1
|
Vella M, Manfield IW, Seychell BC, Trinh CH, Rambo R, Nasir Khan G, Vassallo J, Hunter T, Hunter GJ. Mutations in the N-domain of aryl hydrocarbon receptor interacting protein affect interactions with heat shock protein 90β and phosphodiesterase 4A5. Biochimie 2025; 228:114-126. [PMID: 39299536 DOI: 10.1016/j.biochi.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
The aryl hydrocarbon receptor interacting protein (AIP) is a cytoplasmic molecular co-chaperone and tumour suppressor that assists in protein stability and complex formation involving the aryl hydrocarbon receptor. Germline mutations in the AIP gene predispose to pituitary tumourigenesis with patients exhibiting an aggressive clinical phenotype. Full length AIP proteins harbouring N-domain mutations (R9Q, R16H, V49 M and K103R) were purified from E.coli utilizing a methodology that maintained structural integrity and monomeric stability. Mutations did not significantly affect the thermal stability of the protein and caused no overall disruptive effect in the protein structure. The mutations studied lowered the binding affinity of AIP towards two of its binding partners; heat shock protein 90β and phosphodiesterase 4A5 (PDE4A5). The inhibition of phosphodiesterase activity by AIP was also greatly reduced by all mutants. While previously published data has mainly concentrated on the tetratricopeptide repeats of the C-domain of AIP, we present clear evidence that AIP N-domain mutations play a significant role in two protein:protein interactions with partner proteins. The complex interactome of AIP suggests that any observable change in one or more of its binding partners cannot be disregarded as it may have repercussions on other biochemical pathways.
Collapse
Affiliation(s)
- Marita Vella
- Department of Physiology & Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, MSD2080, Malta
| | - Iain W Manfield
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Brandon C Seychell
- Department of Physiology & Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, MSD2080, Malta
| | - Chi H Trinh
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Robert Rambo
- Soft Condensed Matter Group, Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - G Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Josanne Vassallo
- Department of Medicine, Faculty of Medicine & Surgery, University of Malta, Msida, MSD2080, Malta
| | - Thérèse Hunter
- Department of Physiology & Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, MSD2080, Malta
| | - Gary J Hunter
- Department of Physiology & Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, MSD2080, Malta.
| |
Collapse
|
2
|
Hernández-Ramírez LC, Perez-Rivas LG, Theodoropoulou M, Korbonits M. An Update on the Genetic Drivers of Corticotroph Tumorigenesis. Exp Clin Endocrinol Diabetes 2024; 132:678-696. [PMID: 38830604 DOI: 10.1055/a-2337-2265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The genetic landscape of corticotroph tumours of the pituitary gland has dramatically changed over the last 10 years. Somatic changes in the USP8 gene account for the most common genetic defect in corticotrophinomas, especially in females, while variants in TP53 or ATRX are associated with a subset of aggressive tumours. Germline defects have also been identified in patients with Cushing's disease: some are well-established (MEN1, CDKN1B, DICER1), while others are rare and could represent coincidences. In this review, we summarise the current knowledge on the genetic drivers of corticotroph tumorigenesis, their molecular consequences, and their impact on the clinical presentation and prognosis.
