1
|
Xia YX, Xie LH, He YJ, Pan JT, Panfilov AV, Zhang H. Numerical study of the drift of scroll waves by optical feedback in cardiac tissue. Phys Rev E 2023; 108:064406. [PMID: 38243456 DOI: 10.1103/physreve.108.064406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/16/2023] [Indexed: 01/21/2024]
Abstract
Nonlinear waves were found in various types of physical, chemical, and biological excitable media, e.g., in heart muscle. They can form three-dimensional (3D) vortices, called scroll waves, that are of particular significance in the heart, as they underlie lethal cardiac arrhythmias. Thus controlling the behavior of scroll waves is interesting and important. Recently, the optical feedback control procedure for two-dimensional vortices, called spiral waves, was developed. It can induce directed linear drift of spiral waves in optogenetically modified cardiac tissue. However, the extension of this methodology to 3D scroll waves is nontrivial, as optogenetic signals only penetrate close to the surface of cardiac tissue. Here we present a study of this extension in a two-variable reaction-diffusion model and in a detailed model of cardiac tissue. We show that the success of the control procedure is determined by the tension of the scroll wave filament. In tissue with positive filament tension the control procedure works in all cases. However, in the case of negative filament tension for a sufficiently large medium, instabilities occur and make drift and control of scroll waves impossible. Because in normal cardiac tissue the filament tension is assumed to be positive, we conclude that the proposed optical feedback scheme can be a robust method in inducing the linear drift of scroll waves that can control their positions in cardiac tissue.
Collapse
Affiliation(s)
- Yuan-Xun Xia
- Zhejiang Institute of Modern Physics, School of Physics, Zhejiang University, Hangzhou 310058, China
| | - Ling-Hao Xie
- Zhejiang Institute of Modern Physics, School of Physics, Zhejiang University, Hangzhou 310058, China
| | - Yin-Jie He
- Information Engineering College, Zhijiang College of Zhejiang University of Technology, Shaoxing 312030, China
| | - Jun-Ting Pan
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Alexander V Panfilov
- Department of Physics and Astronomy, Ghent University, Ghent 9000, Belgium
- Laboratory of Computational Biology and Medicine, Ural Federal University, Ekaterinburg 620002, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare," Sechenov University, Moscow 119146, Russia
| | - Hong Zhang
- Zhejiang Institute of Modern Physics, School of Physics, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Adams WP, Raisch TB, Zhao Y, Davalos R, Barrett S, King DR, Bain CB, Colucci-Chang K, Blair GA, Hanlon A, Lozano A, Veeraraghavan R, Wan X, Deschenes I, Smyth JW, Hoeker GS, Gourdie RG, Poelzing S. Extracellular Perinexal Separation Is a Principal Determinant of Cardiac Conduction. Circ Res 2023; 133:658-673. [PMID: 37681314 PMCID: PMC10561697 DOI: 10.1161/circresaha.123.322567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Cardiac conduction is understood to occur through gap junctions. Recent evidence supports ephaptic coupling as another mechanism of electrical communication in the heart. Conduction via gap junctions predicts a direct relationship between conduction velocity (CV) and bulk extracellular resistance. By contrast, ephaptic theory is premised on the existence of a biphasic relationship between CV and the volume of specialized extracellular clefts within intercalated discs such as the perinexus. Our objective was to determine the relationship between ventricular CV and structural changes to micro- and nanoscale extracellular spaces. METHODS Conduction and Cx43 (connexin43) protein expression were quantified from optically mapped guinea pig whole-heart preparations perfused with the osmotic agents albumin, mannitol, dextran 70 kDa, or dextran 2 MDa. Peak sodium current was quantified in isolated guinea pig ventricular myocytes. Extracellular resistance was quantified by impedance spectroscopy. Intercellular communication was assessed in a heterologous expression system with fluorescence recovery after photobleaching. Perinexal width was quantified from transmission electron micrographs. RESULTS CV primarily in the transverse direction of propagation was significantly reduced by mannitol and increased by albumin and both dextrans. The combination of albumin and dextran 70 kDa decreased CV relative to albumin alone. Extracellular resistance was reduced by mannitol, unchanged by albumin, and increased by both dextrans. Cx43 expression and conductance and peak sodium currents were not significantly altered by the osmotic agents. In response to osmotic agents, perinexal width, in order of narrowest to widest, was albumin with dextran 70 kDa; albumin or dextran 2 MDa; dextran 70 kDa or no osmotic agent, and mannitol. When compared in the same order, CV was biphasically related to perinexal width. CONCLUSIONS Cardiac conduction does not correlate with extracellular resistance but is biphasically related to perinexal separation, providing evidence that the relationship between CV and extracellular volume is determined by ephaptic mechanisms under conditions of normal gap junctional coupling.
Collapse
Affiliation(s)
- William P. Adams
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Translational Biology, Medicine and Health Program at Virginia Tech
| | - Tristan B. Raisch
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Translational Biology, Medicine and Health Program at Virginia Tech
| | - Yajun Zhao
- School of Biomedical Engineering and Sciences, Virginia Tech
| | - Rafael Davalos
- School of Biomedical Engineering and Sciences, Virginia Tech
| | | | - D. Ryan King
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Translational Biology, Medicine and Health Program at Virginia Tech
| | - Chandra B. Bain
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
| | - Katrina Colucci-Chang
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- School of Biomedical Engineering and Sciences, Virginia Tech
| | - Grace A. Blair
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Translational Biology, Medicine and Health Program at Virginia Tech
| | - Alexandra Hanlon
- Virginia Tech Center for Biostatistics and Health Data Science, Roanoke, Virginia
| | - Alicia Lozano
- Virginia Tech Center for Biostatistics and Health Data Science, Roanoke, Virginia
| | - Rengasayee Veeraraghavan
- Department of Biomedical Engineering, College of Engineering, The Ohio State University
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center
| | - Xiaoping Wan
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center
| | - Isabelle Deschenes
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center
| | - James W. Smyth
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Department of Biological Sciences, College of Science, Virginia Tech
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - Gregory S. Hoeker
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
| | - Robert G. Gourdie
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- School of Biomedical Engineering and Sciences, Virginia Tech
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - Steven Poelzing
- Center for Vascular and Heart Research at Fralin Biomedical Research Institute at VTC
- Translational Biology, Medicine and Health Program at Virginia Tech
- School of Biomedical Engineering and Sciences, Virginia Tech
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| |
Collapse
|
3
|
Li TC, Zhong W, Ai BQ, Zhu WJ, Li BW, Panfilov AV, Dierckx H. Reordering and synchronization of electrical turbulence in cardiac tissue through global and partial optogenetical illumination. Phys Rev E 2023; 108:034218. [PMID: 37849154 DOI: 10.1103/physreve.108.034218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/06/2023] [Indexed: 10/19/2023]
Abstract
Electrical turbulence in the heart is considered the culprit of cardiac disease, including the fatal ventricular fibrillation. Optogenetics is an emerging technology that has the capability to produce action potentials of cardiomyocytes to affect the electric wave propagation in cardiac tissue, thereby possessing the potential to control the turbulence, by shining a rotating spiral pattern onto the tissue. In this paper, we present a method to reorder and synchronize electrical turbulence through optogenetics. A generic two-variable reaction-diffusion model and a simplified three-variable ionic cardiac model are used. We discuss cases involving either global or partial illumination.
Collapse
Affiliation(s)
- Teng-Chao Li
- School of Physics, Hangzhou Normal University, Hangzhou 311121, China and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Wei Zhong
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Bao-Quan Ai
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Wei-Jing Zhu
- School of Photoelectric Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China
| | - Bing-Wei Li
- School of Physics, Hangzhou Normal University, Hangzhou 311121, China
| | - Alexander V Panfilov
- Ural Federal University, Biomed Laboratory, 620002 Ekaterinburg, Russia; Department of Physics and Astronomy, Ghent University, B-9000 Ghent, Belgium; and World-Class Research Center "Digital biodesign and personalized healthcare", I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Hans Dierckx
- KU Leuven Campus Kortrijk-Kulak, Department of Mathematics, Etienne Sabbelaan 53 bus 7657, 8500 Kortrijk, Belgium and iSi Health - KU Leuven Institute of Physics-based Modeling for In Silico Health, KU Leuven, Belgium
| |
Collapse
|
4
|
Ochs AR, Boyle PM. Optogenetic Modulation of Arrhythmia Triggers: Proof-of-Concept from Computational Modeling. Cell Mol Bioeng 2023; 16:243-259. [PMID: 37810996 PMCID: PMC10550900 DOI: 10.1007/s12195-023-00781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/14/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Early afterdepolarizations (EADs) are secondary voltage depolarizations associated with reduced repolarization reserve (RRR) that can trigger lethal arrhythmias. Relating EADs to triggered activity is difficult to study, so the ability to suppress or provoke EADs would be experimentally useful. Here, we use computational simulations to assess the feasibility of subthreshold optogenetic stimulation modulating the propensity for EADs (cell-scale) and EAD-associated ectopic beats (organ-scale). Methods We modified a ventricular ionic model by reducing rapid delayed rectifier potassium (0.25-0.1 × baseline) and increasing L-type calcium (1.0-3.5 × baseline) currents to create RRR conditions with varying severity. We ran simulations in models of single cardiomyocytes and left ventricles from post-myocardial infarction patient MRI scans. Optogenetic stimulation was simulated using either ChR2 (depolarizing) or GtACR1 (repolarizing) opsins. Results In cell-scale simulations without illumination, EADs were seen for 164 of 416 RRR conditions. Subthreshold stimulation of GtACR1 reduced EAD incidence by up to 84.8% (25/416 RRR conditions; 0.1 μW/mm2); in contrast, subthreshold ChR2 excitation increased EAD incidence by up to 136.6% (388/416 RRR conditions; 50 μW/mm2). At the organ scale, we assumed simultaneous, uniform illumination of the epicardial and endocardial surfaces. GtACR1-mediated suppression (10-50 μW/mm2) and ChR2-mediated unmasking (50-100 μW/mm2) of EAD-associated ectopic beats were feasible in three distinct ventricular models. Conclusions Our findings suggest that optogenetics could be used to silence or provoke both EADs and EAD-associated ectopic beats. Validation in animal models could lead to exciting new experimental regimes and potentially to novel anti-arrhythmia treatments. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00781-z.
