1
|
Xia G, Qian J, Wang Y, Xiao F. METTL14-mediated m6A modification of TRPA1 promotes acute visceral pain induced by uterine cervical dilation by promoting NR2B phosphorylation. Cell Signal 2025; 127:111610. [PMID: 39826676 DOI: 10.1016/j.cellsig.2025.111610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND While TRPA1 serves as a therapeutic target for nociceptive pain, its role in acute visceral pain induced by uterine cervical dilation (UCD) remains an enigma. This study aims to elucidate the upstream and downstream mechanisms of TRPA1 in the context of UCD-induced acute visceral pain. METHODS The UCD rats were administered with SAH (inhibitor of the METTL3-METTL14 complex) via intrathecal tubing. Validate UCD model by measuring spinal c-Fos expression and EMG. The levels of TRPA1 and p-NR2B were evaluated by qRT-PCR and western blot,and m6A level was detected by the kit. RNA Immunoprecipitation was adopted to determine the binding between TRPA1 and METTL14. Neurons were isolated from rat dorsal root ganglia (DRG), exposed to SAH treatment, and subsequently subjected to actinomycin D experiments. RESULTS In the UCD model, cervical dilation causes an increase in EMG signal and spinal cord c-Fos expression. At the same time, the levels of TRPA1, p-NR2B, METTL14, and m6A increased in a stimulus intensity-dependent manner. Intrathecal SAH, a METTL3-METTL14 inhibitor, alleviated UCD-induced pain and reversed above indicators. Further investigation revealed that METTL14 binds to TRPA1, increasing TRPA1 mRNA stability via m6A modification. CONCLUSION METTL14 stabilizes TRPA1 through m6A modification, thereby promoting NR2B phosphorylation, culminating in acute visceral pain induced by UCD.
Collapse
Affiliation(s)
- Guangfa Xia
- Department of Breast Surgery, Jiaxing University Affiliated Women and Children Hospital, Jiaxing 314050, Zhejiang Province, PR China
| | - Jing Qian
- Department of Anesthesia, Jiaxing University Affiliated Women and Children Hospital, Jiaxing 314050, Zhejiang Province, PR China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Jiaxing University Affiliated Women and Children Hospital, Jiaxing 314050, Zhejiang Province, PR China.
| | - Fei Xiao
- Department of Anesthesia, Jiaxing University Affiliated Women and Children Hospital, Jiaxing 314050, Zhejiang Province, PR China.
| |
Collapse
|
2
|
Yamane E, Azuma Y, Matsumoto M, Sato E, Ota Y, Harada T, Taniguchi F. SR-16234, a Unique Selective Estrogen Receptor Modulator, Suppressed Proliferation and Pain-Related Factor Expression by Inhibition of the Nuclear Factor-kappa B Pathway in Endometriotic Stromal Cells. Am J Reprod Immunol 2024; 92:e70010. [PMID: 39476318 DOI: 10.1111/aji.70010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 11/07/2024] Open
Abstract
PROBLEM What is the effect of SR-16234 (SR), a selective estrogen receptor (ER) modulator, on human endometriotic stromal cells (ESCs)? METHOD OF STUDY Endometriotic tissues were obtained from 21 patients undergoing laparoscopic surgery for ovarian endometriomas (OEs). Normal eutopic endometrium during the luteal phase was obtained from 18 patients without endometriosis. ESCs isolated from OEs and normal eutopic endometrial stromal cells (NESCs) were cultured with SR and subsequently exposed to tumor necrosis factor (TNF)-α. After 48 h of incubation, the effect of SR on cell proliferation was evaluated by the WST-8 assay. The gene expressions of inflammatory and pain-related factors, including interleukin (IL)-6, IL-8, cyclooxygenase (COX)-2, transient receptor potential vanilloid (TRPV)1, ESR1, and ESR2, were evaluated by real-time RT-PCR. The phosphorylation of Inhibitor κBα (IκBα), extracellular signal-regulated kinase (ERK)1/2, and Protein Kinase B (AKT) were evaluated by western blot analysis. ILs, prostaglandin (PG) E2, and intranuclear p65 syntheses were assessed by ELISA. RESULTS SR treatment repressed TNF-α-induced proliferation by 20% in ESCs but not NESCs. SR also reduced IL-6, IL-8, COX-2, TRPV1, ESR1, and ESR2 mRNA expressions and ILs protein, and PGE2 synthesis in ESCs, whereas in NESCs, only TRPV1 mRNA expression was decreased. SR suppressed TNF-α-induced phosphorylated IκBα levels by approximately 50%, and intranuclear p65 protein was reduced by 30% compared to addition of only TNF-α in ESCs. However, SR did not affect the phosphorylation of AKT and ERK1/2. CONCLUSIONS SR appears to be a potential therapeutic agent for endometriosis by suppressing inflammatory and pain-related factor expressions by inhibiting the nuclear factor-kappa B pathway.
Collapse
Affiliation(s)
- Emiko Yamane
- Division of Obstetrics and Gynecology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Yukihiro Azuma
- Division of Obstetrics and Gynecology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Mei Matsumoto
- Division of Obstetrics and Gynecology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Eri Sato
- Division of Obstetrics and Gynecology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Yoshiaki Ota
- Department of Obstetrics and Gynecology, Kurashiki Medical Center, Kurashiki, Japan
| | - Tasuku Harada
- Division of Obstetrics and Gynecology, Tottori University Faculty of Medicine, Yonago, Japan
| | - Fuminori Taniguchi
- Division of Obstetrics and Gynecology, Tottori University Faculty of Medicine, Yonago, Japan
| |
Collapse
|
3
|
Gupta A, Vejapi M, Knezevic NN. The role of nitric oxide and neuroendocrine system in pain generation. Mol Cell Endocrinol 2024; 591:112270. [PMID: 38750811 DOI: 10.1016/j.mce.2024.112270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Previous studies have indicated a complex interplay between the nitric oxide (NO) pain signaling pathways and hormonal signaling pathways in the body. This article delineates the role of nitric oxide signaling in neuropathic and inflammatory pain generation and subsequently discusses how the neuroendocrine system is involved in pain generation. Hormonal systems including the hypothalamic-pituitary axis (HPA) generation of cortisol, the renin-angiotensin-aldosterone system, calcitonin, melatonin, and sex hormones could potentially contribute to the generation of nitric oxide involved in the sensation of pain. Further research is necessary to clarify this relationship and may reveal therapeutic targets involving NO signaling that alleviate neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Aayush Gupta
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Rosalind Franklin University of Medicine and Science, USA
| | - Maja Vejapi
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL, USA; Department of Anesthesiology, University of Illinois, Chicago, IL, USA; Department of Surgery, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
4
|
Hunek G, Zembala J, Januszewski J, Bełżek A, Syty K, Jabiry-Zieniewicz Z, Ludwin A, Flieger J, Baj J. Micro- and Macronutrients in Endometrial Cancer-From Metallomic Analysis to Improvements in Treatment Strategies. Int J Mol Sci 2024; 25:9918. [PMID: 39337406 PMCID: PMC11432114 DOI: 10.3390/ijms25189918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/24/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
Endometrial cancer is reported to be one of the most prevalent cancers of the female reproductive organs worldwide, with increasing incidence and mortality rates over the past decade. Early diagnosis is critical for effective treatment. Recently, there has been a growing focus on the role of nutrition and micronutrient and macronutrient status in patients with gynecologic cancers, including endometrial cancer. In the following paper, we have conducted an in-depth narrative literature review with the aim of evaluating the results of metallomic studies specifically concerning the micro- and macronutrient status of patients with endometrial cancer. The main objective of the paper was to analyze the results regarding the nutritional status of endometrial cancer patients and describe the role of chosen elements in the onset and progression of endometrial carcinogenesis. Further, we have focused on the evaluation of the usage of the described elements in the potential treatment of the abovementioned cancer, as well as the possible prevention of cancer considering proper supplementation of chosen elements in healthy individuals. Calcium supplementation has been proposed to reduce the risk of endometrial cancer, although some studies offer conflicting evidence. Deficiencies in phosphorus, selenium, and zinc have been inversely associated with endometrial cancer risk, suggesting they may play a protective role, whereas excessive levels of iron, copper, and cadmium have been positively correlated with increased risk. However, the molecular mechanisms by which these elements affect endometrial carcinogenesis are not fully understood, and current findings are often contradictory. Further research is needed to clarify these relationships and to evaluate the potential of nutritional interventions for the prevention and treatment of endometrial cancer.
