1
|
Ventalon C, Kirichuk O, Navon Y, Chastagnier Y, Heux L, Richter RP, Bureau L, Débarre D. Optical Sectioning for Reflection Interference Microscopy: Quantitative Imaging at Soft Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10040-10051. [PMID: 40223518 DOI: 10.1021/acs.langmuir.5c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Reflection interference contrast microscopy (RICM, also known as interference reflection microscopy) and related techniques have become of wide interest to the biophysical, soft matter, and biochemistry communities owing to their exquisite sensitivity for characterizing thin films or individual nanoscopic objects adsorbed onto surfaces, or for monitoring cell-substrate interactions. Over the recent years, striking progress has been made to improve the sensitivity and the quantitative analysis of RICM. Its use in more complex environments, with spurious reflections stemming from a variety of structures in the sample, remains however challenging. In this paper, we demonstrate two optical sectioning methods that effectively reduce such background and can be readily implemented in a conventional RICM setup: line confocal detection and structured illumination microscopy. We characterize experimentally the benefits to image quality and demonstrate the use of the methods for quantitative imaging of complex biological and biomimetic samples: cellular membranes, thin organic films, biofunctional surfaces. We then discuss the benefits of each method and provide guidelines to arbitrate between sectioning and signal-to-noise ratio. Finally, we provide a detailed description of our experimental setup and a home-written image acquisition and processing software that should allow the interested reader to duplicate such a setup on a home-built or commercial microscope.
Collapse
Affiliation(s)
- Cathie Ventalon
- Institut de Biologie de l'ENS (IBENS), Département de biologie, École normale supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | | | - Yotam Navon
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Yan Chastagnier
- IGF, Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Laurent Heux
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Ralf P Richter
- School of Biomedical Sciences, Faculty of Biological Sciences, School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, Astbury Centre for Structural Molecular Biology, and Bragg Centre for Materials Research, University of Leeds, Leeds LS2 9JT, U.K
| | - Lionel Bureau
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | | |
Collapse
|
2
|
Concentration Dependent Effect of Quaternary Amines on the Adhesion of U251-MG Cells. Gels 2022; 8:gels8120827. [PMID: 36547352 PMCID: PMC9777631 DOI: 10.3390/gels8120827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Cationic gels have seen increasing interest in recent years for 2D cell cultivation since they may represent an alternative to the well-known RGD-peptide motif functionalized gels. However, few hydrogel systems with adjustable cationic strength have been fabricated and investigated so far. In this work, eight gels with defined concentrations of cationic groups, two of which also contained the RGD peptide, were prepared from three well-defined, soluble precursor copolymers with thiol-functionalities and PEGDA3500 as a crosslinker via thiol-ene chemistry. Live/dead stainings of U-251-MG cells on the hydrogels with different concentrations of the cationic motif were made after 3 days and 7 days of cultivation. The results show a high dependence of the number of adhesive cells and their morphology, cluster versus spread cells, on the concentration of cationic groups in the gel. This effect was more pronounced when the gels were not further dialyzed before usage. In addition, a synergistic effect of the two motifs, cationic group and RGD peptide, could be demonstrated, which together induce stronger cell adhesion than either motif alone.
Collapse
|
3
|
Francis EA, Xiao H, Teng LH, Heinrich V. Mechanisms of frustrated phagocytic spreading of human neutrophils on antibody-coated surfaces. Biophys J 2022; 121:4714-4728. [PMID: 36242516 PMCID: PMC9748254 DOI: 10.1016/j.bpj.2022.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
Complex motions of immune cells are an integral part of diapedesis, chemotaxis, phagocytosis, and other vital processes. To better understand how immune cells execute such motions, we present a detailed analysis of phagocytic spreading of human neutrophils on flat surfaces functionalized with different densities of immunoglobulin G (IgG) antibodies. We visualize the cell-substrate contact region at high resolution and without labels using reflection interference contrast microscopy and quantify how the area, shape, and position of the contact region evolves over time. We find that the likelihood of the cell commitment to spreading strongly depends on the surface density of IgG, but the rate at which the substrate-contact area of spreading cells increases does not. Validated by a theoretical companion study, our results resolve controversial notions about the mechanisms controlling cell spreading, establishing that active forces generated by the cytoskeleton rather than cell-substrate adhesion primarily drive cellular protrusion. Adhesion, on the other hand, aids phagocytic spreading by regulating the cell commitment to spreading, the maximum cell-substrate contact area, and the directional movement of the contact region.
Collapse
Affiliation(s)
- Emmet A Francis
- Department of Biomedical Engineering, University of California Davis, Davis, California
| | - Hugh Xiao
- Department of Biomedical Engineering, University of California Davis, Davis, California
| | - Lay Heng Teng
- Department of Biomedical Engineering, University of California Davis, Davis, California
| | - Volkmar Heinrich
- Department of Biomedical Engineering, University of California Davis, Davis, California.
| |
Collapse
|
4
|
Carvalho BG, Vit FF, Carvalho HF, Han SW, de la Torre LG. Layer-by-Layer Biomimetic Microgels for 3D Cell Culture and Nonviral Gene Delivery. Biomacromolecules 2021; 23:1545-1556. [PMID: 34890507 DOI: 10.1021/acs.biomac.1c01130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Localized release of nucleic acid therapeutics is essential for many biomedical applications, including gene therapy, tissue engineering, and medical implant coatings. We applied the substrate-mediated transfection and layer-by-layer (LbL) technique to achieve an efficient local gene delivery. In the experiments presented herein, we embeded lipoplexes containing plasmid DNA encoding for enhanced green fluorescent protein (pEGFP) within polyelectrolyte alginate-based microgels composed of poly(allylamine hydrochloride) (PAH), chondroitin sulfate (CS), and poly-l-lysine (PLL) with diameters between 70 and 90 μm. Droplet-based microfluidics was used as the main process to produce the alginate (ALG)-based microgels with discrete size, shape, and low coefficient of variation. The physicochemical and morphological properties of the polyelectrolyte microgels were characterized via optical microscopy, scanning electron microscopy (SEM), and zeta potential analysis. We found that polyelectrolyte microgels provide low cytotoxicity and cell-material interactions (adhesion, spreading, and proliferation). In addition, the microsystem showed the ability to load lipoplexes and a loading efficiency equal to 83%, and it enabled in vitro surface-based transfection of MCF-7 cells. This approach provides a new suitable route for cell adhesion and local gene delivery.
Collapse
Affiliation(s)
- Bruna G Carvalho
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil
| | - Franciele F Vit
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-865, Brazil
| | - Sang W Han
- Department of Biophysics, Federal University of São Paulo (UNIFESP), São Paulo 04044-010, Brazil
| | - Lucimara G de la Torre
- Department of Material and Bioprocess Engineering, School of Chemical Engineering, University of Campinas (UNICAMP), Campinas 13083-852, Brazil
| |
Collapse
|
5
|
Wang Y, Sang J, Ao R, Ma Y, Fu B. Numerical simulation of deformed red blood cell by utilizing neural network approach and finite element analysis. Comput Methods Biomech Biomed Engin 2020; 23:1190-1200. [DOI: 10.1080/10255842.2020.1791836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ying Wang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| | - Jianbing Sang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| | - Rihan Ao
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| | - Yu Ma
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| | - Bowei Fu
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, China
| |
Collapse
|
6
|
Majhenc J, Božič B. Characteristics of phospholipid vesicles enhanced by adhesion on an annular region. Phys Rev E 2019; 99:052416. [PMID: 31212483 DOI: 10.1103/physreve.99.052416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Indexed: 11/07/2022]
Abstract
Phospholipid vesicle membranes are simple models used to study the mechanical properties of cell membranes. The shapes of flaccid vesicles can exhibit very diverse forms. When researching very flaccid vesicles, axisymmetrical vesicles with the membranes adhered to an annular region can also be observed. A phase diagram of such shapes was studied for different values of the vesicle parameters, i.e., the adhesion constant, the vesicle volume-to-membrane ratio, the volume ratio between the polar and the equatorial parts, and the equilibrium difference between the membrane monolayers. The energies of the annular shapes with respect to the vesicle parameters were closely examined and compared with the energies of the discocyte and stomatocyte shapes. The requirements for the existence of such annular shapes were also given for adhesion-free vesicle membranes. The results show that the adhesion between the lipid bilayers stabilizes the observed shapes, which belong to the locally stable branch of the annular vesicles. The value obtained for the adhesion constant of the SOPC membrane is 3×10^{-9}J/m^{2}.
