1
|
Shi H, Chen M. The brain-bone axis: unraveling the complex interplay between the central nervous system and skeletal metabolism. Eur J Med Res 2024; 29:317. [PMID: 38849920 PMCID: PMC11161955 DOI: 10.1186/s40001-024-01918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
The brain-bone axis has emerged as a captivating field of research, unveiling the intricate bidirectional communication between the central nervous system (CNS) and skeletal metabolism. This comprehensive review delves into the current state of knowledge surrounding the brain-bone axis, exploring the complex mechanisms, key players, and potential clinical implications of this fascinating area of study. The review discusses the neural regulation of bone metabolism, highlighting the roles of the sympathetic nervous system, hypothalamic neuropeptides, and neurotransmitters in modulating bone remodeling. In addition, it examines the influence of bone-derived factors, such as osteocalcin and fibroblast growth factor 23, on brain function and behavior. The therapeutic potential of targeting the brain-bone axis in the context of skeletal and neurological disorders is also explored. By unraveling the complex interplay between the CNS and skeletal metabolism, this review aims to provide a comprehensive resource for researchers, clinicians, and students interested in the brain-bone axis and its implications for human health and disease.
Collapse
Affiliation(s)
- Haojun Shi
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Min Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China.
| |
Collapse
|
2
|
Brito VN, Canton APM, Seraphim CE, Abreu AP, Macedo DB, Mendonca BB, Kaiser UB, Argente J, Latronico AC. The Congenital and Acquired Mechanisms Implicated in the Etiology of Central Precocious Puberty. Endocr Rev 2023; 44:193-221. [PMID: 35930274 PMCID: PMC9985412 DOI: 10.1210/endrev/bnac020] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 01/20/2023]
Abstract
The etiology of central precocious puberty (CPP) is multiple and heterogeneous, including congenital and acquired causes that can be associated with structural or functional brain alterations. All causes of CPP culminate in the premature pulsatile secretion of hypothalamic GnRH and, consequently, in the premature reactivation of hypothalamic-pituitary-gonadal axis. The activation of excitatory factors or suppression of inhibitory factors during childhood represent the 2 major mechanisms of CPP, revealing a delicate balance of these opposing neuronal pathways. Hypothalamic hamartoma (HH) is the most well-known congenital cause of CPP with central nervous system abnormalities. Several mechanisms by which hamartoma causes CPP have been proposed, including an anatomical connection to the anterior hypothalamus, autonomous neuroendocrine activity in GnRH neurons, trophic factors secreted by HH, and mechanical pressure applied to the hypothalamus. The importance of genetic and/or epigenetic factors in the underlying mechanisms of CPP has grown significantly in the last decade, as demonstrated by the evidence of genetic abnormalities in hypothalamic structural lesions (eg, hamartomas, gliomas), syndromic disorders associated with CPP (Temple, Prader-Willi, Silver-Russell, and Rett syndromes), and isolated CPP from monogenic defects (MKRN3 and DLK1 loss-of-function mutations). Genetic and epigenetic discoveries involving the etiology of CPP have had influence on the diagnosis and familial counseling providing bases for potential prevention of premature sexual development and new treatment targets in the future. Global preventive actions inducing healthy lifestyle habits and less exposure to endocrine-disrupting chemicals during the lifespan are desirable because they are potentially associated with CPP.
Collapse
Affiliation(s)
- Vinicius N Brito
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana P M Canton
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Carlos Eduardo Seraphim
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ana Paula Abreu
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Delanie B Macedo
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
- Núcleo de Atenção Médica Integrada, Centro de Ciências da Saúde,
Universidade de Fortaleza, Fortaleza 60811 905,
Brazil
| | - Berenice B Mendonca
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| | - Ursula B Kaiser
- Division of Endocrinology, Diabetes and Hypertension, Department of
Medicine, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA 02115, USA
| | - Jesús Argente
- Hospital Infantil Universitario Niño Jesús, Department of Endocrinology and
Department of Pediatrics, Universidad Autónoma de Madrid, Spanish PUBERE Registry,
CIBER of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, IMDEA
Institute, Madrid 28009, Spain
| | - Ana Claudia Latronico
- Discipline of Endocrinology & Metabolism, Department of Internal
Medicine, University of Sao Paulo Medical School, University of Sao
Paulo, Sao Paulo 01246 903, Brazil
| |
Collapse
|
3
|
Zubair H, Saqib M, Khan MN, Shamas S, Irfan S, Shahab M. Variation in Hypothalamic GnIH Expression and Its Association with GnRH and Kiss1 during Pubertal Progression in Male Rhesus Monkeys ( Macaca mulatta). Animals (Basel) 2022; 12:ani12243533. [PMID: 36552453 PMCID: PMC9774706 DOI: 10.3390/ani12243533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Modulation of pulsatile gonadotropin-releasing hormone (GnRH) secretion across postnatal development in higher primates is not fully understood. While gonadotropin-inhibitory hormone (GnIH) is reported to suppress reproductive axis activity in birds and rodents, little is known about the developmental trajectory of GnIH expression in rhesus monkeys throughout the pubertal transition. This study was aimed at examining the variation in GnIH immunoreactivity (-ir) and associated changes among GnIH, GnRH, and Kiss1 mRNA expression in the hypothalamus of infant, juvenile, prepubertal, and adult male rhesus monkeys. The brains from rhesus macaques were collected from infancy until adulthood and were examined using immunofluorescence and RT-qPCR. The mean GnIH-ir was found to be significantly higher in prepubertal animals (p < 0.01) compared to infants, and significantly reduced in adults (p < 0.001). Significantly higher (p < 0.001) GnRH and Kiss1 mRNA expression was noted in adults while GnIH mRNA expression was the highest at the prepubertal stage (p < 0.001). Significant negative correlations were seen between GnIH-GnRH (p < 0.01) and GnIH-Kiss1 (p < 0.001) expression. Our findings suggest a role for GnIH in the prepubertal suppression of the reproductive axis, with disinhibition of the adult reproductive axis occurring through decreases in GnIH. This pattern of expression suggests that GnIH may be a viable target for the development of novel therapeutics and contraceptives for humans.
Collapse
Affiliation(s)
- Hira Zubair
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Correspondence: (H.Z.); (M.S.); Tel.: +92-333-5126713 (H.Z.); +92-331-5579926 (M.S.)
| | - Muhammad Saqib
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Noman Khan
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shazia Shamas
- Department of Zoology, Rawalpindi Women University, Rawalpindi 46300, Pakistan
| | - Shahzad Irfan
- Department of Physiology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Shahab
- Laboratory of Reproductive Neuroendocrinology, Department of Zoology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Correspondence: (H.Z.); (M.S.); Tel.: +92-333-5126713 (H.Z.); +92-331-5579926 (M.S.)
| |
Collapse
|
4
|
Reciprocal Peer Network Processes on Substance Use and Delinquent Behavior in Adolescence: Analysis from a Longitudinal Youth Cohort Study. Int J Ment Health Addict 2022. [DOI: 10.1007/s11469-022-00904-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
5
|
Semaan SJ, Kauffman AS. Developmental sex differences in the peri-pubertal pattern of hypothalamic reproductive gene expression, including Kiss1 and Tac2, may contribute to sex differences in puberty onset. Mol Cell Endocrinol 2022; 551:111654. [PMID: 35469849 PMCID: PMC9889105 DOI: 10.1016/j.mce.2022.111654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/03/2023]
Abstract
The mechanisms regulating puberty still remain elusive, as do the underlying causes for sex differences in puberty onset (girls before boys) and pubertal disorders. Neuroendocrine puberty onset is signified by increased pulsatile GnRH secretion, yet how and when various upstream reproductive neural circuits change developmentally to govern this process is poorly understood. We previously reported day-by-day peri-pubertal increases (Kiss1, Tac2) or decreases (Rfrp) in hypothalamic gene expression of female mice, with several brain mRNA changes preceding external pubertal markers. However, similar pubertal measures in males were not previously reported. Here, to identify possible neural sex differences underlying sex differences in puberty onset, we analyzed peri-pubertal males and directly compared them with female littermates. Kiss1 expression in male mice increased over the peri-pubertal period in both the AVPV and ARC nuclei but with lower levels than in females at several ages. Likewise, Tac2 expression in the male ARC increased between juvenile and older peri-pubertal stages but with levels lower than females at most ages. By contrast, both DMN Rfrp expressionand Rfrp neuronal activation strongly decreased in males between juvenile and peri-pubertal stages, but with similar levels as females. Neither ARC KNDy neuronal activation nor Kiss1r expression in GnRH neurons differed between males and females or changed with age. These findings delineate several peri-pubertal changes in neural populations in developing males, with notable sex differences in kisspeptin and NKB neuron developmental patterns. Whether these peri-pubertal hypothalamic sex differences underlie sex differences in puberty onset deserves future investigation.
Collapse
Affiliation(s)
- Sheila J Semaan
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA
| | - Alexander S Kauffman
- Department of OBGYN and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
6
|
Singh P, Anjum S, Srivastava RK, Tsutsui K, Krishna A. Central and peripheral neuropeptide RFRP-3: A bridge linking reproduction, nutrition, and stress response. Front Neuroendocrinol 2022; 65:100979. [PMID: 35122778 DOI: 10.1016/j.yfrne.2022.100979] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
Abstract
This article is an amalgamation of the current status of RFRP-3 (GnIH) in reproduction and its association with the nutrition and stress-mediated changes in the reproductive activities. GnIH has been demonstrated in the hypothalamus of all the vertebrates studied so far and is a well-known inhibitor of GnRH mediated reproduction. The RFRP-3 neurons interact with the other hypothalamic neurons and the hormonal signals from peripheral organs for coordinating the nutritional, stress, and environmental associated changes to regulate reproduction. RFRP-3 has also been shown to regulate puberty, reproductive cyclicity and senescence depending upon the nutritional status. A favourable nutritional status and the environmental cues which are permissive for the successful breeding and pregnancy outcome keep RFRP-3 level low, whereas unfavourable nutritional status and stressful conditions increase the expression of RFRP-3 which impairs the reproduction. Still our knowledge about RFRP-3 is incomplete regarding its therapeutic application for nutritional or stress-related reproductive disorders.