Collapse
Affiliation(s)
- Alexander R. Ochs
- Department of Bioengineering, UW Bioengineering, University of Washington, 3720 15th Ave NE N107, UW Mailbox 355061, Seattle, WA 98195 USA
| | - Patrick M. Boyle
- Department of Bioengineering, UW Bioengineering, University of Washington, 3720 15th Ave NE N107, UW Mailbox 355061, Seattle, WA 98195 USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA USA
| |
Collapse
|
5
|
Ramlugun GS, Kulkarni K, Pallares-Lupon N, Boukens BJ, Efimov IR, Vigmond EJ, Bernus O, Walton RD. A comprehensive framework for evaluation of high pacing frequency and arrhythmic optical mapping signals. Front Physiol 2023; 14:734356. [PMID: 36755791 PMCID: PMC9901579 DOI: 10.3389/fphys.2023.734356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Introduction: High pacing frequency or irregular activity due to arrhythmia produces complex optical mapping signals and challenges for processing. The objective is to establish an automated activation time-based analytical framework applicable to optical mapping images of complex electrical behavior. Methods: Optical mapping signals with varying complexity from sheep (N = 7) ventricular preparations were examined. Windows of activation centered on each action potential upstroke were derived using Hilbert transform phase. Upstroke morphology was evaluated for potential multiple activation components and peaks of upstroke signal derivatives defined activation time. Spatially and temporally clustered activation time points were grouped in to wave fronts for individual processing. Each activation time point was evaluated for corresponding repolarization times. Each wave front was subsequently classified based on repetitive or non-repetitive events. Wave fronts were evaluated for activation time minima defining sites of wave front origin. A visualization tool was further developed to probe dynamically the ensemble activation sequence. Results: Our framework facilitated activation time mapping during complex dynamic events including transitions to rotor-like reentry and ventricular fibrillation. We showed that using fixed AT windows to extract AT maps can impair interpretation of the activation sequence. However, the phase windowing of action potential upstrokes enabled accurate recapitulation of repetitive behavior, providing spatially coherent activation patterns. We further demonstrate that grouping the spatio-temporal distribution of AT points in to coherent wave fronts, facilitated interpretation of isolated conduction events, such as conduction slowing, and to derive dynamic changes in repolarization properties. Focal origins precisely detected sites of stimulation origin and breakthrough for individual wave fronts. Furthermore, a visualization tool to dynamically probe activation time windows during reentry revealed a critical single static line of conduction slowing associated with the rotation core. Conclusion: This comprehensive analytical framework enables detailed quantitative assessment and visualization of complex electrical behavior.
Collapse
Affiliation(s)
- Girish S. Ramlugun
- IHU-Liryc, Fondation Bordeaux Université, Pessac-Bordeaux, France,Univ. Bordeaux, Inserm, Centre de Recherche Cardio-Thoracique, Bordeaux, France
| | - Kanchan Kulkarni
- IHU-Liryc, Fondation Bordeaux Université, Pessac-Bordeaux, France,Univ. Bordeaux, Inserm, Centre de Recherche Cardio-Thoracique, Bordeaux, France
| | - Nestor Pallares-Lupon
- IHU-Liryc, Fondation Bordeaux Université, Pessac-Bordeaux, France,Univ. Bordeaux, Inserm, Centre de Recherche Cardio-Thoracique, Bordeaux, France
| | - Bastiaan J. Boukens
- Department of Physiology, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht, Netherlands,Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Igor R. Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, DC, United States,Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States,Department of Medicine, Northwestern University, Chicago, IL, United States
| | - Edward J. Vigmond
- IHU-Liryc, Fondation Bordeaux Université, Pessac-Bordeaux, France,Univ. Bordeaux, Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Bordeaux, UMR5251, Bordeaux, France
| | - Olivier Bernus
- IHU-Liryc, Fondation Bordeaux Université, Pessac-Bordeaux, France,Univ. Bordeaux, Inserm, Centre de Recherche Cardio-Thoracique, Bordeaux, France
| | - Richard D. Walton
- IHU-Liryc, Fondation Bordeaux Université, Pessac-Bordeaux, France,Univ. Bordeaux, Inserm, Centre de Recherche Cardio-Thoracique, Bordeaux, France,*Correspondence: Richard D. Walton,
| |
Collapse
|
6
|
Ochs AR, Karathanos TV, Trayanova NA, Boyle PM. Optogenetic Stimulation Using Anion Channelrhodopsin (GtACR1) Facilitates Termination of Reentrant Arrhythmias With Low Light Energy Requirements: A Computational Study. Front Physiol 2021; 12:718622. [PMID: 34526912 PMCID: PMC8435849 DOI: 10.3389/fphys.2021.718622] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/23/2021] [Indexed: 12/24/2022] Open
Abstract
Optogenetic defibrillation of hearts expressing light-sensitive cation channels (e.g., ChR2) has been proposed as an alternative to conventional electrotherapy. Past modeling work has shown that ChR2 stimulation can depolarize enough myocardium to interrupt arrhythmia, but its efficacy is limited by light attenuation and high energy needs. These shortcomings may be mitigated by using new optogenetic proteins like Guillardia theta Anion Channelrhodopsin (GtACR1), which produces a repolarizing outward current upon illumination. Accordingly, we designed a study to assess the feasibility of GtACR1-based optogenetic arrhythmia termination in human hearts. We conducted electrophysiological simulations in MRI-based atrial or ventricular models (n = 3 each), with pathological remodeling from atrial fibrillation or ischemic cardiomyopathy, respectively. We simulated light sensitization via viral gene delivery of three different opsins (ChR2, red-shifted ChR2, GtACR1) and uniform endocardial illumination at the appropriate wavelengths (blue, red, or green light, respectively). To analyze consistency of arrhythmia termination, we varied pulse timing (three evenly spaced intervals spanning the reentrant cycle) and intensity (atrial: 0.001–1 mW/mm2; ventricular: 0.001–10 mW/mm2). In atrial models, GtACR1 stimulation with 0.005 mW/mm2 green light consistently terminated reentry; this was 10–100x weaker than the threshold levels for ChR2-mediated defibrillation. In ventricular models, defibrillation was observed in 2/3 models for GtACR1 stimulation at 0.005 mW/mm2 (100–200x weaker than ChR2 cases). In the third ventricular model, defibrillation failed in nearly all cases, suggesting that attenuation issues and patient-specific organ/scar geometry may thwart termination in some cases. Across all models, the mechanism of GtACR1-mediated defibrillation was voltage forcing of illuminated tissue toward the modeled channel reversal potential of −40 mV, which made propagation through affected regions impossible. Thus, our findings suggest GtACR1-based optogenetic defibrillation of the human heart may be feasible with ≈2–3 orders of magnitude less energy than ChR2.
Collapse
Affiliation(s)
- Alexander R Ochs
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Thomas V Karathanos
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States.,Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, MD, United States
| | - Patrick M Boyle
- Department of Bioengineering, University of Washington, Seattle, WA, United States.,Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.,Center for Cardiovascular Biology, University of Washington, Seattle, WA, United States
| |
Collapse
|
7
|
Smirnov D, Pikunov A, Syunyaev R, Deviatiiarov R, Gusev O, Aras K, Gams A, Koppel A, Efimov IR. Genetic algorithm-based personalized models of human cardiac action potential. PLoS One 2020; 15:e0231695. [PMID: 32392258 PMCID: PMC7213718 DOI: 10.1371/journal.pone.0231695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 03/31/2020] [Indexed: 11/21/2022] Open
Abstract
We present a novel modification of genetic algorithm (GA) which determines personalized parameters of cardiomyocyte electrophysiology model based on set of experimental human action potential (AP) recorded at different heart rates. In order to find the steady state solution, the optimized algorithm performs simultaneous search in the parametric and slow variables spaces. We demonstrate that several GA modifications are required for effective convergence. Firstly, we used Cauchy mutation along a random direction in the parametric space. Secondly, relatively large number of elite organisms (6-10% of the population passed on to new generation) was required for effective convergence. Test runs with synthetic AP as input data indicate that algorithm error is low for high amplitude ionic currents (1.6±1.6% for IKr, 3.2±3.5% for IK1, 3.9±3.5% for INa, 8.2±6.3% for ICaL). Experimental signal-to-noise ratio above 28 dB was required for high quality GA performance. GA was validated against optical mapping recordings of human ventricular AP and mRNA expression profile of donor hearts. In particular, GA output parameters were rescaled proportionally to mRNA levels ratio between patients. We have demonstrated that mRNA-based models predict the AP waveform dependence on heart rate with high precision. The latter also provides a novel technique of model personalization that makes it possible to map gene expression profile to cardiac function.
Collapse
Affiliation(s)
- Dmitrii Smirnov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Andrey Pikunov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Roman Syunyaev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- The George Washington University, Washington, DC, United States of America
- Sechenov University, Moscow, Russia
| | | | | | - Kedar Aras
- The George Washington University, Washington, DC, United States of America
| | - Anna Gams
- The George Washington University, Washington, DC, United States of America
| | - Aaron Koppel
- The George Washington University, Washington, DC, United States of America
| | - Igor R. Efimov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- The George Washington University, Washington, DC, United States of America
| |
Collapse
|
8
|
Tissue-Specific Optical Mapping Models of Swine Atria Informed by Optical Coherence Tomography. Biophys J 2019; 114:1477-1489. [PMID: 29590604 PMCID: PMC5883619 DOI: 10.1016/j.bpj.2018.01.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 01/12/2018] [Accepted: 01/30/2018] [Indexed: 11/21/2022] Open
Abstract
Computational models and experimental optical mapping of cardiac electrophysiology serve as powerful tools to investigate the underlying mechanisms of arrhythmias. Modeling can also aid the interpretation of optical mapping signals, which may have different characteristics with respect to the underlying electrophysiological signals they represent. However, despite the prevalence of atrial arrhythmias such as atrial fibrillation, models of optical electrical mapping incorporating realistic structure of the atria are lacking. Therefore, we developed image-based models of atrial tissue using structural information extracted from optical coherence tomography (OCT), which can provide volumetric tissue characteristics in high resolution. OCT volumetric data of four swine atrial tissue samples were used to develop models incorporating tissue geometry, tissue-specific myofiber orientation, and ablation lesion regions. We demonstrated the use of these models through electrophysiology and photon scattering simulations. Changes in transmural electrical conduction were observed with the inclusion of OCT-derived, depth-resolved fiber orientation. Additionally, the amplitude of optical mapping signals were not found to correspond with lesion transmurality because of lesion geometry and electrical propagation occurring beyond excitation light penetration. This work established a framework for the development of tissue-specific models of atrial tissue derived from OCT imaging data, which can be useful in future investigations of electrophysiology and optical mapping signals with respect to realistic atrial tissue structure.