Collapse
Affiliation(s)
- Gabriela Hunek
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Julita Zembala
- First Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza 1/3, 02-015 Warsaw, Poland
| | - Jacek Januszewski
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Aleksandra Bełżek
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Kinga Syty
- Institute of Health Sciences, John Paul the II Catholic University of Lublin, Konstantynów 1G, 20-708 Lublin, Poland
| | - Zoulikha Jabiry-Zieniewicz
- First Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza 1/3, 02-015 Warsaw, Poland
| | - Artur Ludwin
- First Department of Obstetrics and Gynecology, Medical University of Warsaw, Starynkiewicza 1/3, 02-015 Warsaw, Poland
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Chair of Fundamental Sciences, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| |
Collapse
|
5
|
Xiong S, Lin S, Hu Y, Xia W, Wang Q, Wang L, Cao T, Liao Y, Scholze A, Tepel M, Zhu Z, Liu D. Dietary Cinnamaldehyde Activation of TRPA1 Antagonizes High-Salt-Induced Hypertension Through Restoring Renal Tubular Mitochondrial Dysfunction. Am J Hypertens 2024; 37:708-716. [PMID: 38820173 DOI: 10.1093/ajh/hpae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/25/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND The renal proximal tubule (RPT) plays a pivotal role in regulating sodium reabsorption and thus blood pressure (BP). Transient receptor potential ankyrin 1 (TRPA1) has been reported to protect against renal injury by modulating mitochondrial function. We hypothesize that the activation of TRPA1 by its agonist cinnamaldehyde may mitigate high-salt intake-induced hypertension by inhibiting urinary sodium reabsorption through restoration of renal tubular epithelial mitochondrial function. METHODS Trpa1-deficient (Trpa1-/-) mice and wild-type (WT) mice were fed standard laboratory chow [normal diet (ND) group, 0.4% salt], standard laboratory chow with 8% salt [high-salt diet (HS) group], or standard laboratory chow with 8% salt plus 0.015% cinnamaldehyde [high-salt plus cinnamaldehyde diet (HSC) group] for 6 months. Urinary sodium excretion, reactive oxygen species (ROS) production, mitochondrial function, and the expression of sodium hydrogen exchanger isoform 3 (NHE3) and Na+/K+-ATPase of RPTs were determined. RESULTS Chronic dietary cinnamaldehyde supplementation reduced tail systolic BP and 24-hour ambulatory arterial pressure in HS-fed WT mice. Compared with the mice fed HS, cinnamaldehyde supplementation significantly increased urinary sodium excretion, inhibited excess ROS production, and alleviated mitochondrial dysfunction of RPTs in WT mice. However, these effects of cinnamaldehyde were absent in Trpa1-/- mice. Furthermore, chronic dietary cinnamaldehyde supplementation blunted HS-induced upregulation of NHE3 and Na+/K+-ATPase in WT mice but not Trpa1-/- mice. CONCLUSIONS The present study demonstrated that chronic activation of Trpa1 attenuates HS-induced hypertension by inhibiting urinary sodium reabsorption through restoring renal tubular epithelial mitochondrial function. Renal TRPA1 may be a potential target for the management of excessive dietary salt intake-associated hypertension.
Collapse
Affiliation(s)
- Shiqiang Xiong
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Shaoyang Lin
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Yingru Hu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Weijie Xia
- Department of Plastic & Cosmetic Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qianran Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Yingying Liao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Alexandra Scholze
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark, and Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Martin Tepel
- Department of Nephrology, Odense University Hospital, Odense, Denmark
- Institute of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Institute of Clinical Research, University of Southern
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| |
Collapse
|
6
|
Carstens MI, Mahroke A, Selescu T, Carstens E. Role of thermosensitive transient receptor potential (TRP) channels in thermal preference of male and female mice. J Therm Biol 2024; 122:103868. [PMID: 38852485 PMCID: PMC11185440 DOI: 10.1016/j.jtherbio.2024.103868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/14/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024]
Abstract
Transient Receptor Potential (TRP) ion channels are important for sensing environmental temperature. In rodents, TRPV4 senses warmth (25-34 °C), TRPV1 senses heat (>42 °C), TRPA1 putatively senses cold (<17 °C), and TRPM8 senses cool-cold (18-26 °C). We investigated if knockout (KO) mice lacking these TRP channels exhibited changes in thermal preference. Thermal preference was tested using a dual hot-cold plate with one thermoelectric surface set at 30 °C and the adjacent surface at a temperature of 15-45 °C in 5 °C increments. Blinded observers counted the number of times mice crossed through an opening between plates and the percentage of time spent on the 30 °C plate. In a separate experiment, observers blinded as to genotype also assessed the temperature at the location on a thermal gradient (1.83 m, 4-50 °C) occupied by the mouse at 5- or 10-min intervals over 2 h. Male and female wildtype mice preferred 30 °C and significantly avoided colder (15-20 °C) and hotter (40-45 °C) temperatures. Male TRPV1KOs and TRPA1KOs, and TRPV4KOs of both sexes, were similar, while female WTs, TRPV1KOs, TRPA1KOs and TRPM8KOs did not show significant thermal preferences across the temperature range. Male and female TRPM8KOs did not significantly avoid the coldest temperatures. Male mice (except for TRPM8KOs) exhibited significantly fewer plate crossings at hot and cold temperatures and more crossings at thermoneutral temperatures, while females exhibited a similar but non-significant trend. Occupancy temperatures along the thermal gradient exhibited a broad distribution that shrank somewhat over time. Mean occupancy temperatures (recorded at 90-120 min) were significantly higher for females (30-34 °C) compared to males (26-27 °C) of all genotypes, except for TRPA1KOs which exhibited no sex difference. The results indicate (1) sex differences with females (except TRPA1KOs) preferring warmer temperatures, (2) reduced thermosensitivity in female TRPV1KOs, and (3) reduced sensitivity to cold and innocuous warmth in male and female TRPM8KOs consistent with previous studies.
Collapse
Affiliation(s)
- Mirela Iodi Carstens
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, 95616, USA
| | - Avina Mahroke
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, 95616, USA
| | - Tudor Selescu
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - E Carstens
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Jin J, Li L, Wang Y, Li K, Qian A, Li W, Liu Q, Wen C, Liu Q, Yan G, Xue F. Estrogen alleviates acute and chronic itch in mice. Exp Ther Med 2023; 25:255. [PMID: 37153887 PMCID: PMC10155243 DOI: 10.3892/etm.2023.11954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/23/2023] [Indexed: 05/10/2023] Open
Abstract
Itching is associated with various skin diseases, including atopic dermatitis and allergic dermatitis, and leads to repeated scratching behavior and unpleasant sensation. Although clinical and laboratory research data have shown that estrogen is involved in regulating itch, the molecular and cellular basis of estrogen in itch sensation remains elusive. In the present study, it was found that estrogen-treated mice exhibited reduced scratching bouts when challenged with histamine, chloroquine, the proteinase-activated receptor-2 activating peptide SLIGRL-NH2 (SLIGRL), compound 48/80, and 5-hydroxytryptamine when compared with mice in the placebo group. Moreover, estrogen also suppressed scratching bouts in the mouse model of chronic itch induced by acetone-ether-water treatment. Notably, consistent with the behavioral tests, the present RNA-seq analysis showed that estrogen treatment caused significantly reduced expression levels of itch-related molecules such as Mas-related G-protein coupled receptor member A3, neuromedin B and natriuretic polypeptide b. In addition, estradiol attenuated histamine-induced and chloroquine-induced calcium influx in dorsal root ganglion neurons. Collectively, the data of the present study suggested that estrogen modulates the expression of itch-related molecules and suppresses both acute and chronic itch in mice.
Collapse
Affiliation(s)
- Jinhua Jin
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Li Li
- Department of Anatomy, Yanbian University of Medicine, Yanji, Jilin 133002, P.R. China
| | - Yuhui Wang
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Keyan Li
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Aihua Qian
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Weiou Li
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Qing Liu
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Chao Wen
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Quanle Liu
- Department of Anesthesiology, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100144, P.R. China
| | - Guanghai Yan
- Department of Anatomy, Yanbian University of Medicine, Yanji, Jilin 133002, P.R. China
- Correspondence to: Dr Fushan Xue, Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong-An Road, Xi-Cheng, Beijing 100050, P.R. China
| | - Fushan Xue
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
- Correspondence to: Dr Fushan Xue, Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, 95 Yong-An Road, Xi-Cheng, Beijing 100050, P.R. China
| |
Collapse
|
8
|
Molot J, Sears M, Anisman H. Multiple Chemical Sensitivity: It's time to catch up to the science. Neurosci Biobehav Rev 2023; 151:105227. [PMID: 37172924 DOI: 10.1016/j.neubiorev.2023.105227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Multiple chemical sensitivity (MCS) is a complex medical condition associated with low dose chemical exposures. MCS is characterized by diverse features and common comorbidities, including fibromyalgia, cough hypersensitivity, asthma, and migraine, and stress/anxiety, with which the syndrome shares numerous neurobiological processes and altered functioning within diverse brain regions. Predictive factors linked to MCS comprise genetic influences, gene-environment interactions, oxidative stress, systemic inflammation, cell dysfunction, and psychosocial influences. The development of MCS may be attributed to the sensitization of transient receptor potential (TRP) receptors, notably TRPV1 and TRPA1. Capsaicin inhalation challenge studies demonstrated that TRPV1 sensitization is manifested in MCS, and functional brain imaging studies revealed that TRPV1 and TRPA1 agonists promote brain-region specific neuronal variations. Unfortunately, MCS has often been inappropriately viewed as stemming exclusively from psychological disturbances, which has fostered patients being stigmatized and ostracized, and often being denied accommodation for their disability. Evidence-based education is essential to provide appropriate support and advocacy. Greater recognition of receptor-mediated biological mechanisms should be incorporated in laws, and regulation of environmental exposures.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Margaret Sears
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Hymie Anisman
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| |
Collapse
|
9
|
Wang Y. Multidisciplinary Advances Address the Challenges in Developing Drugs against Transient Receptor Potential Channels to Treat Metabolic Disorders. ChemMedChem 2023; 18:e202200562. [PMID: 36530131 DOI: 10.1002/cmdc.202200562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Transient receptor potential (TRP) channels are cation channels that regulate key physiological and pathological processes in response to a broad range of stimuli. Moreover, they systemically regulate the release of hormones, metabolic homeostasis, and complications of diabetes, which positions them as promising therapeutic targets to combat metabolic disorders. Nevertheless, there are significant challenges in the design of TRP ligands with high potency and durability. Herein we summarize the four challenges as hydrophobicity, selectivity, mono-target therapy, and interspecies discrepancy. We present 1134 TRP ligands with diversified modes of TRP-ligand interaction and provide a detailed discussion of the latest strategies, especially cryogenic electron microscopy (cryo-EM) and computational methods. We propose solutions to address the challenges with a critical analysis of advances in membrane partitioning, polypharmacology, biased agonism, and biochemical screening of transcriptional modulators. They are fueled by the breakthrough from cryo-EM, chemoinformatics and bioinformatics. The discussion is aimed to shed new light on designing next-generation drugs to treat obesity, diabetes and its complications, with optimal hydrophobicity, higher mode selectivity, multi-targeting and consistent activities between human and rodents.