Collapse
Affiliation(s)
- Janja Majhenc
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Bojan Božič
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Park JS, Lee IB, Moon HM, Joo JH, Kim KH, Hong SC, Cho M. Label-free and live cell imaging by interferometric scattering microscopy. Chem Sci 2018; 9:2690-2697. [PMID: 29732052 PMCID: PMC5914294 DOI: 10.1039/c7sc04733a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/08/2018] [Indexed: 11/21/2022] Open
Abstract
Despite recent remarkable advances in microscopic techniques, it still remains very challenging to directly observe the complex structure of cytoplasmic organelles in live cells without a fluorescent label.
Despite recent remarkable advances in microscopic techniques, it still remains very challenging to directly observe the complex structure of cytoplasmic organelles in live cells without a fluorescent label. Here we report label-free and live-cell imaging of mammalian cell, Escherischia coli, and yeast, using interferometric scattering microscopy, which reveals the underlying structures of a variety of cytoplasmic organelles as well as the underside structure of the cells. The contact areas of the cells attached onto a glass substrate, e.g., focal adhesions and filopodia, are clearly discernible. We also found a variety of fringe-like features in the cytoplasmic area, which may reflect the folded structures of cytoplasmic organelles. We thus anticipate that the label-free interferometric scattering microscopy can be used as a powerful tool to shed interferometric light on in vivo structures and dynamics of various intracellular phenomena.
Collapse
Affiliation(s)
- Jin-Sung Park
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science , Seoul 02841 , Korea
| | - Il-Buem Lee
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science , Seoul 02841 , Korea.,Department of Physics , Korea University , Seoul 02841 , Korea .
| | - Hyeon-Min Moon
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science , Seoul 02841 , Korea.,Department of Physics , Korea University , Seoul 02841 , Korea .
| | - Jong-Hyeon Joo
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science , Seoul 02841 , Korea.,Department of Chemistry , Korea University , Seoul 02841 , Korea .
| | - Kyoung-Hoon Kim
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science , Seoul 02841 , Korea.,Department of Physics , Korea University , Seoul 02841 , Korea .
| | - Seok-Cheol Hong
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science , Seoul 02841 , Korea.,Department of Physics , Korea University , Seoul 02841 , Korea .
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics , Institute for Basic Science , Seoul 02841 , Korea.,Department of Chemistry , Korea University , Seoul 02841 , Korea .
| |
Collapse
|
8
|
Barns S, Balanant MA, Sauret E, Flower R, Saha S, Gu Y. Investigation of red blood cell mechanical properties using AFM indentation and coarse-grained particle method. Biomed Eng Online 2017; 16:140. [PMID: 29258590 PMCID: PMC5738115 DOI: 10.1186/s12938-017-0429-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/08/2017] [Indexed: 12/27/2022] Open
Abstract
Background Red blood cells (RBCs) deform significantly and repeatedly when passing through narrow capillaries and delivering dioxygen throughout the body. Deformability of RBCs is a key characteristic, largely governed by the mechanical properties of the cell membrane. This study investigated RBC mechanical properties using atomic force microscopy (AFM) with the aim to develop a coarse-grained particle method model to study for the first time RBC indentation in both 2D and 3D. This new model has the potential to be applied to further investigate the local deformability of RBCs, with accurate control over adhesion, probe geometry and position of applied force. Results The model considers the linear stretch capacity of the cytoskeleton, bending resistance and areal incompressibility of the bilayer, and volumetric incompressibility of the internal fluid. The model’s performance was validated against force–deformation experiments performed on RBCs under spherical AFM indentation. The model was then used to investigate the mechanisms which absorbed energy through the indentation stroke, and the impact of varying stiffness coefficients on the measured deformability. This study found the membrane’s bending stiffness was most influential in controlling RBC physical behaviour for indentations of up to 200 nm. Conclusions As the bilayer provides bending resistance, this infers that structural changes within the bilayer are responsible for the deformability changes experienced by deteriorating RBCs. The numerical model presented here established a foundation for future investigations into changes within the membrane that cause differences in stiffness between healthy and deteriorating RBCs, which have already been measured experimentally with AFM. Electronic supplementary material The online version of this article (10.1186/s12938-017-0429-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Barns
- Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, 4000, Australia
| | - Marie Anne Balanant
- Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, 4000, Australia.,Research and Development, Australian Red Cross Blood Service, Brisbane, 4059, Australia
| | - Emilie Sauret
- Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, 4000, Australia
| | - Robert Flower
- Research and Development, Australian Red Cross Blood Service, Brisbane, 4059, Australia.,Faculty of Health, Queensland University of Technology, Brisbane, 4000, Australia
| | - Suvash Saha
- Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, 4000, Australia
| | - YuanTong Gu
- Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane, 4000, Australia.
| |
Collapse
|
9
|
HIV Tat protein and amyloid-β peptide form multifibrillar structures that cause neurotoxicity. Nat Struct Mol Biol 2017; 24:379-386. [PMID: 28218748 PMCID: PMC5383535 DOI: 10.1038/nsmb.3379] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/16/2017] [Indexed: 11/08/2022]
Abstract
Deposition of amyloid-β plaques is increased in the brains of HIV-infected individuals, and the HIV transactivator of transcription (Tat) protein affects amyloidogenesis through several indirect mechanisms. Here, we investigated direct interactions between Tat and amyloid-β peptide. Our in vitro studies showed that in the presence of Tat, uniform amyloid fibrils become double twisted fibrils and further form populations of thick unstructured filaments and aggregates. Specifically, Tat binding to the exterior surfaces of the Aβ fibrils increases β-sheet formation and lateral aggregation into thick multifibrillar structures, thus producing fibers with increased rigidity and mechanical resistance. Furthermore, Tat and Aβ aggregates in complex synergistically induced neurotoxicity both in vitro and in animal models. Increased rigidity and mechanical resistance of the amyloid-β-Tat complexes coupled with stronger adhesion due to the presence of Tat in the fibrils may account for increased damage, potentially through pore formation in membranes.
Collapse
|
10
|
Jacob RS, George E, Singh PK, Salot S, Anoop A, Jha NN, Sen S, Maji SK. Cell Adhesion on Amyloid Fibrils Lacking Integrin Recognition Motif. J Biol Chem 2016; 291:5278-98. [PMID: 26742841 DOI: 10.1074/jbc.m115.678177] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Indexed: 12/23/2022] Open
Abstract
Amyloids are highly ordered, cross-β-sheet-rich protein/peptide aggregates associated with both human diseases and native functions. Given the well established ability of amyloids in interacting with cell membranes, we hypothesize that amyloids can serve as universal cell-adhesive substrates. Here, we show that, similar to the extracellular matrix protein collagen, amyloids of various proteins/peptides support attachment and spreading of cells via robust stimulation of integrin expression and formation of integrin-based focal adhesions. Additionally, amyloid fibrils are also capable of immobilizing non-adherent red blood cells through charge-based interactions. Together, our results indicate that both active and passive mechanisms contribute to adhesion on amyloid fibrils. The present data may delineate the functional aspect of cell adhesion on amyloids by various organisms and its involvement in human diseases. Our results also raise the exciting possibility that cell adhesivity might be a generic property of amyloids.