Collapse
Affiliation(s)
- Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, LMU München, Munich 80336, Germany
| | - Márta Korbonits
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
3
|
Xiang B, Zhang X, Liu W, Mao B, Zhao Y, Wang Y, Gong W, Ye H, Li Y, Zhang Z, Yu Y, He M. Germline AIP variants in sporadic young acromegaly and pituitary gigantism: clinical and genetic insights from a Han Chinese cohort. Endocrine 2024; 85:1346-1356. [PMID: 38851643 DOI: 10.1007/s12020-024-03898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
PURPOSE Variants in the Aryl hydrocarbon receptor-interacting protein (AIP) gene have been identified in sporadic acromegaly and pituitary gigantism, especially in young patients, with a predisposition to aggressive clinical phenotype and poor treatment efficacy. The clinical characteristics of patients with sporadic acromegaly and pituitary gigantism as well as AIP variants in Han Chinese have been rarely reported. We aimed to identify AIP gene variants and analyze the clinical characteristics of patients with sporadic acromegaly and pituitary gigantism in Han Chinese. METHODS The study included 181 sporadic acromegaly (N = 163) and pituitary gigantism (N = 18) patients with an onset age of no more than 45 years old, who were diagnosed, treated, and followed up in Huashan Hospital. All 6 exons and their flanking regions of the AIP gene were analyzed with Sanger sequencing or NGS. The clinical characteristics were compared between groups with and without AIP variants. RESULTS Germline AIP variants were found in 15/181 (8.29%) cases. In patients with an onset age ≤30 years old, AIP variants were identified in 12/133 (9.02%). Overall, 13 variants were detected. The pathogenic (P) variants p.R304X and p.R81X were identified in four cases, with two instances of each variant. Six exon variants (p.C254R, p.K103fs, p.Q228fs, p.Y38X, p.Q213*, and p.1115 fs) have not been reported before, which were likely pathogenic (LP). Patients with P/LP variants had younger onset ages, a higher prevalence of pituitary gigantism, larger tumor volumes, and a higher percentage of Ki-67-positive cells in tumors. In addition, the group with P/LP variants showed a less significant reduction of GH levels in an acute octreotide suppression test (OST) [17.7% (0, 65.0%) vs. 80.5% (63.9%, 90.2%), P = 0.001], and a trend of less GH decrease after the 3-month treatment with long-acting somatostatin analogs (SSAs). CONCLUSION Germline AIP variants existed in sporadic Chinese Han acromegaly and pituitary gigantism patients and were more likely to be detected in young patients. AIP variants were associated with more aggressive tumor phenotypes and less response to SSA treatment.
Collapse
Affiliation(s)
- Boni Xiang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China
| | - Xintong Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China
- Department of General Practice, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, China
| | - Wenjuan Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China
| | - Bei Mao
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China
| | - Yao Zhao
- Department of Neurosurgery, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Yongfei Wang
- Department of Neurosurgery, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
| | - Wei Gong
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China
| | - Hongying Ye
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital Fudan University, Shanghai, China
| | - Yiming Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital Fudan University, Shanghai, China
| | - Zhaoyun Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China
- Shanghai Pituitary Tumor Center, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital Fudan University, Shanghai, China
| | - Yifei Yu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China.
| | - Min He
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, No. 12 Wulumuqi Middle Road, Shanghai, China.
- Shanghai Pituitary Tumor Center, Shanghai, China.
- Huashan Rare Disease Center, Huashan Hospital Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Gedvilaite-Vaicechauskiene G, Kriauciuniene L, Tamasauskas A, Rovite V, Mandrika I, Wu SN, Huang CW, Poskiene L, Liutkeviciene R. Pituitary Adenoma: SSTR2 rs2236750, SSTR5 rs34037914, and AIP rs267606574 Genetic Variants, Serum Levels, and Ki-67 Labeling Index Associations. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1252. [PMID: 39202532 PMCID: PMC11356775 DOI: 10.3390/medicina60081252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: This study explores the complex pathogenesis of pituitary adenomas (PAs), prevalent intracranial tumors in the pituitary gland. Despite their generally benign nature, PAs exhibit a diverse clinical spectrum involving hormone hypersecretion and varying invasiveness, hinting at multifaceted molecular mechanisms and abnormalities in tumorigenesis and gene regulation. Materials and Methods: The investigation focuses on the Ki-67 labeling index, SSTR2 rs2236750, SSTR5 rs34037914, and AIP rs267606574 polymorphisms, alongside serum levels of SSTR2, SSTR5, and AIP, to discern their association with PAs. The Ki-67 labeling index was assessed using immunohistochemical analysis with the monoclonal antibody clone SP6, representing the percentage of tumor cells showing positive staining. Genotyping was performed via real-time polymerase chain reaction, and serum levels were analyzed using ELISA. The study included 128 PA patients and 272 reference group subjects. Results: The results derived from binary logistic regression analysis revealed an intriguing correlation between the SSTR2 rs2236750 AG genotype and approximately a 1.6-fold increased likelihood of PA occurrence. When analyzing SSTR5 rs34037914, statistically significant differences were found between Micro-PA and the reference group (p = 0.022). Additionally, the SSTR5 rs34037914 TT genotype, compared with CC + CT, under the most robust genetic model (selected based on the lowest AIC value), was associated with a 12-fold increased odds of Micro-PA occurrence. However, it is noteworthy that after applying Bonferroni correction, these findings did not retain statistical significance. Conclusions: Consequently, while this study hinted at a potential link between SSTR2 rs2236750 and pituitary adenoma development, as well as a potential link between SSTR5 rs34037914 and Micro-PA development, it underscored the need for further analysis involving a larger cohort to robustly validate these findings.
