome, primarily through plasmids and transposons, shapes a unique antimicrobial resistance profile among different lineages. Notably, the mobilome-resistome combination among distinct lineages exhibits a geographical-specific manner, further supporting a localized endemic mobilome-driven process. Collectively, this study elucidates resistome adaptation in the endemic transition of an avian-specific pathogen, likely driven by the localized farming style, and provides valuable insights for targeted interventions.
Collapse
Affiliation(s)
- Chenghao Jia
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Chenghu Huang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Ningbo, China
| | - Haiyang Zhou
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Ningbo, China
| | - Xiao Zhou
- Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Zining Wang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Ningbo, China
| | - Abubakar Siddique
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Ningbo, China
| | - Xiamei Kang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Qianzhe Cao
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Yingying Huang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Ningbo, China
| | - Fang He
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Zhejiang, China
| | - Yan Li
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Ningbo, China
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Ningbo, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Jiang Z, Yaqoob MU, Xu Y, Siddique A, Lin S, Hu S, Ed-Dra A, Yue M. Isolation, characterization, and genome sequencing analysis of a novel phage HBW-1 of Salmonella. Microb Pathog 2025; 200:107327. [PMID: 39863088 DOI: 10.1016/j.micpath.2025.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/29/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Salmonella presents a significant threat to the health of animals and humans, especially with the rise of strains resistant to multiple drugs. This highlights the necessity for creating sustainable and efficient practical approaches to managing salmonellosis. The most recent and safest approach to combat antimicrobial resistance-associated infections is lytic bacteriophages. This study recovered a Salmonella-specific phage HBW-1 from sewage and faecal samples from commercial chicken farms in Henan, China. Transmission electron microscopy showed that the phage possesses a polyhedral head and a tailed structure characteristic of bacteriophages. The phage HBW-1 exhibited favorable stability when subjected to elevated temperatures between 30 °C and 60 °C and pH levels between 3 and 12 for 1 h. The phage genome consists of double-stranded, circular DNA with a size of 43,095 bp and a GC content of 49.54 %. Notably, phage HBW-1 contains 62 genes encoding proteins and does not contain virulence or resistance genes commonly found in bacteria. Phage spectrum analysis indicates that the phage HBW-1 is strictly a lytic, exhibiting antibacterial activity against Salmonella Pullorum (100 %, n = 11), Salmonella Typhimurium (92.86 %, n = 42) and Salmonella Enteritidis (58.97 %, n = 39). Therefore, this study suggests that phage HBW-1 holds promise as a potential alternative for prevention and control of Pullorum Disease.
Collapse
Affiliation(s)
- Zenghai Jiang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Muhammad Umar Yaqoob
- Laboratory of Molecular Microbiology and Food Safety, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China; Provincial Key Agricultural Enterprise Research Institute of King Techina, Hangzhou King Techina Feed Co., Ltd., Hangzhou, 311107, China
| | - Yaohui Xu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Abubakar Siddique
- Laboratory of Molecular Microbiology and Food Safety, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
| | - Shuqi Lin
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Siyu Hu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M'ghila Campus, Sultan Moulay Slimane University, BP: 591, Beni Mellal, 23000, Morocco
| | - Min Yue
- Laboratory of Molecular Microbiology and Food Safety, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572025, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
8
|
An H, Kang X, Huang C, Jia C, Chen J, Huang Y, Cao Q, Li Y, Tang B, Yue M. Genomic and virulent characterization of a duck-associated Salmonella serovar Potsdam from China. Poult Sci 2025; 104:104646. [PMID: 39693960 PMCID: PMC11719287 DOI: 10.1016/j.psj.2024.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
Salmonella, a common zoonotic pathogen, is a significant concern for public health, particularly when it contaminates animal-borne products. The potential for Salmonella to infect duck embryos and disrupt their normal development not only causes substantial economic losses for the industry but also poses a severe threat to public health. However, there is a lack of understanding about the prevalence of Salmonella in duck embryos and their potential public health implications. Our study aims to fill this gap by providing genomic features of the antimicrobial resistance and virulence potential of Salmonella isolates from dead duck embryos using whole-genome sequencing and in silico toolkits. We also sought to assess the virulent characterization of the major serovar isolates by experimental infection of chicken and duck embryos. Our investigation of 195 duck embryo eggs led to the isolation of 40 (20.51%) Salmonella strains, with Salmonella serovar Potsdam being the most prevalent serovar. Most isolates were resistant to streptomycin (57.3%) and nalidixic acid (50%). Notably, our findings demonstrated that S. Potsdam exhibited a preference for ducks over chickens, suggesting potential host specificity. Additionally, global phylogenomic analysis, incorporating 180 global genomes, revealed a predominant association of S. Potsdam with ducks, supporting an adaptive process specific to the waterfowl. This study determined Salmonella serovars and antimicrobial resistance profiles in dead duck embryos, revealing a rare Salmonella serovar Potsdam with a potential for duck adaption.
Collapse
Affiliation(s)
- Hongli An
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| | - Xiamei Kang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| | - Chenhu Huang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| | - Chenghao Jia
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| | - Jiaqi Chen
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| | - Yingying Huang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| | - Qianzhe Cao
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| | - Yan Li
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| | - Biao Tang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 31003, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
9
|
Chen J, Huang L, An H, Wang Z, Kang X, Yin R, Jia C, Jin X, Yue M. One Health approach probes zoonotic non-typhoidal Salmonella infections in China: A systematic review and meta-analysis. J Glob Health 2024; 14:04256. [PMID: 39620281 PMCID: PMC11610537 DOI: 10.7189/jogh.14.04256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
Background Zoonotic infections, particularly those caused by non-typhoidal Salmonella (NTS), pose a significant disease burden. However, there is a notable lack of comprehensive and integrated studies employing the One Health approach to address Salmonella prevalence. In this study, we aimed to analyse NTS spatiotemporal prevalence, serovar distribution, and antimicrobial resistance (AMR) across China. Methods We conducted a systematic review and meta-analysis to understand the dynamics of NTS in a One Health context in China. We searched the CNKI, Wanfang, and PubMed databases for Chinese and English peer-reviewed articles published before 1 January 2022 dealing with Salmonella in the context of China. We examined the dynamic prevalence along the food chain, the risk of dominant serovars and the carriers' regional contribution by principal component analysis, and the AMR burden before and after the ban on using antimicrobials as feed additives across five decades. We used the inverse variance index as an indicator of the inconsistency across studies, and we adopted the restricted maximum likelihood model due to high heterogeneity for analysis with a 95% confidence level for the pooled prevalence estimate. Results Based on 562 retrieved high-quality studies during 1967-2021, representing 5 052 496 samples overall and 80 536 positive samples for NTS isolates, the overall average prevalence was 7.35% (95% confidence interval (CI) = 0.069-0.087), which was regionally relatively higher in northern China (8.19%; 95% CI = 0.078-0.117) than in southern China (6.94%; 95% CI = 0.067-0.088). Poultry was the primary vehicle for serovars Enteritidis and Indiana (especially in the north), while swine and ruminants for Typhimurium and Derby were the first to highlight the regional livestock contribution to serovar prevalence. The overall AMR rate was 73.63% (95% CI = 0.68-0.99), decreasing after the ban on excessive use of feed-based antibiotics in livestock since 2020, with a relatively low resistance towards front-line and last-resort drugs. Conclusions Our study emphasises the importance of adopting a One Health framework to better understand the zoonotic nature of human NTS and highlights the dominant serovars on food contamination and human infection. The similarity in AMR patterns between poultry and human isolates further emphasises the integrated approach for evaluating disease burden and implementing targeted interventions.