Collapse
Affiliation(s)
- Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, P. R. China.,Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai, 200438, P. R. China
| |
Collapse
|
10
|
Abdalla SS, Harb AA, Almasri IM, Bustanji YK. The interaction of TRPV1 and lipids: Insights into lipid metabolism. Front Physiol 2022; 13:1066023. [PMID: 36589466 PMCID: PMC9797668 DOI: 10.3389/fphys.2022.1066023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1), a non-selective ligand-gated cation channel with high permeability for Ca2+, has received considerable attention as potential therapeutic target for the treatment of several disorders including pain, inflammation, and hyperlipidemia. In particular, TRPV1 regulates lipid metabolism by mechanisms that are not completely understood. Interestingly, TRPV1 and lipids regulate each other in a reciprocal and complex manner. This review surveyed the recent literature dealing with the role of TRPV1 in the hyperlipidemia-associated metabolic syndrome. Besides TRPV1 structure, molecular mechanisms underlying the regulatory effect of TRPV1 on lipid metabolism such as the involvement of uncoupling proteins (UCPs), ATP-binding cassette (ABC) transporters, peroxisome proliferation-activated receptors (PPAR), sterol responsive element binding protein (SREBP), and hypoxia have been discussed. Additionally, this review extends our understanding of the lipid-dependent modulation of TRPV1 activity through affecting both the gating and the expression of TRPV1. The regulatory role of different classes of lipids such as phosphatidylinositol (PI), cholesterol, estrogen, and oleoylethanolamide (OEA), on TRPV1 has also been addressed.
Collapse
Affiliation(s)
- Shtaywy S. Abdalla
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan,*Correspondence: Shtaywy S. Abdalla,
| | - Amani A. Harb
- Department of Basic Sciences, Faculty of Arts and Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Ihab M. Almasri
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Gaza, Palestine
| | - Yasser K. Bustanji
- Department of Biopharmaceuticals and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| |
Collapse
|
11
|
Aghi K, Goetz TG, Pfau DR, Sun SED, Roepke TA, Guthman EM. Centering the Needs of Transgender, Nonbinary, and Gender-Diverse Populations in Neuroendocrine Models of Gender-Affirming Hormone Therapy. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1268-1279. [PMID: 35863692 PMCID: PMC10472479 DOI: 10.1016/j.bpsc.2022.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
Most studies attempting to address the health care needs of the millions of transgender, nonbinary, and/or gender-diverse (TNG) individuals rely on human subjects, overlooking the benefits of translational research in animal models. Researchers have identified many ways in which gonadal steroid hormones regulate neuronal gene expression, connectivity, activity, and function across the brain to control behavior. However, these discoveries primarily benefit cisgender populations. Research into the effects of exogenous hormones such as estradiol, testosterone, and progesterone has a direct translational benefit for TNG individuals on gender-affirming hormone therapies (GAHTs). Despite this potential, endocrinological health care for TNG individuals remains largely unimproved. Here, we outline important areas of translational research that could address the unique health care needs of TNG individuals on GAHT. We highlight key biomedical questions regarding GAHT that can be investigated using animal models. We discuss how contemporary research fails to address the needs of GAHT users and identify equitable practices for cisgender scientists engaging with this work. We conclude that if necessary and important steps are taken to address these issues, translational research on GAHTs will greatly benefit the health care outcomes of TNG people.
Collapse
Affiliation(s)
- Krisha Aghi
- Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - Teddy G Goetz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel R Pfau
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Simón E D Sun
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York; Center for Applied Transgender Studies, Chicago, Illinois
| | - Troy A Roepke
- Department of Animal Sciences, School of Biological and Environmental Sciences, Rutgers University, New Brunswick
| | - Eartha Mae Guthman
- Center for Applied Transgender Studies, Chicago, Illinois; Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey.
| |
Collapse
|
12
|
Sex-related differences in oxaliplatin-induced changes in the expression of transient receptor potential channels and their contribution to cold hypersensitivity. Neurosci Lett 2022; 788:136863. [PMID: 36067900 DOI: 10.1016/j.neulet.2022.136863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022]
Abstract
Transient receptor potential (TRP) channels are involved in the development of oxaliplatin-induced neuropathic pain, a frequent and debilitating side effect of cancer therapy. Here we explored whether oxaliplatin-induced changes in the expression of TRP channels, as well as the development of pain-related behaviours, differed between male and female animals. Adult rats were injected with oxaliplatin or saline and mechanical and cold allodynia were evaluated using Von Frey and Choi Tests. The mRNA levels of TRPV1, TRPM8 and TRPA1 were assessed in lumbar ganglia and spinal cord by using real time RT-PCR. Oxaliplatin administration induced mechanical and cold hypersensitivity and allodynia in both sexes, with more severe responses to cold stimulation detected in females. Oxaliplatin also induced a significant increase in the expression of TRPV1, TRPM8 and TRPA1 in lumbar dorsal root ganglia. Interestingly, while TRPV1 and TRPA1 upregulation showed no sex difference, the increase in TRPM8 mRNA levels was more pronounced in female ganglia, correlating with the increased sensitivity to innocuous cold stimuli observed in females. TRPV1 and TRPM8 were also found to be upregulated in the spinal cord of animals of both sexes. Our results reveal previously undescribed changes in the expression of TRP channels occurring in peripheral ganglia and spinal cord of both male and female oxaliplatin-treated animals, with some of these changes exhibiting sex-related differences that could underlie the development of sex-specific patterns of pain-related behaviours.
Collapse
|
13
|
Lowin T, Laaser SA, Kok C, Bruneau E, Pongratz G. Cannabidiol: Influence on B Cells, Peripheral Blood Mononuclear Cells, and Peripheral Blood Mononuclear Cell/Rheumatoid Arthritis Synovial Fibroblast Cocultures. Cannabis Cannabinoid Res 2022; 8:321-334. [PMID: 35920857 DOI: 10.1089/can.2021.0241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Cannabidiol (CBD), one major nonintoxicating phytocannabinoid from Cannabis sativa demonstrated anti-inflammatory effects in animal models of several inflammatory conditions, including arthritis. However, it is still unknown which cell types mediate these anti-inflammatory effects of CBD, and, since CBD binds to a plethora of receptors and enzymes, it is complicated to pinpoint its mechanism of action. In this study, we elucidate the effects of CBD on B cells and peripheral blood mononuclear cells (PBMCs) in respect to survival, calcium mobilization, drug uptake, and cytokine (IL-6, IL-10, and TNF) and immunoglobulin production. Methods: Modulation of intracellular calcium and drug uptake in B cells was determined by using the fluorescent dyes Cal-520 and PoPo3, respectively. Cytokine and immunoglobulin production was evaluated by enzyme-linked immunosorbent assay. PBMC composition and B cell survival after CBD treatment was assessed by flow cytometry. Results: B cells express two major target receptors for CBD, TRPV2 (transient receptor potential vanilloid 2) and TRPA1 (transient receptor potential ankyrin 1), which are not regulated by B cell activation. CBD increased intracellular calcium levels in mouse and human B cells, which was accompanied by enhanced uptake of PoPo3. These effects were not dependent on transient receptor potential channel activation. CBD increased the number of early apoptotic B cells at the expense of viable cells and diminished interleukin (IL)-10 and tumor necrosis factor (TNF) production when activated T cell independently. In PBMCs, CBD increased IL-10 production when B cells were activated T cell dependent, while decreasing TNF levels when activated T cell independently. In PBMC/rheumatoid synovial fibroblast cocultures, CBD reduced IL-10 production when B cells were activated T cell independently. Immunoglobulin M production was augmented by CBD when B cells were activated with CpG. Conclusion: CBD is able to provide pro- and anti-inflammatory effects in isolated B cells and PBMCs. This is dependent on the activating stimulus (T cell dependent or independent) and concentration of CBD. Therefore, CBD might be used to dampen B cell activity in autoimmune conditions such as rheumatoid arthritis, in which B cells are activated by specific autoantigens.
Collapse
Affiliation(s)
- Torsten Lowin
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Sofia Anna Laaser
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Christina Kok
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Eileen Bruneau
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Georg Pongratz
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
14
|
Marchant I, Stojanova J, Acevedo L, Olivero P. Estrogen rapid effects: a window of opportunity for the aging brain? Neural Regen Res 2022; 17:1629-1632. [PMID: 35017407 PMCID: PMC8820709 DOI: 10.4103/1673-5374.332121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/14/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022] Open
Abstract
Estrogen produces several beneficial effects in healthy neurological tissues and exhibits cardioprotective effects. Hormone therapy has been widely used to treat menopausal estrogen deficiency for more than 80 years. Despite high initial expectations of cardioprotective effects, there has been substantial distrust following important randomized clinical trials, such as the Women's Health Initiative. Subsequently, the timing of treatment in relation to the onset of menopause came under consideration and led to the proposal of the timing hypothesis, that early initial treatment is important, and benefits are lost as the timing since menopause becomes prolonged. Subsequent analyses of the Women's Health Initiative data, together with more recent data from randomized and observational trials, consistently show reductions in coronary heart disease and mortality in younger menopausal women. Regarding cognitive function, the timing hypothesis is consistent with observations from basic and animal studies. There is some clinical evidence to support the benefits of hormonal therapy in this context, though skepticism remains due to the paucity of clinical trials of substantial length in younger menopausal women. It is likely that the effects of estrogens on cognitive performance are due to rapid mechanisms, including mechanisms that influence Ca2+ homeostasis dynamics, provide protection in a hostile environment and reduce inflammatory signals from neural tissues. In the future, inflammatory profiles accounting for early signs of pathological inflammation might help identify the 'window of opportunity' to use estrogen therapy for successful cognitive protection.