Collapse
|
9
|
Bruegmann T, Beiert T, Vogt CC, Schrickel JW, Sasse P. Optogenetic termination of atrial fibrillation in mice. Cardiovasc Res 2018; 114:713-723. [PMID: 29293898 DOI: 10.1093/cvr/cvx250] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 12/21/2017] [Indexed: 11/12/2022] Open
Abstract
Aims The primary goal in the treatment of symptomatic atrial fibrillation/flutter (AF) is to restore sinus rhythm by cardioversion. Electrical shocks are highly effective, but have to be applied under analgo-sedation and can further harm the heart. In order to develop a novel pain-free and less harmful approach, we explored herein the optogenetic cardioversion by light-induced depolarization. Methods and results Hearts from mice expressing Channelrhodopsin-2 (ChR2) and the AF-promoting loss-of-function Connexin 40 Ala96Ser mutation were explanted and perfused with low K+ Tyrode's solution and an atrial KATP-channel activator. This new protocol shortened atrial refractoriness as well as slowed atrial conduction and thereby enabled the induction of sustained AF. AF episodes could be terminated by epicardial illumination of the atria with focussed blue light (470 nm, 0.4 mW/mm2) with an efficacy of ∼97% (n = 17 hearts). In > 80% of cases, light directly terminated the AF episode with onset of illumination. Because similar illumination intensity was able to locally inhibit atrial activity, we propose that a light-induced block of electrical activity is responsible for reliable AF termination. The success rate was strongly depending on the illuminated area, applied light intensity and duration of illumination. Importantly, we were also able to demonstrate optogenetic termination of AF in vivo, using epicardial illumination through the open chest (n = 3 hearts). To point towards a translational potential, we systemically injected an adeno-associated virus to express ChR2 in wild type hearts. After 6-8 months, we found robust ChR2 expression in the atria, enabling light-mediated AF termination in six of seven mice tested. Conclusion We provide the first evidence for optogenetic termination of atrial tachyarrhythmia in intact hearts from transgenic as well as wild type mice ex and in vivo. Thus, this report could lay the foundation for the development of implantable devices for pain-free termination of AF.
Collapse
Affiliation(s)
- Tobias Bruegmann
- Institute of Physiology I, Medical Faculty, University of Bonn, Sigmund-Freud-Street 25, 53127 Bonn, Germany
- Research Training Group 1873, University of Bonn, Bonn, Germany
| | - Thomas Beiert
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Christoph C Vogt
- Institute of Physiology I, Medical Faculty, University of Bonn, Sigmund-Freud-Street 25, 53127 Bonn, Germany
| | - Jan W Schrickel
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Sigmund-Freud-Street 25, 53127 Bonn, Germany
| |
Collapse
|
10
|
Boyle PM, Murphy MJ, Karathanos TV, Zahid S, Blake RC, Trayanova NA. Termination of re-entrant atrial tachycardia via optogenetic stimulation with optimized spatial targeting: insights from computational models. J Physiol 2017; 596:181-196. [PMID: 29193078 DOI: 10.1113/jp275264] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/22/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Optogenetics has emerged as a potential alternative to electrotherapy for treating heart rhythm disorders, but its applicability for terminating atrial arrhythmias remains largely unexplored. We used computational models reconstructed from clinical MRI scans of fibrotic patient atria to explore the feasibility of optogenetic termination of atrial tachycardia (AT), comparing two different illumination strategies: distributed vs. targeted. We show that targeted optogenetic stimulation based on automated, non-invasive flow-network analysis of patient-specific re-entry morphology may be a reliable approach for identifying the optimal illumination target in each individual (i.e. the critical AT isthmus). The above-described approach yields very high success rates (up to 100%) and requires dramatically less input power than distributed illumination We conclude that simulations in patient-specific models show that targeted light pulses lasting longer than the AT cycle length can efficiently and reliably terminate AT if the human atria can be successfully light-sensitized via gene delivery of ChR2. ABSTRACT Optogenetics has emerged as a potential alternative to electrotherapy for treating arrhythmia, but feasibility studies have been limited to ventricular defibrillation via epicardial light application. Here, we assess the efficacy of optogenetic atrial tachycardia (AT) termination in human hearts using a strategy that targets for illumination specific regions identified in an automated manner. In three patient-specific models reconstructed from late gadolinium-enhanced MRI scans, we simulated channelrhodopsin-2 (ChR2) expression via gene delivery. In all three models, we attempted to terminate re-entrant AT (induced via rapid pacing) via optogenetic stimulation. We compared two strategies: (1) distributed illumination of the endocardium by multi-optrode grids (number of optrodes, Nopt = 64, 128, 256) and (2) targeted illumination of the critical isthmus, which was identified via analysis of simulated activation patterns using an algorithm based on flow networks. The illuminated area and input power were smaller for the targeted approach (19-57.8 mm2 ; 0.6-1.8 W) compared to the sparsest distributed arrays (Nopt = 64; 124.9 ± 6.3 mm2 ; 3.9 ± 0.2 W). AT termination rates for distributed illumination were low, ranging from <5% for short pulses (1/10 ms long) to ∼20% for longer stimuli (100/1000 ms). When we attempted to terminate the same AT episodes with targeted illumination, outcomes were similar for short pulses (1/10 ms long: 0% success) but improved for longer stimuli (100 ms: 54% success; 1000 ms: 90% success). We conclude that simulations in patient-specific models show that light pulses lasting longer than the AT cycle length can efficiently and reliably terminate AT in atria light-sensitized via gene delivery. We show that targeted optogenetic stimulation based on analysis of AT morphology may be a reliable approach for defibrillation and requires less power than distributed illumination.
Collapse
Affiliation(s)
- Patrick M Boyle
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Michael J Murphy
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Thomas V Karathanos
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Sohail Zahid
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Robert C Blake
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Natalia A Trayanova
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Colli Franzone P, Pavarino LF, Scacchi S. Effects of mechanical feedback on the stability of cardiac scroll waves: A bidomain electro-mechanical simulation study. CHAOS (WOODBURY, N.Y.) 2017; 27:093905. [PMID: 28964121 DOI: 10.1063/1.4999465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, we investigate the influence of cardiac tissue deformation on re-entrant wave dynamics. We have developed a 3D strongly coupled electro-mechanical Bidomain model posed on an ideal monoventricular geometry, including fiber direction anisotropy and stretch-activated currents (SACs). The cardiac mechanical deformation influences the bioelectrical activity with two main mechanical feedback: (a) the geometric feedback (GEF) due to the presence of the deformation gradient in the diffusion coefficients and in a convective term depending on the deformation rate and (b) the mechano-electric feedback (MEF) due to SACs. Here, we investigate the relative contribution of these two factors with respect to scroll wave stability. We extend the previous works [Keldermann et al., Am. J. Physiol. Heart Circ. Physiol. 299, H134-H143 (2010) and Hu et al., PLoS One 8(4), e60287 (2013)] that were based on the Monodomain model and a simple non-selective linear SAC, while here we consider the full Bidomain model and both selective and non-selective components of SACs. Our simulation results show that the stability of cardiac scroll waves is influenced by MEF, which in case of low reversal potential of non-selective SACs might be responsible for the onset of ventricular fibrillation; GEF increases the scroll wave meandering but does not determine the scroll wave stability.
Collapse
Affiliation(s)
- P Colli Franzone
- Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - L F Pavarino
- Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - S Scacchi
- Dipartimento di Matematica, Università di Milano, Via Saldini 50, 20133 Milano, Italy
| |
Collapse
|
12
|
Karathanos TV, Bayer JD, Wang D, Boyle PM, Trayanova NA. Opsin spectral sensitivity determines the effectiveness of optogenetic termination of ventricular fibrillation in the human heart: a simulation study. J Physiol 2016; 594:6879-6891. [PMID: 26941055 PMCID: PMC5134403 DOI: 10.1113/jp271739] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 03/01/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Optogenetics-based defibrillation, a theoretical alternative to electrotherapy, involves expression of light-sensitive ion channels in the heart (via gene or cell therapy) and illumination of the cardiac surfaces (via implanted LED arrays) to elicit light-induced activations. We used a biophysically detailed human ventricular model to determine whether such a therapy could terminate fibrillation (VF) and identify which combinations of light-sensitive ion channel properties and illumination configurations would be effective. Defibrillation was successful when a large proportion (> 16.6%) of ventricular tissue was directly stimulated by light that was bright enough to induce an action potential in an uncoupled cell. While illumination with blue light never successfully terminated VF, illumination of red light-sensitive ion channels with dense arrays of implanted red light sources resulted in successful defibrillation. Our results suggest that cardiac expression of red light-sensitive ion channels is necessary for the development of effective optogenetics-based defibrillation therapy using LED arrays. ABSTRACT Optogenetics-based defibrillation has been proposed as a novel and potentially pain-free approach to enable cardiomyocyte-selective defibrillation in humans, but the feasibility of such a therapy remains unknown. This study aimed to (1) assess the feasibility of terminating sustained ventricular fibrillation (VF) via light-induced excitation of opsins expressed throughout the myocardium and (2) identify the ideal (theoretically possible) opsin properties and light source configurations that would maximise therapeutic efficacy. We conducted electrophysiological simulations in an MRI-based human ventricular model with VF induced by rapid pacing; light sensitisation via systemic, cardiac-specific gene transfer of channelrhodopsin-2 (ChR2) was simulated. In addition to the widely used blue light-sensitive ChR2-H134R, we also modelled theoretical ChR2 variants with augmented light sensitivity (ChR2+), red-shifted spectral sensitivity (ChR2-RED) or both (ChR2-RED+). Light sources were modelled as synchronously activating LED arrays (LED radius: 1 mm; optical power: 10 mW mm-2 ; array density: 1.15-4.61 cm-2 ). For each unique optogenetic configuration, defibrillation was attempted with two different optical pulse durations (25 and 500 ms). VF termination was only successful for configurations involving ChR2-RED and ChR2-RED+ (for LED arrays with density ≥ 2.30 cm-2 ), suggesting that opsin spectral sensitivity was the most important determinant of optogenetic defibrillation efficacy. This was due to the deeper penetration of red light in cardiac tissue compared with blue light, which resulted in more widespread light-induced propagating wavefronts. Longer pulse duration and higher LED array density were associated with increased optogenetic defibrillation efficacy. In all cases observed, the defibrillation mechanism was light-induced depolarisation of the excitable gap, which led to block of reentrant wavefronts.