Collapse
Affiliation(s)
- Padmasana Singh
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484886, MP, India
| | - Shabana Anjum
- Department of Chemical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Raj Kamal Srivastava
- Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Anuppur 484886, MP, India
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Kagamiyama 1-7-1, Higashi-Hiroshima University 739-8521, Japan
| | - Amitabh Krishna
- Department of Zoology, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
7
|
Yan X, Gong X, Lin T, Lin M, Qin P, Ye J, Li H, Hong Q, Li M, Liu Y, Li Y, Wang X, Zhang Y, Ling Y, Cao H, Zhang X, Fang F. Analysis of protein phosphorylation sites in the hypothalamus tissues of pubescent goats. J Proteomics 2022; 260:104574. [DOI: 10.1016/j.jprot.2022.104574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
8
|
Soriano-Guillén L, Tena-Sempere M, Seraphim CE, Latronico AC, Argente J. Precocious sexual maturation: Unravelling the mechanisms of pubertal onset through clinical observations. J Neuroendocrinol 2022; 34:e12979. [PMID: 33904190 DOI: 10.1111/jne.12979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 01/05/2023]
Abstract
Puberty is a crucial biological process normally occurring at a specific time during the lifespan, during which sexual and somatic maturation are completed, and reproductive capacity is reached. Pubertal timing is not only determined by genetics, but also by endogenous and environmental cues, including nutritional and metabolic signals. During the last decade, we have learned much regarding the essential roles of kisspeptins and the neuropeptide pathways that converge on these neurones to modulate kisspeptin signalling, as well as neurokinin B and dynorphin, the co-transmitters of Kiss1 neurones in the arcuate nucleus, and the effects of melanocortins on puberty. Indeed, melanocortins are involved in transmitting the regulatory actions of metabolic cues on pubertal maturation. Intracellular metabolic sensors, such as the AMP-activated protein kinase and the fuel-sensing deacetylase SIRT1, have been shown to contribute to puberty. Further understanding of these signals and regulatory circuits will help uncover the intimacies of the central control of puberty, as well as how alterations in metabolic status, ranging from undernutrition to obesity, affect the pubertal process. Precocious puberty is rare and has a clear female predominance. Central precocious puberty (CPP) is diagnosed when premature activation of the hypothalamic-pituitary axis occurs. Its causes are heterogeneous, with alterations of the central nervous system being of special interest, and with environmental factors also playing a role in some cases. During the last decade, several mutations in different genes (including KISS1, KISS1R, MKRN3 and DLK1) that cause CPP have been discovered. Loss-of-function mutations in MKRN3 are the most common monogenic cause of CPP known to date. Here, we review and update what is known regarding the genotype-phenotype relationship in patients with CPP.
Collapse
Affiliation(s)
- Leandro Soriano-Guillén
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Pediatrics, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
- Instituto de Investigación Fundación Jiménez Díaz, Madrid, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Carlos E Seraphim
- Laboratory of Hormones and Molecular Genetics, LIM42, Developmental Endocrinology Unit, Department of Internal Medicine, Discipline Endocrinology and Metabolism, Faculty of Medicine, Clinicas Hospital, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana C Latronico
- Laboratory of Hormones and Molecular Genetics, LIM42, Developmental Endocrinology Unit, Department of Internal Medicine, Discipline Endocrinology and Metabolism, Faculty of Medicine, Clinicas Hospital, University of Sao Paulo, Sao Paulo, Brazil
| | - Jesús Argente
- Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
- IMDEA Food Institute, CEIUAM+CSIC, Madrid, Spain
| |
Collapse
|
9
|
Bruzzi P, Valeri L, Sandoni M, Madeo SF, Predieri B, Lucaccioni L, Iughetti L. The impact of BMI on long-term anthropometric and metabolic outcomes in girls with idiopathic central precocious puberty treated with GnRHas. Front Endocrinol (Lausanne) 2022; 13:1006680. [PMID: 36263328 PMCID: PMC9574359 DOI: 10.3389/fendo.2022.1006680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Gonadotropin-releasing hormone analogs (GnRHas) are effective in increasing the final height of children with idiopathic central precocious puberty (ICPP). However, in previous years, some transient metabolic complications have been described during this treatment, for which there are no long-term outcome data. Our study aimed to evaluate the efficacy of GnRHas and clarify if body mass index (BMI) at diagnosis of ICPP could influence long-term outcomes. METHODS This was an observational, retrospective study that recruited a cohort of girls with ICPP. Data for anthropometric measures, fasting lipid profile, and glucose metabolism were collected at baseline [when GnRHas treatment started (T1)], at the end of the treatment (T2), and near-final height (nFH) or final height (FH) (T3). Predicted adult height (PAH) was calculated at T1 following Bayley and Pinneau's method. Analysis was carried out using BMI standard deviation score (SDS) categories at T1 (group A, normal weight, vs. group B, overweight/obese). RESULTS Fifty-seven girls with ICPP who were treated with GnRHas were enrolled in the study (group A vs. group B: 33 vs. 24 patients, aged 7.86 ± 0.81 vs. 7.06 ± 1.61 years, respectively; p < 0.05). In the study population, nFH/FH was in line with the target height (TH) (p = 0.54), with a mean absolute height gain of 11.82 ± 5.35 cm compared with PAH. Even if the length of therapy was shorter (group A vs. group B: 1.84 ± 2.15 vs. 2.10 ± 0.81 years, respectively; p < 0.05) and the age at menarche was younger (group A vs. group B: 10.56 ± 1.01 vs. 11.44 ± 0.85 years, respectively; p < 0.05) in group B than in group A, the nFH/FH gain was still comparable between the two groups (p = 0.95). At nFH/FH, BMI SDS was still greater in group B than in group A (p = 0.012), despite the fact that BMI SDS significantly increased in group A only (p < 0.05). Glucose metabolism got worst during GnRHa with a complete restoring after it, independently from pre-treatment BMI. The ratio of low-density to high-density lipoprotein cholesterol transiently deteriorated during treatment with GnRHas in group A only (p = 0.030). CONCLUSIONS Our results confirm the effectiveness of treatment with GnRHas on growth and do not support the concern that being overweight and obese can impair the long-term outcomes of GnRHas therapy. However, the observed transient impairment of metabolic parameters during treatment suggests that clinicians should encourage ICPP girls treated with GnRHas to have a healthy lifestyle, regardless of their pretreatment BMI.
Collapse
Affiliation(s)
- Patrizia Bruzzi
- Pediatric Unit, Department of Paediatrics, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
- *Correspondence: Patrizia Bruzzi,
| | - Lara Valeri
- Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Post Graduate School of Paediatrics, University of Modena & Reggio Emilia, Modena, Italy
| | - Marcello Sandoni
- Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Post Graduate School of Paediatrics, University of Modena & Reggio Emilia, Modena, Italy
| | - Simona Filomena Madeo
- Pediatric Unit, Department of Paediatrics, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Barbara Predieri
- Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Post Graduate School of Paediatrics, University of Modena & Reggio Emilia, Modena, Italy
- Pediatric Unit, Department of Medical and Surgical Sciences of Mothers, Children and Adults, University of Modena & Reggio Emilia, Modena, Italy
| | - Laura Lucaccioni
- Pediatric Unit, Department of Paediatrics, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Lorenzo Iughetti
- Department of Medical and Surgical Sciences of the Mothers, Children and Adults, Post Graduate School of Paediatrics, University of Modena & Reggio Emilia, Modena, Italy
- Pediatric Unit, Department of Medical and Surgical Sciences of Mothers, Children and Adults, University of Modena & Reggio Emilia, Modena, Italy
| |
Collapse
|
10
|
Liu Y, Cao G, Xie Y, Chu M. Identification of differentially expressed genes associated with precocious puberty by suppression subtractive hybridization in goat pituitary tissues. Anim Biotechnol 2021:1-14. [PMID: 34747679 DOI: 10.1080/10495398.2021.1990940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The aim of this study was to identify genes related to precocious puberty expressed in the pituitary of goats at different growth stages by suppression subtractive hybridization (SSH). The pituitary glands from Jining Gray (JG) goats (early puberty) and Liaoning Cashmere (LC) goats (late puberty) at 30, 90, and 180 days were used in this study. To identify differentially expressed genes (DEGs) in the pituitary glands, mRNA was extracted from these tissues, and SSH libraries were constructed and divided into the following groups: juvenile group (30-JG vs. 30-LC, API), puberty group (90-JG vs. 180-LC, BPI), and control group (90-JG vs. 90-LC, EPI). A total of 60, 49, and 58 DEGs were annotated by 222 Gene Ontology (GO) terms and 75 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Most of the DEGs were significantly enriched in GO terms related to 'structural constituent of ribosome', 'translation' and 'GTP binding', and numerous DEGs were also significantly enriched in KEGG terms related to the Jak-STAT signaling and oocyte meiosis pathways. Candidate genes associated with precocious puberty and sexual development were screened from the SSH libraries. These genes were analyzed to determine if they were expressed in the pituitary tissues of the goats at different growth stages and to identify genes that may influence the hypothalamic-pituitary-gonadal (HPG) axis. In this study, we found precocious puberty-related genes (such as PRLP0, EIF5A, and YWHAH) that may be interesting from an evolutionary perspective and that could be investigated for use in future goat breeding programs. Our results provide a valuable dataset that will facilitate further research into the reproductive biology of goats.