Collapse
Affiliation(s)
- Jiaqi Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou; University of Chinese Academy of Sciences, China
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Linlin Huang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Hongli An
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Zining Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou; University of Chinese Academy of Sciences, China
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xiamei Kang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Rui Yin
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Chenghao Jia
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xiuyan Jin
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Min Yue
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, Hangzhou; University of Chinese Academy of Sciences, China
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Wang Z, Zhou H, Liu Y, Huang C, Chen J, Siddique A, Yin R, Jia C, Li Y, Zhao G, Yue M. Nationwide trends and features of human salmonellosis outbreaks in China. Emerg Microbes Infect 2024; 13:2372364. [PMID: 38923510 PMCID: PMC11259058 DOI: 10.1080/22221751.2024.2372364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Salmonellosis is one of the most common causes of diarrhea, affecting 1/10 of the global population. Salmonellosis outbreaks (SO) pose a severe threat to the healthcare systems of developing regions. To elucidate the patterns of SO in China, we conducted a systematic review and meta-analysis encompassing 1,134 reports across 74 years, involving 89,050 patients and 270 deaths. A rising trend of SO reports has been observed since the 1970s, with most outbreaks occurring east of the Hu line, especially in coastal and populated regions. It is estimated to have an overall attack rate of 36.66% (95% CI, 33.88-39.45%), and antimicrobial resistance towards quinolone (49.51%) and beta-lactam (73.76%) remains high. Furthermore, we developed an online website, the Chinese Salmonellosis Outbreak Database (CSOD), for visual presentation and data-sharing purposes. This study indicated that healthcare-associated SO required further attention, and our study served as a foundational step in pursuing outbreak intervention and prediction.
Collapse
Affiliation(s)
- Zining Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- Hainan Institute of Zhejiang University, Sanya, People’s Republic of China
| | - Haiyang Zhou
- Hainan Institute of Zhejiang University, Sanya, People’s Republic of China
| | - Yuhao Liu
- Hainan Institute of Zhejiang University, Sanya, People’s Republic of China
| | - Chenghu Huang
- Hainan Institute of Zhejiang University, Sanya, People’s Republic of China
| | - Jiaqi Chen
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, People’s Republic of China
| | - Abubakar Siddique
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, People’s Republic of China
| | - Rui Yin
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, People’s Republic of China
| | - Chenghao Jia
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, People’s Republic of China
| | - Yan Li
- Hainan Institute of Zhejiang University, Sanya, People’s Republic of China
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, People’s Republic of China
| | - Guoping Zhao
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Min Yue
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, People’s Republic of China
- Hainan Institute of Zhejiang University, Sanya, People’s Republic of China
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, People’s Republic of China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
11
|
Sheng H, Zhao L, Suo J, Yang Q, Cao C, Chen J, Cui G, Fan Y, Ma Y, Huo S, Wu X, Yang T, Cui X, Chen S, Cui S, Yang B. Niche-specific evolution and gene exchange of Salmonella in retail pork and chicken. Food Res Int 2024; 197:115299. [PMID: 39577948 DOI: 10.1016/j.foodres.2024.115299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/06/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
Salmonella exhibits extensive genetic diversity, facilitated by horizontal gene transfer occurring within and between species, playing a pivotal role in this diversification. Nevertheless, most studies focus on clinical and farm animal isolates, and research on the pangenome dynamics of Salmonella isolates from retail stage of the animal food supply chain is limited. Here, we investigated the genomes of 950 Salmonella isolates recovered from retail chicken and pork meats in seven provinces and one municipality of China in 2018. We observed a strong correlation between Salmonella sublineage diversity and the accessory genome with meat type, revealing reduced diversity associated with increased resistance. Importantly, genes associated with antibiotic, biocide, and heavy metal resistance were unevenly distributed in Salmonella from retail chicken and pork. Pork Salmonella isolates showed a higher prevalence of copper and silver resistance genes, while chicken Salmonella isolates displayed a significant predominance of genetic determinants associated with cephalosporin and ciprofloxacin resistance. Moreover, co-occurrence patterns of resistance determinants and their interaction with mobile genetic elements also correlated with meat type. In summary, our findings shed light on how Salmonella achieves their ecological niche success driven by evolution and gene changes in the retail stage of the animal food supply chain.
Collapse
Affiliation(s)
- Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Linna Zhao
- National Institutes for Food and Drug Control, Beijing 100050, China; Beijing AOBOXING Bio-Tech Co., Ltd., Beijing 100050, China
| | - Jia Suo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Qiuping Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Chenyang Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China
| | - Guangqing Cui
- Shanxi Inspection and Testing Center, Taiyuan 030001, China
| | - Yiling Fan
- National Medical Products Administration Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai 201203, China; China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Yi Ma
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430072, China
| | - Shengnan Huo
- Shandong Institute for Food and Drug Control, Jinan 250101, China
| | - Xin Wu
- Food Inspection and Testing Research Institute of Jiangxi General Institute of Testing and Certification, Nanchang 330052, China
| | - Tao Yang
- Hunan Testing Institute of Product and Commodity, Changsha 410007, China
| | - Xuewen Cui
- Microbiological Inspection Center, Sichuan Institute for Drug Control, Chengdu 611731, China
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and the Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom 100872, China.
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing 100050, China.
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
12
|
Jin C, Jia C, Hu W, Xu H, Shen Y, Yue M. Predicting antimicrobial resistance in E. coli with discriminative position fused deep learning classifier. Comput Struct Biotechnol J 2024; 23:559-565. [PMID: 38274998 PMCID: PMC10809114 DOI: 10.1016/j.csbj.2023.12.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Escherichia coli (E. coli) has become a particular concern due to the increasing incidence of antimicrobial resistance (AMR) observed worldwide. Using machine learning (ML) to predict E. coli AMR is a more efficient method than traditional laboratory testing. However, further improvement in the predictive performance of existing models remains challenging. In this study, we collected 1937 high-quality whole genome sequencing (WGS) data from public databases with an antimicrobial resistance phenotype and modified the existing workflow by adding an attention mechanism to enable the modified workflow to focus more on core single nucleotide polymorphisms (SNPs) that may significantly lead to the development of AMR in E. coli. While comparing the model performance before and after adding the attention mechanism, we also performed a cross-comparison among the published models using random forest (RF), support vector machine (SVM), logistic regression (LR), and convolutional neural network (CNN). Our study demonstrates that the discriminative positional colors of Chaos Game Representation (CGR) images can selectively influence and highlight genome regions without prior knowledge, enhancing prediction accuracy. Furthermore, we developed an online tool (https://github.com/tjiaa/E.coli-ML/tree/main) for assisting clinicians in the rapid prediction of the AMR phenotype of E. coli and accelerating clinical decision-making.
Collapse
Affiliation(s)
- Canghong Jin
- School of Computer and Computing Science, Hangzhou City University, Hangzhou 310015, China
| | - Chenghao Jia
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Wenkang Hu
- School of Computer and Computing Science, Hangzhou City University, Hangzhou 310015, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
| | - Haidong Xu
- School of Computer and Computing Science, Hangzhou City University, Hangzhou 310015, China
| | - Yanyi Shen
- School of Computer and Computing Science, Hangzhou City University, Hangzhou 310015, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572000, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
13
|
Ke Y, Zhu Z, Lu W, Liu W, Ye L, Jia C, Yue M. Emerging blaNDM-positive Salmonella enterica in Chinese pediatric infections. Microbiol Spectr 2024; 12:e0148524. [PMID: 39422511 PMCID: PMC11619303 DOI: 10.1128/spectrum.01485-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
Non-typhoidal Salmonella (NTS) is a common zoonotic foodborne pathogen, whose rising antimicrobial resistance has been an urgent threat to global public health. Here, we reported two carbapenem-resistant Salmonella enterica (CRSE) strains (NBFE-049 and NBFE-164) carrying the blaNDM genes, which were recovered from two Chinese children, belonged to Salmonella enterica serovar Typhimurium (S. Typhimurium) monophasic variant (S. 1,4,[5],12:i:-) ST34 (a sequence type) and S. Typhimurium ST19, respectively. Genes blaNDM-5 and blaNDM-13 were detected in NBFE-049 and NBFE-164, respectively. The blaNDM-5 in NBFE-049 was located in an IncHI2-type plasmid, named pNBFE-049. In NBFE-164, the blaNDM-13 was located in an IncI1-type plasmid, named pNBFE-164. The plasmid pNBFE-164 successfully transferred its resistance phenotype into the recipient strain Escherichia coli J53 with a high efficiency of 1.1 × 10-2, while no transconjugants were obtained in pNBFE-049 conjugation assays. We further elucidated the genetic relationships of globally occurring New Delhi Metallo-β-lactamase (NDM)-positive strains and locally distributed clinical strains within the same serovar. The closest relative of NBFE-049 was clinical Salmonella strain 1722, which was recovered in 2020 and differed by only three Single Nucleotide Polymorphisms (SNPs). No NDM-positive ST19 could be found in the National Center for Biotechnology Information (NCBI) database, and NBFE-164 showed a close genetic relationship with the other ST19 in this area. To sum up, we suggested the potential contributions of clonal spread and plasmid-mediated blaNDM transfer in CRSE dissemination. This study reported the complete genome of two blaNDM-carrying S. Typhimurium isolates, shedding new insights into the antimicrobial resistance mechanisms and dissemination patterns of the emerging CRSE.IMPORTANCENTS is one of the most common zoonotic pathogens that causes foodborne illnesses, while S. Typhimurium is one of the most common serovars. With the rising prevalence of multi-resistant Salmonella worldwide, carbapenems have emerged as the last-line antibiotics for treating severe bacterial infections. In this study, we reported the genomic characteristics of two carbapenem-resistant S. Typhimurium strains, which were recovered from two pediatric patients, carrying blaNDM-5 and blaNDM-13, providing new insights into the antimicrobial resistance deteriminants and transmission risk of blaNDM-positive NTS in China. We suggested the potential contributions of clonal spread and plasmid-mediated blaNDM transfer in CRSE dissemination. Future enhanced surveillance policy should mitigate CRSE spreading, and more importantly, clinical antimicrobial therapeutic regimens should be adjusted accordingly.