Collapse
Affiliation(s)
- Thomas V. Karathanos
- Institute for Computational MedicineDepartment of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMDUSA
| | - Jason D. Bayer
- LIRYC Electrophysiology and Heart Modelling InstituteUniversity of BordeauxBordeauxFrance
| | - Dafang Wang
- Institute for Computational MedicineDepartment of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMDUSA
| | - Patrick M. Boyle
- Institute for Computational MedicineDepartment of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMDUSA
| | - Natalia A. Trayanova
- Institute for Computational MedicineDepartment of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMDUSA
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
13
|
Karathanos TV, Boyle PM, Trayanova NA. Light-based Approaches to Cardiac Arrhythmia Research: From Basic Science to Translational Applications. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2016; 10:47-60. [PMID: 27840581 PMCID: PMC5094582 DOI: 10.4137/cmc.s39711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/27/2016] [Accepted: 10/09/2016] [Indexed: 02/06/2023]
Abstract
Light has long been used to image the heart, but now it can be used to modulate its electrophysiological function. Imaging modalities and techniques have long constituted an indispensable part of arrhythmia research and treatment. Recently, advances in the fields of optogenetics and photodynamic therapy have provided scientists with more effective approaches for probing, studying and potentially devising new treatments for cardiac arrhythmias. This article is a review of research toward the application of these techniques. It contains (a) an overview of advancements in technology and research that have contributed to light-based cardiac applications and (b) a summary of current and potential future applications of light-based control of cardiac cells, including modulation of heart rhythm, manipulation of cardiac action potential morphology, quantitative analysis of arrhythmias, defibrillation and cardiac ablation.
Collapse
Affiliation(s)
- Thomas V. Karathanos
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Patrick M. Boyle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Natalia A. Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
14
|
Bruegmann T, Boyle PM, Vogt CC, Karathanos TV, Arevalo HJ, Fleischmann BK, Trayanova NA, Sasse P. Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations. J Clin Invest 2016; 126:3894-3904. [PMID: 27617859 DOI: 10.1172/jci88950] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/04/2016] [Indexed: 11/17/2022] Open
Abstract
Ventricular arrhythmias are among the most severe complications of heart disease and can result in sudden cardiac death. Patients at risk currently receive implantable defibrillators that deliver electrical shocks to terminate arrhythmias on demand. However, strong electrical shocks can damage the heart and cause severe pain. Therefore, we have tested optogenetic defibrillation using expression of the light-sensitive channel channelrhodopsin-2 (ChR2) in cardiac tissue. Epicardial illumination effectively terminated ventricular arrhythmias in hearts from transgenic mice and from WT mice after adeno-associated virus-based gene transfer of ChR2. We also explored optogenetic defibrillation for human hearts, taking advantage of a recently developed, clinically validated in silico approach for simulating infarct-related ventricular tachycardia (VT). Our analysis revealed that illumination with red light effectively terminates VT in diseased, ChR2-expressing human hearts. Mechanistically, we determined that the observed VT termination is due to ChR2-mediated transmural depolarization of the myocardium, which causes a block of voltage-dependent Na+ channels throughout the myocardial wall and interrupts wavefront propagation into illuminated tissue. Thus, our results demonstrate that optogenetic defibrillation is highly effective in the mouse heart and could potentially be translated into humans to achieve nondamaging and pain-free termination of ventricular arrhythmia.
Collapse
|
15
|
Arevalo HJ, Boyle PM, Trayanova NA. Computational rabbit models to investigate the initiation, perpetuation, and termination of ventricular arrhythmia. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:185-94. [PMID: 27334789 DOI: 10.1016/j.pbiomolbio.2016.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/13/2016] [Indexed: 12/29/2022]
Abstract
Current understanding of cardiac electrophysiology has been greatly aided by computational work performed using rabbit ventricular models. This article reviews the contributions of multiscale models of rabbit ventricles in understanding cardiac arrhythmia mechanisms. This review will provide an overview of multiscale modeling of the rabbit ventricles. It will then highlight works that provide insights into the role of the conduction system, complex geometric structures, and heterogeneous cellular electrophysiology in diseased and healthy rabbit hearts to the initiation and maintenance of ventricular arrhythmia. Finally, it will provide an overview on the contributions of rabbit ventricular modeling on understanding the mechanisms underlying shock-induced defibrillation.
Collapse
Affiliation(s)
- Hermenegild J Arevalo
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Simula Research Laboratory, Oslo, Norway
| | - Patrick M Boyle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
16
|
Optical Imaging of Cardiac Action Potential. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:299-311. [PMID: 26238058 DOI: 10.1007/978-3-319-17641-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This chapter reviews the major milestones and scientific achievements facilitated by optical imaging of the action potential in the heart over more than four decades since its introduction. We discuss the limitations of this technique, which sometimes are not fully recognized; the unresolved issues, such as motion artifacts, and the newest developments and future directions.
Collapse
|
17
|
Karathanos TV, Boyle PM, Trayanova NA. Optogenetics-enabled dynamic modulation of action potential duration in atrial tissue: feasibility of a novel therapeutic approach. Europace 2015; 16 Suppl 4:iv69-iv76. [PMID: 25362173 DOI: 10.1093/europace/euu250] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Diseases that abbreviate the cardiac action potential (AP) by increasing the strength of repolarizing transmembrane currents are highly arrhythmogenic. It has been proposed that optogenetic tools could be used to restore normal AP duration (APD) in the heart under such disease conditions. This study aims to evaluate the efficacy of an optogenetic treatment modality for prolonging pathologically shortened APs in a detailed computational model of short QT syndrome (SQTS) in the human atria, and compare it to drug treatment. METHODS AND RESULTS We used a human atrial myocyte model with faster repolarization caused by SQTS; light sensitivity was inscribed via the presence of channelrhodopsin-2 (ChR2). We conducted simulations in single cells and in a magnetic resonance imaging-based model of the human left atrium (LA). Application of an appropriate optical stimulus to a diseased cell dynamically increased APD, producing an excellent match to control AP (<1.5 mV deviation); treatment of a diseased cell with an AP-prolonging drug (chloroquine) also increased APD, but the match to control AP was worse (>5 mV deviation). Under idealized conditions in the LA (uniform ChR2-expressing cell distribution, no light attenuation), optogenetics-based therapy outperformed chloroquine treatment (APD increased to 87% and 81% of control). However, when non-uniform ChR2-expressing cell distribution and light attenuation were incorporated, optogenetics-based treatment was less effective (APD only increased to 55%). CONCLUSION This study demonstrates proof of concept for optogenetics-based treatment of diseases that alter atrial AP shape. We identified key practical obstacles intrinsic to the optogenetic approach that must be overcome before such treatments can be realized.
Collapse
Affiliation(s)
- Thomas V Karathanos
- Department of Biomedical Engineering, Institute for Computational Medicine and Johns Hopkins University, 3400 N. Charles St., Hackerman Hall Room 316, Baltimore, MD 21218, USA
| | - Patrick M Boyle
- Department of Biomedical Engineering, Institute for Computational Medicine and Johns Hopkins University, 3400 N. Charles St., Hackerman Hall Room 316, Baltimore, MD 21218, USA
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Institute for Computational Medicine and Johns Hopkins University, 3400 N. Charles St., Hackerman Hall Room 316, Baltimore, MD 21218, USA
| |
Collapse
|
18
|
Computational modeling of cardiac optogenetics: Methodology overview & review of findings from simulations. Comput Biol Med 2015; 65:200-8. [PMID: 26002074 DOI: 10.1016/j.compbiomed.2015.04.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 12/21/2022]
Abstract
Cardiac optogenetics is emerging as an exciting new potential avenue to enable spatiotemporally precise control of excitable cells and tissue in the heart with low-energy optical stimuli. This approach involves the expression of exogenous light-sensitive proteins (opsins) in target heart tissue via viral gene or cell delivery. Preliminary experiments in optogenetically-modified cells, tissue, and organisms have made great strides towards demonstrating the feasibility of basic applications, including the use of light stimuli to pace or disrupt reentrant activity. However, it remains unknown whether techniques based on this intriguing technology could be scaled up and used in humans for novel clinical applications, such as pain-free optical defibrillation or dynamic modulation of action potential shape. A key step towards answering such questions is to explore potential optogenetics-based therapies using sophisticated computer simulation tools capable of realistically representing opsin delivery and light stimulation in biophysically detailed, patient-specific models of the human heart. This review provides (1) a detailed overview of the methodological developments necessary to represent optogenetics-based solutions in existing virtual heart platforms and (2) a survey of findings that have been derived from such simulations and a critical assessment of their significance with respect to the progress of the field.
Collapse
|
19
|
Mačianskienė R, Martišienė I, Navalinskas A, Vosyliūtė R, Treinys R, Vaidelytė B, Benetis R, Jurevičius J. Evaluation of excitation propagation in the rabbit heart: optical mapping and transmural microelectrode recordings. PLoS One 2015; 10:e0123050. [PMID: 25881157 PMCID: PMC4400155 DOI: 10.1371/journal.pone.0123050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/18/2015] [Indexed: 11/18/2022] Open
Abstract
Background Because of the optical features of heart tissue, optical and electrical action potentials are only moderately associated, especially when near-infrared dyes are used in optical mapping (OM) studies. Objective By simultaneously recording transmural electrical action potentials (APs) and optical action potentials (OAPs), we aimed to evaluate the contributions of both electrical and optical influences to the shape of the OAP upstroke. Methods and Results A standard glass microelectrode and OM, using an near-infrared fluorescent dye (di-4-ANBDQBS), were used to simultaneously record transmural APs and OAPs in a Langendorff-perfused rabbit heart during atrial, endocardial, and epicardial pacing. The actual profile of the transmural AP upstroke across the LV wall, together with the OAP upstroke, allowed for calculations of the probing-depth constant (k ~2.1 mm, n = 24) of the fluorescence measurements. In addition, the transmural AP recordings aided the quantitative evaluation of the influences of depth-weighted and lateral-scattering components on the OAP upstroke. These components correspond to the components of the propagating electrical wave that are transmural and parallel to the epicardium. The calculated mean values for the depth-weighted and lateral-scattering components, whose sum comprises the OAP upstroke, were (in ms) 10.18 ± 0.62 and 0.0 ± 0.56 for atrial stimulation, 9.37 ± 1.12 and 3.01 ± 1.30 for endocardial stimulation, and 6.09 ± 0.79 and 8.16 ± 0.98 for epicardial stimulation; (n = 8 for each). For this dye, 90% of the collected fluorescence originated up to 4.83 ± 0.18 mm (n = 24) from the epicardium. Conclusions The co-registration of OM and transmural microelectrode APs enabled the probing depth of fluorescence measurements to be calculated and the OAP upstroke to be divided into two components (depth-weighted and lateral-scattering), and it also allowed the relative strengths of their effects on the shape of the OAP upstroke to be evaluated.