Collapse
Affiliation(s)
- Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| | - Guiling Cao
- College of Agriculture, Liaocheng University, Liaocheng, China
| | - Yujing Xie
- College of Agriculture, Liaocheng University, Liaocheng, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Suarez-Henriques P, de Miranda E Silva Chaves C, Cardoso-Leite R, Gomes-Caldas DG, Morita-Katiki L, Tsai SM, Louvandini H. Ovarian activation delays in peripubertal ewe lambs infected with Haemonchus contortus can be avoided by supplementing protein in their diets. BMC Vet Res 2021; 17:344. [PMID: 34732186 PMCID: PMC8565066 DOI: 10.1186/s12917-021-03020-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ewe lamb nutritional and physiological state interfere with the ovarian environment and fertility. The lack or excess of circulating nutrients reaching the ovary can change its gene expression. A protein deficiency in the blood caused by an Haemonchus contortus abomasal infection is detrimental to the organism's development during puberty. The peripubertal period is a time of intensive growth that requires a high level of nutrients. An essential feature controlling pubertal arousal and female reproductive potential is ovarian follicle growth activation. Protein supplementation improves the sheep's immune response to helminthic infections. We aimed to determine if supplementing protein in infected ewe lambs' diet would impact the ovarian environment leading to earlier ovarian follicle activation than in infected not supplemented animals. METHODS We fed 18 Santa Ines ewe lambs (Ovis aries) - bred by the same ram - with either 12% protein (Control groups) or 19% protein (Supplemented groups) in their diets. After 35 days of the diet, they were each artificially infected or not with 10,000 Haemonchus contortus L3 larvae. Following 77 days of the diet and 42 days of infection, we surgically collected their left ovaries and examined their genes expression through RNA sequencing. RESULTS We found that protein supplementation in infected animals led to an up-regulation of genes (FDR p-values < 0.05) and biological processes (p-value cut-off = 0.01) linked to meiotic activation in pre-ovulatory follicles and primordial follicle activation, among others. The supplemented not infected animals also up-regulated genes and processes linked to meiosis and others, such as circadian behaviour. The not supplemented animals had these same processes down-regulated while up-regulated processes related to tissue morphogenesis, inflammation and immune response. CONCLUSION Diet's protein supplementation of peripubertal infected animals allowed them to express genes related to a more mature ovarian follicle stage than their half-sisters that were not supplemented. These results could be modelling potential effects of the interaction between environmental factors, nutrition and infection on reproductive health. When ovarian activation is achieved in a timely fashion, the ewe may generate more lambs during its reproductive life, increasing sheep breeders' productivity.
Collapse
Affiliation(s)
- Paula Suarez-Henriques
- Department of Animal Science, ESALQ - University of São Paulo, Piracicaba, São Paulo, Brazil.
| | | | - Ricardo Cardoso-Leite
- Science, Technology and Education Federal Institute of São Paulo, Piracicaba, São Paulo, Brazil
| | - Danielle G Gomes-Caldas
- Cell and Molecular Biology Laboratory, CENA -University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Siu Mui Tsai
- Cell and Molecular Biology Laboratory, CENA -University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Helder Louvandini
- Laboratory of Animal Nutrition, CENA - University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|
12
|
Li Q, Smith JT, Henry B, Rao A, Pereira A, Clarke IJ. Expression of genes for Kisspeptin (KISS1), Neurokinin B (TAC3), Prodynorphin (PDYN), and gonadotropin inhibitory hormone (RFRP) across natural puberty in ewes. Physiol Rep 2021; 8:e14399. [PMID: 32170819 PMCID: PMC7070159 DOI: 10.14814/phy2.14399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/07/2023] Open
Abstract
Expression of particular genes in hypothami of ewes was measured across the natural pubertal transition by in situ hybridization. The ewes were allocated to three groups (n = 4); prepubertal, postpubertal and postpubertally gonadectomized (GDX). Prepubertal sheep were euthanized at 20 weeks of age and postpubertal animals at 32 weeks. GDX sheep were also euthanized at 32 weeks, 1 week after surgery. Expression of KISS1, TAC3, PDYN in the arcuate nucleus (ARC), RFRP in the dorsomedial hypothalamus and GNRH1 in the preoptic area was quantified on a cellular basis. KISS1R expression by GNRH1 cells was quantified by double-label in situ hybridization. Across puberty, detectable KISS1 cell number increased in the caudal ARC and whilst PDYN cell numbers were low, numbers increased in the rostral ARC. TAC3 expression did not change but RFRP expression/cell was reduced across puberty. There was no change across puberty in the number of GNRH1 cells that expressed the kisspeptin receptor (KISS1R). GDX shortly after puberty did not increase expression of any of the genes of interest. We conclude that KISS1 expression in the ARC increases during puberty in ewes and this may be a causative factor in the pubertal activation of the reproductive axis. A reduction in expression of RFRP may be a factor in the onset of puberty, removing negative tone on GNRH1 cells. The lack of changes in expression of genes following GDX suggest that the effects of gonadal hormones may differ in young and mature animals.
Collapse
Affiliation(s)
- Qun Li
- Department of Physiology, Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jeremy T Smith
- Department of Physiology, Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Belinda Henry
- Department of Physiology, Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Alexandra Rao
- Department of Physiology, Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Alda Pereira
- Department of Physiology, Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Iain J Clarke
- Department of Physiology, Neuroscience Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Bai GL, Hu KL, Huan Y, Wang X, Lei L, Zhang M, Guo CY, Chang HS, Zhao LB, Liu J, Shen ZF, Wang XL, Ni X. The Traditional Chinese Medicine Fuyou Formula Alleviates Precocious Puberty by Inhibiting GPR54/GnRH in the Hypothalamus. Front Pharmacol 2021; 11:596525. [PMID: 33551803 PMCID: PMC7859969 DOI: 10.3389/fphar.2020.596525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/10/2020] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to explore the effect of the traditional Chinese medicine Fuyou formula on precocious puberty (PP). The Fy formula may exert an effect in female rats with PP and GT-7 cells through the GPR54/GnRH signaling pathway. To confirm the effect of the Fy formula on PP through the GPR54/GnRH signaling pathway, we first treated GT1-7 cells with the Fy formula and observed changes in the expression of related genes and proteins and in GnRH secretion. Then, we randomly divided young female Sprague-Dawley rats into the control group, model group, leuprorelin group and the Fy formula group. A PP model was established by injection of danazol on postnatal day 5, and the Fy formula was administered on PND15. The time of vaginal opening, the wet weights of the ovary and uterus, serum hormone levels and the expression of hypothalamic-related genes were observed. We found that the Fy formula delayed vaginal opening, decreased the wet weights and coefficients of the ovary and uterus, decreased the levels of serum hormones (E2, follicle-stimulating hormone and luteinizing hormone) and the cellular GnRH level, and downregulated the gene expression of Kiss1, GPR54 and GnRH in the hypothalamus and the gene and protein expression of GPR54 and GnRH in GT1-7 cells. In conclusion, the Fy formula may alleviate PP via the GPR54/GnRH signaling pathway.
Collapse
Affiliation(s)
- Guo-Liang Bai
- Clinical Research Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China.,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Kai-Li Hu
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Huan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xing Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lei Lei
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Meng Zhang
- Clinical Research Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Chun-Yan Guo
- Clinical Research Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Hong-Sheng Chang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Bo Zhao
- Clinical Research Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Jing Liu
- Clinical Research Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Zhu-Fang Shen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Key Laboratory of Polymorphic Drugs of Beijing, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiao-Ling Wang
- Clinical Research Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Xin Ni
- Clinical Research Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Yu Z, Wang F, Han J, Lu R, Li Q, Cai L, Li B, Chen J, Wang K, Lin W, Lin Q, Chen G, Wen J. Opposite effects of high- and low-dose di-(2-ethylhexyl) phthalate (DEHP) exposure on puberty onset, oestrous cycle regularity and hypothalamic kisspeptin expression in female rats. Reprod Fertil Dev 2021; 32:610-618. [PMID: 32209209 DOI: 10.1071/rd19024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 10/29/2019] [Indexed: 11/23/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is ubiquitous in the environment and has been proposed to lead to reproductive disruption. In this study, we systematically investigated the effects of different doses of DEHP exposure on female hypothalamic-pituitary-gonadal axis development. Female Sprague-Dawley rats were gavaged with vehicle (corn oil) or DEHP (5 or 500mgkg-1 day-1) during postnatal Days (PNDs) 22-28 or PNDs 22-70. Results demonstrated that the low and high doses of DEHP exerted opposite effects on puberty onset, circulating luteinising hormone, serum oestradiol and progesterone levels, with the low dose (5mgkg-1) promoting and the high dose (500mgkg-1) inhibiting these parameters. Significant dose-related differences were also found in the D500 group with longer oestrous cycle duration, lower ovarian/bodyweight ratio, fewer corpus lutea and more abnormal ovarian stromal tissue in comparison with the oil or D5 groups. Molecular data showed that the hypothalamic Kiss1 mRNA expression in the anteroventral periventricular but not in the arcuate nucleus significantly decreased in the D500 rats and increased in the D5 rats relative to the rats in the oil group. These findings suggested that the kisspeptin system is a potential target for DEHP to disrupt reproductive development and function.
Collapse
Affiliation(s)
- Zhen Yu
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Fan Wang
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Junyong Han
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Rongmei Lu
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Qian Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Liangchun Cai
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Bishuang Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Jinyan Chen
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Kun Wang
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Wenjin Lin
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Qinghua Lin
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Gang Chen
- Fujian Key Laboratory of Medical Measurement, Fujian Academy of Medical Sciences, Fuzhou 350001, China; and Department of Endocrinology, Fujian Provincial Hospital, Fuzhou 350001, China; and Corresponding authors: Emails: ;
| | - Junping Wen
- Department of Endocrinology, Fujian Provincial Hospital, Fuzhou 350001, China; and Corresponding authors: Emails: ;
| |
Collapse
|
15
|
Aylwin CF, Lomniczi A. Sirtuin (SIRT)-1: At the crossroads of puberty and metabolism. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2020; 14:65-72. [PMID: 32905232 PMCID: PMC7467505 DOI: 10.1016/j.coemr.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the arcuate nucleus (ARC) of the hypothalamus reside two neuronal systems in charge of regulating feeding control and reproductive development. The melanocortin system responds to metabolic fluctuations adjusting food intake, whereas kisspeptin neurons are in charge of the excitatory control of Gonadotropin Hormone Releasing Hormone (GnRH) neurons. While it is known that the melanocortin system regulates GnRH neuronal activity, it was recently demonstrated that kisspeptin neurons not only innervate melanocortin neurons, but also play an active role in the control of metabolism. These two neuronal systems are intricately interconnected forming loops of stimulation and inhibition according to metabolic status. Furthermore, intracellular and epigenetic pathways respond to external environmental signals by changing DNA conformation and gene expression. Here we review the role of Silent mating type Information Regulation 2 homologue 1 (Sirt1), a class III NAD+ dependent protein deacetylase, in the ARC control of pubertal development and feeding behavior.