Collapse
Affiliation(s)
- Greta Gedvilaite-Vaicechauskiene
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania; (G.G.-V.); (L.K.); (A.T.)
| | - Loresa Kriauciuniene
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania; (G.G.-V.); (L.K.); (A.T.)
| | - Arimantas Tamasauskas
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania; (G.G.-V.); (L.K.); (A.T.)
| | - Vita Rovite
- Latvian Biomedical Research and Study Centre (BMC), LV-1067 Rīga, Latvia; (V.R.); (I.M.)
| | - Ilona Mandrika
- Latvian Biomedical Research and Study Centre (BMC), LV-1067 Rīga, Latvia; (V.R.); (I.M.)
| | - Sheng-Nan Wu
- Department of Neurology, National Cheng Kung University Hospital, Tainan City 704, Taiwan; (S.-N.W.); (C.-W.H.)
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, Tainan City 704, Taiwan; (S.-N.W.); (C.-W.H.)
| | - Lina Poskiene
- Department of Pathology, Medical Academy, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
| | - Rasa Liutkeviciene
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu 2, 50161 Kaunas, Lithuania; (G.G.-V.); (L.K.); (A.T.)
| |
Collapse
|
5
|
Ramírez-Rentería C, Hernández-Ramírez LC. Genetic diagnosis in acromegaly and gigantism: From research to clinical practice. Best Pract Res Clin Endocrinol Metab 2024; 38:101892. [PMID: 38521632 DOI: 10.1016/j.beem.2024.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
It is usually considered that only 5% of all pituitary neuroendocrine tumours are due to inheritable causes. Since this estimate was reported, however, multiple genetic defects driving syndromic and nonsyndromic somatotrophinomas have been unveiled. This heterogeneous genetic background results in overlapping phenotypes of GH excess. Genetic tests should be part of the approach to patients with acromegaly and gigantism because they can refine the clinical diagnoses, opening the possibility to tailor the clinical conduct to each patient. Even more, genetic testing and clinical screening of at-risk individuals have a positive impact on disease outcomes, by allowing for the timely detection and treatment of somatotrophinomas at early stages. Future research should focus on determining the actual frequency of novel genetic drivers of somatotrophinomas in the general population, developing up-to-date disease-specific multi-gene panels for clinical use, and finding strategies to improve access to modern genetic testing worldwide.
Collapse
Affiliation(s)
- Claudia Ramírez-Rentería
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Laura C Hernández-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
6
|
Shen AL, Moran SM, Glover EN, Lin BC, Carney PR, Bradfield CA. Familial isolated pituitary adenoma is independent of Ahr genotype in a novel mouse model of disease. Heliyon 2024; 10:e28231. [PMID: 38590848 PMCID: PMC10999881 DOI: 10.1016/j.heliyon.2024.e28231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Human familial isolated pituitary adenoma (FIPA) has been linked to germline heterozygous mutations in the gene encoding the aryl hydrocarbon receptor-interacting protein (AIP, also known as ARA9, XAP2, FKBP16, or FKBP37). To investigate the hypothesis that AIP is a pituitary adenoma tumor suppressor via its role in aryl hydrocarbon receptor (AHR) signaling, we have compared the pituitary phenotype of our global null Aip (AipΔC) mouse model with that of a conditional null Aip model (Aipfx/fx) carrying the same deletion, as well as pituitary phenotypes of Ahr global null and Arnt conditional null animals. We demonstrate that germline AipΔC heterozygosity results in a high incidence of pituitary tumors in both sexes, primarily somatotropinomas, at 16 months of age. Biallelic deletion of Aip in Pit-1 cells (Aipfx/fx:rGHRHRcre) increased pituitary tumor incidence and also accelerated tumor progression, supporting a loss-of-function/loss-of-heterozygosity model of tumorigenesis. Tumor development exhibited sexual dimorphism in wildtype and Aipfx/fx:rGHRHRcre animals. Despite the role of AHR as a tumor suppressor in other cancers, the observation that animals lacking AHR in all tissues, or ARNT in Pit-1 cells, do not develop somatotropinomas argues against the hypothesis that pituitary tumorigenesis in AIP-associated FIPA is related to decreased activities of either the Ahr or Arnt gene products.