Collapse
Affiliation(s)
- Regina Mačianskienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Irma Martišienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Antanas Navalinskas
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rūta Vosyliūtė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rimantas Treinys
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Birutė Vaidelytė
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rimantas Benetis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jonas Jurevičius
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
20
|
Boyle PM, Karathanos TV, Trayanova NA. "Beauty is a light in the heart": the transformative potential of optogenetics for clinical applications in cardiovascular medicine. Trends Cardiovasc Med 2015; 25:73-81. [PMID: 25453984 PMCID: PMC4336805 DOI: 10.1016/j.tcm.2014.10.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/04/2014] [Accepted: 10/05/2014] [Indexed: 11/15/2022]
Abstract
Optogenetics is an exciting new technology in which viral gene or cell delivery is used to inscribe light sensitivity in excitable tissue to enable optical control of bioelectric behavior. Initial progress in the fledgling domain of cardiac optogenetics has included in vitro expression of various light-sensitive proteins in cell monolayers and transgenic animals to demonstrate an array of potentially useful applications, including light-based pacing, silencing of spontaneous activity, and spiral wave termination. In parallel to these developments, the cardiac modeling community has developed a versatile computational framework capable of realistically simulating optogenetics in biophysically detailed, patient-specific representations of the human heart, enabling the exploration of potential clinical applications in a predictive virtual platform. Toward the ultimate goal of assessing the feasibility and potential impact of optogenetics-based therapies in cardiovascular medicine, this review provides (1) a detailed synopsis of in vivo, in vitro, and in silico developments in the field and (2) a critical assessment of how existing clinical technology for gene/cell delivery and intra-cardiac illumination could be harnessed to achieve such lofty goals as light-based arrhythmia termination.
Collapse
Affiliation(s)
- Patrick M Boyle
- Institute for Computational Medicine, Johns Hopkins University, 316 Hackerman Hall, 3400 N Charles Street, Baltimore, MD 21218; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD.
| | - Thomas V Karathanos
- Institute for Computational Medicine, Johns Hopkins University, 316 Hackerman Hall, 3400 N Charles Street, Baltimore, MD 21218; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| | - Natalia A Trayanova
- Institute for Computational Medicine, Johns Hopkins University, 316 Hackerman Hall, 3400 N Charles Street, Baltimore, MD 21218; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
21
|
Biophotonic Modelling of Cardiac Optical Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 859:367-404. [DOI: 10.1007/978-3-319-17641-3_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
22
|
Bishop MJ, Plank G. Simulating photon scattering effects in structurally detailed ventricular models using a Monte Carlo approach. Front Physiol 2014; 5:338. [PMID: 25309442 PMCID: PMC4164003 DOI: 10.3389/fphys.2014.00338] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/19/2014] [Indexed: 11/17/2022] Open
Abstract
Light scattering during optical imaging of electrical activation within the heart is known to significantly distort the optically-recorded action potential (AP) upstroke, as well as affecting the magnitude of the measured response of ventricular tissue to strong electric shocks. Modeling approaches based on the photon diffusion equation have recently been instrumental in quantifying and helping to understand the origin of the resulting distortion. However, they are unable to faithfully represent regions of non-scattering media, such as small cavities within the myocardium which are filled with perfusate during experiments. Stochastic Monte Carlo (MC) approaches allow simulation and tracking of individual photon “packets” as they propagate through tissue with differing scattering properties. Here, we present a novel application of the MC method of photon scattering simulation, applied for the first time to the simulation of cardiac optical mapping signals within unstructured, tetrahedral, finite element computational ventricular models. The method faithfully allows simulation of optical signals over highly-detailed, anatomically-complex MR-based models, including representations of fine-scale anatomy and intramural cavities. We show that optical action potential upstroke is prolonged close to large subepicardial vessels than further away from vessels, at times having a distinct “humped” morphology. Furthermore, we uncover a novel mechanism by which photon scattering effects around vessels cavities interact with “virtual-electrode” regions of strong de-/hyper-polarized tissue surrounding cavities during shocks, significantly reducing the apparent optically-measured epicardial polarization. We therefore demonstrate the importance of this novel optical mapping simulation approach along with highly anatomically-detailed models to fully investigate electrophysiological phenomena driven by fine-scale structural heterogeneity.
Collapse
Affiliation(s)
- Martin J Bishop
- Division of Imaging Sciences & Biomedical Engineering, Department of Biomedical Engineering, King's College London London, UK
| | - Gernot Plank
- Institute of Biophysics, Medical University of Graz Graz, Austria ; Oxford eResearch Centre, University of Oxford Oxford, UK
| |
Collapse
|
23
|
Images as drivers of progress in cardiac computational modelling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 115:198-212. [PMID: 25117497 PMCID: PMC4210662 DOI: 10.1016/j.pbiomolbio.2014.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/02/2014] [Indexed: 11/28/2022]
Abstract
Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are underpinned to a large extent by advances in imaging technologies. This article reviews how novel imaging technologies, or the innovative use and extension of established ones, integrate with computational models and drive novel insights into cardiac biophysics. In terms of structural characterization, we discuss how imaging is allowing a wide range of scales to be considered, from cellular levels to whole organs. We analyse how the evolution from structural to functional imaging is opening new avenues for computational models, and in this respect we review methods for measurement of electrical activity, mechanics and flow. Finally, we consider ways in which combined imaging and modelling research is likely to continue advancing cardiac research, and identify some of the main challenges that remain to be solved.
Collapse
|
24
|
Ghazanfari A, Rodriguez MP, Vigmond E, Nygren A. Computer Simulation of Cardiac Propagation: Effects of Fiber Rotation, Intramural Conductivity, and Optical Mapping. IEEE Trans Biomed Eng 2014; 61:2041-8. [DOI: 10.1109/tbme.2014.2311371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Trayanova NA, Rantner LJ. New insights into defibrillation of the heart from realistic simulation studies. Europace 2014; 16:705-13. [PMID: 24798960 PMCID: PMC4010179 DOI: 10.1093/europace/eut330] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/17/2013] [Indexed: 11/12/2022] Open
Abstract
Cardiac defibrillation, as accomplished nowadays by automatic, implantable devices, constitutes the most important means of combating sudden cardiac death. Advancing our understanding towards a full appreciation of the mechanisms by which a shock interacts with the heart, particularly under diseased conditions, is a promising approach to achieve an optimal therapy. The aim of this article is to assess the current state-of-the-art in whole-heart defibrillation modelling, focusing on major insights that have been obtained using defibrillation models, primarily those of realistic heart geometry and disease remodelling. The article showcases the contributions that modelling and simulation have made to our understanding of the defibrillation process. The review thus provides an example of biophysically based computational modelling of the heart (i.e. cardiac defibrillation) that has advanced the understanding of cardiac electrophysiological interaction at the organ level, and has the potential to contribute to the betterment of the clinical practice of defibrillation.
Collapse
Affiliation(s)
- Natalia A. Trayanova
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 3400 N Charles Street, 216 Hackerman Hall, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| | - Lukas J. Rantner
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 3400 N Charles Street, 216 Hackerman Hall, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA
| |
Collapse
|
26
|
A comprehensive multiscale framework for simulating optogenetics in the heart. Nat Commun 2014; 4:2370. [PMID: 23982300 PMCID: PMC3838435 DOI: 10.1038/ncomms3370] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/26/2013] [Indexed: 02/05/2023] Open
Abstract
Optogenetics has emerged as an alternative method for electrical control of the heart, where illumination is used to elicit a bioelectric response in tissue modified to express photosensitive proteins (opsins). This technology promises to enable evocation of spatiotemporally precise responses in targeted cells or tissues, thus creating new possibilities for safe and effective therapeutic approaches to ameliorate cardiac function. Here, we present a comprehensive framework for multi-scale modelling of cardiac optogenetics, allowing both mechanistic examination of optical control and exploration of potential therapeutic applications. The framework incorporates accurate representations of opsin channel kinetics and delivery modes, spatial distribution of photosensitive cells, and tissue illumination constraints, making possible the prediction of emergent behaviour resulting from interactions at sub-organ scales. We apply this framework to explore how optogenetic delivery characteristics determine energy requirements for optical stimulation and to identify cardiac structures that are potential pacemaking targets with low optical excitation threshold.