Collapse
Affiliation(s)
- Carlos F Aylwin
- Division of Neuroscience, Oregon National Primate Research Center, OHSU, Beaverton, OR, USA
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, OHSU, Beaverton, OR, USA
| |
Collapse
|
16
|
Christensen CF, Koyama T, Nagy S, Danielsen ET, Texada MJ, Halberg KA, Rewitz K. Ecdysone-dependent feedback regulation of prothoracicotropic hormone controls the timing of developmental maturation. Development 2020; 147:dev188110. [PMID: 32631830 PMCID: PMC7390634 DOI: 10.1242/dev.188110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022]
Abstract
The activation of a neuroendocrine system that induces a surge in steroid production is a conserved initiator of the juvenile-to-adult transition in many animals. The trigger for maturation is the secretion of brain-derived neuropeptides, yet the mechanisms controlling the timely onset of this event remain ill-defined. Here, we show that a regulatory feedback circuit controlling the Drosophila neuropeptide Prothoracicotropic hormone (PTTH) triggers maturation onset. We identify the Ecdysone Receptor (EcR) in the PTTH-expressing neurons (PTTHn) as a regulator of developmental maturation onset. Loss of EcR in these PTTHn impairs PTTH signaling, which delays maturation. We find that the steroid ecdysone dose-dependently affects Ptth transcription, promoting its expression at lower concentrations and inhibiting it at higher concentrations. Our findings indicate the existence of a feedback circuit in which rising ecdysone levels trigger, via EcR activity in the PTTHn, the PTTH surge that generates the maturation-inducing ecdysone peak toward the end of larval development. Because steroid feedback is also known to control the vertebrate maturation-inducing hypothalamic-pituitary-gonadal axis, our findings suggest an overall conservation of the feedback-regulatory neuroendocrine circuitry that controls the timing of maturation initiation.
Collapse
Affiliation(s)
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100 Copenhagen O, Denmark
| | - Stanislav Nagy
- Department of Biology, University of Copenhagen, 2100 Copenhagen O, Denmark
| | - E Thomas Danielsen
- Department of Biology, University of Copenhagen, 2100 Copenhagen O, Denmark
| | - Michael J Texada
- Department of Biology, University of Copenhagen, 2100 Copenhagen O, Denmark
| | - Kenneth A Halberg
- Department of Biology, University of Copenhagen, 2100 Copenhagen O, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100 Copenhagen O, Denmark
| |
Collapse
|
17
|
Batura-Gabryel H, Bromińska B, Sawicka-Gutaj N, Cyrańska-Chyrek E, Kuźnar-Kamińska B, Winiarska H, Kostrzewska M, Zybek-Kocik A, Hernik A, Wrotkowska E, Bielawska L, Cofta S, Ruchała M. Does nesfatin-1 influence the hypothalamic–pituitary–gonadal axis in adult males with obstructive sleep apnoea? Sci Rep 2019; 9:11289. [PMID: 31383892 PMCID: PMC6683188 DOI: 10.1038/s41598-019-47061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 07/05/2019] [Indexed: 11/24/2022] Open
Abstract
There is growing evidence that obstructive sleep apnoea (OSA) influences the hypothalamic–pituitary–gonadal axis (HPG axis) in men. The aim of the study was to assess the association of nesfatin-1 with HPG axis disturbances in OSA. This is a prospective study with consecutive enrolment. It comprises 72 newly diagnosed OSA patients ((AHI: apnoea-hypopnea index) 18 subjects: 5 ≤ AHI < 15; 24: 15 ≤ AHI < 30; 30: AHI ≥ 30) and a control group composed of 19 patients (AHI < 5). All patients underwent polysomnography and fasting blood collection for nesfatin-1, testosterone, luteinising hormone (LH), high-sensitivity C-reactive protein (hsCRP), aspartate transaminase (AST), alanine aminotransferase (ALT), creatinine and glucose. Groups had similar levels of LH, nesfatin-1 and testosterone (p = 0.87; p = 0.24; p = 0.08). Nesfatin-1 was not correlated to LH (p = 0.71), testosterone (p = 0.38), AHI (p = 0.34) or the oxygen desaturation index (ODI) (p = 0.69) either in the whole group, or in sub-groups. The study did not reveal any association between the HPG axis and nesfatin-1 in OSA adult males. It is possible that nesfatin-1 is not a mediator of HPG axis disturbances in adult patients with OSA.
Collapse
|
18
|
Guvenc G, Altinbas B, Kasikci E, Ozyurt E, Bas A, Udum D, Niaz N, Yalcin M. Contingent role of phoenixin and nesfatin-1 on secretions of the male reproductive hormones. Andrologia 2019; 51:e13410. [PMID: 31637758 DOI: 10.1111/and.13410] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/17/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022] Open
Abstract
Phoenixin (PNX) and nesfatin-1 are localised in the hypothalamus and the pituitary gland. Moreover, the most of the PNX-expressing neurons in the hypothalamus also co-express nesfatin-1. These outcomes may suggest that there is an interaction between PNX and nesfatin-1, at least in terms of neuroendocrine-mediated regulations. Hence, the study was planned to find out the effects of centrally delivered PNX and nesfatin-1 on male sex hormones or to show the interactive association of intracerebroventricularly (ICV) injected PNX+nesfatin-1 combination on the release of male hormones. PNX and nesfatin-1, single or together, were delivered ICV to different male Wistar Albino rat groups. Both PNX and nesfatin-1 induced a significant enhancement in plasma FSH, LH and testosterone without inducing any alteration in plasma GnRH in the rats. The central combinatorial treatment of both the neuropeptides produced a more potent rise in male plasma hormone levels than treating with single neuropeptide. In summary, our preliminary data show that centrally delivered PNX and nesfatin-1 can affect plasma male hormone levels. Moreover, that the combinatorial treatment with both the neuropeptides in male rats leading to a more potent effect on the plasma male hormone levels might suggest that both these neuropeptides act synergistically in terms of regulation of male HPGA.
Collapse
Affiliation(s)
- Gokcen Guvenc
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Burcin Altinbas
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey.,Department of Physiology, Faculty of Medicine, Sanko University, Gaziantep, Turkey
| | - Esra Kasikci
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ebru Ozyurt
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Aysenur Bas
- Department of Molecular Biology and Genetic, Faculty of Science and Art, Bursa Uludag University, Bursa, Turkey
| | - Duygu Udum
- Department of Biochemistry, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Nasir Niaz
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey.,Department of Physiology and Biochemistry, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Murat Yalcin
- Department of Physiology, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
19
|
Motti ML, Meccariello R. Minireview: The Epigenetic Modulation of KISS1 in Reproduction and Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16142607. [PMID: 31336647 PMCID: PMC6679060 DOI: 10.3390/ijerph16142607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/04/2019] [Accepted: 07/17/2019] [Indexed: 01/07/2023]
Abstract
Epigenetics describes how both lifestyle and environment may affect human health through the modulation of genome functions and without any change to the DNA nucleotide sequence. The discovery of several epigenetic mechanisms and the possibility to deliver epigenetic marks in cells, gametes, and biological fluids has opened up new perspectives in the prevention, diagnosis, and treatment of human diseases. In this respect, the depth of knowledge of epigenetic mechanisms is fundamental to preserving health status and to developing targeted interventions. In this minireview, we summarize the epigenetic modulation of the KISS1 gene in order to provide an example of epigenetic regulation in health and disease.
Collapse
Affiliation(s)
- Maria Letizia Motti
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, via Medina 40, 80133 Napoli, Italy
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Università di Napoli Parthenope, via Medina 40, 80133 Napoli, Italy.
| |
Collapse
|
20
|
Precocious Puberty and the Lin28/Let7 Pathway: The Therapeutic Effect of the Nourishing "Yin" and Purging "Fire" Traditional Chinese Medicine Mixture in a Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:4868045. [PMID: 30046338 PMCID: PMC6038664 DOI: 10.1155/2018/4868045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 12/20/2022]
Abstract
The present study aims to investigate the effects of the nourishing “Yin” and purging “Fire” Traditional Chinese Medicine (TCM) herb mixture on precocious puberty and TCM may act through hypothalamic Lin28/let7 pathway expression in the precocious puberty model rats. Meanwhile, to confirm the relationship between Lin28/let7 pathway and puberty by overexpression Lin28a, in the first part of this study, female rats were randomly allocated into untreated controls, the precocious puberty (PP) model group, the PP control group, and the PP + TCM group. Rats on postnatal day 5 were injected danazol to establish the PP model. From days 15 to 35, the rats in the TCM group were given the TCM twice daily. Vaginal opening, sex-related hormones, and body and reproductive organ weights were measured, and the expressions of hypothalamic Lin28a and Lin28b mRNA and let7a and let7b miRNA were detected. In addition, in the second part, the effects of overexpression of Lin28a on the vaginal opening time were evaluated. In the two parts of the study, we found that, at the onset of puberty, a decrease in ovary weight, an increase in the serum levels of luteinizing hormone and progesterone, and increased expression levels of hypothalamic Lin28b mRNA were observed in the PP + TCM group compared to the PP model group. The vaginal opening time was significantly delayed upon overexpression of Lin28a. Above all, the mechanism by which the TCM treats precocious puberty is thus likely to be associated with inhibition of the hypothalamic Lin28/let7 signaling pathway and our findings provide in-depth insight into the relationship between the overexpression of Lin28a gene in the hypothalamus and the onset of puberty.