Collapse
Affiliation(s)
- Reeba S Jacob
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Edna George
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Pradeep K Singh
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Shimul Salot
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Arunagiri Anoop
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Narendra Nath Jha
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Shamik Sen
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Samir K Maji
- From the Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| |
Collapse
|
11
|
Samadi-Dooki A, Shodja HM, Malekmotiei L. The effect of the physical properties of the substrate on the kinetics of cell adhesion and crawling studied by an axisymmetric diffusion-energy balance coupled model. SOFT MATTER 2015; 11:3693-3705. [PMID: 25823723 DOI: 10.1039/c5sm00394f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper an analytical approach to study the effect of the substrate physical properties on the kinetics of adhesion and motility behavior of cells is presented. Cell adhesion is mediated by the binding of cell wall receptors and substrate's complementary ligands, and tight adhesion is accomplished by the recruitment of the cell wall binders to the adhesion zone. The binders' movement is modeled as their axisymmetric diffusion in the fluid-like cell membrane. In order to preserve the thermodynamic consistency, the energy balance for the cell-substrate interaction is imposed on the diffusion equation. Solving the axisymmetric diffusion-energy balance coupled equations, it turns out that the physical properties of the substrate (substrate's ligand spacing and stiffness) have considerable effects on the cell adhesion and motility kinetics. For a rigid substrate with uniform distribution of immobile ligands, the maximum ligand spacing which does not interrupt adhesion growth is found to be about 57 nm. It is also found that as a consequence of the reduction in the energy dissipation in the isolated adhesion system, cell adhesion is facilitated by increasing substrate's stiffness. Moreover, the directional movement of cells on a substrate with gradients in mechanical compliance is explored with an extension of the adhesion formulation. It is shown that cells tend to move from soft to stiff regions of the substrate, but their movement is decelerated as the stiffness of the substrate increases. These findings based on the proposed theoretical model are in excellent agreement with the previous experimental observations.
Collapse
Affiliation(s)
- Aref Samadi-Dooki
- Department of Civil Engineering, Sharif University of Technology, P.O. Box 11155-9313, Tehran, Iran
| | | | | |
Collapse
|
12
|
Modeling universal dynamics of cell spreading on elastic substrates. Biomech Model Mechanobiol 2015; 14:1265-80. [DOI: 10.1007/s10237-015-0673-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/31/2015] [Indexed: 10/24/2022]
|
13
|
Lu YP, Yang CH, Yeh JA, Ho FH, Ou YC, Chen CH, Lin MY, Huang KS. Guidance of neural regeneration on the biomimetic nanostructured matrix. Int J Pharm 2014; 463:177-83. [DOI: 10.1016/j.ijpharm.2013.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/07/2013] [Accepted: 08/10/2013] [Indexed: 01/13/2023]
|
14
|
Park KS, Ahn J, Kim JY, Park H, Kim HO, Lee SH. Poly-L-lysine increases the ex vivo expansion and erythroid differentiation of human hematopoietic stem cells, as well as erythroid enucleation efficacy. Tissue Eng Part A 2014; 20:1072-80. [PMID: 24125653 DOI: 10.1089/ten.tea.2013.0193] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are continuously stimulated by physical interactions with bone marrow or umbilical cord niches as well as by chemical factors found within these niches. The niche can be mimicked by modification of the cytokine composition, elasticity, topography, and/or charge. This work employed cell culture plates coated with several concentrations of poly-L-lysine (PLL), a positively charged synthetic amino-acid chain. Culture substrates that employed relatively high initial coating concentrations of PLL significantly increased the total number of HSCs during ex vivo expansion of CD34(+) cells, as well as erythroid differentiation. Furthermore, the 0.01% PLL substrate stimulated enucleation of erythroid cells, leaving behind a number of extruded nuclei at the bottom of the culture plate, followed by an increase in the number of erythrocytes. Thus, PLL will likely prove useful to enhance the expansion of HSCs and erythroid cells, in addition to the generation of red blood cells.
Collapse
Affiliation(s)
- Kwang-Sook Park
- 1 Department of Biomedical Science, CHA University , Gyeonggi-do, Korea
| | | | | | | | | | | |
Collapse
|
15
|
Klein K, Rommel CE, Hirschfeld-Warneken VC, Spatz JP. Cell membrane topology analysis by RICM enables marker-free adhesion strength quantification. Biointerphases 2013; 8:28. [DOI: 10.1186/1559-4106-8-28] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/11/2013] [Indexed: 11/10/2022] Open
|
16
|
Odenthal T, Smeets B, Van Liedekerke P, Tijskens E, Van Oosterwyck H, Ramon H. Analysis of initial cell spreading using mechanistic contact formulations for a deformable cell model. PLoS Comput Biol 2013; 9:e1003267. [PMID: 24146605 PMCID: PMC3798278 DOI: 10.1371/journal.pcbi.1003267] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/23/2013] [Indexed: 11/30/2022] Open
Abstract
Adhesion governs to a large extent the mechanical interaction between a cell and its microenvironment. As initial cell spreading is purely adhesion driven, understanding this phenomenon leads to profound insight in both cell adhesion and cell-substrate interaction. It has been found that across a wide variety of cell types, initial spreading behavior universally follows the same power laws. The simplest cell type providing this scaling of the radius of the spreading area with time are modified red blood cells (RBCs), whose elastic responses are well characterized. Using a mechanistic description of the contact interaction between a cell and its substrate in combination with a deformable RBC model, we are now able to investigate in detail the mechanisms behind this universal power law. The presented model suggests that the initial slope of the spreading curve with time results from a purely geometrical effect facilitated mainly by dissipation upon contact. Later on, the spreading rate decreases due to increasing tension and dissipation in the cell's cortex as the cell spreads more and more. To reproduce this observed initial spreading, no irreversible deformations are required. Since the model created in this effort is extensible to more complex cell types and can cope with arbitrarily shaped, smooth mechanical microenvironments of the cells, it can be useful for a wide range of investigations where forces at the cell boundary play a decisive role. How cells spread on a newly encountered surface is an important issue, since it hints at how cells interact physically with the specific material in general. It has been shown before that many cell types have very similar early spreading behavior. This observation has been linked to the mechanical nature of the phenomenon, during which a cell cannot yet react by changing its structure and behavior. Understanding in detail how this passive spreading occurs, and what clues a cell may later respond to is the goal of this work. At the same time, the model we develop here should be very valuable for more complex situations of interacting cells, since it is able to reproduce the purely mechanical response in detail. We find that spreading is limited mainly by energy dissipation upon contact and later dissipation in the cell's cortex and that no irreversible deformation occurs during the spreading of red blood cells on an adhesive surface.
Collapse
|
17
|
Åkerberg D, Posaric-Bauden M, Isaksson K, Andersson R, Tingstedt B. Prevention of pleural adhesions by bioactive polypeptides - a pilot study. Int J Med Sci 2013; 10:1720-1726. [PMID: 24151443 PMCID: PMC3804797 DOI: 10.7150/ijms.6651] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 09/02/2013] [Indexed: 12/08/2022] Open
Abstract
OBJECTIVE Postoperative pleural adhesions lead to major problems in repeated thoracic surgery. To date, no antiadhesive product has been proven clinically effective. Previous studies of differently charged polypeptides, poly-L-lysine (PL) and poly-L-glutamate (PG) have shown promising results reducing postoperative abdominal adhesions in experimental settings. This pilot study examined the possible pleural adhesion prevention by using the PL+PG concept after pleural surgery and its possible effect on key parameters; plasmin activator inhibitor-1 (PAI-1) and tissue growth factor beta 1 (TGFb) in the fibrinolytic process. METHODS A total of 22 male rats were used in the study, one control group (n=10) and one experimental group (n=12). All animals underwent primary pleural surgery, the controls receiving saline in the pleural cavity and the experimental group the PL+PG solution administered by spray. The animals were evaluated on day 7. Macroscopic appearance of adhesions was evaluated by a scoring system. Histology slides of the adhesions and pleural biopsies for evaluation of PAI-1 and TGFb1 were taken on day 7. RESULTS A significant reduction of adhesions in the PL+PG group (p<0.05) was noted at day 7 both regarding the length and severity of adhesions. There were no significant differences in the concentration of PAI-1 and TGFb1 when comparing the two groups. CONCLUSIONS PL+PG may be used to prevent pleural adhesions. The process of fibrinolysis, and fibrosis was though not affected after PLPG administration.