Collapse
|
27
|
Trayanova NA, Boyle PM. Advances in modeling ventricular arrhythmias: from mechanisms to the clinic. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 6:209-24. [PMID: 24375958 DOI: 10.1002/wsbm.1256] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/16/2013] [Accepted: 11/12/2013] [Indexed: 11/12/2022]
Abstract
Modern cardiovascular research has increasingly recognized that heart models and simulation can help interpret an array of experimental data and dissect important mechanisms and interrelationships, with developments rooted in the iterative interaction between modeling and experimentation. This article reviews the progress made in simulating cardiac electrical behavior at the level of the organ and, specifically, in the development of models of ventricular arrhythmias and fibrillation, as well as their termination (defibrillation). The ability to construct multiscale models of ventricular arrhythmias, representing integrative behavior from the molecule to the entire organ, has enabled mechanistic inquiry into the dynamics of ventricular arrhythmias in the diseased myocardium, in understanding drug-induced proarrhythmia, and in the development of new modalities for defibrillation, to name a few. In this article, we also review the initial use of ventricular models of arrhythmia in personalized diagnosis, treatment planning, and prevention of sudden cardiac death. Implementing individualized cardiac simulations at the patient bedside is poised to become one of the most thrilling examples of computational science and engineering approaches in translational medicine.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
28
|
Gray RA, Mashburn DN, Sidorov VY, Roth BJ, Pathmanathan P, Wikswo JP. Transmembrane current imaging in the heart during pacing and fibrillation. Biophys J 2013; 105:1710-9. [PMID: 24094412 PMCID: PMC3791310 DOI: 10.1016/j.bpj.2013.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/28/2013] [Accepted: 08/07/2013] [Indexed: 11/20/2022] Open
Abstract
Recently, we described a method to quantify the time course of total transmembrane current (Im) and the relative role of its two components, a capacitive current (Ic) and a resistive current (Iion), corresponding to the cardiac action potential during stable propagation. That approach involved recording high-fidelity (200 kHz) transmembrane potential (Vm) signals with glass microelectrodes at one site using a spatiotemporal coordinate transformation via measured conduction velocity. Here we extend our method to compute these transmembrane currents during stable and unstable propagation from fluorescence signals of Vm at thousands of sites (3 kHz), thereby introducing transmembrane current imaging. In contrast to commonly used linear Laplacians of extracellular potential (Ve) to compute Im, we utilized nonlinear image processing to compute the required second spatial derivatives of Vm. We quantified the dynamic spatial patterns of current density of Im and Iion for both depolarization and repolarization during pacing (including nonplanar patterns) by calibrating data with the microelectrode signals. Compared to planar propagation, we found that the magnitude of Iion was significantly reduced at sites of wave collision during depolarization but not repolarization. Finally, we present uncalibrated dynamic patterns of Im during ventricular fibrillation and show that Im at singularity sites was monophasic and positive with a significant nonzero charge (Im integrated over 10 ms) in contrast with nonsingularity sites. Our approach should greatly enhance the understanding of the relative roles of functional (e.g., rate-dependent membrane dynamics and propagation patterns) and static spatial heterogeneities (e.g., spatial differences in tissue resistance) via recordings during normal and compromised propagation, including arrhythmias.
Collapse
Affiliation(s)
- Richard A Gray
- Division of Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland; Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama; Vanderbilt Institute for Integrative Biosystems Research and Education, Vanderbilt University, Nashville, Tennessee.
| | | | | | | | | | | |
Collapse
|
29
|
Quinn TA, Kohl P. Combining wet and dry research: experience with model development for cardiac mechano-electric structure-function studies. Cardiovasc Res 2013; 97:601-11. [PMID: 23334215 PMCID: PMC3583260 DOI: 10.1093/cvr/cvt003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/08/2013] [Accepted: 01/15/2013] [Indexed: 11/17/2022] Open
Abstract
Since the development of the first mathematical cardiac cell model 50 years ago, computational modelling has become an increasingly powerful tool for the analysis of data and for the integration of information related to complex cardiac behaviour. Current models build on decades of iteration between experiment and theory, representing a collective understanding of cardiac function. All models, whether computational, experimental, or conceptual, are simplified representations of reality and, like tools in a toolbox, suitable for specific applications. Their range of applicability can be explored (and expanded) by iterative combination of 'wet' and 'dry' investigation, where experimental or clinical data are used to first build and then validate computational models (allowing integration of previous findings, quantitative assessment of conceptual models, and projection across relevant spatial and temporal scales), while computational simulations are utilized for plausibility assessment, hypotheses-generation, and prediction (thereby defining further experimental research targets). When implemented effectively, this combined wet/dry research approach can support the development of a more complete and cohesive understanding of integrated biological function. This review illustrates the utility of such an approach, based on recent examples of multi-scale studies of cardiac structure and mechano-electric function.
Collapse
Affiliation(s)
- T Alexander Quinn
- National Heart and Lung Institute, Imperial College London, Heart Science Centre, Harefield UB9 6JH, UK.
| | | |
Collapse
|
30
|
Abstract
Cardiac optical mapping has proven to be a powerful technology for studying cardiovascular function and disease. The development and scientific impact of this methodology are well-documented. Because of its relevance in cardiac research, this imaging technology advances at a rapid pace. Here, we review technological and scientific developments during the past several years and look toward the future. First, we explore key components of a modern optical mapping set-up, focusing on: (1) new camera technologies; (2) powerful light-emitting-diodes (from ultraviolet to red) for illumination; (3) improved optical filter technology; (4) new synthetic and optogenetic fluorescent probes; (5) optical mapping with motion and contraction; (6) new multiparametric optical mapping techniques; and (7) photon scattering effects in thick tissue preparations. We then look at recent optical mapping studies in single cells, cardiomyocyte monolayers, atria, and whole hearts. Finally, we briefly look into the possible future roles of optical mapping in the development of regenerative cardiac research, cardiac cell therapies, and molecular genetic advances.
Collapse
Affiliation(s)
- Todd J Herron
- Department of Internal Medicine, Cardiovascular Research Center, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109-2800, USA
| | | | | |
Collapse
|
31
|
Bishop MJ, Rowley A, Rodriguez B, Plank G, Gavaghan DJ, Bub G. The role of photon scattering in voltage-calcium fluorescent recordings of ventricular fibrillation. Biophys J 2011; 101:307-18. [PMID: 21767482 DOI: 10.1016/j.bpj.2011.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/07/2011] [Accepted: 06/13/2011] [Indexed: 11/25/2022] Open
Abstract
Recent optical mapping studies of cardiac tissue suggest that membrane voltage (V(m)) and intracellular calcium concentrations (Ca) become dissociated during ventricular fibrillation (VF), generating a proarrhythmic substrate. However, experimental methods used in these studies may accentuate measured dissociation due to differences in fluorescent emission wavelengths of optical voltage/calcium (V(opt)/Ca(opt)) signals. Here, we simulate dual voltage-calcium optical mapping experiments using a monodomain-Luo-Rudy ventricular-tissue model coupled to a photon-diffusion model. Dissociation of both electrical, V(m)/Ca, and optical, V(opt)/Ca(opt), signals is quantified by calculating mutual information (MI) for VF and rapid pacing protocols. We find that photon scattering decreases MI of V(opt)/Ca(opt) signals by 23% compared to unscattered V(m)/Ca signals during VF. Scattering effects are amplified by increasing wavelength separation between fluorescent voltage/calcium signals and respective measurement-location misalignment. In contrast, photon scattering does not affect MI during rapid pacing, but high calcium dye affinity can decrease MI by attenuating alternans in Ca(opt) but not in V(opt). We conclude that some dissociation exists between voltage and calcium at the cellular level during VF, but MI differences are amplified by current optical mapping methods.
Collapse
Affiliation(s)
- Martin J Bishop
- Computing Laboratory, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | |
Collapse
|
32
|
Camara O, Sermesant M, Lamata P, Wang L, Pop M, Relan J, De Craene M, Delingette H, Liu H, Niederer S, Pashaei A, Plank G, Romero D, Sebastian R, Wong KCL, Zhang H, Ayache N, Frangi AF, Shi P, Smith NP, Wright GA. Inter-model consistency and complementarity: learning from ex-vivo imaging and electrophysiological data towards an integrated understanding of cardiac physiology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:122-33. [PMID: 21791225 DOI: 10.1016/j.pbiomolbio.2011.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/01/2011] [Indexed: 11/27/2022]
Abstract
Computational models of the heart at various scales and levels of complexity have been independently developed, parameterised and validated using a wide range of experimental data for over four decades. However, despite remarkable progress, the lack of coordinated efforts to compare and combine these computational models has limited their impact on the numerous open questions in cardiac physiology. To address this issue, a comprehensive dataset has previously been made available to the community that contains the cardiac anatomy and fibre orientations from magnetic resonance imaging as well as epicardial transmembrane potentials from optical mapping measured on a perfused ex-vivo porcine heart. This data was used to develop and customize four models of cardiac electrophysiology with different level of details, including a personalized fast conduction Purkinje system, a maximum a posteriori estimation of the 3D distribution of transmembrane potential, the personalization of a simplified reaction-diffusion model, and a detailed biophysical model with generic conduction parameters. This study proposes the integration of these four models into a single modelling and simulation pipeline, after analyzing their common features and discrepancies. The proposed integrated pipeline demonstrates an increase prediction power of depolarization isochrones in different pacing conditions.
Collapse
Affiliation(s)
- O Camara
- Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), Universitat Pompeu Fabra, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rabbit-specific ventricular model of cardiac electrophysiological function including specialized conduction system. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:90-100. [PMID: 21672547 DOI: 10.1016/j.pbiomolbio.2011.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 05/27/2011] [Indexed: 11/20/2022]
Abstract
The function of the ventricular specialized conduction system in the heart is to ensure the coordinated electrical activation of the ventricles. It is therefore critical to the overall function of the heart, and has also been implicated as an important player in various diseases, including lethal ventricular arrhythmias such as ventricular fibrillation and drug-induced torsades de pointes. However, current ventricular models of electrophysiology usually ignore, or include highly simplified representations of the specialized conduction system. Here, we describe the development of an image-based, species-consistent, anatomically-detailed model of rabbit ventricular electrophysiology that incorporates a detailed description of the free-running part of the specialized conduction system. Techniques used for the construction of the geometrical model of the specialized conduction system from a magnetic resonance dataset and integration of the system model into a ventricular anatomical model, developed from the same dataset, are described. Computer simulations of rabbit ventricular electrophysiology are conducted using the novel anatomical model and rabbit-specific membrane kinetics to investigate the importance of the components and properties of the conduction system in determining ventricular function under physiological conditions. Simulation results are compared to panoramic optical mapping experiments for model validation and results interpretation. Full access is provided to the anatomical models developed in this study.
Collapse
|
34
|
Abstract
Recent developments in cardiac simulation have rendered the heart the most highly integrated example of a virtual organ. We are on the brink of a revolution in cardiac research, one in which computational modeling of proteins, cells, tissues, and the organ permit linking genomic and proteomic information to the integrated organ behavior, in the quest for a quantitative understanding of the functioning of the heart in health and disease. The goal of this review is to assess the existing state-of-the-art in whole-heart modeling and the plethora of its applications in cardiac research. General whole-heart modeling approaches are presented, and the applications of whole-heart models in cardiac electrophysiology and electromechanics research are reviewed. The article showcases the contributions that whole-heart modeling and simulation have made to our understanding of the functioning of the heart. A summary of the future developments envisioned for the field of cardiac simulation and modeling is also presented. Biophysically based computational modeling of the heart, applied to human heart physiology and the diagnosis and treatment of cardiac disease, has the potential to dramatically change 21st century cardiac research and the field of cardiology.