Collapse
Affiliation(s)
- Ivanny Marchant
- Laboratorio de Modelamiento en Medicina, Escuela de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
- Centro Interoperativo en Ciencias Odontológicas y Médicas, Universidad de Valparaíso, Valparaíso, Chile
| | - Jana Stojanova
- Laboratorio de Modelamiento en Medicina, Escuela de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
- Interdisciplinary Centre for Health Studies (CIESAL), Universidad de Valparaíso, Viña del Mar, Chile
| | - Lilian Acevedo
- Servicio de Neurología Hospital Carlos van Buren, Valparaíso, Chile
| | - Pablo Olivero
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
- Centro Interoperativo en Ciencias Odontológicas y Médicas, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
15
|
Xie Z, Feng J, Cai T, McCarthy R, Eschbach Ii MD, Wang Y, Zhao Y, Yi Z, Zang K, Yuan Y, Hu X, Li F, Liu Q, Das A, England SK, Hu H. Estrogen metabolites increase nociceptor hyperactivity in a mouse model of uterine pain. JCI Insight 2022; 7:149107. [PMID: 35420999 PMCID: PMC9220826 DOI: 10.1172/jci.insight.149107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Pain emanating from the female reproductive tract is notoriously difficult to be treated and the prevalence of transient pelvic pain has been placed as high as 70-80% in women surveyed. Although sex hormones, especially estrogen, are thought to underlie enhanced pain perception in females, the underlying molecular and cellular mechanisms are not completely understood. Here we show that the pain-initiating TRPA1 channel is required for pain-related behaviors in a mouse model of estrogen-induced uterine pain in ovariectomized female mice. Surprisingly, 2- and 4-hydroxylated estrogen metabolites (HEMs) in the estrogen hydroxylation pathway, but not estrone, estradiol and 16-HEMs, directly increase nociceptor hyperactivity through TRPA1 and TRPV1 channels, and picomolar concentrations of 2- and 4-hydroxylation estrone (OHE1) can sensitize TRPA1 channel function. Moreover, both TRPA1 and TRPV1 are expressed in uterine-innervating primary nociceptors and their expressions are increased in the estrogen-induced uterine pain model. Importantly, pretreatment of 2- or 4-OHE1 recapitulates estrogen-induced uterine pain-like behaviors and intraplantar injections of 2- and 4-OHE1 directly produce a TRPA1-dependent mechanical hypersensitivity. Our findings demonstrate that TRPA1 is critically involved in estrogen-induced uterine pain-like behaviors, which may provide a potential drug target for treating female reproductive tract pain.
Collapse
Affiliation(s)
- Zili Xie
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States of America
| | - Jing Feng
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States of America
| | - Tao Cai
- The First Affiliated Hospital of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ronald McCarthy
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, United States of America
| | - Mark D Eschbach Ii
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, United States of America
| | - Yuhui Wang
- Department of Anesthesiology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yonghui Zhao
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States of America
| | - Zhihua Yi
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States of America
| | - Kaikai Zang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States of America
| | - Yi Yuan
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States of America
| | - Xueming Hu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States of America
| | - Fengxian Li
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States of America
| | - Qin Liu
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, United States of America
| | - Aditi Das
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, United States of America
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, United States of America
| | - Hongzhen Hu
- Washington University School of Medicine, St. Louis, United States of America
| |
Collapse
|
16
|
Lesslar OJL, Smith PK. Itch Beyond the Skin-Mucosal Itch. FRONTIERS IN ALLERGY 2022; 2:700368. [PMID: 35386995 PMCID: PMC8974814 DOI: 10.3389/falgy.2021.700368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/07/2021] [Indexed: 11/13/2022] Open
Abstract
Itch is a nociceptive sensation linked with reflexes and cognitive motor actions. We traditionally think of itch as a sensation of the skin related to allergy, an insect sting or interestingly, anxiety and frustration. Less understood and considered are the physiological processes involved in the itching sensation that occurs at mucosal and junctional dermal sites, which is extraordinary as from an evolutionary point of view these sites serve important guardian roles, rich in sensory nerves and inflammatory cells. Despite itch being an ancient reflex and evolutionarily conserved phenomenon, better clinical understanding of the nuances between sites of itch sensation may lead to improved clinical outcomes. This review invites readers to appreciate itch beyond the skin by highlighting several specific itch patterns-nasal, oral, auricular, vulvovaginal, anal, and perineal itch-the pathophysiological mechanisms that underlie them, the clinical patterns these may cause, and some unique treatments.
Collapse
Affiliation(s)
- Olivia J Ly Lesslar
- LifeSpan Medicine, Los Angeles, CA, United States.,Cingulum Health, Sydney, NSW, Australia
| | - Peter K Smith
- Clinical Medicine, Griffith University, Southport, QLD, Australia
| |
Collapse
|
17
|
Uchida Y, Izumizaki M. Effect of menstrual cycle and female hormones on TRP and TREK channels in modifying thermosensitivity and physiological functions in women. J Therm Biol 2021; 100:103029. [PMID: 34503776 DOI: 10.1016/j.jtherbio.2021.103029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
Thermoregulation is crucial for human survival at various ambient temperatures. Transient receptor potential (TRP) and TWIK-related K+ (TREK) channels expressed in sensory neurons play a role in peripheral thermosensitivity for temperature detection. In addition, these channels have various physiological roles in the skeletal, nervous, immune, vascular, digestive, and urinary systems. In women, the female hormones estradiol (E2) and progesterone (P4), which fluctuate during the menstrual cycle, affect various physiological functions, such as thermoregulation in hot and cold environments. The present review describes the effect of female hormones on TRP and TREK channels and related physiological functions. The P4 decreased thermosensitivity via TRPV1. E2 facilitates temporomandibular joint disease (TRPV1), breast cancer (TRPM8), and calcium absorption in the digestive system (TRPV5 and TRPV6), inhibits the facilitation of vasoconstriction (TRPM3), nerve inflammation (TRPM4), sweetness sensitivity (TRPM5), and menstrual disorders (TRPC1), and prevents insulin resistance (TRPC5) via each channel. P4 inhibits vasoconstriction (TRPM3), sweetness sensitivity (TRPM5), ciliary motility in the lungs (TRPV4), menstrual disorder (TRPC1), and immunity (TRPC3), and facilitates breast cancer (TRPV6) via each channel as indicated. The effects of female hormones on TREK channels and physiological functions are still under investigation. In summary, female hormones influence physiological functions via some TRP channels; however, the literature is not comprehensive and future studies are needed, especially those related to thermoregulation in women.
Collapse
Affiliation(s)
- Yuki Uchida
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan.
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
McHann MC, Blanton HL, Guindon J. Role of sex hormones in modulating breast and ovarian cancer associated pain. Mol Cell Endocrinol 2021; 533:111320. [PMID: 34033890 PMCID: PMC8263503 DOI: 10.1016/j.mce.2021.111320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/16/2021] [Accepted: 05/09/2021] [Indexed: 01/18/2023]
Abstract
According to the National Cancer Institute in 2020 there will be an estimated 21,750 new ovarian cancer cases and 276,480 new breast cancer cases. Both breast and ovarian cancer are hormone dependent cancers, meaning they cannot grow without the presence of hormones. The two most studied hormones in these two cancers are estrogen and progesterone, which are also involved in the modulation of pain. The incidence of pain in breast and ovarian cancer is very high. Research about mechanisms involved in modulation of pain by hormones are still being debated, as some studies find estrogen to be anti-nociceptive and others pro-nociceptive in pain studies. Moreover, analgesic treatments for breast and ovarian cancer-associated pain are limited and often ineffective. In this review, we will focus on estrogen and progesterone mechanisms of action in modulation of pain and cancer. We will also discuss new treatment options for these types of cancer and associated-pain.
Collapse
Affiliation(s)
- Melissa C McHann
- Department of Pharmacology and Neuroscience at Texas Tech University Health Sciences Center, USA
| | - Henry L Blanton
- Department of Pharmacology and Neuroscience at Texas Tech University Health Sciences Center, USA
| | - Josée Guindon
- Department of Pharmacology and Neuroscience at Texas Tech University Health Sciences Center, USA.
| |
Collapse
|
19
|
Soni H, Kumar R, Kanthakumar P, Adebiyi A. Interleukin 1 beta-induced calcium signaling via TRPA1 channels promotes mitogen-activated protein kinase-dependent mesangial cell proliferation. FASEB J 2021; 35:e21729. [PMID: 34143493 DOI: 10.1096/fj.202100367r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
Glomerular mesangial cell (GMC)-derived pleiotropic cytokine, interleukin-1 (IL-1), contributes to hypercellularity in human and experimental proliferative glomerulonephritis. IL-1 promotes mesangial proliferation and may stimulate extracellular matrix accumulation, mechanisms of which are unclear. The present study shows that the beta isoform of IL-1 (IL-1β) is a potent inducer of IL-1 type I receptor-dependent Ca2+ entry in mouse GMCs. We also demonstrate that the transient receptor potential ankyrin 1 (TRPA1) is an intracellular store-independent diacylglycerol-sensitive Ca2+ channel in the cells. IL-1β-induced Ca2+ and Ba2+ influxes in the cells were negated by pharmacological inhibition and siRNA-mediated knockdown of TRPA1 channels. IL-1β did not stimulate fibronectin production in cultured mouse GMCs and glomerular explants but promoted Ca2+ -dependent cell proliferation. IL-1β also stimulated TRPA1-dependent ERK mitogen-activated protein kinase (MAPK) phosphorylation in the cells. Concomitantly, IL-1β-induced GMC proliferation was attenuated by TRPA1 and RAF1/ MEK/ERK inhibitors. These findings suggest that IL-1β-induced Ca2+ entry via TRPA1 channels engenders MAPK-dependent mesangial cell proliferation. Hence, TRPA1-mediated Ca2+ signaling could be of pathological significance in proliferative glomerulonephritis.