Collapse
Affiliation(s)
| | | | | | | | - B. Tingstedt
- Department of Surgery, Clinical Sciences Lund University, Lund, Sweden
| |
Collapse
|
18
|
Leal Denis MF, Incicco JJ, Espelt MV, Verstraeten SV, Pignataro OP, Lazarowski ER, Schwarzbaum PJ. Kinetics of extracellular ATP in mastoparan 7-activated human erythrocytes. Biochim Biophys Acta Gen Subj 2013; 1830:4692-707. [PMID: 23742824 DOI: 10.1016/j.bbagen.2013.05.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/24/2013] [Accepted: 05/20/2013] [Indexed: 01/26/2023]
Abstract
BACKGROUND The peptide mastoparan 7 (MST7) stimulated ATP release in human erythrocytes. We explored intra- and extracellular processes governing the time-dependent accumulation of extracellular ATP (i.e., ATPe kinetics). METHODS Human erythrocytes were treated with MST7 in the presence or absence of two blockers of pannexin 1. ATPe concentration was monitored by luciferin-luciferase based real-time luminometry. RESULTS Exposure of human erythrocytes to MST7 led to an acute increase in [ATPe], followed by a slower increase phase. ATPe kinetics reflected a strong activation of ATP efflux and a low rate of ATPe hydrolysis by ectoATPase activity. Enhancement of [ATPe] by MST7 required adhesion of erythrocytes to poly-D-lysin-coated coverslips, and correlated with a 31% increase of cAMP and 10% cell swelling. However, when MST7 was dissolved in a hyperosmotic medium to block cell swelling, ATPe accumulation was inhibited by 49%. Erythrocytes pre-exposure to 10μM of either carbenoxolone or probenecid, two blockers of pannexin 1, exhibited a partial reduction of ATP efflux. Erythrocytes from pannexin 1 knockout mice exhibited similar ATPe kinetics as those of wild type mice erythrocytes exposed to pannexin 1 blockers. CONCLUSIONS MST7 induced release of ATP required either cell adhesion or strong activation of cAMP synthesis. Part of this release required cell swelling. Kinetic analysis and a data driven model suggested that ATP efflux is mediated by two ATP conduits displaying different kinetics, with one conduit being fully blocked by pannexin 1 blockers. GENERAL SIGNIFICANCE Kinetic analysis of extracellular ATP accumulation from human erythrocytes and potential effects on microcirculation.
Collapse
|
19
|
The influence of inhomogeneous adhesion on the detachment dynamics of adhering cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:419-26. [DOI: 10.1007/s00249-013-0891-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/21/2013] [Indexed: 12/19/2022]
|
20
|
Rouhiparkouhi T, Weikl TR, Discher DE, Lipowsky R. Adhesion-induced phase behavior of two-component membranes and vesicles. Int J Mol Sci 2013; 14:2203-29. [PMID: 23340655 PMCID: PMC3565373 DOI: 10.3390/ijms14012203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 11/17/2022] Open
Abstract
The interplay of adhesion and phase separation is studied theoretically for two-component membranes that can phase separate into two fluid phases such as liquid-ordered and liquid-disordered phases. Many adhesion geometries provide two different environments for these membranes and then partition the membranes into two segments that differ in their composition. Examples are provided by adhering vesicles, by hole- or pore-spanning membranes, and by membranes supported by chemically patterned surfaces. Generalizing a lattice model for binary mixtures to these adhesion geometries, we show that the phase behavior of the adhering membranes depends, apart from composition and temperature, on two additional parameters, the area fraction of one membrane segment and the affinity contrast between the two segments. For the generic case of non-vanishing affinity contrast, the adhering membranes undergo two distinct phase transitions and the phase diagrams in the composition/temperature plane have a generic topology that consists of two two-phase coexistence regions separated by an intermediate one-phase region. As a consequence, phase separation and domain formation is predicted to occur separately in each of the two membrane segments but not in both segments simultaneously. Furthermore, adhesion is also predicted to suppress the phase separation process for certain regions of the phase diagrams. These generic features of the adhesion-induced phase behavior are accessible to experiment.
Collapse
Affiliation(s)
- Tahereh Rouhiparkouhi
- Theory & Bio-Systems, Max Planck Insitute of Colloids and Interfaces, Potsdam 14424, Germany; E-Mails: (T.R.); (T.R.W.)
| | - Thomas R. Weikl
- Theory & Bio-Systems, Max Planck Insitute of Colloids and Interfaces, Potsdam 14424, Germany; E-Mails: (T.R.); (T.R.W.)
| | - Dennis E. Discher
- Biophysical Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; E-Mail:
| | - Reinhard Lipowsky
- Theory & Bio-Systems, Max Planck Insitute of Colloids and Interfaces, Potsdam 14424, Germany; E-Mails: (T.R.); (T.R.W.)
| |
Collapse
|
21
|
Klein K, Maier T, Hirschfeld-Warneken VC, Spatz JP. Marker-free phenotyping of tumor cells by fractal analysis of reflection interference contrast microscopy images. NANO LETTERS 2013; 13:5474-9. [PMID: 24079895 PMCID: PMC3831548 DOI: 10.1021/nl4030402] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/26/2013] [Indexed: 05/21/2023]
Abstract
Phenotyping of tumor cells by marker-free quantification is important for cancer diagnostics. For the first time, fractal analysis of reflection interference contrast microscopy images of single living cells was employed as a new method to distinguish between different nanoscopic membrane features of tumor cells. Since tumor progression correlates with a higher degree of chaos within the cell, it can be quantified mathematically by fractality. Our results show a high accuracy in identifying malignant cells with a failure chance of 3%, which is far better than today's applied methods.
Collapse
|
22
|
Cai L, Lu J, Sheen V, Wang S. Optimal poly(L-lysine) grafting density in hydrogels for promoting neural progenitor cell functions. Biomacromolecules 2012; 13:1663-74. [PMID: 22533450 PMCID: PMC3547621 DOI: 10.1021/bm300381d] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Recently, we have developed a photopolymerizable poly(L-lysine) (PLL) that can be covalently incorporated into poly(ethylene glycol) diacrylate (PEGDA) hydrogels to improve their bioactivity by providing positive charges. To explore the potential of these PLL-grafted PEGDA hydrogels as a cell delivery vehicle and luminal filler in nerve guidance conduits for peripheral and central nerve regeneration, we varied the number of pendent PLL chains in the hydrogels by photo-cross-linking PEGDA with weight compositions of PLL (φ(PLL)) of 0, 1, 2, 3, and 5%. We further investigated the effect of PLL grafting density on E14 mouse neural progenitor cell (NPC) behavior including cell viability, attachment, proliferation, differentiation, and gene expression. The amount of actually grafted PLL and charge densities were characterized, showing a proportional increase with the feed composition φ(PLL). NPC viability in 3D hydrogels was significantly improved in a PLL grafting density-dependent manner at days 7 and 14 postencapsulation. Similarly, NPC attachment and proliferation were promoted on the PLL-grafted hydrogels with increasing φ(PLL) up to 2%. More intriguingly, NPC lineage commitment was dramatically altered by the amount of grafted PLL chains in the hydrogels. NPC differentiation demonstrated a parabolic or nonmonotonic dependence on φ(PLL), resulting in cells mostly differentiated toward mature neurons with extensive neurite formation and astrocytes rather than oligodendrocytes on the PLL-grafted hydrogels with φ(PLL) of 2%, whereas the neutral hydrogels and PLL-grafted hydrogels with higher φ(PLL) of 5% support NPC differentiation less. Gene expression of lineage markers further illustrated this trend, indicating that PLL-grafted hydrogels with an optimal φ(PLL) of 2% could be a promising cell carrier that promoted NPC functions for treatment of nerve injuries.