Collapse
|
21
|
Lee CT, Tsai MC, Lin CY, Strong C. Longitudinal Effects of Self-Report Pubertal Timing and Menarcheal Age on Adolescent Psychological and Behavioral Outcomes in Female Youths from Northern Taiwan. Pediatr Neonatol 2017; 58:313-320. [PMID: 27600751 DOI: 10.1016/j.pedneo.2016.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/29/2016] [Accepted: 04/22/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Early puberty is linked to adverse developmental outcomes in adolescents in Western societies. However, little is known about this relationship in an East Asian context. In addition, whether the impact of subjective pubertal timing (PT) and menarcheal age (MA) on adolescent psychosocial development persists into early adulthood remains unclear and is worthy of investigation. METHODS A subset of data was retrieved from the Taiwan Youth Project, which recruited and followed a longitudinal cohort of 7th- and 9th-grade female Taiwanese students from 2000 to 2007. Subjective PT was defined using the Pubertal Developmental Scale (PDS), which mainly measures pubertal changes. MA was recalled by participants themselves. Various psychological and behavioral factors were recorded and measured until the age of 20, including the use of alcohol and cigarettes, psychological well-being, sexual activity, and socially problematic behaviors. A χ2 test for linear-by-linear association and one-way analysis of variance followed by multivariate regression models were used to dissect the differential effects of PT and MA in the association with the outcome variables. RESULTS In total, 1545 female participants with an average age of 14.5 (±1.1) years were deemed valid for analysis. Among them, 257 (16.6%) participants perceived themselves as having early PT, defined as more than 1 standard deviation above the mean PDS score, and 82 (5.3%) had early MA (occurring before the 4th grade). In univariate analysis, participants with early PT had higher rates of smoking and sexual activity, and MA was not related to their psychobehavioral outcomes. After multivariate adjustment, only late PT was significantly correlated with lower amounts of cigarette smoking and sexual activity before the age of 20. CONCLUSION Conceptual and actual pubertal developments may be differentially associated with psychobehavioral outcomes among young Taiwanese girls. Clinical attention should be given to adolescent self-perception of sexual maturation and developmental guidance provided accordingly.
Collapse
Affiliation(s)
- Chih-Ting Lee
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Che Tsai
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Chung-Ying Lin
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Carol Strong
- Department of Public Health, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
22
|
Han X, He Y, Zeng G, Wang Y, Sun W, Liu J, Sun Y, Yu J. Intracerebroventricular injection of RFRP-3 delays puberty onset and stimulates growth hormone secretion in female rats. Reprod Biol Endocrinol 2017; 15:35. [PMID: 28464910 PMCID: PMC5414188 DOI: 10.1186/s12958-017-0254-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/27/2017] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Puberty onset is a complex, organized biological process with multilevel regulation, and its physiopathological mechanisms are yet to be elucidated. RFRP-3, the mammalian ortholog to gonadotropin-inhibitory hormone, is implicated in inhibiting the synthesis and release of gonadotropin in mammals. However, it is unclear whether RFRP-3 participates in regulating pubertal development. METHODS This study investigated the functional significance and regulatory mechanism of hypothalamic RFRP-3 neuropeptide in the onset of puberty in young female rats. On postnatal day 22, we implanted cannulas into the lateral ventricles of female rat pups. From postnatal day 28 to postnatal day 36, the intracerebroventricular injection of RFRP-3, or vehicle, was conducted twice a day. To investigate whether puberty onset was affected, we examined the body weight, age of vaginal opening, serum hormone levels, uterus and ovary development, and hypothalamic Kiss-1 mRNA expression. RESULTS Intracerebroventricular injection of RFRP-3 significantly decreased the serum concentrations of luteinizing hormone and estradiol, delayed uterine maturation, and postponed the time of vaginal opening. This study suggests that RFRP-3 can delay the onset of puberty in young female rats; the expression of Kiss-1 mRNA is potently inhibited in the RFRP-3 group. Moreover, our data show that RFRP-3 elevates serum growth hormone levels. CONCLUSIONS These data suggest that intracerebroventricular injection of RFRP-3 significantly delays the onset of puberty in female rats. Additionally, RFRP-3 may be associated with prepubertal rise in the secretion of growth hormone.
Collapse
Affiliation(s)
- Xinghui Han
- 0000 0004 0407 2968grid.411333.7Department of Integrative Medicine, Children’s Hospital of Fudan University, No.399, Wan Yuan Road, Min Hang District, Shanghai, China
| | - Yuanyuan He
- 0000 0004 0407 2968grid.411333.7Department of Integrative Medicine, Children’s Hospital of Fudan University, No.399, Wan Yuan Road, Min Hang District, Shanghai, China
| | - Gulan Zeng
- Department of Pediatrics, Xiamen Hospital of T.C.M, Xiamen, People’s Republic of China
| | - Yonghong Wang
- 0000 0004 0407 2968grid.411333.7Department of Integrative Medicine, Children’s Hospital of Fudan University, No.399, Wan Yuan Road, Min Hang District, Shanghai, China
| | - Wen Sun
- 0000 0004 0407 2968grid.411333.7Department of Integrative Medicine, Children’s Hospital of Fudan University, No.399, Wan Yuan Road, Min Hang District, Shanghai, China
| | - Junchao Liu
- 0000 0004 0407 2968grid.411333.7Department of Integrative Medicine, Children’s Hospital of Fudan University, No.399, Wan Yuan Road, Min Hang District, Shanghai, China
| | - Yanyan Sun
- 0000 0004 0407 2968grid.411333.7Department of Integrative Medicine, Children’s Hospital of Fudan University, No.399, Wan Yuan Road, Min Hang District, Shanghai, China
| | - Jian Yu
- 0000 0004 0407 2968grid.411333.7Department of Integrative Medicine, Children’s Hospital of Fudan University, No.399, Wan Yuan Road, Min Hang District, Shanghai, China
| |
Collapse
|
23
|
Role of Nesfatin-1 in the Reproductive Axis of Male Rat. Sci Rep 2016; 6:32877. [PMID: 27599613 PMCID: PMC5013388 DOI: 10.1038/srep32877] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/16/2016] [Indexed: 12/21/2022] Open
Abstract
Nesfatin-1 is an important molecule in the regulation of reproduction. However, its role in the reproductive axis in male animals remains to be understood. Here, we found that nesfatin-1 was mainly distributed in the arcuate nucleus (ARC), paraventricular nucleus (PVN), periventricular nucleus (PeN), and lateral hypothalamic area (LHA) of the hypothalamus; adenohypophysis and Leydig cells in male rats. Moreover, the concentrations of serum nesfatin-1 and its mRNA in hypothalamo-pituitary-gonadal axis (HPGA) vary with the age of the male rat. After intracerebroventricular injection of nesfatin-1, the hypothalamic genes for gonadotrophin releasing hormone (GnRH), kisspeptin (Kiss-1), pituitary genes for follicle-stimulate hormone β(FSHβ), luteinizing hormone β(LHβ), and genes for testicular steroidogenic acute regulatory (StAR) expression levels were decreased significantly. Nesfatin-1 significantly increased the expression of genes for 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD), and cytochrome P450 cleavage (P450scc) in the testis of pubertal rats, but their levels decreased in adult rats (P < 0.05), along with the serum FSH, LH, and testosterone (T) concentrations. After nesfatin-1 addition in vitro, T concentrations of the supernatant were significantly higher than that in the control group. These results were suggestive of the role of nesfatin-1 in the regulation of the reproductive axis in male rats.
Collapse
|
24
|
Chirico D, Liu J, Klentrou P, Shoemaker JK, O'Leary DD. The Effects of Sex and Pubertal Maturation on Cardiovagal Baroreflex Sensitivity. J Pediatr 2015; 167:1067-73. [PMID: 26340872 DOI: 10.1016/j.jpeds.2015.07.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/22/2015] [Accepted: 07/28/2015] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To examine baroreflex sensitivity (BRS) across different stages of pubertal maturation in healthy children and adolescents. STUDY DESIGN This study was cross-sectional and included 104 participants (53 males and 51 females) aged 8-18 years old. Participants were organized into 5 pubertal groups based on the criteria of Tanner; prepubertal (Tanner 1, n = 19), early-pubertal (Tanner 2, n = 16), peripubertal (Tanner 3, n = 24), late-pubertal (Tanner 4, n = 23), and postpubertal (Tanner 5 and 6, n = 22). Adiposity (fat-free mass, fat mass, and body fat%), body mass index, and demographic variables were collected. Beat-by-beat blood pressure and R-R interval were collected during supine rest to determine BRS. BRS was assessed by transfer function analysis in the low frequency range (0.05-0.15 Hz). RESULTS The results demonstrated a sex-by-maturation interaction [F(4, 94) = 3.202, P = .019]. BRS decreased from early-to postpuberty in males (30 [7.1] vs 13.2 [7.8] ms/mm Hg), and remained unchanged in females. This led to significantly greater BRS in females compared with males, postpuberty (27 [7.3] vs 13.2 [7.8] ms/mm Hg). CONCLUSIONS Controlling for both sex and maturation when examining BRS in children and adolescents with cardiovascular disease risk factors will aid in interpreting abnormally high or low BRS values.
Collapse
Affiliation(s)
- Daniele Chirico
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Jian Liu
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada
| | - J Kevin Shoemaker
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - Deborah D O'Leary
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada; Brock-Niagara Centre for Health and Well-Being, Brock University, St. Catharines, Ontario, Canada.
| |
Collapse
|
25
|
Effect of Nourishing "Yin" Removing "Fire" Chinese Herbal Mixture on Hypothalamic Mammalian Target of Rapamycin Expression during Onset of Puberty in Female Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:157846. [PMID: 26457106 PMCID: PMC4589583 DOI: 10.1155/2015/157846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/03/2015] [Accepted: 09/06/2015] [Indexed: 11/17/2022]
Abstract
Aim. The present study aims to investigate the effects of nourishing "Yin" removing "Fire" (NYRF) Chinese herbal mixture on puberty onset and hypothalamic mTOR expression in female rats. Materials and Methods. Forty female 20-day-old Sprague-Dawley rats were randomly divided into Chinese herbal mixture (CHM) and normal saline (NS) groups. Rats in CHM and NS were treated with NYRF mixture and normal saline, respectively, from d22. Rats in each group were sacrificed on d28, d31, and d34. Serum luteinizing hormone (LH), follicle stimulating hormone (FSH), and estradiol (E2) levels were analyzed by ELISA. Hypothalamic mTOR mRNA expression levels were determined by RT-PCR and hypothalamic p-mTOR protein levels were assayed by western blot. Results. The vaginal opening time in CHM group was significantly delayed (P < 0.05). On d31, in comparison with NS group, the coefficients of uteri and ovaries, levels of serum LH and E2, and the expression levels of hypothalamic mTOR mRNA and p-mTOR protein were significantly lower in CHM group (P < 0.05). Conclusion. The mechanism by which the nourishing "Yin" removing "Fire" Chinese herbal mixture delays puberty onset may be associated with the inhibition of the hypothalamic mTOR signaling.