Collapse
Affiliation(s)
- Anna L Shen
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Susan M Moran
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Edward N Glover
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Bernice C Lin
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Current address, Lin-Zhi International, 2945, Oakmead Village Court, Santa Clara, CA, 95051, United States
| | - Patrick R Carney
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, United States
| | - Christopher A Bradfield
- The McArdle Laboratory for Cancer Research, Department of Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53706, United States
| |
Collapse
|
7
|
Alzahrani AS, Bin Nafisah A, Alswailem M, Alghamdi B, Alsaihati B, Aljafar H, Baz B, Alhindi H, Moria Y, Butt MI, Alkabbani AG, Alshaikh OM, Alnassar A, Bin Afeef A, AlQuraa R, Alsuhaibani R, Alhadlaq O, Abothenain F, Altwaijry YA. Germline Variants in Sporadic Pituitary Adenomas. J Endocr Soc 2024; 8:bvae085. [PMID: 38745824 PMCID: PMC11091836 DOI: 10.1210/jendso/bvae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 05/16/2024] Open
Abstract
Context Data on germline genetics of pituitary adenomas (PAs) using whole-exome sequencing (WES) are limited. Objective This study investigated the germline genetic variants in patients with PAs using WES. Methods We studied 134 consecutive functioning (80.6%) and nonfunctioning (19.4%) PAs in 61 female (45.5%) and 73 male patients (54.5%). Their median age was 34 years (range, 11-85 years) and 31 patients had microadenomas (23.0%) and 103 macroadenomas (77%). None of these patients had family history of PA or a known PA-associated syndrome. Peripheral blood DNA was isolated and whole-exome sequenced. We used American College of Medical Genetics and Genomics (ACMG) criteria and a number of in silico analysis tools to characterize genetic variant pathogenicity levels and focused on previously reported PA-associated genes. Results We identified 35 variants of unknown significance (VUS) in 17 PA-associated genes occurring in 40 patients (29.8%). Although designated VUS by the strict ACGM criteria, they are predicted to be pathogenic by in silico analyses and their extremely low frequencies in 1000 genome, gnomAD, and the Saudi Genome Project databases. Further analysis of these variants by the Alpha Missense analysis tool yielded 8 likely pathogenic variants in 9 patients in the following genes: AIP:c.767C>T (p.S256F), CDH23:c.906G>C (p.E302D), CDH23:c.1096G>A (p.A366T), DICER1:c.620C>T (p.A207V), MLH1:c.955G>A (p.E319K), MSH2:c.148G>A (p.A50T), SDHA:c.869T>C (p.L290P) and USP48 (2 patients): c.2233G>A (p.V745M). Conclusion This study suggests that about 6.7% of patients with apparently sporadic PAs carry likely pathogenic variants in PA-associated genes. These findings need further studies to confirm them.
Collapse
Affiliation(s)
- Ali S Alzahrani
- Department of Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Abdulghani Bin Nafisah
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Meshael Alswailem
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Balgees Alghamdi
- Department of Molecular Oncology, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Burair Alsaihati
- Applied Genomic Technologies Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Hussain Aljafar
- Applied Genomic Technologies Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Batoul Baz
- Health and Wellness Sector, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Hindi Alhindi
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Yosra Moria
- Department of Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Muhammad Imran Butt
- Department of Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | | | | | - Anhar Alnassar
- Department of Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Ahmed Bin Afeef
- Department of Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Reem AlQuraa
- Department of Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Rawan Alsuhaibani
- Department of Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Omar Alhadlaq
- Department of Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Fayha Abothenain
- Department of Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Yasser A Altwaijry
- Department of Medicine, King Faisal Specialist Hospital & Research Center, P.O. Box 3354, Riyadh 11211, Saudi Arabia
| |
Collapse
|
8
|
Kazzaz SA, Tawil J, Harhaj EW. The aryl hydrocarbon receptor-interacting protein in cancer and immunity: Beyond a chaperone protein for the dioxin receptor. J Biol Chem 2024; 300:107157. [PMID: 38479600 PMCID: PMC11002312 DOI: 10.1016/j.jbc.2024.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
The aryl hydrocarbon receptor (AhR)-interacting protein (AIP) is a ubiquitously expressed, immunophilin-like protein best known for its role as a co-chaperone in the AhR-AIP-Hsp90 cytoplasmic complex. In addition to regulating AhR and the xenobiotic response, AIP has been linked to various aspects of cancer and immunity that will be the focus of this review article. Loss-of-function AIP mutations are associated with pituitary adenomas, suggesting that AIP acts as a tumor suppressor in the pituitary gland. However, the tumor suppressor mechanisms of AIP remain unclear, and AIP can exert oncogenic functions in other tissues. While global deletion of AIP in mice yields embryonically lethal cardiac malformations, heterozygote, and tissue-specific conditional AIP knockout mice have revealed various physiological roles of AIP. Emerging studies have established the regulatory roles of AIP in both innate and adaptive immunity. AIP interacts with and inhibits the nuclear translocation of the transcription factor IRF7 to inhibit type I interferon production. AIP also interacts with the CARMA1-BCL10-MALT1 complex in T cells to enhance IKK/NF-κB signaling and T cell activation. Taken together, AIP has diverse functions that vary considerably depending on the client protein, the tissue, and the species.