Collapse
Affiliation(s)
- Hitesh Soni
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ravi Kumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Praghalathan Kanthakumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adebowale Adebiyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
20
|
Bai H, Sha B, Xu X, Yu L. Gender Difference in Chronic Cough: Are Women More Likely to Cough? Front Physiol 2021; 12:654797. [PMID: 34025449 PMCID: PMC8138462 DOI: 10.3389/fphys.2021.654797] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/14/2021] [Indexed: 11/15/2022] Open
Abstract
Chronic cough is a common complaint for patients to seek medical cares all over the world. Worldwide, about two thirds of chronic cough patients are females. However, in some regions of China the prevalence of chronic cough between sexes is roughly the same. Estrogen and progesterone can not only have an effect on transient receptor potential vanilloid 1 channel, eosinophils and mast cells, but also influence laryngeal dysfunction, gastroesophageal reflux disease and obstructive sleep apnea hypopnea syndrome, which may lead to increased cough sensitivity in women. On the other hand, the quality of life was adversely affected more in female patients with chronic cough. Both hormones possibly cause gender difference in chronic cough.
Collapse
Affiliation(s)
| | | | - Xianghuai Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Yu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Löhndorf A, Hosang L, Dohle W, Odoardi F, Waschkowski SA, Rosche A, Bauche A, Winzer R, Tolosa E, Windhorst S, Marry S, Flügel A, Potter BVL, Diercks BP, Guse AH. 2-Methoxyestradiol and its derivatives inhibit store-operated Ca 2+ entry in T cells: Identification of a new and potent inhibitor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118988. [PMID: 33581218 PMCID: PMC8062851 DOI: 10.1016/j.bbamcr.2021.118988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 12/15/2022]
Abstract
T cell activation starts with formation of second messengers that release Ca2+ from the endoplasmic reticulum (ER) and thereby activate store-operated Ca2+ entry (SOCE), one of the essential signals for T cell activation. Recently, the steroidal 2-methoxyestradiol was shown to inhibit nuclear translocation of the nuclear factor of activated T cells (NFAT). We therefore investigated 2-methoxyestradiol for inhibition of Ca2+ entry in T cells, screened a library of 2-methoxyestradiol analogues, and characterized the derivative 2-ethyl-3-sulfamoyloxy-17β-cyanomethylestra-1,3,5(10)-triene (STX564) as a novel, potent and specific SOCE inhibitor. STX564 inhibits Ca2+ entry via SOCE without affecting other ion channels and pumps involved in Ca2+ signaling in T cells. Downstream effects such as cytokine expression and cell proliferation were also inhibited by both 2-methoxyestradiol and STX564, which has potential as a new chemical biology tool.
Collapse
Affiliation(s)
- Anke Löhndorf
- The Ca(2+) Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Leon Hosang
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Centre Göttingen, Von-Siebold-Straße 3a, D-37075 Göttingen, Germany
| | - Wolfgang Dohle
- Drug Discovery & Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Francesca Odoardi
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Centre Göttingen, Von-Siebold-Straße 3a, D-37075 Göttingen, Germany
| | - Sissy-Alina Waschkowski
- The Ca(2+) Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Anette Rosche
- The Ca(2+) Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Andreas Bauche
- The Ca(2+) Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Riekje Winzer
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Stephen Marry
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Centre Göttingen, Von-Siebold-Straße 3a, D-37075 Göttingen, Germany
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Centre Göttingen, Von-Siebold-Straße 3a, D-37075 Göttingen, Germany
| | - Barry V L Potter
- Drug Discovery & Medicinal Chemistry, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Björn-Philipp Diercks
- The Ca(2+) Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Andreas H Guse
- The Ca(2+) Signalling Group, Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany.
| |
Collapse
|
22
|
Chen Q, Zhang W, Sadana N, Chen X. Estrogen receptors in pain modulation: cellular signaling. Biol Sex Differ 2021; 12:22. [PMID: 33568220 PMCID: PMC7877067 DOI: 10.1186/s13293-021-00364-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/28/2021] [Indexed: 12/18/2022] Open
Abstract
Sensory perception and emotional disorders are disproportionally represented in men and women and are thus thought to be modulated by different sex hormones in various conditions. Among the most important hormones perceived to affect sensory processing and transduction is estrogen. Numerous previous researchers have endeavored to demonstrate that estrogen is capable of modulating the activity of sensory neurons in peripheral and central sites in female, male, or castrated animals. However, the underlying mechanisms of its modulation of neuronal activity are somewhat unclear. In the present review, we discuss the possible cellular and molecular mechanisms involved in the modulation of nociception by estrogen.
Collapse
Affiliation(s)
- Qing Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenxin Zhang
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Neeti Sadana
- Department of Anesthesiology & Perioperative Medicine, Tufts Medical Center and Tufts University School of Medicine, Boston, USA
| | - Xinzhong Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
23
|
Linher-Melville K, Shah A, Singh G. Sex differences in neuro(auto)immunity and chronic sciatic nerve pain. Biol Sex Differ 2020; 11:62. [PMID: 33183347 PMCID: PMC7661171 DOI: 10.1186/s13293-020-00339-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023] Open
Abstract
Chronic pain occurs with greater frequency in women, with a parallel sexually dimorphic trend reported in sufferers of many autoimmune diseases. There is a need to continue examining neuro-immune-endocrine crosstalk in the context of sexual dimorphisms in chronic pain. Several phenomena in particular need to be further explored. In patients, autoantibodies to neural antigens have been associated with sensory pathway hyper-excitability, and the role of self-antigens released by damaged nerves remains to be defined. In addition, specific immune cells release pro-nociceptive cytokines that directly influence neural firing, while T lymphocytes activated by specific antigens secrete factors that either support nerve repair or exacerbate the damage. Modulating specific immune cell populations could therefore be a means to promote nerve recovery, with sex-specific outcomes. Understanding biological sex differences that maintain, or fail to maintain, neuroimmune homeostasis may inform the selection of sex-specific treatment regimens, improving chronic pain management by rebalancing neuroimmune feedback. Given the significance of interactions between nerves and immune cells in the generation and maintenance of neuropathic pain, this review focuses on sex differences and possible links with persistent autoimmune activity using sciatica as an example.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
| | - Anita Shah
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
24
|
Changes in TRPV1 expression in the POA of ovariectomized rats regulated by NE-dependent α2-ADR may be involved in hot flashes. Ann Anat 2020; 232:151565. [DOI: 10.1016/j.aanat.2020.151565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 11/23/2022]
|
25
|
The Expression of Cold-Inducible RNA-Binding Protein mRNA in Sow Genital Tract Is Modulated by Natural Mating, But Not by Seminal Plasma. Int J Mol Sci 2020; 21:ijms21155333. [PMID: 32727091 PMCID: PMC7432381 DOI: 10.3390/ijms21155333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
The RNA-binding proteins (RBPs), some of them induced by transient receptor potential (TRP) ion channels, are crucial regulators of RNA function that can contribute to reproductive pathogenesis, including inflammation and immune dysfunction. This study aimed to reveal the influence of spermatozoa, seminal plasma, or natural mating on mRNA expression of RBPs and TRP ion channels in different segments of the internal genital tract of oestrous, preovulatory sows. Particularly, we focused on mRNA expression changes of the cold-inducible proteins (CIPs) and related TRP channels. Pre-ovulatory sows were naturally mated (NM) or cervically infused with semen (Semen-AI) or sperm-free seminal plasma either from the entire ejaculate (SP-TOTAL) or the sperm-rich fraction (SP-AI). Samples (cervix to infundibulum) were collected by laparotomy under general anaesthesia for transcriptomic analysis (GeneChip® Porcine Gene 1.0 ST Array) 24 h after treatments. The NM treatment induced most of the mRNA expression changes, compared to Semen-AI, SP-AI, and SP-TOTAL treatments including unique significative changes in CIRBP, RBM11, RBM15B, RBMS1, TRPC1, TRPC4, TRPC7, and TRPM8. The findings on the differential mRNA expression on RBPs and TRP ion channels, especially to CIPs and related TRP ion channels, suggest that spermatozoa and seminal plasma differentially modulated both protein families during the preovulatory phase, probably related to a still unknown early signalling mechanism in the sow reproductive tract.
Collapse
|
26
|
Wang Z, Ling D, Wu C, Han J, Zhao Y. Baicalin prevents the up-regulation of TRPV1 in dorsal root ganglion and attenuates chronic neuropathic pain. Vet Med Sci 2020; 6:1034-1040. [PMID: 32613759 PMCID: PMC7738711 DOI: 10.1002/vms3.318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/28/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
Background Neuropathic pain is a major public health problem because it has a considerable impact on life quality of patients. TRP channels from dorsal root ganglion (DRG) play a crucial role in facilitating pain transmission at peripheral and spinal sites. Baicalin has neuroprotective effects and improves the pathological and behavioural outcomes of various types of nerve injury. The present study aims to examine the analgesic effects of baicalin on chronic neuropathic pain. Methods Neuropathic pain animal model was created by chronic constriction injury of the sciatic nerve (CCI). Behavioural tests were performed by von Frey and hot plate tests. mRNA and protein expression levels were examined by quantitative RT‐PCR and western blot. Results Consecutive intraperitoneal administration of baicalin for 16 days reduced the mechanical and thermal nociceptive responses induced by CCI surgery in a dose‐dependent manner. The mRNA expression levels of Trpv1 and Trpa1 were significantly increased in the DRG of CCI rats. Moreover baicalin administration reversed TRPV1 expression and phosphorylation of ERK in DRG neurons after peripheral nerve injury. Conclusions Our results suggested that baicalin may ameliorate neuropathic pain by suppressing TRPV1 up‐regulation and ERK phosphorylation in DRG of neuropathic pain rats. Baicalin has a significant analgesic effect on alleviating neuropathic pain and thus may serve as a therapeutic approach for neuropathic pain.