Collapse
Affiliation(s)
- Lei Cai
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996
| | - Jie Lu
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Volney Sheen
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Shanfeng Wang
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| |
Collapse
|
23
|
Rao SS, Han N, Winter JO. Polylysine-Modified PEG-Based Hydrogels to Enhance the Neuro–Electrode Interface. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 22:611-25. [DOI: 10.1163/092050610x488241] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shreyas S. Rao
- a William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 140 W 19th Avenue, Columbus, OH 43210, USA
| | - Ning Han
- b William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 140 W 19th Avenue, Columbus, OH 43210, USA
| | - Jessica O. Winter
- c William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 140 W 19th Avenue, Columbus, OH 43210, USA; Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
24
|
Surface characterisation of oxygen plasma treated electrospun polyurethane fibres and their interaction with red blood cells. Eur Polym J 2012. [DOI: 10.1016/j.eurpolymj.2012.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Lee D, Fong KP, King MR, Brass LF, Hammer DA. Differential dynamics of platelet contact and spreading. Biophys J 2012; 102:472-82. [PMID: 22325269 DOI: 10.1016/j.bpj.2011.10.056] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/19/2011] [Accepted: 10/18/2011] [Indexed: 11/27/2022] Open
Abstract
Platelet spreading is critical for hemostatic plug formation and thrombosis. However, the detailed dynamics of platelet spreading as a function of receptor-ligand adhesive interactions has not been thoroughly investigated. Using reflection interference contrast microscopy, we found that both adhesive interactions and PAR4 activation affect the dynamics of platelet membrane contact formation during spreading. The initial growth of close contact area during spreading was controlled by the combination of different immobilized ligands or PAR4 activation on fibrinogen, whereas the growth of the total area of spreading was independent of adhesion type and PAR4 signaling. We found that filopodia extend to their maximal length and then contract over time; and that filopodial protrusion and expansion were affected by PAR4 signaling. Upon PAR4 activation, the integrin α(IIb)β(3) mediated close contact to fibrinogen substrata and led to the formation of ringlike patterns in the platelet contact zone. A systematic study of platelet spreading of GPVI-, α(2)-, or β(3)-deficient platelets on collagen or fibrinogen suggests the integrin α(2) is indispensable for spreading on collagen. The platelet collagen receptors GPVI and α(2) regulate integrin α(IIb)β(3)-mediated platelet spreading on fibrinogen. This work elucidates quantitatively how receptor-ligand adhesion and biochemical signals synergistically control platelet spreading.
Collapse
Affiliation(s)
- Dooyoung Lee
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
26
|
Montalbetti N, Leal Denis MF, Pignataro OP, Kobatake E, Lazarowski ER, Schwarzbaum PJ. Homeostasis of extracellular ATP in human erythrocytes. J Biol Chem 2011; 286:38397-38407. [PMID: 21921036 DOI: 10.1074/jbc.m111.221713] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We explored the intra- and extracellular processes governing the kinetics of extracellular ATP (ATPe) in human erythrocytes stimulated with agents that increase cAMP. Using the luciferin-luciferase reaction in off-line luminometry we found both direct adenylyl cyclase activation by forskolin and indirect activation through β-adrenergic stimulation with isoproterenol-enhanced [ATP]e in a concentration-dependent manner. A mixture (3V) containing a combination of these agents and the phosphodiesterase inhibitor papaverine activated ATP release, leading to a 3-fold increase in [ATP]e, and caused increases in cAMP concentration (3-fold for forskolin + papaverine, and 10-fold for 3V). The pannexin 1 inhibitor carbenoxolone and a pannexin 1 blocking peptide ((10)Panx1) decreased [ATP]e by 75-84%. The residual efflux of ATP resulted from unavoidable mechanical perturbations stimulating a novel, carbenoxolone-insensitive pathway. In real-time luminometry experiments using soluble luciferase, addition of 3V led to an acute increase in [ATP]e to a constant value of ∼1 pmol × (10(6) cells)(-1). A similar treatment using a surface attached luciferase (proA-luc) triggered a rapid accumulation of surface ATP levels to a peak concentration of 2.4 pmol × (10(6) cells)(-1), followed by a slower exponential decay (t(½) = 3.7 min) to a constant value of 1.3 pmol × (10(6) cells)(-1). Both for soluble luciferase and proA-luc, ATP efflux was fully blocked by carbenoxolone, pointing to a 3V-induced mechanism of ATP release mediated by pannexin 1. Ecto-ATPase activity was extremely low (∼28 fmol × (10(6) cells min)(-1)), but nevertheless physiologically relevant considering the high density of erythrocytes in human blood.
Collapse
Affiliation(s)
- Nicolas Montalbetti
- IQUIFIB, Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, CIII3AAD, Argentina
| | - Maria F Leal Denis
- IQUIFIB, Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, CIII3AAD, Argentina
| | - Omar P Pignataro
- Laboratory of Molecular Endocrinology and Signal Transduction, Institute of Biology and Experimental Medicine-CONICET, Vuelta de Obligado 2490, CP 1428 Buenos Aires, Argentina; Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, CIII3AAD, Argentina
| | - Eiry Kobatake
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Eduardo R Lazarowski
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599-7248
| | - Pablo J Schwarzbaum
- IQUIFIB, Department of Biological Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, CIII3AAD, Argentina.
| |
Collapse
|
27
|
Limozin L, Sengupta K. Quantitative reflection interference contrast microscopy (RICM) in soft matter and cell adhesion. Chemphyschem 2010; 10:2752-68. [PMID: 19816893 DOI: 10.1002/cphc.200900601] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adhesion can be quantified by measuring the distance between the interacting surfaces. Reflection interference contrast microscopy (RICM), with its ability to measure inter-surface distances under water with nanometric precision and milliseconds time resolution, is ideally suited to studying the dynamics of adhesion in soft systems. Recent technical developments, which include innovative image analysis and the use of multi-coloured illumination, have led to renewed interest in this technique. Unambiguous quantitative measurements have been achieved for colloidal beads and model membranes, thus revealing new insights and applications. Quantification of data from cells shows exciting prospects. Herein, we review the basic principles and recent developments of RICM applied to studies of dynamical adhesion processes in soft matter and cell biology and provide practical hints to potential users.
Collapse
Affiliation(s)
- Laurent Limozin
- Adhesion and Inflammation, CNRS UMR 6212, Inserm U600, Aix-Marseille University, Luminy, Marseille, France.
| | | |
Collapse
|
28
|
Rao SS, Winter JO. Adhesion molecule-modified biomaterials for neural tissue engineering. FRONTIERS IN NEUROENGINEERING 2009; 2:6. [PMID: 19668707 PMCID: PMC2723915 DOI: 10.3389/neuro.16.006.2009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 05/07/2009] [Indexed: 01/14/2023]
Abstract
Adhesion molecules (AMs) represent one class of biomolecules that promote central nervous system regeneration. These tethered molecules provide cues to regenerating neurons that recapitulate the native brain environment. Improving cell adhesive potential of non-adhesive biomaterials is therefore a common goal in neural tissue engineering. This review discusses common AMs used in neural biomaterials and the mechanism of cell attachment to these AMs. Methods to modify materials with AMs are discussed and compared. Additionally, patterning of AMs for achieving specific neuronal responses is explored.