Collapse
Affiliation(s)
- Sarah A Kazzaz
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - John Tawil
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Edward W Harhaj
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA.
| |
Collapse
|
9
|
Akkuş G, Korbonits M. Genetic Testing in Hereditary Pituitary Tumors. Arch Med Res 2023; 54:102920. [PMID: 38007383 DOI: 10.1016/j.arcmed.2023.102920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Genetic testing is becoming part of mainstream endocrinology. An increasing number of rare and not-so-rare endocrine diseases have an identifiable genetic cause, either at the germline or at the somatic level. Here we summerise germline genetic alterations in patients with pituitary neuroendocrine tumors (pituitary adenomas). These may be disorders with isolated pituitary tumors, such as X-linked acrogigantism, or AIP-related pituitary tumors, or as part of syndromic diseases, such as multiple endocrine neoplasia type 1 or Carney complex. In some cases, this could be relevant for treatment choices and follow-up, as well as for family members, as cascade screening leads to early identification of affected relatives and improved clinical outcomes.
Collapse
Affiliation(s)
- Gamze Akkuş
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
10
|
Gaspar LM, Gonçalves CI, Saraiva C, Cortez L, Amaral C, Nobre E, Lemos MC. Low frequency of AIP mutations in patients with young-onset sporadic pituitary macroadenomas. J Endocrinol Invest 2023; 46:2299-2307. [PMID: 37149543 PMCID: PMC10558361 DOI: 10.1007/s40618-023-02083-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/28/2023] [Indexed: 05/08/2023]
Abstract
PURPOSE Mutations in the aryl hydrocarbon receptor interacting protein (AIP) gene cause familial isolated pituitary adenomas (FIPA). AIP mutations have also been found in patients with apparently sporadic pituitary adenomas, particularly in young patients with large adenomas. The aim of this study was to determine the frequency of AIP germline mutations in patients with young-onset sporadic pituitary macroadenomas. METHODS The AIP gene was sequenced in 218 Portuguese patients with sporadic pituitary macroadenomas diagnosed before the age of 40 years. RESULTS Heterozygous rare sequence variants in AIP were identified in 18 (8.3%) patients. However, only four (1.8%) patients had pathogenic or likely pathogenic variants. These consisted of two already known mutations (p.Arg81* and p.Leu115Trpfs*41) and two novel mutations (p.Glu246*, p.Ser53Thrfs*36). All four patients had GH-secreting adenomas diagnosed between the ages of 14 and 25 years. The frequency of AIP pathogenic or likely pathogenic variants in patients under the age of 30 and 18 years was 3.4% and 5.0%, respectively. CONCLUSION The frequency of AIP mutations in this cohort was lower than in other studies. Previous reports may have overestimated the contribution of AIP mutations due to the inclusion of genetic variants of uncertain significance. The identification of novel AIP mutations expands the known spectrum of genetic causes of pituitary adenomas and may help understand the role of AIP mutations in the molecular mechanisms underlying pituitary tumorigenesis.