Collapse
Affiliation(s)
- Natalia A Trayanova
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
35
|
Relan J, Pop M, Delingette H, Wright GA, Ayache N, Sermesant M. Personalization of a cardiac electrophysiology model using optical mapping and MRI for prediction of changes with pacing. IEEE Trans Biomed Eng 2011; 58:3339-49. [PMID: 21257368 DOI: 10.1109/tbme.2011.2107513] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Computer models of cardiac electrophysiology (EP) can be a very efficient tool to better understand the mechanisms of arrhythmias. Quantitative adjustment of such models to experimental data (personalization) is needed in order to test their realism and predictive power, but it remains challenging at the organ scale. In this paper, we propose a framework for the personalization of a 3-D cardiac EP model, the Mitchell-Schaeffer (MS) model, and evaluate its volumetric predictive power under various pacing scenarios. The personalization was performed on ex vivo large porcine healthy hearts using diffusion tensor MRI (DT-MRI) and optical mapping data. The MS model was simulated on a 3-D mesh incorporating local fiber orientations, built from DT-MRI. The 3-D model parameters were optimized using features such as 2-D epicardial depolarization and repolarization maps, extracted from the optical mapping. We also evaluated the sensitivity of our personalization framework to different pacing locations and showed results on its robustness. Further, we evaluated volumetric model predictions for various epi- and endocardial pacing scenarios. We demonstrated promising results with a mean personalization error around 5 ms and a mean prediction error around 10 ms (5% of the total depolarization time). Finally, we discussed the potential translation of such work to clinical data and pathological hearts.
Collapse
Affiliation(s)
- Jatin Relan
- Inria, Asclepios team, Sophia-Antipolis, 06902 France.
| | | | | | | | | | | |
Collapse
|
36
|
Trayanova NA, Tice BM. Integrative computational models of cardiac arrhythmias -- simulating the structurally realistic heart. ACTA ACUST UNITED AC 2009; 6:85-91. [PMID: 20628585 DOI: 10.1016/j.ddmod.2009.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Simulation of cardiac electrical function, and specifically, simulation aimed at understanding the mechanisms of cardiac rhythm disorders, represents an example of a successful integrative multiscale modeling approach, uncovering emergent behavior at the successive scales in the hierarchy of structural complexity. The goal of this article is to present a review of the integrative multiscale models of realistic ventricular structure used in the quest to understand and treat ventricular arrhythmias. It concludes with the new advances in image-based modeling of the heart and the promise it holds for the development of individualized models of ventricular function in health and disease.
Collapse
|
37
|
Prior P, Roth BJ. Development of an imaging modality utilizing 2D optical signals during an EPI-fluorescent optical mapping experiment. Phys Med Biol 2009; 54:3015-30. [PMID: 19387101 DOI: 10.1088/0031-9155/54/10/004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Optical mapping is a commonly used technique to visualize the electrical activity in the heart. Recently, several groups have attempted to use the signals acquired in optical mapping to image the transmembrane potential in the heart, which would be particularly advantageous when studying the effects of defibrillation-type shocks throughout the wall of the heart. Our work presents an alternative imaging method that makes use of data obtained using multiple wavelengths and therefore multiple optical decay constants. A modified form of the diffusion equation Green's function for a semi-infinite slab of tissue is derived and used to relate the detected optical signals to the source of emission photons. Images using the optical signals are reconstructed using Gaussian quadrature and matrix inversion. Our results show that images can be obtained for source terms located below the tissue surface. Furthermore, we demonstrate that our reconstruction method's susceptibility to noise can be alleviated using sophisticated matrix inverse techniques, such as singular value decomposition. Sources that rapidly decay with depth or are highly localized in the image plane require more sophisticated techniques (e.g., regularization methods) to image the electrical activity in the heart. The work presented here demonstrates the feasibility of a new imaging technique of cardiac electrical activity using optical mapping.
Collapse
Affiliation(s)
- Phillip Prior
- Department of Physics, Oakland University, Rochester, MI 48309, USA.
| | | |
Collapse
|
38
|
Clayton RH. Vortex filament dynamics in computational models of ventricular fibrillation in the heart. CHAOS (WOODBURY, N.Y.) 2008; 18:043127. [PMID: 19123637 DOI: 10.1063/1.3043805] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In three-dimensional cardiac tissue, the re-entrant waves that sustain ventricular fibrillation rotate around a line of phase singularity or vortex filament. The aim of this study was to investigate how the behavior of these vortex filaments is influenced by membrane kinetics, initial conditions, and tissue geometry in computational models of excitable tissue. A monodomain model of cardiac tissue was used, with kinetics described by a three-variable simplified ionic model (3V-SIM). Two versions of 3V-SIM were used, one with steep action potential duration restitution, and one with reduced excitability. Re-entrant fibrillation was then simulated in three tissue geometries: a cube, a slab, and an anatomically detailed model of rabbit ventricles. Filaments were identified using a phase-based method, and the number, size, origin, and orientation of filaments was tracked throughout each simulation. The main finding of this study is that kinetics, initial conditions, geometry, and anisotropy all affected the number, proliferation, and orientation of vortex filaments in re-entrant fibrillation. An important finding of this study was that the behavior of vortex filaments in simplified slab geometry representing part of the ventricular wall did not necessarily predict behavior in an anatomically detailed model of the rabbit ventricles.
Collapse
Affiliation(s)
- Richard H Clayton
- Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello Street, Sheffield S14DP, United Kingdom.
| |
Collapse
|
39
|
Hyatt CJ, Zemlin CW, Smith RM, Matiukas A, Pertsov AM, Bernus O. Reconstructing subsurface electrical wave orientation from cardiac epi-fluorescence recordings: Monte Carlo versus diffusion approximation. OPTICS EXPRESS 2008; 16:13758-13772. [PMID: 18772987 DOI: 10.1364/oe.16.013758] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The development of voltage-sensitive dyes has revolutionized cardiac electrophysiology and made optical imaging of cardiac electrical activity possible. Photon diffusion models coupled to electrical excitation models have been successful in qualitatively predicting the shape of the optical action potential and its dependence on subsurface electrical wave orientation. However, the accuracy of the diffusion equation in the visible range, especially for thin tissue preparations, remains unclear. Here, we compare diffusion and Monte Carlo (MC) based models and we investigate the role of tissue thickness. All computational results are compared to experimental data obtained from intact guinea pig hearts. We show that the subsurface volume contributing to the epi-fluorescence signal extends deeper in the tissue when using MC models, resulting in longer optical upstroke durations which are in better agreement with experiments. The optical upstroke morphology, however, strongly correlates to the subsurface propagation direction independent of the model and is consistent with our experimental observations.
Collapse
Affiliation(s)
- Christopher J Hyatt
- Department of Pharmacology, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA
| | | | | | | | | | | |
Collapse
|
40
|
Maleckar MM, Woods MC, Sidorov VY, Holcomb MR, Mashburn DN, Wikswo JP, Trayanova NA. Polarity reversal lowers activation time during diastolic field stimulation of the rabbit ventricles: insights into mechanisms. Am J Physiol Heart Circ Physiol 2008; 295:H1626-33. [PMID: 18708441 DOI: 10.1152/ajpheart.00706.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To fully characterize the mechanisms of defibrillation, it is necessary to understand the response, within the three-dimensional (3D) volume of the ventricles, to shocks given in diastole. Studies that have examined diastolic responses conducted measurements on the epicardium or on a transmural surface of the left ventricular (LV) wall only. The goal of this study was to use optical imaging experiments and 3D bidomain simulations, including a model of optical mapping, to ascertain the shock-induced virtual electrode and activation patterns throughout the rabbit ventricles following diastolic shocks. We tested the hypothesis that the locations of shock-induced regions of hyperpolarization govern the different diastolic activation patterns for shocks of reversed polarity. In model and experiment, uniform-field monophasic shocks of reversed polarities (cathode over the right ventricle is RV-, reverse polarity is LV-) were applied to the ventricles in diastole. Experiments and simulations revealed that RV- shocks resulted in longer activation times compared with LV- shocks of the same strength. 3D simulations demonstrated that RV- shocks induced a greater volume of hyperpolarization at shock end compared with LV- shocks; most of these hyperpolarized regions were located in the LV. The results of this study indicate that ventricular geometry plays an important role in both the location and size of the shock-induced virtual anodes that determine activation delay during the shock and subsequently affect shock-induced propagation. If regions of hyperpolarization that develop during the shock are sufficiently large, activation delay may persist until shock end.
Collapse
Affiliation(s)
- M M Maleckar
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Roth B. Photon Density Measured Over a Cut Surface: Implications for Optical Mapping of the Heart. IEEE Trans Biomed Eng 2008; 55:2102-4. [DOI: 10.1109/tbme.2008.925293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Pop M, Sermesant M, Lepiller D, Truong MV, McVeigh ER, Crystal E, Dick A, Delingette H, Ayache N, Wright GA. Fusion of optical imaging and MRI for the evaluation and adjustment of macroscopic models of cardiac electrophysiology: a feasibility study. Med Image Anal 2008; 13:370-80. [PMID: 18768344 DOI: 10.1016/j.media.2008.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 07/10/2008] [Accepted: 07/16/2008] [Indexed: 11/30/2022]
Abstract
The aim of this work was to demonstrate the correspondence between a macroscopic 3D computer model of electrophysiology (i.e., the Aliev-Panfilov model) parametrized with MR data and experimental characterization of action potential propagation in large porcine hearts, ex vivo, using optical methods (based on voltage-sensitive fluorescence). A secondary goal was to use one of these studies to demonstrate an optimized method for regional adjustment of critical model parameters (i.e., adjustment of the local conductivity from the isochronal maps obtained via optical images). There was good agreement between model behaviour and experiment using fusion of optical and MR data, and model parameters from previous work in the literature. Specifically, qualitative comparison between computed and measured activation maps gave good results. Adjustment of the conductivity parameter within 26 regions fitting data from the current experiments in one heart reduced absolute error in local depolarization times by a factor of 3 (i.e. from 30 to 10 ms).