Collapse
Affiliation(s)
- Yefang Ke
- Department of Clinical Laboratory, Women and Children’s Hospital of Ningbo University, Ningbo, China
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Women and Children’s Hospital of Ningbo University, Ningbo, China
| | - Zhe Zhu
- Department of Blood Transfusion, Ningbo No. 2 Hospital, Ningbo, China
| | - Wenbo Lu
- Department of Clinical Laboratory, Women and Children’s Hospital of Ningbo University, Ningbo, China
| | - Wenyuan Liu
- Department of Clinical Laboratory, Women and Children’s Hospital of Ningbo University, Ningbo, China
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Women and Children’s Hospital of Ningbo University, Ningbo, China
| | - Lina Ye
- Department of Clinical Laboratory, Women and Children’s Hospital of Ningbo University, Ningbo, China
| | - Chenghao Jia
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
14
|
Jia C, Huang L, Zhou H, Cao Q, Wang Z, He F, Li Y, Yue M. A global genome dataset for Salmonella Gallinarum recovered between 1920 and 2024. Sci Data 2024; 11:1094. [PMID: 39375387 PMCID: PMC11458892 DOI: 10.1038/s41597-024-03908-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
Salmonella enterica serovar Gallinarum (S. Gallinarum) is an avian-specific pathogen responsible for fowl typhoid, a severe systemic disease with high mortality in chickens. This disease poses a substantial burden to the poultry industry, particularly in developing countries like China. However, comprehensive genome datasets on S. Gallinarum are lacking. Here, we present the most extensive S. Gallinarum genome dataset, comprising 574 well-collated samples. This dataset consists of 366 genomes sequenced in our laboratory and 208 publicly available genomes, collected from various continents over the past century. Using in silico prediction, we categorized S. Gallinarum into three distinct biovars. Regarding antimicrobial resistance, 238 strains (41.5%) carried antimicrobial resistance genes (ARGs) with a total of 635 records, while 232 strains (40.4%) exhibited multi-drug resistance. Mobile genomic elements (MGEs) serve as critical drivers for ARGs. Our dataset includes 5,636 MGEs records, with most MGEs belonging to prophages and plasmids. This dataset expands our understanding of the genomic characteristics of S. Gallinarum, providing valuable resources for future genomic studies to improve disease management.
Collapse
Affiliation(s)
- Chenghao Jia
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Linlin Huang
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Haiyang Zhou
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572000, China
| | - Qianzhe Cao
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Zining Wang
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572000, China
| | - Fang He
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi- Tech Park, Zhejiang, China
| | - Yan Li
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572000, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China.
- Hainan Institute of Zhejiang University, Sanya, 572000, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
15
|
Siddique A, Wang Z, Zhou H, Huang L, Jia C, Wang B, Ed-Dra A, Teng L, Li Y, Yue M. The Evolution of Vaccines Development across Salmonella Serovars among Animal Hosts: A Systematic Review. Vaccines (Basel) 2024; 12:1067. [PMID: 39340097 PMCID: PMC11435802 DOI: 10.3390/vaccines12091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Salmonella is a significant zoonotic foodborne pathogen, and the global spread of multidrug-resistant (MDR) strains poses substantial challenges, necessitating alternatives to antibiotics. Among these alternatives, vaccines protect the community against infectious diseases effectively. This review aims to summarize the efficacy of developed Salmonella vaccines evaluated in various animal hosts and highlight key transitions for future vaccine studies. A total of 3221 studies retrieved from Web of Science, Google Scholar, and PubMed/Medline databases between 1970 and 2023 were evaluated. One hundred twenty-seven qualified studies discussed the vaccine efficacy against typhoidal and nontyphoidal serovars, including live-attenuated vaccines, killed inactivated vaccines, outer membrane vesicles, outer membrane complexes, conjugate vaccines, subunit vaccines, and the reverse vaccinology approach in different animal hosts. The most efficacious vaccine antigen candidate found was recombinant heat shock protein (rHsp60) with an incomplete Freund's adjuvant evaluated in a murine model. Overall, bacterial ghost vaccine candidates demonstrated the highest efficacy at 91.25% (95% CI = 83.69-96.67), followed by the reverse vaccinology approach at 83.46% (95% CI = 68.21-94.1) across animal hosts. More than 70% of vaccine studies showed significant production of immune responses, including humoral and cellular, against Salmonella infection. Collectively, the use of innovative methods rather than traditional approaches for the development of new effective vaccines is crucial and warrants in-depth studies.
Collapse
Affiliation(s)
- Abubakar Siddique
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zining Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haiyang Zhou
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Linlin Huang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenghao Jia
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baikui Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M'ghila Campus, BP: 591, Beni Mellal 23000, Morocco
| | - Lin Teng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yan Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Yue
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
16
|
Xia L, Gui Y, Yin R, Li N, Yue M, Mu Y. Concanavalin A-assisted multiplex digital PCR assay for rapid capture and accurate quantification detection of foodborne pathogens. Talanta 2024; 277:126351. [PMID: 38850802 DOI: 10.1016/j.talanta.2024.126351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Multiplex, sensitive, and rapid detection of pathogens is crucial for ensuring food safety and safeguarding human health, however, it remains a significant challenge. This study proposes a concanavalin A-assisted multiplex digital amplification (CAMDA) assay for simultaneous quantitative detection of multiple foodborne bacteria. The CAMDA assay enables the simultaneous detection of six foodborne pathogens within 1.1 h and the limit of detection is 101 CFU/mL. Furthermore, the CAMDA assay exhibits high specificity, with a rate of 97 % for Bacillus cereus and 100 % for other pathogens tested in this study. Moreover, practical application validation using eight milk powder samples demonstrates that the accuracy of the CAMDA assay reaches 100 % when compared to qPCR results. Therefore, our developed CAMDA assay holds great potential for accurate and rapid detection of multiple pathogens in complex food matrices while also promoting the utilization of microfluidic chips in food investigation.
Collapse
Affiliation(s)
- Liping Xia
- Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, China
| | - Yehong Gui
- Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, China
| | - Rui Yin
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Na Li
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Ying Mu
- Research Centre for Analytical Instrumentation, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
17
|
Amir Y, Omar M, Adler A, Abu-Moch S, Donkor ES, Cohen D, Muhsen K. The prevalence of antimicrobial drug resistance of non-typhoidal Salmonella in human infections in sub-Saharan Africa: a systematic review and meta-analysis. Expert Rev Anti Infect Ther 2024; 22:761-774. [PMID: 38922636 DOI: 10.1080/14787210.2024.2368989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 06/27/2024]
Abstract
INTRODUCTION Non-typhoidal Salmonella (NTS) bacteremia is common in sub-Saharan Africa. We examined the prevalence of antibiotic resistance to fluoroquinolones, third-generation cephalosporins, and multi-drug resistance (MDR) in NTS human isolates from sub-Saharan Africa. METHODS A systematic review was conducted using a search in Ovid Medline, Embase, and African Index Medicus of publications between 2000 and 2021. A random-effects model meta-analysis was performed using data from 66 studies that included 29,039 NTS blood and 1,065 stool isolates. RESULTS The pooled prevalence proportions of MDR were 0.685 (95% CI 0.574-0.778) and 0.214 (0.020-0.785) in blood vs. stool isolates. The corresponding estimates of fluoroquinolones resistance were 0.014 (0.008-0.025) vs. 0.021 (0.012-0.036) and third-generation cephalosporins resistance 0.019 (0.012-0.031) vs. 0.035 (0.006-0.185). Similar results were found for children and adults. Resistance prevalence to these antibiotics in blood isolates increased between 2000-2010 and 2011-2021. The guidelines employed to determine antimicrobial resistance and epidemiological characteristics (e.g. sample size, study duration) correlated with the resistance prevalence. CONCLUSIONS The prevalence of MDR and resistance to fluoroquinolones and third-generation cephalosporins in NTS in sub-Saharan Africa is alarming. EXPERT OPINION Standardized surveillance of antimicrobial drug resistance in NTS in sub-Saharan Africa is warranted to guide healthcare policymaking and antibiotic stewardship programs.