Collapse
Affiliation(s)
- L M Gaspar
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - C I Gonçalves
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - C Saraiva
- Serviço de Endocrinologia, Hospital de Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisbon, Portugal
| | - L Cortez
- Serviço de Endocrinologia, Hospital de Curry Cabral, Centro Hospitalar Universitário Lisboa Central, Lisbon, Portugal
| | - C Amaral
- Serviço de Endocrinologia, Hospital de Santo António, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - E Nobre
- Serviço de Endocrinologia, Diabetes e Metabolismo, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - M C Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
11
|
Vamvoukaki R, Chrysoulaki M, Betsi G, Xekouki P. Pituitary Tumorigenesis-Implications for Management. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040812. [PMID: 37109772 PMCID: PMC10145673 DOI: 10.3390/medicina59040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Pituitary neuroendocrine tumors (PitNETs), the third most common intracranial tumor, are mostly benign. However, some of them may display a more aggressive behavior, invading into the surrounding structures. While they may rarely metastasize, they may resist different treatment modalities. Several major advances in molecular biology in the past few years led to the discovery of the possible mechanisms involved in pituitary tumorigenesis with a possible therapeutic implication. The mutations in the different proteins involved in the Gsa/protein kinase A/c AMP signaling pathway are well-known and are responsible for many PitNETS, such as somatotropinomas and, in the context of syndromes, as the McCune-Albright syndrome, Carney complex, familiar isolated pituitary adenoma (FIPA), and X-linked acrogigantism (XLAG). The other pathways involved are the MAPK/ERK, PI3K/Akt, Wnt, and the most recently studied HIPPO pathways. Moreover, the mutations in several other tumor suppressor genes, such as menin and CDKN1B, are responsible for the MEN1 and MEN4 syndromes and succinate dehydrogenase (SDHx) in the context of the 3PAs syndrome. Furthermore, the pituitary stem cells and miRNAs hold an essential role in pituitary tumorigenesis and may represent new molecular targets for their diagnosis and treatment. This review aims to summarize the different cell signaling pathways and genes involved in pituitary tumorigenesis in an attempt to clarify their implications for diagnosis and management.
Collapse
Affiliation(s)
- Rodanthi Vamvoukaki
- Endocrinology and Diabetes Clinic, University Hospital of Heraklion, School of Medicine, University of Crete, 71500 Crete, Greece
| | - Maria Chrysoulaki
- Endocrinology and Diabetes Clinic, University Hospital of Heraklion, School of Medicine, University of Crete, 71500 Crete, Greece
| | - Grigoria Betsi
- Endocrinology and Diabetes Clinic, University Hospital of Heraklion, School of Medicine, University of Crete, 71500 Crete, Greece
| | - Paraskevi Xekouki
- Endocrinology and Diabetes Clinic, University Hospital of Heraklion, School of Medicine, University of Crete, 71500 Crete, Greece
| |
Collapse
|
12
|
Identification of Candidate Genes and Functional Pathways Associated with Body Size Traits in Chinese Holstein Cattle Based on GWAS Analysis. Animals (Basel) 2023; 13:ani13060992. [PMID: 36978532 PMCID: PMC10044097 DOI: 10.3390/ani13060992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Body size is one of the most economically important traits of dairy cattle, as it is significantly associated with cow longevity, production, health, fertility, and environmental adaptation. The identification and application of genetic variants using a novel genetic approach, such as genome-wide association studies (GWASs), may give more insights into the genetic architecture of complex traits. The identification of genes, single nucleotide polymorphisms (SNPs), and pathways associated with the body size traits may offer a contribution to genomic selection and long-term planning for selection in dairy cows. In this study, we performed GWAS analysis to identify the genetic markers and genes associated with four body size traits (body height, body depth, chest width, and angularity) in 1000 Chinese Holstein cows. We performed SNPs genotyping in 1000 individuals, based on the GeneSeek Genomic Profiler Bovine 100 K. In total, we identified 11 significant SNPs in association with body size traits at the threshold of Bonferroni correction (5.90 × 10−7) using the fixed and random model circulating probability unification (FarmCPU) model. Several genes within 200 kb distances (upstream or downstream) of the significant SNPs were identified as candidate genes, including MYH15, KHDRBS3, AIP, DCC, SQOR, and UBAP1L. Moreover, genes within 200 kb of the identified SNPs were significantly enriched (p ≤ 0.05) in 25 Gene Ontology terms and five Kyoto Encyclopedia of Genes and Genomes pathways. We anticipate that these results provide a foundation for understanding the genetic architecture of body size traits. They will also contribute to breeding programs and genomic selection work on Chinese Holstein cattle.