Collapse
Affiliation(s)
- Zheyin Wang
- Department of Pain Medicine, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Diyang Ling
- Department of Pain Medicine, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Chenxiang Wu
- Department of Pain Medicine, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Jian Han
- Department of Pain Medicine, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yan Zhao
- Department of Pain Medicine, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
27
|
Ramírez-Barrantes R, Carvajal-Zamorano K, Rodriguez B, Cordova C, Lozano C, Simon F, Díaz P, Muñoz P, Marchant I, Latorre R, Castillo K, Olivero P. TRPV1-Estradiol Stereospecific Relationship Underlies Cell Survival in Oxidative Cell Death. Front Physiol 2020; 11:444. [PMID: 32528302 PMCID: PMC7265966 DOI: 10.3389/fphys.2020.00444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
17β-estradiol is a neuronal survival factor against oxidative stress that triggers its protective effect even in the absence of classical estrogen receptors. The polymodal transient receptor potential vanilloid subtype 1 (TRPV1) channel has been proposed as a steroid receptor implied in tissue protection against oxidative damage. We show here that TRPV1 is sufficient condition for 17β-estradiol to enhance metabolic performance in injured cells. Specifically, in TRPV1 expressing cells, the application of 17β-estradiol within the first 3 h avoided H2O2-dependent mitochondrial depolarization and the activation of caspase 3/7 protecting against the irreversible damage triggered by H2O2. Furthermore, 17β-estradiol potentiates TRPV1 single channel activity associated with an increased open probability. This effect was not observed after the application of 17α-estradiol. We explored the TRPV1-Estrogen relationship also in primary culture of hippocampal-derived neurons and observed that 17β-estradiol cell protection against H2O2-induced damage was independent of estrogen receptors pathway activation, membrane started and stereospecific. These results support the role of TRPV1 as a 17β-estradiol-activated ionotropic membrane receptor coupling with mitochondrial function and cell survival.
Collapse
Affiliation(s)
- Ricardo Ramírez-Barrantes
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Escuela de Tecnología Médica, Universidad Andrés Bello, Viña del Mar, Chile
| | - Karina Carvajal-Zamorano
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Belen Rodriguez
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Claudio Cordova
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Carlo Lozano
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro Interoperativo en Ciencias Odontológicas y Médicas, Universidad de Valparaíso, Valparaíso, Chile
| | - Felipe Simon
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Chile, Santiago, Chile
| | - Paula Díaz
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo Muñoz
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Ivanny Marchant
- Centro Interoperativo en Ciencias Odontológicas y Médicas, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramón Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo Olivero
- Laboratorio de Estructura y Función Celular, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro Interoperativo en Ciencias Odontológicas y Médicas, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
28
|
Steroids and TRP Channels: A Close Relationship. Int J Mol Sci 2020; 21:ijms21113819. [PMID: 32471309 PMCID: PMC7325571 DOI: 10.3390/ijms21113819] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023] Open
Abstract
Transient receptor potential (TRP) channels are remarkable transmembrane protein complexes that are essential for the physiology of the tissues in which they are expressed. They function as non-selective cation channels allowing for the signal transduction of several chemical, physical and thermal stimuli and modifying cell function. These channels play pivotal roles in the nervous and reproductive systems, kidney, pancreas, lung, bone, intestine, among others. TRP channels are finely modulated by different mechanisms: regulation of their function and/or by control of their expression or cellular/subcellular localization. These mechanisms are subject to being affected by several endogenously-produced compounds, some of which are of a lipidic nature such as steroids. Fascinatingly, steroids and TRP channels closely interplay to modulate several physiological events. Certain TRP channels are affected by the typical genomic long-term effects of steroids but others are also targets for non-genomic actions of some steroids that act as direct ligands of these receptors, as will be reviewed here.
Collapse
|
29
|
Abstract
Bone cancer pain is characterized by moderate to severe ongoing pain that commonly requires the use of opiates, which could produce tolerance or addiction. Baicalin is a flavonoid compound extracted from Huang Qin, possesses antioxidant properties, and has an analgesic effect on nitroglycerin-induced migraine in rats and neuropathic pain in spinal nerve ligation rats. However, the effect of baicalin on bone cancer pain is still unclear. Therefore, the aim of this study is to examine the analgesic effect of baicalin in a rat model of bone cancer pain. Bone cancer pain animal model was created by tumor cell implantation (TCI). Animal behaviors were measured using a set of mechanical or electronic von Frey apparatus and hot plate. mRNA expression and inflammation cytokine levels were examined by Quantitative polymerase chain reaction (qPCR) and enzyme linked immunosorbent assay (ELISA) methods. Baicalin suppressed the upregulation of transient receptor potential vanilloid 1 (TRPV1), but not transient receptor potential A1 in dorsal root ganglion (DRG) of TCI rats. In addition, the phosphorylation of extracellular regulated protein kinases (ERK) was also suppressed by baicalin injection in DRG of TCI rats. Our results revealed that baicalin might play a promising analgesic role by preventing the upregulation of TRPV1 in DRG of TCI rats. Baicalin administration prevented the progress of bone cancer pain and reduced mechanical allodynia and thermal hyperalgesia. Our study clearly established a novel role of baicalin as an analgesic agent for bone cancer pain. And the analgesic role of baicalin in bone cancer pain might involve a TRPV1.
Collapse
|
30
|
Sohn JO, Seong SY, Kim HJ, Jo YM, Lee KH, Chung MK, Song HJ, Park KS, Lim JM. Alterations in intracellular Ca 2+ levels in human endometrial stromal cells after decidualization. Biochem Biophys Res Commun 2019; 515:318-324. [PMID: 31153638 DOI: 10.1016/j.bbrc.2019.05.153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 01/17/2023]
Abstract
Calcium (Ca2+) is an important element for many physiological functions of the uterus, including embryo implantation. Here, we investigated the possible involvement of altered intracellular Ca2+ levels in decidualization in human endometrial stromal cells (hEMSCs). hEMSCs showed high levels of mesenchymal stem cell marker expression (CD73, CD90, and CD105) and did not express markers of hematopoietic progenitor cells (CD31, CD34, CD45, and HLA-DR). Decidualization is a process of ovarian steroid-induced endometrial stromal cell proliferation and differentiation. Several types of ion channels, which are regulated by the ovarian hormones progesterone and estradiol, as well as growth factors, are important for endometrial receptivity and embryo implantation. The combined application of progesterone (1 μM medroxyprogesterone acetate) and cyclic AMP (0.5 mM) for 6 days not only elevated inositol 1,4,5-triphosphate receptor (IP3R)-mediated Ca2+ release and IP3R expression, it also promoted ORAI and STIM expression as well as cyclopiazonic acid-induced Ca2+ release. Finally, intracellular Ca2+ levels and ion channel gene expression influenced hEMSC proliferation. These results suggest that cytosolic Ca2+ dynamics, mediated by specific ion channels, serve as an important step in the decidualization of hEMSCs.
Collapse
Affiliation(s)
- Jie Ohn Sohn
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, South Korea; Fertility Medical Center, Seoul Women's Hospital, Bucheon, 14544, South Korea
| | - Seung Yong Seong
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, 25159, South Korea
| | - Hyun Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419, South Korea
| | - Yoon Mi Jo
- Fertility Medical Center, Seoul Women's Hospital, Bucheon, 14544, South Korea
| | - Kyoung Hoon Lee
- Fertility Medical Center, Seoul Women's Hospital, Bucheon, 14544, South Korea
| | - Mi Kyung Chung
- Seoul Rachel Fertility Center, Seoul, 04146, South Korea
| | - Hyun Jin Song
- Fertility Medical Center, Seoul Women's Hospital, Bucheon, 14544, South Korea
| | - Kyoung Sun Park
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, 25159, South Korea.
| | - Jeong Mook Lim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, South Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, South Korea.
| |
Collapse
|
31
|
Effects of baicalin on diabetic neuropathic pain involving transient receptor potential vanilloid 1 in the dorsal root ganglia of rats. Neuroreport 2018; 29:1492-1498. [DOI: 10.1097/wnr.0000000000001138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Artero-Morales M, González-Rodríguez S, Ferrer-Montiel A. TRP Channels as Potential Targets for Sex-Related Differences in Migraine Pain. Front Mol Biosci 2018; 5:73. [PMID: 30155469 PMCID: PMC6102492 DOI: 10.3389/fmolb.2018.00073] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022] Open
Abstract
Chronic pain is one of the most debilitating human diseases and represents a social and economic burden for our society. Great efforts are being made to understand the molecular and cellular mechanisms underlying the pathophysiology of pain transduction. It is particularly noteworthy that some types of chronic pain, such as migraine, display a remarkable sex dimorphism, being up to three times more prevalent in women than in men. This gender prevalence in migraine appears to be related to sex differences arising from both gonadal and genetic factors. Indeed, the functionality of the somatosensory, immune, and endothelial systems seems modulated by sex hormones, as well as by X-linked genes differentially expressed during development. Here, we review the current data on the modulation of the somatosensory system functionality by gonadal hormones. Although this is still an area that requires intense investigation, there is evidence suggesting a direct regulation of nociceptor activity by sex hormones at the transcriptional, translational, and functional levels. Data are being accumulated on the effect of sex hormones on TRP channels such as TRPV1 that make pivotal contributions to nociceptor excitability and sensitization in migraine and other chronic pain syndromes. These data suggest that modulation of TRP channels' expression and/or activity by gonadal hormones provide novel pathways for drug intervention that may be useful for targeting the sex dimorphism observed in migraine.
Collapse
Affiliation(s)
- Maite Artero-Morales
- Instituto de Biología Molecular y Celular, Universitas Miguel Hernández, Elche, Spain
| | | | | |
Collapse
|
33
|
De Clercq K, Vriens J. Establishing life is a calcium-dependent TRiP: Transient receptor potential channels in reproduction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1815-1829. [PMID: 30798946 DOI: 10.1016/j.bbamcr.2018.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 12/21/2022]
Abstract
Calcium plays a key role in many different steps of the reproduction process, from germ cell maturation to placental development. However, the exact function and regulation of calcium throughout subsequent reproductive events remains rather enigmatic. Successful pregnancy requires the establishment of a complex dialogue between the implanting embryo and the endometrium. On the one hand, endometrial cell will undergo massive changes to support an implanting embryo, including stromal cell decidualization. On the other hand, trophoblast cells from the trophectoderm surrounding the inner cell mass will differentiate and acquire new functions such as hormone secretion, invasion and migration. The need for calcium in the different gestational processes implicates the presence of specialized ion channels to regulate calcium homeostasis. The superfamily of transient receptor potential (TRP) channels is a class of calcium permeable ion channels that is involved in the transformation of extracellular stimuli into the influx of calcium, inducing and coordinating underlying signaling pathways. Although the necessity of calcium throughout reproduction cannot be negated, the expression and functionality of TRP channels throughout gestation remains elusive. This review provides an overview of the current evidence regarding the expression and function of TRP channels in reproduction.