Collapse
Affiliation(s)
- Yonatan Amir
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Muna Omar
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Amos Adler
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Clinical Microbiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Sereen Abu-Moch
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eric S Donkor
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| | - Dani Cohen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Khitam Muhsen
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Varghese G, Jamwal A, Deepika, Tejan N, Patel SS, Sahu C, Mishra S, Singh V. Trends in antimicrobial susceptibility pattern of Salmonella species isolated from bacteremia patients at a tertiary care center in Northern India. Diagn Microbiol Infect Dis 2024; 109:116354. [PMID: 38776664 DOI: 10.1016/j.diagmicrobio.2024.116354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 03/14/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
The study was done to assess the antimicrobial susceptibility pattern among Salmonella enterica serovars causing bacteremia in Northern India. In this observational study, blood samples positive for Salmonella enterica serovars from January 2021 to April 2023 were studied. Species identification was done using MALDI-ToF MS. Serotyping was done using slide agglutination method. Antimicrobial susceptibility was interpreted as per the CLSI guidelines. During the study period, 32 Salmonella enterica serovars were isolated. Salmonella enterica serovar Typhi was the predominant serovar, followed by Salmonella enterica serovar Paratyphi A. All isolates were susceptible to ceftriaxone, chloramphenicol, co-trimoxazole and cefotaxime. Pefloxacin showed 100% resistance. Resistance to nalidixic acid was found in 81.2% isolates. Of the isolates resistant to nalidixic acid, 19(73.08%) isolates were resistant to ciprofloxacin also. This changing susceptibility pattern necessitates continuous surveillance of antibiogram of Salmonella isolates to rationalize the treatment protocols for invasive salmonellosis and prevent emergence of resistant strains.
Collapse
Affiliation(s)
- Gerlin Varghese
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Ashima Jamwal
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Deepika
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Nidhi Tejan
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Sangram Singh Patel
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Chinmoy Sahu
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India.
| | - Sonali Mishra
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Vaishali Singh
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
19
|
Kang X, An H, Wang B, Huang L, Huang C, Huang Y, Wang Z, He F, Li Y, Yue M. Integrated OMICs approach reveals energy metabolism pathway is vital for Salmonella Pullorum survival within the egg white. mSphere 2024; 9:e0036224. [PMID: 38860771 PMCID: PMC11288002 DOI: 10.1128/msphere.00362-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 06/12/2024] Open
Abstract
Eggs, an important part of a healthy daily diet, can protect chicken embryo development due to the shell barrier and various antibacterial components within the egg white. Our previous study demonstrated that Salmonella Pullorum, highly adapted to chickens, can survive in the egg white and, therefore, be passed to newly hatched chicks. However, the survival strategy of Salmonella Pullorum in antibacterial conditions remains unknown. The overall transcripts in the egg white showed a large-scale shift compared to LB broth. The expression of common response genes and pathways, such as those involved in iron uptake, biotin biosynthesis, and virulence, was significantly changed, consistent with the other transovarial transmission serovar Enteritidis. Notably, membrane stress response, amino acid metabolism, and carbohydrate metabolism were specifically affected. Additional upregulated functionally relevant genes (JI728_13095, JI728_13100, JI728_17960, JI728_10085, JI728_15605, and nhaA) as mutants confirmed the susceptible phenotype. Furthermore, fim deletion resulted in an increased survival capacity in the egg white, consistent with the downregulated expression. The second-round RNA-Seq analysis of the Δfim mutant in the egg white revealed significantly upregulated genes compared with the wild type in the egg white responsible for energy metabolism located on the hyc and hyp operons regulated by FhlA, indicating the Δfim mutant cannot receive enough oxygen and switched to fermentative growth due to its inability to attach to the albumen surface. Together, this study provides a first estimate of the global transcriptional response of Salmonella Pullorum under antibacterial egg white and highlights the new potential role of fim deletion in optimizing energy metabolism pathways that may assist vertical transmission. IMPORTANCE Pullorum disease, causing serious embryo death and chick mortality, results in substantial economic losses worldwide due to transovarial transmission. Egg-borne outbreaks are frequently reported in many countries. The present study has filled the knowledge gap regarding how the specific chicken-adapted pathogen Salmonella Pullorum behaves within the challenging environment of egg white. The deletion of the fim fimbrial system can increase survival in the albumen, possibly by reprogramming metabolism-related gene products, which reveals a new adaptive strategy of pathogens. Moreover, the comparison, including previous research on Salmonella Enteritidis, capable of vertical transmission, aims to provide diversified data sets in the field and further help to implement reasonable and effective measures to improve both food safety and animal health.
Collapse
Affiliation(s)
- Xiamei Kang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Hongli An
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Baikui Wang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Linlin Huang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Chenghu Huang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Yingying Huang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Zining Wang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Fang He
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Yan Li
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University,, Hangzhou, China
| |
Collapse
|
20
|
Nambiar RB, Elbediwi M, Ed-Dra A, Wu B, Yue M. Epidemiology and antimicrobial resistance of Salmonella serovars Typhimurium and 4,[5],12:i- recovered from hospitalized patients in China. Microbiol Res 2024; 282:127631. [PMID: 38330818 DOI: 10.1016/j.micres.2024.127631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Global emergence of multidrug-resistant (MDR) Salmonella enterica serovar Typhimurium is a continuing challenge for modern healthcare. However, the knowledge, regarding the epidemiology of salmonellosis caused by the monophasic variant S. 4,[5],12:i:- in hospitalized patients, is limited in China. To bridge this gap, we carried out a retrospective study to determine the antimicrobial resistance, trends, and risk factors of S. Typhimurium and S. 4,[5],12:i:- (n = 329) recovered from patients in Zhejiang province between 2011 and 2019. The results showed that 90.57% (298/329) of the isolates were MDR; among them, 48.94% (161/329) and 12.46% (41/329) were phenotypically resistant to cephalosporins and fluoroquinolones, respectively, which are the drugs of choice used to treat salmonellosis in clinics. Additionally, we observed a higher incidence of infections among the young population (<5 years old). Notably, the higher prevalence of ST34 (sequence type 34) isolates, especially after 2014, with MDR (57.05%, 170/298) phenotype, and incidence of ST34 isolates co-harbouring mcr-1 (mobile colistin resistance gene) and blaCTX-M-14 (β-lactamase gene) suggest an association between STs and drug resistance. Together, the increasing prevalence of MDR ST34 calls for enhanced monitoring strategies to mitigate the spread and dissemination of MDR clones of S. Typhimurium and S. 4,[5],12:i-. Our study provides improved knowledge about non-typhoid Salmonella (NTS) infections, which could help in the effective recommendation of antimicrobials in hospitalized patients.
Collapse
Affiliation(s)
- Reshma B Nambiar
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Mohammed Elbediwi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M'ghila Campus, Sultan Moulay Slimane University, BP: 591, Beni Mellal, Morocco
| | - Beibei Wu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
21
|
Su B, Du G, Hou S, Chen Z, Wu X, He G, Yuan J, Xie C. Antimicrobial Resistance Analysis and Whole-Genome Sequencing of Salmonella Isolates from Environmental Sewage - Guangzhou City, Guangdong Province, China, 2022-2023. China CDC Wkly 2024; 6:254-260. [PMID: 38633200 PMCID: PMC11018552 DOI: 10.46234/ccdcw2024.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
What is already known about this topic? S.1,4,[5],12:i:- and S. Rissen are emerging serotypes of Salmonella that require close monitoring for antimicrobial resistance and containment of their spread. What is added by this report? The study aimed to identify antimicrobial resistance genes (ARGs) in S.1,4,[5],12:i:- and S. Rissen strains isolated from environmental sewage in Guangzhou City, Guangdong Province, China. A phylogenetic tree was constructed using single nucleotide polymorphism data to assess genetic relatedness among strains, offering insights for Salmonella infection outbreak investigations in the future. What are the implications for public health practice? It is crucial to implement strategies, such as integrating different networks, to control the spread of drug-resistant Salmonella. Novel technologies must be utilized to disinfect sewage and eliminate ARGs. Ensuring food safety and proper sewage disinfection are essential to curb the dissemination of Salmonella.