Collapse
|
26
|
Kawwass JF, Summer R, Kallen CB. Direct effects of leptin and adiponectin on peripheral reproductive tissues: a critical review. Mol Hum Reprod 2015; 21:617-632. [PMID: 25964237 PMCID: PMC4518135 DOI: 10.1093/molehr/gav025] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/22/2015] [Accepted: 05/05/2015] [Indexed: 08/13/2023] Open
Abstract
Obesity is a risk factor for infertility and adverse reproductive outcomes. Adipose tissue is an important endocrine gland that secretes a host of endocrine factors, called adipokines, which modulate diverse physiologic processes including appetite, metabolism, cardiovascular function, immunity and reproduction. Altered adipokine expression in obese individuals has been implicated in the pathogenesis of a host of health disorders including diabetes and cardiovascular disease. It remains unclear whether adipokines play a significant role in the pathogenesis of adverse reproductive outcomes in obese individuals and, if so, whether the adipokines are acting directly or indirectly on the peripheral reproductive tissues. Many groups have demonstrated that receptors for the adipokines leptin and adiponectin are expressed in peripheral reproductive tissues and that these adipokines are likely, therefore, to exert direct effects on these tissues. Many groups have tested for direct effects of leptin and adiponectin on reproductive tissues including the testis, ovary, uterus, placenta and egg/embryo. The hypothesis that decreased fertility potential or adverse reproductive outcomes may result, at least in part, from defects in adipokine signaling within reproductive tissues has also been tested. Here, we present a critical analysis of published studies with respect to two adipokines, leptin and adiponectin, for which significant data have been generated. Our evaluation reveals significant inconsistencies and methodological limitations regarding the direct effects of these adipokines on peripheral reproductive tissues. We also observe a pervasive failure to account for in vivo data that challenge observations made in vitro. Overall, while leptin and adiponectin may directly modulate peripheral reproductive tissues, existing data suggest that these effects are minor and non-essential to human or mouse reproductive function. Current evidence suggests that direct effects of leptin or adiponectin on peripheral reproductive tissues are unlikely to factor significantly in the adverse reproductive outcomes observed in obese individuals.
Collapse
Affiliation(s)
- Jennifer F Kawwass
- Department of Gynecology and Obstetrics, Division of Reproductive Endocrinology and Infertility, Emory University School of Medicine, 1639 Pierce Drive, WMB 4217, Atlanta, GA 30322, USA
| | - Ross Summer
- Center for Translational Medicine, Thomas Jefferson University, 1020 Walnut Street, Philadelphia, PA 19107, USA
| | - Caleb B Kallen
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Thomas Jefferson University, 833 Chestnut Street, Suite C-152, Philadelphia, PA 19107, USA
| |
Collapse
|
27
|
Han W, Zou J, Wang K, Su Y, Zhu Y, Song C, Li G, Qu L, Zhang H, Liu H. High-Throughput Sequencing Reveals Hypothalamic MicroRNAs as Novel Partners Involved in Timing the Rapid Development of Chicken (Gallus gallus) Gonads. PLoS One 2015; 10:e0129738. [PMID: 26061962 PMCID: PMC4465036 DOI: 10.1371/journal.pone.0129738] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022] Open
Abstract
Onset of the rapid gonad growth is a milestone in sexual development that comprises many genes and regulatory factors. The observations in model organisms and mammals including humans have shown a potential link between miRNAs and development timing. To determine whether miRNAs play roles in this process in the chicken (Gallus gallus), the Solexa deep sequencing was performed to analyze the profiles of miRNA expression in the hypothalamus of hens from two different pubertal stages, before onset of the rapid gonad development (BO) and after onset of the rapid gonad development (AO). 374 conserved and 46 novel miRNAs were identified as hypothalamus-expressed miRNAs in the chicken. 144 conserved miRNAs were showed to be differentially expressed (reads > 10, P < 0.05) during the transition from BO to AO. Five differentially expressed miRNAs were validated by real-time quantitative RT-PCR (qRT-PCR) method. 2013 putative genes were predicted as the targets of the 15 most differentially expressed miRNAs (fold-change > 4.0, P < 0.01). Of these genes, 7 putative circadian clock genes, Per2, Bmal1/2, Clock, Cry1/2, and Star were found to be targeted multiple times by the miRNAs. qRT-PCR revealed the basic transcription levels of these clock genes were much higher (P < 0.01) in AO than in BO. Further functional analysis suggested that these 15 miRNAs play important roles in transcriptional regulation and signal transduction pathways. The results provide new insights into miRNAs functions in timing the rapid development of chicken gonads. Considering the characteristics of miRNA functional conservation, the results will contribute to the research on puberty onset in humans.
Collapse
Affiliation(s)
- Wei Han
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, PR China
- National Chickens Genetic Resources, Poultry institute, Chinese Academy of Agricultural Science, Yangzhou, PR China
| | - Jianmin Zou
- National Chickens Genetic Resources, Poultry institute, Chinese Academy of Agricultural Science, Yangzhou, PR China
| | - Kehua Wang
- National Chickens Genetic Resources, Poultry institute, Chinese Academy of Agricultural Science, Yangzhou, PR China
| | - Yijun Su
- National Chickens Genetic Resources, Poultry institute, Chinese Academy of Agricultural Science, Yangzhou, PR China
| | - Yunfen Zhu
- National Chickens Genetic Resources, Poultry institute, Chinese Academy of Agricultural Science, Yangzhou, PR China
| | - Chi Song
- National Chickens Genetic Resources, Poultry institute, Chinese Academy of Agricultural Science, Yangzhou, PR China
| | - Guohui Li
- National Chickens Genetic Resources, Poultry institute, Chinese Academy of Agricultural Science, Yangzhou, PR China
| | - Liang Qu
- National Chickens Genetic Resources, Poultry institute, Chinese Academy of Agricultural Science, Yangzhou, PR China
| | - Huiyong Zhang
- National Chickens Genetic Resources, Poultry institute, Chinese Academy of Agricultural Science, Yangzhou, PR China
| | - Honglin Liu
- College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, PR China
- * E-mail:
| |
Collapse
|
28
|
Semaan SJ, Kauffman AS. Daily successive changes in reproductive gene expression and neuronal activation in the brains of pubertal female mice. Mol Cell Endocrinol 2015; 401:84-97. [PMID: 25498961 PMCID: PMC4312730 DOI: 10.1016/j.mce.2014.11.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/22/2014] [Accepted: 11/18/2014] [Indexed: 01/01/2023]
Abstract
Puberty is governed by the secretion of gonadotropin releasing hormone (GnRH), but the roles and identities of upstream neuropeptides that control and time puberty remain poorly understood. Indeed, how various reproductive neural gene systems change before and during puberty, and in relation to one another, is not well-characterized. We detailed the daily pubertal profile (from postnatal day [PND] 15 to PND 30) of neural Kiss1 (encoding kisspeptin), Kiss1r (kisspeptin receptor), Tac2 (neurokinin B), and Rfrp (RFRP-3, mammalian GnIH) gene expression and day-to-day c-fos induction in each of these cell types in developing female mice. Kiss1 expression in the AVPV/PeN increased substantially over the pubertal transition, reaching adult levels around vaginal opening (PND 27.5), a pubertal marker. However, AVPV/PeN Kiss1 neurons were not highly activated, as measured by c-fos co-expression, at any pubertal age. In the ARC, Kiss1 and Tac2 cell numbers showed moderate increases across the pubertal period, and neuronal activation of Tac2/Kiss1 cells was moderately elevated at all pubertal ages. Additionally, Kiss1r expression specifically in GnRH neurons was already maximal by PND 15 and did not change with puberty. Conversely, both Rfrp expression and Rfrp/c-fos co-expression in the DMN decreased markedly in the early pre-pubertal stage. This robust decrease of the inhibitory RFRP-3 population may diminish inhibition of GnRH neurons during early puberty. Collectively, our data identify the precise timing of important developmental changes - and in some cases, lack thereof - in gene expression and neuronal activation of key reproductive neuropeptides during puberty, with several changes occurring well before vaginal opening.
Collapse
Affiliation(s)
- Sheila J Semaan
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA, USA
| | - Alexander S Kauffman
- Department of Reproductive Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
29
|
Rasmussen AR, Wohlfahrt-Veje C, Tefre de Renzy-Martin K, Hagen CP, Tinggaard J, Mouritsen A, Mieritz MG, Main KM. Validity of self-assessment of pubertal maturation. Pediatrics 2015; 135:86-93. [PMID: 25535262 DOI: 10.1542/peds.2014-0793] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Studies of adolescents often use self-assessment of pubertal maturation, the reliability of which has shown conflicting results. We aimed to examine the reliability of child and parent assessments of healthy boys and girls. METHODS A total of 898 children (418 girls, 480 boys, age 7.4-14.9 years) and 1173 parents (550 daughters, 623 sons, age 5.6-14.7 years) assessed onset of puberty or development of breasts, genitals, and pubic hair according to Tanner stages by use of a questionnaire and drawings. Physicians' assessments were blinded and set as the gold standard. Percentage agreement, κ, and Kendall's correlation were used to analyze the agreement rates. RESULTS Breast stage was assessed correctly by 44.9% of the girls (κ = 0.28, r = 0.74, P < .001) and genital stage by 54.7% of the boys (κ = 0.33, r = 0.61, P < .001). For pubic hair stage 66.8% of girls (κ = 0.55, r = 0.80, P < .001) and 66.1% of boys (κ = 0.46, r = 0.70, P < .001) made correct assessments. Of the parents, 86.2% correctly assessed onset of puberty in girls (κ = 0.70, r = 0.71, P < .001) and 68.4% in boys (κ = 0.30, r = 0.37, P < .001). Children who underestimated were younger and children who overestimated older than their peers who made correct assessments. Girls and their parents tended to underestimate, whereas boys overestimated their pubertal stage. CONCLUSIONS Pubertal assessment by the child or the parents is not a reliable measure of exact pubertal staging and should be augmented by a physical examination. However, for large epidemiologic studies self-assessment can be sufficiently accurate for a simple distinction between prepuberty and puberty.