Collapse
Affiliation(s)
- Katrien De Clercq
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, KU Leuven, G-PURE, Leuven, Belgium; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, VIB Centre for Brain & Disease Research, Leuven, Belgium
| | - Joris Vriens
- Laboratory of Endometrium, Endometriosis & Reproductive Medicine, Department Development & Regeneration, KU Leuven, G-PURE, Leuven, Belgium.
| |
Collapse
|
34
|
Rahimipour M, Salehnia M, Jafarabadi M. Morphological, Ultrastructural, and Molecular Aspects of In Vitro Mouse Embryo Implantation on Human Endometrial Mesenchymal Stromal Cells in The Presence of Steroid Hormones as An Implantation Model. CELL JOURNAL 2018; 20:369-376. [PMID: 29845791 PMCID: PMC6004996 DOI: 10.22074/cellj.2018.5221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 10/08/2017] [Indexed: 12/04/2022]
Abstract
Objective This experimental study aimed to evaluate the effects of 17β-estradiol (E2) and progesterone (P4) on the interaction
between mouse embryo and human endometrial mesenchymal stromal cells, and gene expressions related to implantation
[αV and β3 integrins, interleukin-1 receptor (IL-1R), and leukemia inhibitory factor receptor (LIFR)] using an in vitro two-
dimensional model.
Materials and Methods In this experimental study, the endometrial stromal cells were isolated enzymatically and
mechanically, and cultured to the fourth passage. Next, their immunophenotype was confirmed by flow cytometric
analysis as mesenchymal stromal cells. The cells were cultured as either the experimental group in the presence of E2
(0.3 nmol) and P4 (63.5 nmol) or control group without any hormone treatment. Mouse blastocysts were co-cultured
with endometrial mesenchymal stromal cells in both groups for 48 hours. Their interaction was assessed under an
inverted microscope and scanning electron microscopy (SEM). Expressions of αV and β3 integrins, LIFR, and IL-1R
genes were analyzed by real-time reverse transcription-polymerase chain reaction (RT-PCR).
Results Similar observations were seen in both groups by light microscopy and SEM. We observed the presence of
pinopode-like structures and cell secretions on the apical surfaces of endometrial mesenchymal stromal cells in both
groups. The trophoblastic cells expanded and interacted with the mesenchymal monolayer cells. At the molecular
level, expression of IL-1R significantly increased in the hormonal treated group compared to the control (P≤0.05).
Expressions of the other genes did not differ.
Conclusion This study has shown that co-culture of endometrial mesenchymal stromal cells with mouse embryo in
media that contained E2 (0.3 nmol) and P4 (63.5 nmol) could effectively increase the expression of IL-1R, which is
involved in embryo implantation. However, there were no significant effects on expressions of αV and β3 integrins,
LIFR, and on the morphology and ultrastructure of endometrial mesenchymal stromal cells.
Collapse
Affiliation(s)
- Marzieh Rahimipour
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojdeh Salehnia
- Department of Anatomy, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mina Jafarabadi
- Reproductive Health Research Center, Tehran University of Medical Sciences, Tehran, Iran. Electronic Address:
| |
Collapse
|
35
|
Beta-Estradiol Regulates Voltage-Gated Calcium Channels and Estrogen Receptors in Telocytes from Human Myometrium. Int J Mol Sci 2018; 19:ijms19051413. [PMID: 29747396 PMCID: PMC5983827 DOI: 10.3390/ijms19051413] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/14/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium channels and estrogen receptors are essential players in uterine physiology, and their association with different calcium signaling pathways contributes to healthy and pathological conditions of the uterine myometrium. Among the properties of the various cell subtypes present in human uterine myometrium, there is increasing evidence that calcium oscillations in telocytes (TCs) contribute to contractile activity and pregnancy. Our study aimed to evaluate the effects of beta-estradiol on voltage-gated calcium channels and estrogen receptors in TCs from human uterine myometrium and to understand their role in pregnancy. For this purpose, we employed patch-clamp recordings, ratiometric Fura-2-based calcium imaging analysis, and qRT-PCR techniques for the analysis of cultured human myometrial TCs derived from pregnant and non-pregnant uterine samples. In human myometrial TCs from both non-pregnant and pregnant uterus, we evidenced by qRT-PCR the presence of genes encoding for voltage-gated calcium channels (Cav3.1, Ca3.2, Cav3.3, Cav2.1), estrogen receptors (ESR1, ESR2, GPR30), and nuclear receptor coactivator 3 (NCOA3). Pregnancy significantly upregulated Cav3.1 and downregulated Cav3.2, Cav3.3, ESR1, ESR2, and NCOA3, compared to the non-pregnant condition. Beta-estradiol treatment (24 h, 10, 100, 1000 nM) downregulated Cav3.2, Cav3.3, Cav1.2, ESR1, ESR2, GRP30, and NCOA3 in TCs from human pregnant uterine myometrium. We also confirmed the functional expression of voltage-gated calcium channels by patch-clamp recordings and calcium imaging analysis of TCs from pregnant human myometrium by perfusing with BAY K8644, which induced calcium influx through these channels. Additionally, we demonstrated that beta-estradiol (1000 nM) antagonized the effect of BAY K8644 (2.5 or 5 µM) in the same preparations. In conclusion, we evidenced the presence of voltage-gated calcium channels and estrogen receptors in TCs from non-pregnant and pregnant human uterine myometrium and their gene expression regulation by beta-estradiol in pregnant conditions. Further exploration of the calcium signaling in TCs and its modulation by estrogen hormones will contribute to the understanding of labor and pregnancy mechanisms and to the development of effective strategies to reduce the risk of premature birth.
Collapse
|
36
|
Pakai E, Tekus V, Zsiboras C, Rumbus Z, Olah E, Keringer P, Khidhir N, Matics R, Deres L, Ordog K, Szentes N, Pohoczky K, Kemeny A, Hegyi P, Pinter E, Garami A. The Neurokinin-1 Receptor Contributes to the Early Phase of Lipopolysaccharide-Induced Fever via Stimulation of Peripheral Cyclooxygenase-2 Protein Expression in Mice. Front Immunol 2018; 9:166. [PMID: 29459872 PMCID: PMC5807668 DOI: 10.3389/fimmu.2018.00166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/18/2018] [Indexed: 12/20/2022] Open
Abstract
Neurokinin (NK) signaling is involved in various inflammatory processes. A common manifestation of systemic inflammation is fever, which is usually induced in animal models with the administration of bacterial lipopolysaccharide (LPS). A role for the NK1 receptor was shown in LPS-induced fever, but the underlying mechanisms of how the NK1 receptor contributes to febrile response, especially in the early phase, have remained unknown. We administered LPS (120 µg/kg, intraperitoneally) to mice with the Tacr1 gene, i.e., the gene encoding the NK1 receptor, either present (Tacr1+/+ ) or absent (Tacr1-/- ) and measured their thermoregulatory responses, serum cytokine levels, tissue cyclooxygenase-2 (COX-2) expression, and prostaglandin (PG) E2 concentration. We found that the LPS-induced febrile response was attenuated in Tacr1-/- compared to their Tacr1+/+ littermates starting from 40 min postinfusion. The febrigenic effect of intracerebroventricularly administered PGE2 was not suppressed in the Tacr1-/- mice. Serum concentration of pyrogenic cytokines did not differ between Tacr1-/- and Tacr1+/+ at 40 min post-LPS infusion. Administration of LPS resulted in amplification of COX-2 mRNA expression in the lungs, liver, and brain of the mice, which was statistically indistinguishable between the genotypes. In contrast, the LPS-induced augmentation of COX-2 protein expression was attenuated in the lungs and tended to be suppressed in the liver of Tacr1-/- mice compared with Tacr1+/+ mice. The Tacr1+/+ mice responded to LPS with a significant surge of PGE2 production in the lungs, whereas Tacr1-/- mice did not. In conclusion, the NK1 receptor is necessary for normal fever genesis. Our results suggest that the NK1 receptor contributes to the early phase of LPS-induced fever by enhancing COX-2 protein expression in the periphery. These findings advance the understanding of the crosstalk between NK signaling and the "cytokine-COX-2-prostaglandin E2" axis in systemic inflammation, thereby open up the possibilities for new therapeutic approaches.
Collapse
Affiliation(s)
- Eszter Pakai
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
- Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences – University of Szeged, Szeged, Hungary
| | - Valeria Tekus
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Csaba Zsiboras
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Zoltan Rumbus
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Emoke Olah
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Patrik Keringer
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Nora Khidhir
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Robert Matics
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Laszlo Deres
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Katalin Ordog
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Nikolett Szentes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Krisztina Pohoczky
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Agnes Kemeny
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
- Department of Medical Biology, Medical School, University of Pecs, Pecs, Hungary
| | - Peter Hegyi
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
- Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences – University of Szeged, Szeged, Hungary
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Erika Pinter
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pecs, Pecs, Hungary
- Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Andras Garami
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
37
|
Xie HT, Xia ZY, Pan X, Zhao B, Liu ZG. Puerarin ameliorates allodynia and hyperalgesia in rats with peripheral nerve injury. Neural Regen Res 2018; 13:1263-1268. [PMID: 30028336 PMCID: PMC6065236 DOI: 10.4103/1673-5374.235074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Puerarin is a major active ingredient of the traditional Chinese plant medicine, Radix Puerariae, and commonly used in the treatment of myocardial and cerebral ischemia. However, the effects of puerarin on neuropathic pain are still unclear. In this study, a neuropathic pain animal model was created by partial sciatic nerve ligation. Puerarin (30 or 60 mg/kg) was intraperitoneally injected once a day for 7 days. Mechanical allodynia and thermal hyperalgesia were examined at 1 day after model establishment. Mechanical threshold and paw withdrawal latency markedly increased in a dose-dependent manner in puerarin-treated rats, especially at 7 days after model establishment. At 7 days after model establishment, quantitative real-time reverse transcriptase-polymerase chain reaction results showed that puerarin administration reversed mRNA expression of transient receptor potential vanilloid 1 (Trpv1) and transient receptor potential ankyrin 1 (Trpa1) in a dose-dependent manner in dorsal root ganglion neurons after peripheral nerve injury. These results suggest that puerarin dose-dependently ameliorates neuropathic pain by suppressing Trpv1 and Trpa1 up-regulation in dorsal root ganglion of neuropathic pain rats.