Collapse
Affiliation(s)
- Bihui Su
- Tuberculosis Management and Treatment Department, Guangzhou Chest Hospital, Guangzhou City, Guangdong Province, China
| | - Guanghong Du
- School of Public Health, Guangzhou Medical University, Guangzhou City, Guangdong Province, China
| | - Shuiping Hou
- Guangzhou Center for Disease Control and Prevention, Guangzhou City, Guangdong Province, China
| | - Zongqiu Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou City, Guangdong Province, China
| | - Xiaoying Wu
- Tuberculosis Management and Treatment Department, Guangzhou Chest Hospital, Guangzhou City, Guangdong Province, China
| | - Gang He
- Tuberculosis Management and Treatment Department, Guangzhou Chest Hospital, Guangzhou City, Guangdong Province, China
| | - Jun Yuan
- Guangzhou Center for Disease Control and Prevention, Guangzhou City, Guangdong Province, China
| | - Chaojun Xie
- Office of the Director, Huadu District Center for Disease Control and Prevention, Guangzhou City, Guangdong Province, China
| |
Collapse
|
22
|
Ed-Dra A, Giarratana F, White AP, Yue M. Editorial: Zoonotic bacteria: genomic evolution, antimicrobial resistance, pathogenicity, and prevention strategies. Front Vet Sci 2024; 11:1390732. [PMID: 38523715 PMCID: PMC10960643 DOI: 10.3389/fvets.2024.1390732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024] Open
Affiliation(s)
- Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, Sultan Moulay Slimane University, Beni Mellal, Morocco
| | - Filippo Giarratana
- Department of Veterinary Science, University of Messina, Polo Universitario dell'Annunziata, Messina, Italy
- Riconnexia srls, Spin-off of the University of Messina, Polo Universitario dell'Annunziata, Messina, Italy
| | - Aaron P. White
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
23
|
Teng L, Huang L, Zhou H, Wang B, Yue M, Li Y. Microbiological hazards in infant and toddler food in China: A comprehensive study between 2004 and 2022. Food Res Int 2024; 180:114100. [PMID: 38395570 DOI: 10.1016/j.foodres.2024.114100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Infant and toddler food (ITF), including powdered infant and follow-up formula (PIFF) and complementary food (CF), provides the majority of early-life nutrients for young children. As infants and toddlers are more vulnerable to foodborne diseases, the safety concern of ITF is the ultimate priority. However, nationwide surveillance for the presence of hazards, specifically microbiological hazards, in the Chinese ITF is partially known, posing a significant knowledge gap for risk ranking. Most importantly, the related regional surveys were largely published in Chinese, making the data unavailable for global sharing. To bridge these gaps, we screened 5,306 publications and conducted a comprehensive meta-analysis for microbiological hazards using 129 qualified studies. The four most reported microbiological hazards in ITF were Bacillus cereus (13.4 %), Cronobacter (4.8 %), Staphylococcus aureus (1.3 %), and Salmonella (1.1 %). B. cereus is a risk factor in ITF, specifically in PIFF, cereals, and ready-to-eat food. The prevalence of B. cereus was high in Northern and Southern China, while the prevalence of Cronobacter was high in Central China. Cronobacter is a microbiological hazard, specifically in PIFF, with a prevalence of 3.0 %. Interestingly, the prevalence dynamics of Cronobacter and B. cereus in ITF were rising and stable, respectively, whereas the prevalence of S. aureus and Salmonella decreased over time. Together, our analysis will promote the global sharing of these critical findings and may guide future policy making.
Collapse
Affiliation(s)
- Lin Teng
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| | - Linlin Huang
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| | - Haiyang Zhou
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| | - Baikui Wang
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| | - Min Yue
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China.
| | - Yan Li
- Institute of Preventive Veterinary Sciences & Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| |
Collapse
|
24
|
Ke Y, Teng L, Zhu Z, Lu W, Liu W, Zhou H, Yu Q, Ye L, Zhu P, Zhao G, Yue M. Genomic investigation and nationwide tracking of pediatric invasive nontyphoidal Salmonella in China. MLIFE 2024; 3:156-160. [PMID: 38827503 PMCID: PMC11139200 DOI: 10.1002/mlf2.12117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 06/04/2024]
Abstract
Invasive nontyphoidal Salmonella (iNTS) causes significant concern with ~15% morbidity, affecting populations mainly in African countries. However, iNTS infections among the Chinese pediatric population remain largely unknown. Here, we conducted a genomic investigation to study pediatric iNTS infections in a Chinese hospital. iNTS isolates accounted for 15.2% (18/119) of all nontyphoidal Salmonella (NTS) strains. Compared to non-iNTS isolates, iNTS isolates harbored a lower prevalence of antimicrobial-resistant genes of fluoroquinolones and β-lactams, as well as disinfectant determinants and plasmids, but carried a significantly higher prevalence of cdtB, faeCDE, and tcpC genes. Importantly, we detected an emerging serovar Goldcoast as the predominant iNTS serovar locally. By integrating 320 global Goldcoast genomes based on the One Health samplings, we conducted nationwide phylogenomic tracking and detected repeated human-to-human transmission events among iNTS cases caused by an underestimated serovar Goldcoast. Together, our exploratory genomic approach highlights a new trend in pediatric iNTS infections.
Collapse
Affiliation(s)
- Yefang Ke
- Department of Clinical LaboratoryNingbo Women and Children's HospitalNingboChina
| | - Lin Teng
- Department of Veterinary MedicineZhejiang University College of Animal SciencesHangzhouChina
| | - Zhe Zhu
- Department of Blood TransfusionNingbo No. 2 HospitalNingboChina
| | - Wenbo Lu
- Department of Clinical LaboratoryNingbo Women and Children's HospitalNingboChina
| | - Wenyuan Liu
- Department of Clinical LaboratoryNingbo Women and Children's HospitalNingboChina
| | - Haiyang Zhou
- Department of Veterinary MedicineZhejiang University College of Animal SciencesHangzhouChina
| | - Qi Yu
- Office of ScreeningNingbo Women and Children's HospitalNingboChina
| | - Lina Ye
- Department of Clinical LaboratoryNingbo Women and Children's HospitalNingboChina
| | - Pan Zhu
- Neonatal Intensive Care UnitNingbo Women and Children's HospitalNingboChina
| | - Guoping Zhao
- School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
- Department of Microbiology and Microbial Engineering, School of Life SciencesFudan UniversityShanghaiChina
| | - Min Yue
- Department of Veterinary MedicineZhejiang University College of Animal SciencesHangzhouChina
- School of Life Science, Hangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
- Hainan Institute of Zhejiang UniversitySanyaChina
| |
Collapse
|
25
|
Wang Z, Huang C, Liu Y, Chen J, Yin R, Jia C, Kang X, Zhou X, Liao S, Jin X, Feng M, Jiang Z, Song Y, Zhou H, Yao Y, Teng L, Wang B, Li Y, Yue M. Salmonellosis outbreak archive in China: data collection and assembly. Sci Data 2024; 11:244. [PMID: 38413596 PMCID: PMC10899168 DOI: 10.1038/s41597-024-03085-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
Infectious disease outbreaks transcend the medical and public health realms, triggering widespread panic and impeding socio-economic development. Considering that self-limiting diarrhoea of sporadic cases is usually underreported, the Salmonella outbreak (SO) study offers a unique opportunity for source tracing, spatiotemporal correlation, and outbreak prediction. To summarize the pattern of SO and estimate observational epidemiological indicators, 1,134 qualitative reports screened from 1949 to 2023 were included in the systematic review dataset, which contained a 506-study meta-analysis dataset. In addition to the dataset comprising over 50 columns with a total of 46,494 entries eligible for inclusion in systematic reviews or input into prediction models, we also provide initial literature collection datasets and datasets containing socio-economic and climate information for relevant regions. This study has a broad impact on advancing knowledge regarding epidemic trends and prevention priorities in diverse salmonellosis outbreaks and guiding rational policy-making or predictive modeling to mitigate the infringement upon the right to life imposed by significant epidemics.