Collapse
Affiliation(s)
- Shreyas S. Rao
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State UniversityColumbus, OH, USA
| | - Jessica O. Winter
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State UniversityColumbus, OH, USA
- Department of Biomedical Engineering, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
29
|
Reister-Gottfried E, Sengupta K, Lorz B, Sackmann E, Seifert U, Smith AS. Dynamics of specific vesicle-substrate adhesion: from local events to global dynamics. PHYSICAL REVIEW LETTERS 2008; 101:208103. [PMID: 19113383 DOI: 10.1103/physrevlett.101.208103] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Indexed: 05/27/2023]
Abstract
We present a synergistic combination of simulations and experimental data on the dynamics of membrane adhesion. We show that a change in either the density or the strength of the bonds results in very different dynamics. Such behavior is explained by introducing an effective binding affinity that emerges as a result of the competition between the strength of the chemical bonds and the environment defined by the fluctuating membrane.
Collapse
|
30
|
Chamaraux F, Ali O, Keller S, Bruckert F, Fourcade B. Physical model for membrane protrusions during spreading. Phys Biol 2008; 5:036009. [PMID: 18824791 DOI: 10.1088/1478-3975/5/3/036009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During cell spreading onto a substrate, the kinetics of the contact area is an observable quantity. This paper is concerned with a physical approach to modeling this process in the case of ameboid motility where the membrane detaches itself from the underlying cytoskeleton at the leading edge. The physical model we propose is based on previous reports which highlight that membrane tension regulates cell spreading. Using a phenomenological feedback loop to mimic stress-dependent biochemistry, we show that the actin polymerization rate can be coupled to the stress which builds up at the margin of the contact area between the cell and the substrate. In the limit of small variation of membrane tension, we show that the actin polymerization rate can be written in a closed form. Our analysis defines characteristic lengths which depend on elastic properties of the membrane-cytoskeleton complex, such as the membrane-cytoskeleton interaction, and on molecular parameters, the rate of actin polymerization. We discuss our model in the case of axi-symmetric and non-axi-symmetric spreading and we compute the characteristic time scales as a function of fundamental elastic constants such as the strength of membrane-cytoskeleton adherence.
Collapse
Affiliation(s)
- F Chamaraux
- Université Joseph Fourier, Structure et Propriétés des Architectures Moléculaires, UMR 5819 CNRS, CEA-Grenoble, Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
31
|
Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc Natl Acad Sci U S A 2008; 105:13730-5. [PMID: 18772382 DOI: 10.1073/pnas.0806100105] [Citation(s) in RCA: 368] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parasitization by malaria-inducing Plasmodium falciparum leads to structural, biochemical, and mechanical modifications to the host red blood cells (RBCs). To study these modifications, we investigate two intrinsic indicators: the refractive index and membrane fluctuations in P. falciparum-invaded human RBCs (Pf-RBCs). We report experimental connections between these intrinsic indicators and pathological states. By employing two noninvasive optical techniques, tomographic phase microscopy and diffraction phase microscopy, we extract three-dimensional maps of refractive index and nanoscale cell membrane fluctuations in isolated RBCs. Our systematic experiments cover all intraerythrocytic stages of parasite development under physiological and febrile temperatures. These findings offer potential, and sufficiently general, avenues for identifying, through cell membrane dynamics, pathological states that cause or accompany human diseases.
Collapse
|
32
|
Marinkovic M, Diez-Silva M, Pantic I, Fredberg JJ, Suresh S, Butler JP. Febrile temperature leads to significant stiffening of Plasmodium falciparum parasitized erythrocytes. Am J Physiol Cell Physiol 2008; 296:C59-64. [PMID: 18596215 DOI: 10.1152/ajpcell.00105.2008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parasitic infection with Plasmodium falciparum is responsible for the most severe form of human malaria in which patients suffer from periodic fever. It is well established that during intra-erythrocytic maturation of the parasite in the red blood cell (RBC), the RBC becomes significantly more cytoadhesive and less deformable; these and other biochemical factors together with human host factors such as compromised immune status are important contributors to the disease pathology. There is currently substantial interest in understanding the loss of RBC deformability due to P. falciparum infection, but few results are available concerning effects of febrile conditions or parasitization on RBC membrane rheology. Here, for the first time, we report rheology of the single, isolated RBC with and without P. falciparum merozoite invasion, spanning a range from room temperature to febrile conditions (41 degrees C), over all the stages of parasite maturation. As expected, stiffness increased with parasite maturation. Surprisingly, however, stiffness increased acutely with temperature on a scale of minutes, particularly in late trophozoite and schizont stages. This acute stiffening in late falciparum stages may contribute to fever-dependent pathological consequences in the microcirculation.
Collapse
Affiliation(s)
- Marina Marinkovic
- Department of Environmental Health, Program in Molecular and Integrative Physiological Sciences, Harvard School of Public Health, 665 Huntington Ave., Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Fluctuations of the red blood cell membrane: relation to mechanical properties and lack of ATP dependence. Biophys J 2008; 94:4134-44. [PMID: 18234829 DOI: 10.1529/biophysj.107.117952] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have analyzed the fluctuations of the red blood cell membrane in both the temporal ((omega(s(-1))) and spatial (q(m(-1))) frequency domains. The cells were examined over a range of osmolarities leading to cell volumes from 50% to 170% of that in the isotonic state. The fluctuations of the isotonic cell showed an approximately q(-3)-dependence, indicative of a motion dominated by bending, with an inferred bending modulus of approximately 9 x 10(-19) J. When the cells were osmotically swollen to just below the point of lysis (166% of physiological volume), a q(-1)-dependence of the fluctuations supervened, implying that the motion was now dominated by membrane tension; estimated as approximately 1.3 x 10(-4) nm(-1). When, on the other hand, the cells were osmotically dehydrated, the fluctuation amplitude progressively decreased. This was caused by a rise in internal viscosity, as shown by measurements on resealed ghosts containing a reduced hemoglobin concentration, which displayed no such effect. We examined, in addition, cells depleted of ATP, before the onset of echinocytosis, and could observe no change in fluctuation amplitude. We conclude that the membrane fluctuations of the red cell are governed by bending modulus, membrane tension, and cytosolic viscosity, with little or no dependence on the presence or absence of ATP.
Collapse
|
34
|
Puig-de-Morales-Marinkovic M, Turner KT, Butler JP, Fredberg JJ, Suresh S. Viscoelasticity of the human red blood cell. Am J Physiol Cell Physiol 2007; 293:C597-605. [PMID: 17428838 DOI: 10.1152/ajpcell.00562.2006] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report here the first measurements of the complex modulus of the isolated red blood cell (RBC). Because the RBC is often larger than capillary diameter, important determinants of microcirculatory function are RBC deformability and its changes with pathologies, such as sickle cell disease and malaria. A functionalized ferrimagnetic microbead was attached to the membrane of healthy RBC and then subjected to an oscillatory magnetic field. The resulting torque caused cell deformation. From the oscillatory forcing and resulting bead motions, which were tracked optically, we computed elastic and frictional moduli, g′ and g‴, respectively, from 0.1 to 100 Hz. The g′ was nearly frequency independent and dominated the response at all but the highest frequencies measured. Over three frequency decades, g‴ increased as a power law with an exponent of 0.64, a result not predicted by any simple model. These data suggest that RBC relaxation times that have been reported previously, and any models that rest upon them, are artifactual; the artifact, we suggest, arises from forcing to an exponential fit data of limited temporal duration. A linear range of response was observed, but, as forcing amplitude increased, nonlinearities became clearly apparent. A finite element model suggests that membrane bending was localized to the vicinity of the bead and dominated membrane shear. While the mechanisms accounting for these RBC dynamics remain unclear, methods described here establish new avenues for the exploration of connections among the mechanical, chemical, and biological characteristics of the RBC in health and disease.