Collapse
Affiliation(s)
- Mihaela Pop
- Department of Medical Biophysics, University of Toronto, Sunnybrook Health Sciences Centre, Imaging Research, 2075 Bayview Avenue, Toronto, ON, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Calculation of optical signal using three-dimensional bidomain/diffusion model reveals distortion of the transmembrane potential. Biophys J 2008; 95:2097-102. [PMID: 18487289 DOI: 10.1529/biophysj.107.127852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Optical mapping experiments allow investigators to view the effects of electrical currents on the transmembrane potential, V(m), as a shock is applied to the heart. One important consideration is whether the optical signal accurately represents V(m). We have combined the bidomain equations along with the photon diffusion equation to study the excitation and emission of photons during optical mapping of cardiac tissue. Our results show that this bidomain/diffusion model predicts an optical signal that is much smaller than V(m) near a stimulating electrode, a result consistent with experimental observations. Yet, this model, which incorporates the effect of lateral averaging, also reveals an optical signal that overestimates V(m) at distances >1 mm away from the electrode. Although V(m) falls off with distance r from the electrode as exp(-r/lambda)/r, the optical signal decays as a simple exponential, exp(-r/lambda). Moreover, regions of hyperpolarization adjacent to a cathode are emphasized in the optical signal compared to the region of depolarization under the cathode. Imaging methods utilizing optical mapping techniques will need to account for these distortions to accurately reconstruct V(m).
Collapse
|
44
|
Extracting intramural wavefront orientation from optical upstroke shapes in whole hearts. Biophys J 2008; 95:942-50. [PMID: 18390615 DOI: 10.1529/biophysj.107.117887] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Information about intramural propagation of electrical excitation is crucial to understanding arrhythmia mechanisms in thick ventricular muscle. There is currently a controversy over whether it is possible to extract such information from the shape of the upstroke in optical mapping recordings. We show that even in the complex geometry of a whole guinea pig heart, optical upstroke morphology reveals the 3D wavefront orientation near the surface. To characterize the upstroke morphology, we use V(F)(*), the fractional level at which voltage-sensitive fluorescence, V(F), has maximal time derivative. Low values of V(F)(*)( approximately 0.2) indicate a wavefront moving away from the surface, high values of V(F)(*) ( approximately 0.6) a wavefront moving toward the surface, and intermediate values of V(F)(*) ( approximately 0.4) a wavefront moving parallel to the surface. We further performed computer simulations using Luo-Rudy II electrophysiology and a simplified 3D geometry. The simulated V(F)(*) maps for free wall and apical stimulations as well as for sinus rhythm are in good quantitative agreement with the averaged experimental results. Furthermore, computer simulations show that the effect of the curvature of the heart on wave propagation is negligible.
Collapse
|
45
|
Bishop MJ, Rodriguez B, Trayanova N, Gavaghan DJ. Modulation of shock-end virtual electrode polarisation as a direct result of 3D fluorescent photon scattering. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2008; 2006:1556-9. [PMID: 17946049 DOI: 10.1109/iembs.2006.259243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Due to the large transmural variation in transmembrane potential following the application of strong electric shocks, it is thought that fluorescent photon scattering from depth plays a significant role in optical signal modulation at shock-end. For the first time, a model of photon scattering is used to accurately synthesize fluorescent signals over the irregular geometry of the rabbit ventricles following the application of such strong shocks. A bidomain representation of electrical activity is combined with finite element solutions to the photon diffusion equation, simulating both the excitation and emission processes, over an anatomically-based model of rabbit ventricular geometry and fiber orientation. Photon scattering from within a 3D volume beneath the epicardial optical recording site is shown to transduce differences in transmembrane potential within this volume through the myocardial wall. This leads directly to a significantly modulated optical signal response with respect to that predicted by the bidomain simulations, distorting epicardial virtual electrode polarization produced at shock-end. Furthermore, we show that this degree of distortion is very sensitive to the optical properties of the tissue, an important variable to consider during experimental mapping set-ups. These findings provide an essential first-step in aiding the interpretation of experimental optical mapping recordings following strong defibrillation shocks.
Collapse
Affiliation(s)
- M J Bishop
- Computational Biology Group, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
46
|
Efimov IR, Hucker WJ. To the Editor—Response. Heart Rhythm 2008. [DOI: 10.1016/j.hrthm.2007.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
47
|
Bishop MJ, Gavaghan DJ, Trayanova NA, Rodriguez B. Photon scattering effects in optical mapping of propagation and arrhythmogenesis in the heart. J Electrocardiol 2008; 40:S75-80. [PMID: 17993334 DOI: 10.1016/j.jelectrocard.2007.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2007] [Accepted: 06/07/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Optical mapping is a widely used experimental tool providing high-resolution recordings of cardiac electrical activity. However, the technique is limited by signal distortion due to photon scattering in the tissue. Computational models of the fluorescence recording are capable of assessing these distortion effects, providing important insight to assist experimental data interpretation. METHODS We present results from a new panoramic optical mapping model, which is used to assess distortion in ventricular optical mapping signals during pacing and arrhythmogenesis arising from 3-dimensional photon scattering. RESULTS/CONCLUSIONS We demonstrate that accurate consideration of wavefront propagation within the complex ventricular structure, along with accurate representation of photon scattering in 3 dimensions, is essential to faithfully assess distortion effects arising during optical mapping. In this article, examined effects include (1) the specific morphology of the optical action potential upstroke during pacing and (2) the shift in the location of epicardial phase singularities obtained from fluorescent maps.
Collapse
Affiliation(s)
- Martin J Bishop
- Computational Biology Group, University of Oxford Computing Laboratory, Oxford, UK
| | | | | | | |
Collapse
|
48
|
The role of photon scattering in optical signal distortion during arrhythmia and defibrillation. Biophys J 2008; 93:3714-26. [PMID: 17978166 DOI: 10.1529/biophysj.107.110981] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Optical mapping of arrhythmias and defibrillation provides important insights; however, a limitation of the technique is signal distortion due to photon scattering. The goal of this experimental/simulation study is to investigate the role of three-dimensional photon scattering in optical signal distortion during ventricular tachycardia (VT) and defibrillation. A three-dimensional realistic bidomain rabbit ventricular model was combined with a model of photon transport. Shocks were applied via external electrodes to induce sustained VT, and transmembrane potentials (V(m)) were compared with synthesized optical signals (V(opt)). Fluorescent recordings were conducted in isolated rabbit hearts to validate simulation results. Results demonstrate that shock-induced membrane polarization magnitude is smaller in V(opt) and in experimental signals as compared to V(m). This is due to transduction of potentials from weakly polarized midmyocardium to the epicardium. During shock-induced reentry and in sustained VT, photon scattering, combined with complex wavefront dynamics, results in optical action potentials near a filament exhibiting i), elevated resting potential, ii), reduced amplitude relative to pacing, and iii), dual-humped morphologies. A shift of up to 4 mm in the phase singularity location was observed in V(opt) maps when compared to V(m). This combined experimental/simulation study provides an interpretation of optical recordings during VT and defibrillation.
Collapse
|
49
|
Evaluating intramural virtual electrodes in the myocardial wedge preparation: simulations of experimental conditions. Biophys J 2007; 94:1904-15. [PMID: 17993491 DOI: 10.1529/biophysj.107.121343] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While defibrillation is the only means for prevention of sudden cardiac death, key aspects of the process, such as the intramural virtual electrodes (VEs), remain controversial. Experimental studies had attempted to assess intramural VEs by using wedge preparations and recording activity from the cut surface; however, applicability of this approach remains unclear. These studies found, surprisingly, that for strong shocks, the entire cut surface was negatively polarized, regardless of boundary conditions. The goal of this study is to examine, by means of bidomain simulations, whether VEs on the cut surface represent a good approximation to VEs in depth of the intact wall. Furthermore, we aim to explore mechanisms that could give rise to negative polarization on the cut surface. A model of wedge preparation was used, in which fiber orientation could be changed, and where the cut surface was subjected to permeable and impermeable boundary conditions. Small-scale mechanisms for polarization were also considered. To determine whether any distortions in the recorded VEs arise from averaging during optical mapping, a model of fluorescent recording was employed. The results indicate that, when an applied field is spatially uniform and impermeable boundary conditions are enforced, regardless of the fiber orientation VEs on the cut surface faithfully represent those intramurally, provided tissue properties are not altered by dissection. Results also demonstrate that VEs are sensitive to the conductive layer thickness above the cut surface. Finally, averaging during fluorescent recordings results in large negative VEs on the cut surface, but these do not arise from small-scale heterogeneities.
Collapse
|
50
|
Warren M, Huizar JF, Shvedko AG, Zaitsev AV. Spatiotemporal relationship between intracellular Ca2+ dynamics and wave fragmentation during ventricular fibrillation in isolated blood-perfused pig hearts. Circ Res 2007; 101:e90-101. [PMID: 17932324 DOI: 10.1161/circresaha.107.162735] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Normal "master-slave" relationship between the action potential (AP) and intracellular Ca2+ transient (Ca(i)T) is sometimes altered during ventricular fibrillation (VF). The nature of AP/Ca(i)T dissociation during VF and its role in inducing wavebreaks (WBs) remain unclear. We simultaneously mapped AP (RH237) and Ca(i)T (Rhod-2) during VF in blood-perfused pig hearts. We computed AP and Ca(i)T dominant frequency (DF) and Ca(i)T delay in each AP cycle. We identified WBs as singularity points in AP phase movies and sites of conduction block (CB) as sites where an AP wavefront failed to propagate. We analyzed spatiotemporal relationship between abnormal AP/Ca(i)T sequences and CB sites. We used a calcium chelator (BAPTA-AM) to abolish Ca(i)T and test its involvement in WB formation. During VF, the DF difference between AP and Ca(i)T was <10% of the respective values in 95% of pixels, and 80% of all Ca(i)T upstrokes occurred during the initial 25% of the excitation cycle. Aberrant sequences of AP and Ca(i)T occurred almost exclusively near CB sites but could be traced to normal wavefront sequences away from CB sites. Thus, apparent AP/Ca(i)T dissociation was largely attributable to spatial uncertainty of the absolute position of block of each wave. BAPTA-AM reduced Ca(i)T amplitude to 30.5+/-12.9% of control and the DF of AP from 12.2+/-1.6 to 10.4+/-1.3 Hz (P<0.01), but did not significantly alter WB incidence (0.76+/-0.19 versus 0.72+/-0.19 SP/mm2). These results do not support presence of spontaneous, non-voltage-gated Ca(i)Ts during VF and suggest that AP/Ca(i)T dissociation is a consequence rather than a cause of wave fragmentation.
Collapse
Affiliation(s)
- Mark Warren
- Nora Eccles Harrison CVRTI, University of Utah, Salt Lake City, UT 84112-5000, USA
| | | | | | | |
Collapse
|