Collapse
Affiliation(s)
- Anna R Rasmussen
- University Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Christine Wohlfahrt-Veje
- University Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Casper P Hagen
- University Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jeanette Tinggaard
- University Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Annette Mouritsen
- University Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel G Mieritz
- University Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Katharina M Main
- University Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Astiz S, Gonzalez-Bulnes A, Astiz I, Barbero A, Perez-Solana M, Garcia-Real I. Advanced onset of puberty after metformin therapy in swine with thrifty genotype. Exp Physiol 2014; 99:1241-52. [DOI: 10.1113/expphysiol.2014.081455] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- S. Astiz
- Departamento de Reproducción Animal; INIA, Avda. Puerta de Hierro s/n. 28040 Madrid Spain
| | - A. Gonzalez-Bulnes
- Departamento de Reproducción Animal; INIA, Avda. Puerta de Hierro s/n. 28040 Madrid Spain
| | - I. Astiz
- Unidad de Pediatría; Atención Primaria; Centro de Salud Ciudad San Pablo; Avenida de Madrid; 13 Coslada 28022 Madrid Spain
| | - A. Barbero
- Departamento Medicina y Cirugía Animal; Facultad de Veterinaria; Universidad Complutense de Madrid; Ciudad Universitaria s/n; 28040 Madrid Spain
| | - M.L. Perez-Solana
- Departamento de Reproducción Animal; INIA, Avda. Puerta de Hierro s/n. 28040 Madrid Spain
| | - I. Garcia-Real
- Departamento Medicina y Cirugía Animal; Facultad de Veterinaria; Universidad Complutense de Madrid; Ciudad Universitaria s/n; 28040 Madrid Spain
| |
Collapse
|
31
|
Willemsen RH, Elleri D, Williams RM, Ong KK, Dunger DB. Pros and cons of GnRHa treatment for early puberty in girls. Nat Rev Endocrinol 2014; 10:352-63. [PMID: 24709660 DOI: 10.1038/nrendo.2014.40] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The timing of puberty has considerable biological, psychosocial and long-term health implications. Secular trends in age at pubertal development, the effects of obesity and the potential effects of environmental endocrine disruptors challenge the standard definitions of precocious puberty and the indications for intervention with gonadotropin-releasing hormone agonists (GnRHa) in girls with precocious puberty. GnRHa therapy is effective in improving adult height in patients who present with classic central precocious puberty (at <8 years old), without causing adverse effects on body composition, BMD and reproductive function. However, its benefits in patients with atypical forms of early puberty not driven by luteinising hormone are not well defined. The role of GnRHa in these patients and the potential benefits in terms of later growth, psychosocial functioning and long-term risk of adult diseases that are associated with early menarche, such as breast cancer and the metabolic syndrome, have not been established.
Collapse
Affiliation(s)
- Ruben H Willemsen
- Department of Paediatrics and Wellcome Trust-MRC Institute of Metabolic Science, Box 116, Level 8, Addenbrooke's Hospital, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Daniela Elleri
- Department of Paediatrics and Wellcome Trust-MRC Institute of Metabolic Science, Box 116, Level 8, Addenbrooke's Hospital, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Rachel M Williams
- Department of Paediatrics and Wellcome Trust-MRC Institute of Metabolic Science, Box 116, Level 8, Addenbrooke's Hospital, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - Ken K Ong
- MRC Epidemiology Unit, Box 285, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| | - David B Dunger
- Department of Paediatrics and Wellcome Trust-MRC Institute of Metabolic Science, Box 116, Level 8, Addenbrooke's Hospital, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0QQ, UK
| |
Collapse
|
32
|
Yetnikoff L, Reichard RA, Schwartz ZM, Parsely KP, Zahm DS. Protracted maturation of forebrain afferent connections of the ventral tegmental area in the rat. J Comp Neurol 2014; 522:1031-47. [PMID: 23983069 PMCID: PMC4217282 DOI: 10.1002/cne.23459] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 01/21/2023]
Abstract
The mesocorticolimbic dopamine system has long attracted the interest of researchers concerned with the unique gamut of behavioral and mental health vulnerabilities associated with adolescence. Accordingly, the development of the mesocorticolimbic system has been studied extensively, but almost exclusively with regard to dopaminergic output, particularly in the nucleus accumbens and medial prefrontal cortex. To the contrary, the ontogeny of inputs to the ventral tegmental area (VTA), the source of mesocorticolimbic dopamine, has been neglected. This is not a trivial oversight, as the activity of VTA neurons, which reflects their capacity to transmit information about salient events, is sensitively modulated by inputs. Here, we assessed the development of VTA afferent connections using the β subunit of cholera toxin (Ctβ) as a retrograde axonal tracer in adolescent (postnatal day 39) and early adult (8-9-week-old) rats. After intra-VTA injections of Ctβ, adolescent and early adult animals exhibited qualitatively similar distributions of retrogradely labeled neurons in the sense that VTA-projecting neurons were present at all of the same rostrocaudal levels in all of the same structures in both age groups. However, quantitation of retrogradely labeled neurons revealed that adolescent brains, compared with early adult brains, had significantly fewer VTA-projecting neurons preferentially within an interconnected network of cortical and striatopallidal forebrain structures. These findings provide a novel perspective on the development of the mesocorticolimbic dopamine system and may have important implications for age-dependent specificity in the function of this system, particularly with regard to adolescent impulsivity and mental health vulnerabilities.
Collapse
Affiliation(s)
- Leora Yetnikoff
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Rhett A. Reichard
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Zachary M. Schwartz
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Kenneth P. Parsely
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104
| | - Daniel S. Zahm
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|
33
|
Plasma nesfatin-1 is not affected by long-term food restriction and does not predict rematuration among iteroparous female rainbow trout (Oncorhynchus mykiss). PLoS One 2014; 9:e85700. [PMID: 24416444 PMCID: PMC3887096 DOI: 10.1371/journal.pone.0085700] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/05/2013] [Indexed: 12/21/2022] Open
Abstract
The metabolic peptide hormone nesfatin-1 has been linked to the reproductive axis in fishes. The purpose of this study was to determine how energy availability after spawning affects plasma levels of nesfatin-1, the metabolic peptide hormone ghrelin, and sex steroid hormones in rematuring female rainbow trout (Oncorhynchus mykiss). To limit reproductive maturation, a group of female trout was food-restricted after spawning and compared with a control group that was fed a standard broodstock ration. The experiment was conducted twice, once using two-year-old trout (second-time spawners) and once using three-year-old trout (third-time spawners). During monthly sampling, blood was collected from all fish, and a subset of fish from each treatment was sacrificed for pituitaries. Pituitary follicle-stimulating hormone-beta (fsh-β) mRNA expression was analyzed with q-RT-PCR; plasma hormone levels were quantified by radioimmunoassay (17β-estradiol and ghrelin) and enzyme-linked immunosorbent assay (11-keto-testosterone and nesfatin-1). Although plasma nesfatin-1 levels increased significantly in the months immediately after spawning within both feeding treatments, plasma nesfatin-1 did not differ significantly between the two treatments at any point. Similarly, plasma ghrelin levels did not differ significantly between the two treatments at any point. Food restriction arrested ovarian development by 15–20 weeks after spawning, shown by significantly lower plasma E2 levels among restricted-ration fish. Pituitary fsh-β mRNA levels were higher among control-ration fish than restricted-ration fish starting at 20 weeks, but did not differ significantly between treatment groups until 30 weeks after spawning. Within both treatment groups, plasma 11-KT was elevated immediately after spawning and rapidly decreased to and persisted at low levels; starting between 20 and 25 weeks after spawning, plasma 11-KT was higher among control-ration fish than restricted-ration fish. The results from these experiments do not provide support for plasma nesfatin-1 as a signal for the initiation of reproductive development in rematuring female rainbow trout.
Collapse
|
34
|
Castellano JM, Wright H, Ojeda SR, Lomniczi A. An alternative transcription start site yields estrogen-unresponsive Kiss1 mRNA transcripts in the hypothalamus of prepubertal female rats. Neuroendocrinology 2014; 99:94-107. [PMID: 24686008 PMCID: PMC4111975 DOI: 10.1159/000362280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/16/2014] [Indexed: 11/19/2022]
Abstract
The importance of the Kiss1 gene in the control of reproductive development is well documented. However, much less is known about the transcriptional regulation of Kiss1 expression in the hypothalamus. Critical for these studies is an accurate identification of the site(s) where Kiss1 transcription is initiated. Employing 5'-RACE PCR, we detected a transcription start site (TSS1) used by the hypothalamus of rats, mice, nonhuman primates and humans to initiate Kiss1 transcription. In rodents, an exon 1 encoding 5'-untranslated sequences is followed by an alternatively spliced second exon, which encodes 5'-untranslated regions of two different lengths and contains the translation initiation codon (ATG). In nonhuman primates and humans, exon 2 is not alternatively spliced. Surprisingly, in rat mediobasal hypothalamus (MBH), but not preoptic area (POA), an additional TSS (TSS2) located upstream from TSS1 generates an exon 1 longer (377 bp) than the TSS1-derived exon 1 (98 bp). The content of TSS1-derived transcripts increased at puberty in the POA and MBH of female rats. It also increased in the MBH after ovariectomy, and this change was prevented by estrogen. In contrast, no such changes in TSS2-derived transcript abundance were detected. Promoter assays showed that the proximal TSS1 promoter is much more active than the putative TSS2 promoter, and that only the TSS1 promoter is regulated by estrogen. These differences appear to be related to the presence of a TATA box and binding sites for transcription factors activating transcription and interacting with estrogen receptor-α in the TSS1, but not TSS2, promoter.