Collapse
Affiliation(s)
- Zining Wang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572000, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Chenghu Huang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572000, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Yuhao Liu
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572000, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Jiaqi Chen
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Rui Yin
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Chenghao Jia
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Xiamei Kang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Xiao Zhou
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Sihao Liao
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Xiuyan Jin
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Mengyao Feng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Zhijie Jiang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Yan Song
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Haiyang Zhou
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572000, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Yicheng Yao
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Lin Teng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Baikui Wang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China
| | - Yan Li
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572000, China
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, 310058, China.
- Hainan Institute of Zhejiang University, Sanya, 572000, China.
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, 310058, China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
26
|
Jia C, Cao Q, Wang Z, van den Dool A, Yue M. Climate change affects the spread of typhoid pathogens. Microb Biotechnol 2024; 17:e14417. [PMID: 38380960 PMCID: PMC10880509 DOI: 10.1111/1751-7915.14417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 02/22/2024] Open
Abstract
Typhoid fever is caused by Salmonella enterica serotype Typhi (Salmonella Typhi). Syndromes in patients vary from asymptomatic carriers to severe or death outcomes, which are frequently reported in African and Southeast Asian countries. It is one of the most common waterborne transmission agents, whose transmission is likely impacted by climate change. Here, we claimed the evidence and consequences of climate-related foodborne and waterborne diseases have increased and provided possible mitigations against Typhoidal Salmonella dissemination.
Collapse
Affiliation(s)
- Chenghao Jia
- Department of Veterinary MedicineZhejiang University College of Animal SciencesHangzhouChina
- Hainan Institute of Zhejiang UniversitySanyaChina
| | - Qianzhe Cao
- Department of Veterinary MedicineZhejiang University College of Animal SciencesHangzhouChina
| | - Zining Wang
- Department of Veterinary MedicineZhejiang University College of Animal SciencesHangzhouChina
- Hainan Institute of Zhejiang UniversitySanyaChina
| | | | - Min Yue
- Department of Veterinary MedicineZhejiang University College of Animal SciencesHangzhouChina
- Hainan Institute of Zhejiang UniversitySanyaChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| |
Collapse
|
27
|
Jia C, Wang Z, Huang C, Teng L, Zhou H, An H, Liao S, Liu Y, Huang L, Tang B, Yue M. Mobilome-driven partitions of the resistome in Salmonella. mSystems 2023; 8:e0088323. [PMID: 37855620 PMCID: PMC10734508 DOI: 10.1128/msystems.00883-23] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Antimicrobial resistance (AMR) has become a significant global challenge, with an estimated 10 million deaths annually by 2050. The emergence of AMR is mainly attributed to mobile genetic elements (MGEs or mobilomes), which accelerate wide dissemination among pathogens. The interaction between mobilomes and AMR genes (or resistomes) in Salmonella, a primary cause of diarrheal diseases that results in over 90 million cases annually, remains poorly understood. The available fragmented or incomplete genomes remain a significant limitation in investigating the relationship between AMR and MGEs. Here, we collected the most extensive closed Salmonella genomes (n = 1,817) from various sources across 58 countries. Notably, our results demonstrate that resistome transmission between Salmonella lineages follows a specific pattern of MGEs and is influenced by external drivers, including certain socioeconomic factors. Therefore, targeted interventions are urgently needed to mitigate the catastrophic consequences of Salmonella AMR.
Collapse
Affiliation(s)
- Chenghao Jia
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Zining Wang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Chenghu Huang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Lin Teng
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Haiyang Zhou
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Hongli An
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Sihao Liao
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Yuhao Liu
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Linlin Huang
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Feng Y, Pan H, Zheng B, Li F, Teng L, Jiang Z, Feng M, Zhou X, Peng X, Xu X, Wang H, Wu B, Xiao Y, Baker S, Zhao G, Yue M. An integrated nationwide genomics study reveals transmission modes of typhoid fever in China. mBio 2023; 14:e0133323. [PMID: 37800953 PMCID: PMC10653838 DOI: 10.1128/mbio.01333-23] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Typhoid fever is a life-threatening disease caused by Salmonella enterica serovar Typhi, resulting in a significant disease burden across developing countries. Historically, China was very much close to the global epicenter of typhoid, but the role of typhoid transmission within China and among epicenter remains overlooked in previous investigations. By using newly produced genomics on a national scale, we clarify the complex local and global transmission history of such a notorious disease agent in China spanning the most recent five decades, which largely undermines the global public health network.
Collapse
Affiliation(s)
- Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Pan
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Li
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Lin Teng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Zhijie Jiang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Mengyao Feng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xiao Zhou
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xianqi Peng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Haoqiu Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Beibei Wu
- Zhejiang Province Center for Disease Control and Prevention, Hangzhou, China
- School of Public Health and Managemet, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Stephen Baker
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Guoping Zhao
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
29
|
Zhou X, Kang X, Chen J, Song Y, Jia C, Teng L, Tang Y, Jiang Z, Peng X, Tao X, Xu Y, Huang L, Xu X, Xu Y, Zhang T, Yu S, Gong J, Wang S, Liu Y, Zhu G, Kehrenberg C, Weill FX, Barrow P, Li Y, Zhao G, Yue M. Genome degradation promotes Salmonella pathoadaptation by remodeling fimbriae-mediated proinflammatory response. Natl Sci Rev 2023; 10:nwad228. [PMID: 37965675 PMCID: PMC10642762 DOI: 10.1093/nsr/nwad228] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/07/2023] [Accepted: 08/08/2023] [Indexed: 11/16/2023] Open
Abstract
Understanding changes in pathogen behavior (e.g. increased virulence, a shift in transmission channel) is critical for the public health management of emerging infectious diseases. Genome degradation via gene depletion or inactivation is recognized as a pathoadaptive feature of the pathogen evolving with the host. However, little is known about the exact role of genome degradation in affecting pathogenic behavior, and the underlying molecular detail has yet to be examined. Using large-scale global avian-restricted Salmonella genomes spanning more than a century, we projected the genetic diversity of Salmonella Pullorum (bvSP) by showing increasingly antimicrobial-resistant ST92 prevalent in Chinese flocks. The phylogenomic analysis identified three lineages in bvSP, with an enhancement of virulence in the two recently emerged lineages (L2/L3), as evidenced in chicken and embryo infection assays. Notably, the ancestor L1 lineage resembles the Salmonella serovars with higher metabolic flexibilities and more robust environmental tolerance, indicating stepwise evolutionary trajectories towards avian-restricted lineages. Pan-genome analysis pinpointed fimbrial degradation from a virulent lineage. The later engineered fim-deletion mutant, and all other five fimbrial systems, revealed behavior switching that restricted horizontal fecal-oral transmission but boosted virulence in chicks. By depleting fimbrial appendages, bvSP established persistent replication with less proinflammation in chick macrophages and adopted vertical transovarial transmission, accompanied by ever-increasing intensification in the poultry industry. Together, we uncovered a previously unseen paradigm for remodeling bacterial surface appendages that supplements virulence-enhanced evolution with increased vertical transmission.