Collapse
Affiliation(s)
- Marina Puig-de-Morales-Marinkovic
- Program in Molecular and Integrative Physiological Sciences (MIPS Dept of Environmental Health, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
35
|
Alvarez-Barreto JF, Shreve MC, Deangelis PL, Sikavitsas VI. Preparation of a Functionally Flexible, Three-Dimensional, Biomimetic Poly(L-Lactic Acid) Scaffold with Improved Cell Adhesion. ACTA ACUST UNITED AC 2007; 13:1205-17. [PMID: 17518730 DOI: 10.1089/ten.2006.0330] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Poly(L-lactic acid) (PLLA) is widely used in tissue-engineering applications because of its degradation characteristics and mechanical properties, but it possesses an inert nature, affecting cell-matrix interactions. It is desirable to modify the surface of PLLA to create biomimetic scaffolds that will enhance tissue regeneration. We prepared a functionally flexible, biomimetic scaffold by derivatizing the surface of PLLA foams into primary amines, activated pyridylthiols, or sulfhydryl groups, allowing a wide variety of modifications. Poly(L-lysine) (polyK) was physically entrapped uniformly throughout the scaffold surface and in a controllable fashion by soaking the foams in an acetone-water mixture and later in a polyK solution in dimethylsulfoxide. Arginine-glycine-aspartic acid-cysteine (RGDC) adhesion peptide was linked to the polyK via creating disulfide bonds introduced through the use of the linker N-succinimidyl-3-(2-pyridylthiol)-propionate. Presence of RGDC on the surface of PLLA 2-dimensional (2-D) disks and 3-D scaffolds increased cell surface area and the number of adherent mesenchymal stem cells. We have proposed a methodology for creating biomimetic scaffolds that is easy to execute, flexible, and nondestructive.
Collapse
Affiliation(s)
- Jose F Alvarez-Barreto
- School of Chemical, Biological and Materials Engineering, Bioengineering Center, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | | | |
Collapse
|
36
|
Cuvelier D, Théry M, Chu YS, Dufour S, Thiéry JP, Bornens M, Nassoy P, Mahadevan L. The universal dynamics of cell spreading. Curr Biol 2007; 17:694-9. [PMID: 17379524 DOI: 10.1016/j.cub.2007.02.058] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 02/20/2007] [Accepted: 02/20/2007] [Indexed: 10/24/2022]
Abstract
Cell adhesion and motility depend strongly on the interactions between cells and extracellular matrix (ECM) substrates. When plated onto artificial adhesive surfaces, cells first flatten and deform extensively as they spread. At the molecular level, the interaction of membrane-based integrins with the ECM has been shown to initiate a complex cascade of signaling events [1], which subsequently triggers cellular morphological changes and results in the generation of contractile forces [2]. Here, we focus on the early stages of cell spreading and probe their dynamics by quantitative visualization and biochemical manipulation with a variety of cell types and adhesive surfaces, adhesion receptors, and cytoskeleton-altering drugs. We find that the dynamics of adhesion follows a universal power-law behavior. This is in sharp contrast with the common belief that spreading is regulated by either the diffusion of adhesion receptors toward the growing adhesive patch [3-5] or by actin polymerization [6-8]. To explain this, we propose a simple quantitative and predictive theory that models cells as viscous adhesive cortical shells enclosing a less viscous interior. Thus, although cell spreading is driven by well-identified biomolecular interactions, it is dynamically limited by its mesoscopic structure and material properties.
Collapse
Affiliation(s)
- Damien Cuvelier
- Physical Chemistry Curie, UMR 168, Institut Curie, 75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhu DM, Dustin ML, Cairo CW, Golan DE. Analysis of two-dimensional dissociation constant of laterally mobile cell adhesion molecules. Biophys J 2006; 92:1022-34. [PMID: 17085486 PMCID: PMC1779959 DOI: 10.1529/biophysj.106.089649] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We formulate a general analysis to determine the two-dimensional dissociation constant (2D Kd), and use this method to study the interaction of CD2-expressing T cells with glass-supported planar bilayers containing fluorescently labeled CD58, a CD2 counter-receptor. Both CD2 and CD58 are laterally mobile in their respective membranes. Adhesion is indicated by accumulation of CD2 and CD58 in the cell-bilayer contact area; adhesion molecule density and contact area size attain equilibrium within 40 min. The standard (Scatchard) analysis of solution-phase binding is not applicable to the case of laterally mobile adhesion molecules due to the dynamic nature of the interaction. We derive a new binding equation, B/F=[(Ntxf)/(KdxScell)]-[(Bxp)/Kd], where B and F are bound and free CD58 density in the contact area, respectively; Nt is CD2 molecule number per cell; f is CD2 fractional mobility; Scell is cell surface area; and p is the ratio of contact area at equilibrium to Scell. We use this analysis to determine that the 2D Kd for CD2-CD58 is 5.4-7.6 molecules/microm2. 2D Kd analysis provides a general and quantitative measure of the mechanisms regulating cell-cell adhesion.
Collapse
Affiliation(s)
- De-Min Zhu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Hematology Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
38
|
Sengupta K, Aranda-Espinoza H, Smith L, Janmey P, Hammer D. Spreading of neutrophils: from activation to migration. Biophys J 2006; 91:4638-48. [PMID: 17012330 PMCID: PMC1779913 DOI: 10.1529/biophysj.105.080382] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neutrophils rely on rapid changes in morphology to ward off invaders. Time-resolved dynamics of spreading human neutrophils after activation by the chemoattractant fMLF (formyl methionyl leucyl phenylalanine) was observed by RICM (reflection interference contrast microscopy). An image-processing algorithm was developed to identify the changes in the overall cell shape and the zones of close contact with the substrate. We show that in the case of neutrophils, cell spreading immediately after exposure of fMLF is anisotropic and directional. The dependence of spreading area, A, of the cell as a function of time, t, shows several distinct regimes, each of which can be fitted as power laws (A ~ t(b)). The different spreading regimes correspond to distinct values of the exponent b and are related to the adhesion state of the cell. Treatment with cytochalasin-B eliminated the anisotropy in the spreading.
Collapse
Affiliation(s)
- Kheya Sengupta
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
39
|
Solon J, Streicher P, Richter R, Brochard-Wyart F, Bassereau P. Vesicles surfing on a lipid bilayer: self-induced haptotactic motion. Proc Natl Acad Sci U S A 2006; 103:12382-7. [PMID: 16891411 PMCID: PMC1567888 DOI: 10.1073/pnas.0601400103] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2006] [Indexed: 11/18/2022] Open
Abstract
Haptotaxis is a mechanism proposed at the end of the 1960s to explain cell motility. It describes cell movement induced by an adhesion gradient. In this work, we present evidence for self-induced haptotaxis using negatively charged giant vesicles interacting with positively charged supported lipid bilayers, which has not been previously described. Depending on the charge of the vesicle, we observed different behaviors. At low charge, no adhesion occurs. At high charge, the vesicle adheres but does not move. In a restricted range of intermediate charge densities, we found that the vesicle moves spontaneously with velocities of the order of a few micrometers per second over distances of >100 microm. We show that a local lipid transfer between the giant vesicle and the supported lipid bilayer takes place during the adhesion, breaking the symmetry and inducing a lateral charge gradient. This charge gradient polarizes the giant vesicle and induces its motion. To explain our observations, we propose a scaling model that relates the adhesion energy to the velocity of vesicle motion and to the characteristic lipid transfer time. Our measurements indicate that the effective adhesion energy is strongly reduced by counterions, which are dynamically trapped between the vesicle and the supported bilayer.