Collapse
Affiliation(s)
- Juan Manuel Castellano
- Division of Neuroscience, Oregon National Primate Research Center-Oregon Health and Science University, Beaverton, Oreg., USA
| | | | | | | |
Collapse
|
35
|
Hu J, Du G, Zhang W, Huang H, Chen D, Wu D, Wang X. Short-term neonatal/prepubertal exposure of dibutyl phthalate (DBP) advanced pubertal timing and affected hypothalamic kisspeptin/GPR54 expression differently in female rats. Toxicology 2013; 314:65-75. [DOI: 10.1016/j.tox.2013.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 11/29/2022]
|
36
|
Lecumberri Santamaría B, Fernández-Aranda F, Tena-Sempere M. [Creating a European consortium to study GnRH deficiency (COST Action BM1105)]. ENDOCRINOLOGIA Y NUTRICION : ORGANO DE LA SOCIEDAD ESPANOLA DE ENDOCRINOLOGIA Y NUTRICION 2013; 60:485-486. [PMID: 23834769 DOI: 10.1016/j.endonu.2013.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 03/27/2013] [Accepted: 04/10/2013] [Indexed: 06/02/2023]
|
37
|
Wahab F, Atika B, Shahab M. Kisspeptin as a link between metabolism and reproduction: evidences from rodent and primate studies. Metabolism 2013; 62:898-910. [PMID: 23414722 DOI: 10.1016/j.metabol.2013.01.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 01/14/2013] [Accepted: 01/14/2013] [Indexed: 11/30/2022]
Abstract
Changes in metabolic status gate reproductive activity by still incompletely deciphered mechanisms. Many neuropeptides have been shown to be involved in restraining hypothalamic gonadotropin releasing hormone (GnRH) release under conditions of negative energy balance. Broadly, on the basis of their effect on feeding, these can be grouped as orexigenic and anorexigenic neuropeptides. Reciprocally correlated, in response to changes in systemic concentrations of metabolic hormones, the secretion of orexigenic neuropeptides increases while that of anorexigenic neuropeptides decreases during conditions of food restriction. Recently, kisspeptin signaling in hypothalamus has appeared as a pivotal regulator of the GnRH pulse generator. Kisspeptin apparently does not affect feeding, but in light of accumulating data, it has emerged as one of the major conduits in relaying body metabolic status information to GnRH neurons. The present review examines such data obtained from rodent and primate models, which suggest kisspeptin-Kiss1r signaling as a possible pathway providing a link between metabolism and reproduction.
Collapse
Affiliation(s)
- Fazal Wahab
- Laboratory of Reproductive Neuroendocrinology, Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | | | | |
Collapse
|
38
|
Bertelloni S, Baroncelli GI. Current pharmacotherapy of central precocious puberty by GnRH analogs: certainties and uncertainties. Expert Opin Pharmacother 2013; 14:1627-39. [PMID: 23782221 DOI: 10.1517/14656566.2013.806489] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION GnRH analogs represent the drug of choice for medical treatment of central precocious puberty (CPP). They provided prompt and reversible suppression of reproductive axis and several reports have shown that adult height is preserved in treated children. AREAS COVERED This review updates GnRH analog treatment in CPP by a search of the literature published on the topic since 1980. EXPERT OPINION Monthly GnRH analogs are currently considered the 'gold standard' for the medical treatment of CPP, since a lot of experience is accumulated on their use in children. Differences in long-term outcome (in terms of adult height) are reported and they may be due to differences in selection criteria, treatment monitoring, criteria to stop of therapy, different biological activity of the various drugs and different genetic background of treated patients; altogether, these items remain poorly evaluated. Psychological indications for treatment and long-term psychological outcome of treated children should be better addressed. Comparative trials among the various GnRH analogs are very scarce. New very long-acting GnRH analogs (quarterly or yearly formulations) may improve compliance with therapy, but longer follow-up studies are needed. Medical treatment of CPP should be close to pediatric endocrinologists or tertiary pediatric endocrinology centers with documented experience in this field.
Collapse
Affiliation(s)
- Silvano Bertelloni
- Dipartimento Materno-infantile, Division of Pediatrics, Ospedale Santa Chiara - AOUP, Pisa, Italy.
| | | |
Collapse
|
39
|
Puberty dysregulation and increased risk of disease in adult life: possible modes of action. Reprod Toxicol 2013; 44:15-22. [PMID: 23791931 DOI: 10.1016/j.reprotox.2013.06.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/12/2013] [Accepted: 06/05/2013] [Indexed: 11/22/2022]
Abstract
Puberty is the developmental window when the final maturation of body systems is orchestrated by hormones; lifelong sex-related differences and capacity to interact with the environment are defined during this life stage. Increased incidence in a number of chronic, multifactorial diseases could be related to environmental exposures during puberty: however, insight on the susceptibility of the peripubertal period is still limited. The estrogen/androgen balance is a crucial axis in harmonizing the whole pubertal development, pointing out the significance of exposures to endocrine disruptors. Besides the reproductive system, endocrine-related perturbations may affect the maturation of skeleton, adipose tissues, brain, immune system, as well as cancer predisposition. Thus, risk assessment of environmental stressors should duly consider specific aspects of the pubertal window. Besides endocrine-related mechanisms, suggested research priorities include signaling molecules (e.g., kisspeptins, dopamine) as xenobiotic targets and disturbances of specific pubertal methylation processes potentially involved in neurobehavioral disorders and cancer risk in adulthood.
Collapse
|
40
|
Nader S. Hyperandrogenism during puberty in the development of polycystic ovary syndrome. Fertil Steril 2013; 100:39-42. [PMID: 23642453 DOI: 10.1016/j.fertnstert.2013.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 11/30/2022]
Abstract
The hormonal events of puberty, from adrenarche to menarche and beyond, include the secretion of androgens as well as estrogen and P. This normal pubertal process is briefly reviewed and a physiologic role for pubertal androgens proposed. It is further suggested that the hyperandrogenic state we call polycystic ovary syndrome is a maladaptation of the advantageous role of normal pubertal androgens.
Collapse
Affiliation(s)
- Shahla Nader
- Department of Obstetrics and Gynecology, University of Texas Medical School, Houston, Texas 77030, USA.
| |
Collapse
|
41
|
Fisher MM, Eugster EA. What is in our environment that effects puberty? Reprod Toxicol 2013; 44:7-14. [PMID: 23602892 DOI: 10.1016/j.reprotox.2013.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/23/2013] [Accepted: 03/29/2013] [Indexed: 12/24/2022]
Abstract
Recent studies indicate that the onset of puberty is occurring at increasingly younger ages. Many etiologies have been hypothesized to be involved, but environmental exposures are among the most worrisome. Multiple organizations have endorsed the need to study and provide clinical awareness regarding the effect of a child's environment on pubertal timing. This review article summarizes the current understanding of the major environmental influences on pubertal timing, focusing on factors for which the most scientific evidence exists. The research reviewed addresses intrinsic factors unique to each individual, naturally occurring endocrine disruptors and chemical endocrine disruptors. In each category, evidence was found for and against the involvement of specific environmental factors on pubertal timing. Ultimately, an individual's environment is likely comprised of many aspects that collectively contribute to the timing of puberty. The need for research aimed at elucidating the effects of numerous specific yet disparate forms of exposures is emphasized.
Collapse
Affiliation(s)
- Marisa M Fisher
- Department of Pediatrics, Section of Pediatric Endocrinology, Riley Hospital for Children, Indiana University School of Medicine, 705 Riley Hospital Drive, Room 5960, Indianapolis, IN 46202, United States.
| | - Erica A Eugster
- Department of Pediatrics, Section of Pediatric Endocrinology, Riley Hospital for Children, Indiana University School of Medicine, 705 Riley Hospital Drive, Room 5960, Indianapolis, IN 46202, United States
| |
Collapse
|
42
|
Qiu X, Dowling AR, Marino JS, Faulkner LD, Bryant B, Brüning JC, Elias CF, Hill JW. Delayed puberty but normal fertility in mice with selective deletion of insulin receptors from Kiss1 cells. Endocrinology 2013; 154:1337-48. [PMID: 23392256 PMCID: PMC3578993 DOI: 10.1210/en.2012-2056] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pubertal onset only occurs in a favorable, anabolic hormonal environment. The neuropeptide kisspeptin, encoded by the Kiss1 gene, modifies GnRH neuronal activity to initiate puberty and maintain fertility, but the factors that regulate Kiss1 neurons and permit pubertal maturation remain to be clarified. The anabolic factor insulin may signal nutritional status to these neurons. To determine whether insulin sensing plays an important role in Kiss1 neuron function, we generated mice lacking insulin receptors in Kiss1 neurons (IR(ΔKiss) mice). IR(ΔKiss) females showed a delay in vaginal opening and in first estrus, whereas IR(ΔKiss) males also exhibited late sexual maturation. Correspondingly, LH levels in IR(ΔKiss) mice were reduced in early puberty in both sexes. Adult reproductive capacity, body weight, fat composition, food intake, and glucose regulation were comparable between the 2 groups. These data suggest that impaired insulin sensing by Kiss1 neurons delays the initiation of puberty but does not affect adult fertility. These studies provide insight into the mechanisms regulating pubertal timing in anabolic states.
Collapse
MESH Headings
- Animals
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Feedback, Physiological
- Female
- Fertility/genetics
- Fertility/physiology
- Gonadotropin-Releasing Hormone/physiology
- Insulin/physiology
- Kisspeptins/deficiency
- Kisspeptins/genetics
- Kisspeptins/physiology
- Luteinizing Hormone/physiology
- Male
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neurons/physiology
- Puberty, Delayed/genetics
- Puberty, Delayed/physiopathology
- Receptor, Insulin/deficiency
- Receptor, Insulin/genetics
- Receptor, Insulin/physiology
- Sexual Maturation/genetics
- Sexual Maturation/physiology
Collapse
Affiliation(s)
- Xiaoliang Qiu
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
|