Collapse
Affiliation(s)
- Xiao Zhou
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Xiamei Kang
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Jiaqi Chen
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Yan Song
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Chenghao Jia
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Lin Teng
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Yanting Tang
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Zhijie Jiang
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Xianqi Peng
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Xiaoxi Tao
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Yiwei Xu
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Linlin Huang
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Xuebin Xu
- Department of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Yaohui Xu
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450053, China
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shenye Yu
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - Shaohui Wang
- Department of Animal Public Health, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Yuqing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Corinna Kehrenberg
- Institute for Veterinary Food Science, Faculty of Veterinary Medicine, Justus-Liebig University Giessen, Giessen 35392, Germany
| | - François-Xavier Weill
- Institut Pasteur, Université Paris Cité, Unité des bactéries pathogènes entériques, Paris 75724, France
| | - Paul Barrow
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7AL, UK
| | - Yan Li
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Guoping Zhao
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China
| |
Collapse
|
30
|
Nuanmuang N, Leekitcharoenphon P, Njage PMK, Gmeiner A, Aarestrup FM. An Overview of Antimicrobial Resistance Profiles of Publicly Available Salmonella Genomes with Sufficient Quality and Metadata. Foodborne Pathog Dis 2023; 20:405-413. [PMID: 37540138 PMCID: PMC10510693 DOI: 10.1089/fpd.2022.0080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Salmonella enterica (S. enterica) is a commensal organism or pathogen causing diseases in animals and humans, as well as widespread in the environment. Antimicrobial resistance (AMR) has increasingly affected both animal and human health and continues to raise public health concerns. A decade ago, it was estimated that the increased use of whole genome sequencing (WGS) combined with sharing of public data would drastically change and improve the surveillance and understanding of Salmonella epidemiology and AMR. This study aimed to evaluate the current usefulness of public WGS data for Salmonella surveillance and to investigate the associations between serovars, antibiotic resistance genes (ARGs), and metadata. Out of 191,306 Salmonella genomes deposited in European Nucleotide Archive and NCBI databases, 47,452 WGS with sufficient minimum metadata (country, year, and source) of S. enterica were retrieved from 116 countries and isolated between 1905 and 2020. For in silico analysis of the WGS data, KmerFinder, SISTR, and ResFinder were used for species, serovars, and AMR identification, respectively. The results showed that the five common isolation sources of S. enterica are human (29.10%), avian (22.50%), environment (11.89%), water (9.33%), and swine (6.62%). The most common ARG profiles for each class of antimicrobials are β-lactam (blaTEM-1B; 6.78%), fluoroquinolone [(parC[T57S], qnrB19); 0.87%], folate pathway antagonist (sul2; 8.35%), macrolide [mph(A); 0.39%], phenicol (floR; 5.94%), polymyxin B (mcr-1.1; 0.09%), and tetracycline [tet(A); 12.95%]. Our study reports the first overview of ARG profiles in publicly available Salmonella genomes from online databases. All data sets from this study can be searched at Microreact.
Collapse
Affiliation(s)
- Narong Nuanmuang
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Patrick Murigu Kamau Njage
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Alexander Gmeiner
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Frank M. Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
31
|
Sun H, Yao W, Siddique A, He F, Yue M. Genomic characterization of dengue virus serotype 2 during dengue outbreak and endemics in Hangzhou, Zhejiang (2017-2019). Front Microbiol 2023; 14:1245416. [PMID: 37692383 PMCID: PMC10485828 DOI: 10.3389/fmicb.2023.1245416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Dengue fever (DF) is a mosquito-borne viral disease caused by the dengue virus (DENV). In recent years, Hangzhou has undergone a DF epidemic, particularly in 2017, with an outbreak of 1,128 patients. The study aimed to investigate the genetic diversity and molecular evolution among the DF clinical isolates during and after the outbreak to aid in mapping its spread. Methods To understand the genetic diversity, 74 DENV-2 strains were isolated from DF epidemic cases between 2017 and 2019. Combining whole genome sequencing (WGS) technology, additional phylogenetic, haplotype, amino acid (AA) substitution, and recombination analyses were performed. Results The results revealed that strains from 2017 were closely related to those from Singapore, Malaysia, and Thailand, indicating an imported international transmission. Local strains from 2018 were clustered with those recovered from 2019 and were closely associated with Guangzhou isolates, suggesting a within-country transmission after the significant outbreak in 2017. Compared to DENV-2 virus P14337 (Thailand/0168/1979), a total of 20 AA substitutions were detected. Notably, V431I, T2881I, and K3291T mutations only occurred in indigenous cases from 2017, and A1402T, V1457I, Q2777E, R3189K, and Q3310R mutations were exclusively found in imported cases from 2018 to 2019. The recombination analysis indicated that a total of 14 recombination events were observed. Conclusion This study may improve our understanding of DENV transmission in Hangzhou and provide further insight into DENV-2 transmission and the local vaccine choice.
Collapse
Affiliation(s)
- Hua Sun
- Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, China
| | - Wenwu Yao
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Abubakar Siddique
- Hainan Institute of Zhejiang University, Sanya, China
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Fan He
- Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Min Yue
- Hainan Institute of Zhejiang University, Sanya, China
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Vasicek EM, Gunn JS. Invasive Non-Typhoidal Salmonella Lineage Biofilm Formation and Gallbladder Colonization Vary But Do Not Correlate Directly with Known Biofilm-Related Mutations. Infect Immun 2023; 91:e0013523. [PMID: 37129526 PMCID: PMC10187132 DOI: 10.1128/iai.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
Non-typhoidal Salmonella (NTS) serovars have a broad host range and cause gastroenteritis in humans. However, invasive NTS (iNTS) bloodstream infections have increased in the last decade, causing 60,000 deaths annually. Human-specific typhoidal Salmonella colonizes and forms biofilms on gallstones, resulting in chronic, asymptomatic infection. iNTS lineages are undergoing genomic reduction and may have adapted to person-to-person transmission via mutations in virulence, bile resistance, and biofilm formation. As such, we sought to determine the capacity of iNTS lineages for biofilm formation and the development of chronic infections in the gallbladder in our mouse model. Of the lineages tested (L1, L2, L3 and UK), only L2 and UK were defective for the rough, dry and red (RDAR) morphotype, correlating with the known bcsG (cellulose) mutation but not with csgD (curli) gene mutations. Biofilm-forming ability was assessed in vitro, which revealed a biofilm formation hierarchy of L3 > ST19 > UK > L1 = L2, which did not correlate directly with either the bcsG or the csgD mutation. By confocal microscopy, biofilms of L2 and UK had significantly less curli and cellulose, while L1 biofilms had significantly lower cellulose. All iNTS strains were able to colonize the mouse gallbladder, liver, and spleen in a similar manner, while L3 had a significantly higher bacterial load in the gallbladder and increased lethality. While there was iNTS lineage variability in biofilm formation, gallbladder colonization, and virulence in a chronic mouse model, all tested lineages were capable of colonization despite possessing biofilm-related mutations. Thus, iNTS strains may be unrecognized chronic pathogens in endemic settings.
Collapse
Affiliation(s)
- Erin M. Vasicek
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - John S. Gunn
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
33
|
Jiang Z, Kang X, Song Y, Zhou X, Yue M. Identification and Evaluation of Novel Antigen Candidates against Salmonella Pullorum Infection Using Reverse Vaccinology. Vaccines (Basel) 2023; 11:vaccines11040865. [PMID: 37112777 PMCID: PMC10143441 DOI: 10.3390/vaccines11040865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Pullorum disease, caused by the Salmonella enterica serovar Gallinarum biovar Pullorum, is a highly contagious disease in the poultry industry, leading to significant economic losses in many developing countries. Due to the emergence of multidrug-resistant (MDR) strains, immediate attention is required to prevent their endemics and global spreading. To mitigate the prevalence of MDR Salmonella Pullorum infections in poultry farms, it is urgent to develop effective vaccines. Reverse vaccinology (RV) is a promising approach using expressed genomic sequences to find new vaccine targets. The present study used the RV approach to identify new antigen candidates against Pullorum disease. Initial epidemiological investigation and virulent assays were conducted to select strain R51 for presentative and general importance. An additional complete genome sequence (4.7 Mb) for R51 was resolved using the Pacbio RS II platform. The proteome of Salmonella Pullorum was analyzed to predict outer membrane and extracellular proteins, and was further selected for evaluating transmembrane domains, protein prevalence, antigenicity, and solubility. Twenty-two high-scored proteins were identified among 4713 proteins, with 18 recombinant proteins successfully expressed and purified. The chick embryo model was used to assess protection efficacy, in which vaccine candidates were injected into 18-day-old chick embryos for in vivo immunogenicity and protective effects. The results showed that the PstS, SinH, LpfB, and SthB vaccine candidates were able to elicit a significant immune response. Particularly, PstS confers a significant protective effect, with a 75% survival rate compared to 31.25% for the PBS control group, confirming that identified antigens can be promising targets against Salmonella Pullorum infection. Thus, we offer RV to discover novel effective antigens in an important veterinary infectious agent with high priority.