Collapse
Affiliation(s)
- Jéröme Solon
- *Institut Curie, Unité Mixte de Recherche 168, Centre National de la Recherche Scientifique, 26 Rue d’Ulm, 75248 Paris Cedex 05, France; and
| | - Pia Streicher
- *Institut Curie, Unité Mixte de Recherche 168, Centre National de la Recherche Scientifique, 26 Rue d’Ulm, 75248 Paris Cedex 05, France; and
| | - Ralf Richter
- Department of Biophysical Chemistry, University of Heidelberg, INF 253, 69120 Heidelberg, Germany
| | - Françoise Brochard-Wyart
- *Institut Curie, Unité Mixte de Recherche 168, Centre National de la Recherche Scientifique, 26 Rue d’Ulm, 75248 Paris Cedex 05, France; and
| | - Patricia Bassereau
- *Institut Curie, Unité Mixte de Recherche 168, Centre National de la Recherche Scientifique, 26 Rue d’Ulm, 75248 Paris Cedex 05, France; and
| |
Collapse
|
40
|
Zhu AP, Fang N, Chan-Park MB, Chan V. Adhesion contact dynamics of 3T3 fibroblasts on poly (lactide-co-glycolide acid) surface modified by photochemical immobilization of biomacromolecules. Biomaterials 2005; 27:2566-76. [PMID: 16375966 DOI: 10.1016/j.biomaterials.2005.11.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Accepted: 11/21/2005] [Indexed: 12/23/2022]
Abstract
A simple and effective method of biomacromolecule immobilization on biomaterial surface for direct tuning of biophysical parameters such as the initial cell deformation rate, degree of cell spreading and adhesion kinetics is important for tissue engineering. The photochemical immobilization of azide-chitosan (Az-CS) on poly (lactide-co-glycolide) acid (PLGA) is applied here. Chitosan immobilization on PLGA through the photoactive azide group further facilitates subsequent grafting of other biocompatible biomacromolecules like gelatin (Gel) through the active amine groups on CS. This study quantitatively compares the 3T3 fibroblast adhesion dynamics on three PLGA surfaces (Gel-CS-PLGA, CS-PLGA and unmodified PLGA surfaces) using Confocal-Reflectance Interference Contrast Microscopy (C-RICM) together with phase contrast imaging. CS-PLGA and Gel-CS-PLGA surfaces developed were confirmed by X-ray photoelectron spectroscopy, atomic force microscopy and water contact angle and cell adhesion contact dynamics measurements. The cell adhesion was strongest on the Gel-CS-PLGA surface and lowest on unmodified PLGA. The steady state adhesion energy attained by the cells on gelatin modified PLGA surface is determined as 4.0 x 10(-8) J/m(2), which is about 400 times higher than that on PLGA surface (1.1 x 10(-10) J/m(2)). Significantly increased cell adhesion with Gel-CS-PLGA is postulated to result in increased cell spreading. Our integrated biophysical method can quantify the transient contact dynamics and is sufficiently accurate to discriminate even between Gel and CS modified surfaces.
Collapse
Affiliation(s)
- Ai Ping Zhu
- The Biological and Chemical Process Engineering Laboratory, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore
| | | | | | | |
Collapse
|
41
|
Sen S, Subramanian S, Discher DE. Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments. Biophys J 2005; 89:3203-13. [PMID: 16113121 PMCID: PMC1366816 DOI: 10.1529/biophysj.105.063826] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 08/03/2005] [Indexed: 12/17/2022] Open
Abstract
In probing adhesion and cell mechanics by atomic force microscopy (AFM), the mechanical properties of the membrane have an important if neglected role. Here we theoretically model the contact of an AFM tip with a cell membrane, where direct motivation and data are derived from a prototypical ligand-receptor adhesion experiment. An AFM tip is functionalized with a prototypical ligand, SIRPalpha, and then used to probe its native receptor on red cells, CD47. The interactions prove specific and typical in force, and also show in detachment, a sawtooth-shaped disruption process that can extend over hundreds of nm. The theoretical model here that accounts for both membrane indentation as well as membrane extension in tip retraction incorporates membrane tension and elasticity as well as AFM tip geometry and stochastic disruption. Importantly, indentation depth proves initially proportional to membrane tension and does not follow the standard Hertz model. Computations of detachment confirm nonperiodic disruption with membrane extensions of hundreds of nm set by membrane tension. Membrane mechanical properties thus clearly influence AFM probing of cells, including single molecule adhesion experiments.
Collapse
Affiliation(s)
- Shamik Sen
- Biophysical Engineering Lab, University of Pennsylvania, Philadelphia, PA, USA
| | | | | |
Collapse
|
42
|
Komura S, Tamura K, Kato T. Buckling of spherical shells adhering onto a rigid substrate. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2005; 18:343-58. [PMID: 16292475 DOI: 10.1140/epje/e2005-00038-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Indexed: 05/05/2023]
Abstract
Deformation of a spherical shell adhering onto a rigid substrate due to van der Waals attractive interaction is investigated by means of numerical minimization (conjugate gradient method) of the sum of the elastic and adhesion energies. The conformation of the deformed shell is governed by two dimensionless parameters, i.e., Cs/epsilon and Cb/epsilon where Cs and Cb are respectively the stretching and the bending constants, and epsilon is the depth of the van der Waals potential between the shell and substrate. Four different regimes of deformation are characterized as these parameters are systematically varied: (i) small deformation regime, (ii) disk formation regime, (iii) isotropic buckling regime, and (iv) anisotropic buckling regime. By measuring the various quantities of the deformed shells, we find that both discontinuous and continuous bucking transitions occur for large and small Cs/epsilon, respectively. This behavior of the buckling transition is analogous to van der Waals liquids or gels, and we have numerically determined the associated critical point. Scaling arguments are employed to explain the adhesion induced buckling transition, i.e., from the disk formation regime to the isotropic buckling regime. We show that the buckling transition takes place when the indentation length exceeds the effective shell thickness which is determined from the elastic constants. This prediction is in good agreement with our numerical results. Moreover, the ratio between the indentation length and its thickness at the transition point provides a constant number (2-3) independent of the shell size. This universal number is observed in various experimental systems ranging from nanoscale to macroscale. In particular, our results agree well with the recent compression experiment using microcapsules.
Collapse
Affiliation(s)
- S Komura
- Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan.
| | | | | |
Collapse
|
43
|
Zhu AP, Fang N. Adhesion Dynamics, Morphology, and Organization of 3T3 Fibroblast on Chitosan and Its Derivative: The Effect of O-Carboxymethylation. Biomacromolecules 2005; 6:2607-14. [PMID: 16153098 DOI: 10.1021/bm050328q] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chitosan and O-carboxymethylchitosan (OCMCS) have been proved to have biocompatibility and have been extensively researched in the field of biomaterials. In this study, Confocal-reflectance interference contrast microscopy (C-RICM) in conjunction with phase contrast imaging was used to investigate the adhesion contact dynamics of 3T3 fibroblasts on chitoan and OCMCS surface-modified silica coverslips. The C-RICM results demonstrate that the weak cell contact forms on OCMCS surface while a much stronger contact area forms on the chitosan surface. 3T3 fibroblasts are found to spread randomly with spindlelike morphology on the chitosan surface, while they exhibit elongated morphology and align on the OCMCS surface. It is believed that fibroblast behaviors such as migration, spreading with an elongated morphology, and alignment on the OCMCS surface are correlated with the weak cell contact. The mechanisms to form cell adhesion contact on chitosan and OCMCS were discussed.
Collapse
Affiliation(s)
- Ai-Ping Zhu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, PR China.
| | | |
Collapse
|
44
|
Chamaraux F, Fache S, Bruckert F, Fourcade B. Kinetics of cell spreading. PHYSICAL REVIEW LETTERS 2005; 94:158102. [PMID: 15904192 DOI: 10.1103/physrevlett.94.158102] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Indexed: 05/02/2023]
Abstract
Cell spreading is a fundamental event where the contact area with a solid substrate increases because of actin polymerization. We propose in this Letter a physical model to study the growth of the contact area with time. This analysis is compared with experimental data using the ameoba Dictyostelium discoideum. Our model couples the stress, which builds up at the margin of the contact area when the cell spreads, to the biochemical processes of actin polymerization. This leads to a scaling analysis of experimental data with a characteristic time whose order of magnitude compares well with our experimental results.
Collapse
Affiliation(s)
- F Chamaraux
- Si3M-DRFMC CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 09, France
| | | | | | | |
Collapse
|