Collapse
Affiliation(s)
- Heng-Tao Xie
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xia Pan
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhi-Gang Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
38
|
Payrits M, Sághy É, Cseko K, Pohóczky K, Bölcskei K, Ernszt D, Barabás K, Szolcsányi J, Ábrahám IM, Helyes Z, Szoke É. Estradiol Sensitizes the Transient Receptor Potential Vanilloid 1 Receptor in Pain Responses. Endocrinology 2017; 158:3249-3258. [PMID: 28977586 DOI: 10.1210/en.2017-00101] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/29/2017] [Indexed: 11/19/2022]
Abstract
Sex differences exist in chronic pain pathologies, and gonadal estradiol (E2) alters the pain sensation. The nocisensor transient receptor potential vanilloid 1 (TRPV1) receptor plays a critical role in triggering pain. Here we examined the impact of E2 on the function of TRPV1 receptor in mice sensory neurons in vitro and in vivo. Both mechano- and thermonociceptive thresholds of the plantar surface of the paw of female mice were significantly lower in proestrus compared with the estrus phase. These thresholds were higher in ovariectomized (OVX) mice and significantly lower in sham-operated mice in proestrus compared with the sham-operated mice in estrus phase. This difference was absent in TRPV1 receptor-deficient mice. Furthermore, E2 potentiated the TRPV1 receptor activation-induced mechanical hyperalgesia in OVX mice. Long pretreatment (14 hours) with E2 induced a significant increase in TRPV1 receptor messenger RNA expression and abolished the capsaicin-induced TRPV1 receptor desensitization in primary sensory neurons. The short E2 incubation (10 minutes) also prevented the desensitization, which reverted after coadministration of E2 and the tropomyosin-related kinase A (TrkA) receptor inhibitor. Our study provides in vivo and in vitro evidence for E2-induced TRPV1 receptor upregulation and sensitization mediated by TrkAR via E2-induced genomic and nongenomic mechanisms. The sensitization and upregulation of TRPV1 receptor by E2 in sensory neurons may explain the greater pain sensitivity in female mice.
Collapse
Affiliation(s)
- Maja Payrits
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary
- Janos Szentagothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
| | - Éva Sághy
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary
- Janos Szentagothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089, Budapest, Hungary
| | - Kata Cseko
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary
- Janos Szentagothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
| | - Krisztina Pohóczky
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary
- Janos Szentagothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary
- Janos Szentagothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
| | - Dávid Ernszt
- Janos Szentagothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
- Department of Pharmaceutical Biotechnology, University of Pécs, Medical School, H-7624 Pécs, Hungary
| | - Klaudia Barabás
- Janos Szentagothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
- Institute of Physiology, University of Pécs, Medical School, H-7624 Pécs, Hungary
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary
- Janos Szentagothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
| | - István M Ábrahám
- Janos Szentagothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
- Institute of Physiology, University of Pécs, Medical School, H-7624 Pécs, Hungary
- MTA-PTE NAP B Molecular Neuroendocrinology Research Group-Hungary, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary
- Janos Szentagothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
- Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP B Chronic Pain Research Group-Hungary, H-7624 Pécs, Hungary
| | - Éva Szoke
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary
- Janos Szentagothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
- MTA-PTE NAP B Chronic Pain Research Group-Hungary, H-7624 Pécs, Hungary
| |
Collapse
|
39
|
Extraoral Taste Receptor Discovery: New Light on Ayurvedic Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017. [PMID: 28642799 PMCID: PMC5469997 DOI: 10.1155/2017/5435831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
More and more research studies are revealing unexpectedly important roles of taste for health and pathogenesis of various diseases. Only recently it has been shown that taste receptors have many extraoral locations (e.g., stomach, intestines, liver, pancreas, respiratory system, heart, brain, kidney, urinary bladder, pancreas, adipose tissue, testis, and ovary), being part of a large diffuse chemosensory system. The functional implications of these taste receptors widely dispersed in various organs or tissues shed a new light on several concepts used in ayurvedic pharmacology (dravyaguna vijnana), such as taste (rasa), postdigestive effect (vipaka), qualities (guna), and energetic nature (virya). This review summarizes the significance of extraoral taste receptors and transient receptor potential (TRP) channels for ayurvedic pharmacology, as well as the biological activities of various types of phytochemical tastants from an ayurvedic perspective. The relative importance of taste (rasa), postdigestive effect (vipaka), and energetic nature (virya) as ethnopharmacological descriptors within Ayurveda boundaries will also be discussed.
Collapse
|
40
|
Bohonyi N, Pohóczky K, Szalontai B, Perkecz A, Kovács K, Kajtár B, Orbán L, Varga T, Szegedi S, Bódis J, Helyes Z, Koppán M. Local upregulation of transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 ion channels in rectosigmoid deep infiltrating endometriosis. Mol Pain 2017; 13:1744806917705564. [PMID: 28478727 PMCID: PMC5424991 DOI: 10.1177/1744806917705564] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 03/01/2017] [Accepted: 03/22/2017] [Indexed: 12/21/2022] Open
Abstract
Transient Receptor Potential Vanilloid 1 (TRPV1) and Transient Receptor Potential Ankyrin 1 (TRPA1) expressed mainly by primary sensory neurons function as major nociceptive integrators. They are also present on the rat endometrium in an oestrogen-regulated manner. TRPV1 is upregulated in peritoneal and ovarian endometriosis patients, but there is no information about TRPA1 and their pathophysiological significances. In this study, patients undergoing laparoscopic surgery were investigated: severe dysmenorrhoea due to rectosigmoid deep infiltrating endometriosis ( n = 15), uterine fibroid-induced moderate dysmenorrhoea ( n = 7) and tubal infertility with no pain ( n = 6). TRPA1 and TRPV1 mRNA and protein expressions were determined by quantitative polymerase chain reaction and semi-quantitative immunohistochemistry from the endometrium samples taken by curettage. Results were correlated with the clinical characteristics including pain intensity. TRPA1 and TRPV1 receptors were expressed in the healthy human endometrium at mRNA and protein levels. Sparse, scattered cytoplasmic TRPA1 and TRPV1 immunopositivities were found in the stroma and epithelial layers. We detected upregulated mRNA levels in deep infiltrating endometriosis lesions, and TRPV1 gene expression was also elevated in autocontrol endometrium of deep infiltrating endometriosis patients. Histological scoring revealed significant TRPA1 and TRPV1 difference between deep infiltrating endometriosis stroma and epithelium, and in deep infiltrating endometriosis epithelium compared to control samples. Besides, we measured elevated stromal TRPV1 immunopositivity in deep infiltrating endometriosis. Stromal TRPA1 and TRPV1 immunoreactivities strongly correlated with dysmenorrhoea severity, as well TRPV1 expression on ectopic epithelial cells and macrophages with dyspareunia. Epithelial TRPA1 and stromal TRPV1 immunopositivity also positively correlated with dyschezia severity. We provide the first evidence for the presence of non-neuronal TRPA1 receptor in the healthy human endometrium and confirm the expression of TRPV1 channels. Their upregulations in rectosigmoid deep infiltrating endometriosis lesions and correlations with pain intensity suggest potential roles in pathophysiological mechanisms of the disease.
Collapse
Affiliation(s)
- Noémi Bohonyi
- Department of Obstetrics and Gynaecology, University of Pécs Medical School, Pécs, Hungary
| | - Krisztina Pohóczky
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Center for Neuroscience, Pécs, Hungary
| | - Bálint Szalontai
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Pécs, Hungary
| | - Anikó Perkecz
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Pécs, Hungary
| | - Krisztina Kovács
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Lajos Orbán
- Department of Surgery, University of Pécs Medical School, Pécs, Hungary
| | - Tamás Varga
- Department of Obstetrics and Gynaecology, University of Pécs Medical School, Pécs, Hungary
| | - Sarolta Szegedi
- Department of Obstetrics and Gynaecology, University of Pécs Medical School, Pécs, Hungary
| | - József Bódis
- Department of Obstetrics and Gynaecology, University of Pécs Medical School, Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Pécs, Hungary
- János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- Center for Neuroscience, Pécs, Hungary
- MTA-PTE NAP B Pain Research Group, Pécs, Hungary, Pécs, Hungary
| | - Miklós Koppán
- Department of Obstetrics and Gynaecology, University of Pécs Medical School, Pécs, Hungary
| |
Collapse
|
41
|
Clark AJL, Lowry P. 60 YEARS OF POMC: POMC: the consummate peptide hormone precursor. J Mol Endocrinol 2016; 56:E1-2. [PMID: 27273100 DOI: 10.1530/jme-16-0016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Adrian J L Clark
- Centre for EndocrinologyWilliam Harvey Research Institute, Queen Mary University of London, London, UK
| | - Philip Lowry
- Emeritus Professor School of Biological SciencesThe University of Reading, Reading, UK
| |
Collapse
|