Collapse
Affiliation(s)
- Zhijie Jiang
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiamei Kang
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Song
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao Zhou
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Yue
- Institute of Preventive Veterinary Sciences, Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
34
|
Tang B, Siddique A, Jia C, Ed-Dra A, Wu J, Lin H, Yue M. Genome-based risk assessment for foodborne Salmonella enterica from food animals in China: A One Health perspective. Int J Food Microbiol 2023; 390:110120. [PMID: 36758302 DOI: 10.1016/j.ijfoodmicro.2023.110120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/11/2023] [Accepted: 02/01/2023] [Indexed: 02/06/2023]
Abstract
Salmonella is one of the most common causes of foodborne bacterial disease. Animal-borne foods are considered the primary sources of Salmonella transmission to humans. However, genomic assessment of antimicrobial resistance (AMR) and virulence of Salmonella based on One Health approach remains obscure in China. For this reason, we analyzed the whole genome sequencing data of 134 Salmonella isolates recovered from different animal and meat samples in China. The 134 Salmonella were isolated from 2819 samples (4.75 %) representing various sources (pig, chicken, duck, goose, and meat) from five Chinese provinces (Zhejiang, Guangdong, Jiangxi, Hunan, and Qinghai). AMR was evaluated by the broth dilution method using 13 different antimicrobial agents, and results showed that 85.82 % (115/134) of isolates were resistant to three or more antimicrobial classes and were considered multidrug-resistant (MDR). Twelve sequence types (STs) were detected, with a dominance of ST469 (29.85 %, 40/134). The prediction of virulence genes showed the detection of cdtB gene encoding typhoid toxins in one isolate of S. Muenster recovered from chicken, while virulence genes associated with type III secretion systems were detected in all isolates. Furthermore, plasmid-type prediction showed the abundance of IncFII(S) (13/134; 9.7 %) and IncFIB(S) (12/134; 8.95 %) in the studied isolates. Together, this study demonstrated the ability to use whole-genome sequencing (WGS) as a cost-effective method to provide comprehensive knowledge about foodborne Salmonella isolates in One Health surveillance approach.
Collapse
Affiliation(s)
- Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Abubakar Siddique
- Hainan Institute of Zhejiang University, Sanya 572025, China; Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad 44000, Pakistan
| | - Chenhao Jia
- Hainan Institute of Zhejiang University, Sanya 572025, China; Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | | | - Jing Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Min Yue
- Hainan Institute of Zhejiang University, Sanya 572025, China; Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China.
| |
Collapse
|
35
|
Wang Z, Liao S, Huang G, Feng M, Yin R, Teng L, Jia C, Yao Y, Yue M, Li Y. Infant food production environments: A potential reservoir for vancomycin-resistant enterococci non-nosocomial infections. Int J Food Microbiol 2023; 389:110105. [PMID: 36731202 DOI: 10.1016/j.ijfoodmicro.2023.110105] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Enterococcus has been considered one of the most important nosocomial pathogens for human infections, and the hospital environment is an important reservoir for vancomycin-resistant enterococci (VRE) that leads to antimicrobial therapeutic failure. However, infant foods and their production environments could pose risks for the immature population, while this question remains unaddressed. This study conducted an extensive and thorough Enterococcus isolation, VRE risk assessment of the Chinese infant food production chains and additional online-marketing infant foods, including powdered infant formula (PIF) and infant complementary food (ICF). To investigate the prevalence of Enterococcus along infant food chains and commodities, a total of 482 strains of Enterococcus, including E. faecium (n = 363), E. faecalis (n = 84), E. casseliflavus (n = 13), E. mundtii (n = 12), E. gallinarum (n = 4), E. hirae (n = 4), and E. durans (n = 2) were recovered from 459 samples collected from infant food production chains (71/254) and food commodities (67/205). A decreasing trend for Enterococcus detection rate was found in the PIF production chain (PIF-PC), particularly during the preparation of the PIF base powder (From 100 % in raw milk to 8.70 % in end products), while an increasing trend was observed in the ICF production chain (ICF-PC) mainly during the initial processing of farm crops and the further processing of the product (20 % at farm crops increasing to 76.92 % at end products). The result indicated that the PIF-PC process effectively reduced Enterococcus contamination, while the ICF-PC showed the opposite trend. Importantly, eleven VRE isolates were recovered from the infant food production chain, including seven E. casseliflavus isolates carrying vanC2/C3 and four E. gallinarum isolates carrying vanC1. Ten VRE isolates were from food production environments. Collectively, our study demonstrated that infant food production environments represent potential reservoirs for VRE non-nosocomial infections in vulnerable populations.
Collapse
Affiliation(s)
- Zining Wang
- Hainan Institute, Zhejiang University, Sanya 572025, China; Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Sihao Liao
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Guanwen Huang
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Mengyao Feng
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Rui Yin
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Lin Teng
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Chenghao Jia
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Yicheng Yao
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China
| | - Min Yue
- Hainan Institute, Zhejiang University, Sanya 572025, China; Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Yan Li
- Hainan Institute, Zhejiang University, Sanya 572025, China; Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, China.
| |
Collapse
|
36
|
Tang B, Guan C, Lin H, Liu C, Yang H, Zhao G, Yue M. Emergence of co-existence of mcr-1 and bla NDM-5 in Escherichia fergusonii. Int J Antimicrob Agents 2023; 61:106742. [PMID: 36736926 DOI: 10.1016/j.ijantimicag.2023.106742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Affiliation(s)
- Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Chunjiu Guan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China; School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Canying Liu
- School of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products and Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Guoping Zhao
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Min Yue
- Hainan Institute, Zhejiang University, Hangzhou, China; Institute of Preventive Veterinary Sciences and Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, National Medical Centre for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
37
|
Teng L, Feng M, Liao S, Zheng Z, Jia C, Zhou X, Nambiar RB, Ma Z, Yue M. A Cross-Sectional Study of Companion Animal-Derived Multidrug-Resistant Escherichia coli in Hangzhou, China. Microbiol Spectr 2023; 11:e0211322. [PMID: 36840575 PMCID: PMC10100847 DOI: 10.1128/spectrum.02113-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
Antimicrobial resistance poses a challenge to global public health, and companion animals could serve as the reservoir for antimicrobial-resistant bacteria. However, the prevalence of antimicrobial-resistant bacteria, especially multidrug-resistant (MDR) bacteria, and the associated risk factors from companion animals are partially understood. Here, we aim to investigate the prevalence of MDR Escherichia coli, as an indicator bacterium, in pet cats and dogs in Hangzhou, China, and evaluate the factors affecting the prevalence of MDR E. coli. The proportion of pets carrying MDR E. coli was 35.77% (49/137), i.e., 40.96% (34/83) for dogs and 27.28% (15/54) for cats. Isolates resistant to trimethoprim-sulfamethoxazole (49.40% and 44.44%), amoxicillin-clavulanic acid (42.17% and 38.89%), and nalidixic acid (40.96% and 35.19%) were the most prevalent in dogs and cats. Interestingly, comparable prevalence of MDR E. coli was observed in pet dogs and cats regardless of the health condition and the history of antibiotic use. Genetic diversity analysis indicates a total of 86 sequencing types (23 clonal complexes), with ST12 being the most dominant. Further genomic investigation of a carbapenem-resistant E. coli ST410 isolate reveals abundant antimicrobial-resistance genes and a plasmid-borne carbapenemase gene (NDM-5) flanked by insertion sequences of IS91 and IS31, suggesting the plasmid and insertion sequences may be involved in carbapenem-resistance dissemination. These data show that companion animal-derived MDR bacteria could threaten public health, and further regulation and supervision of antimicrobial use in pet clinics should be established in China. IMPORTANCE MDR Escherichia coli are considered a global threat because of the decreasing options for antimicrobial therapy. Companion animals could be a reservoir of MDR E. coli, and the numbers of pets and households owning pets in China are booming. However, the prevalence and risk factors of MDR E. coli carriage in Chinese pets were rarely studied. Here, we investigated the prevalence of MDR E. coli in pets in Hangzhou, one of the leading cities with the most established pet market in China, and explored the factors that affected the prevalence. Our findings showed high prevalences of MDR E. coli in pet dogs and cats regardless of their health condition and the history of antibiotic use, suggesting their potential role of public health risk. A call-to-action for improved regulation of antimicrobial use in companion animal is needed in China.
Collapse
Affiliation(s)
- Lin Teng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Mengyao Feng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Sihao Liao
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Zhijie Zheng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Chenghao Jia
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xin Zhou
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Reshma B. Nambiar
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Zhengxin Ma
- Mount Desert Island Biological Laboratory, Bar Harbor, Maine, USA
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|