Collapse
|
13
|
Ortiz NR, Guy N, Garcia YA, Sivils JC, Galigniana MD, Cox MB. Functions of the Hsp90-Binding FKBP Immunophilins. Subcell Biochem 2023; 101:41-80. [PMID: 36520303 DOI: 10.1007/978-3-031-14740-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The Hsp90 chaperone is known to interact with a diverse array of client proteins. However, in every case examined, Hsp90 is also accompanied by a single or several co-chaperone proteins. One class of co-chaperone contains a tetratricopeptide repeat (TPR) domain that targets the co-chaperone to the C-terminal region of Hsp90. Within this class are Hsp90-binding peptidylprolyl isomerases, most of which belong to the FK506-binding protein (FKBP) family. Despite the common association of FKBP co-chaperones with Hsp90, it is abundantly clear that the client protein influences, and is often influenced by, the particular FKBP bound to Hsp90. Examples include Xap2 in aryl hydrocarbon receptor complexes and FKBP52 in steroid receptor complexes. In this chapter, we discuss the known functional roles played by FKBP co-chaperones and, where possible, relate distinctive functions to structural differences between FKBP members.
Collapse
Affiliation(s)
- Nina R Ortiz
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Naihsuan Guy
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Yenni A Garcia
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jeffrey C Sivils
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Mario D Galigniana
- Departamento de Química Biológica/IQUIBICEN, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biología y Medicina Experimental/CONICET, Buenos Aires, Argentina
| | - Marc B Cox
- Border Biomedical Research Center and Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
14
|
Wang ZW, Niu L, Riaz S. Regulation of Ryanodine Receptor-Dependent Neurotransmitter Release by AIP, Calstabins, and Presenilins. ADVANCES IN NEUROBIOLOGY 2023; 33:287-304. [PMID: 37615871 DOI: 10.1007/978-3-031-34229-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Ryanodine receptors (RyRs) are Ca2+ release channels located in the endoplasmic reticulum membrane. Presynaptic RyRs play important roles in neurotransmitter release and synaptic plasticity. Recent studies suggest that the proper function of presynaptic RyRs relies on several regulatory proteins, including aryl hydrocarbon receptor-interacting protein, calstabins, and presenilins. Dysfunctions of these regulatory proteins can greatly impact neurotransmitter release and synaptic plasticity by altering the function or expression of RyRs. This chapter aims to describe the interaction between these proteins and RyRs, elucidating their crucial role in regulating synaptic function.
Collapse
Affiliation(s)
- Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Sadaf Riaz
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
15
|
Prodromou C, Aran-Guiu X, Oberoi J, Perna L, Chapple JP, van der Spuy J. HSP70-HSP90 Chaperone Networking in Protein-Misfolding Disease. Subcell Biochem 2023; 101:389-425. [PMID: 36520314 DOI: 10.1007/978-3-031-14740-1_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Molecular chaperones and their associated co-chaperones are essential in health and disease as they are key facilitators of protein-folding, quality control and function. In particular, the heat-shock protein (HSP) 70 and HSP90 molecular chaperone networks have been associated with neurodegenerative diseases caused by aberrant protein-folding. The pathogenesis of these disorders usually includes the formation of deposits of misfolded, aggregated protein. HSP70 and HSP90, plus their co-chaperones, have been recognised as potent modulators of misfolded protein toxicity, inclusion formation and cell survival in cellular and animal models of neurodegenerative disease. Moreover, these chaperone machines function not only in folding but also in proteasome-mediated degradation of neurodegenerative disease proteins. This chapter gives an overview of the HSP70 and HSP90 chaperones, and their respective regulatory co-chaperones, and explores how the HSP70 and HSP90 chaperone systems form a larger functional network and its relevance to counteracting neurodegenerative disease associated with misfolded proteins and disruption of proteostasis.
Collapse
Affiliation(s)
| | - Xavi Aran-Guiu
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Jasmeen Oberoi
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Laura Perna
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - J Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | | |
Collapse
|
16
|
Coopmans EC, Korbonits M. Molecular genetic testing in the management of pituitary disease. Clin Endocrinol (Oxf) 2022; 97:424-435. [PMID: 35349723 DOI: 10.1111/cen.14706] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Most pituitary tumours occur sporadically without a genetically identifiable germline abnormality, a small but increasing proportion present with a genetic defect that predisposes to pituitary tumour development, either isolated (e.g., aryl hydrocarbon receptor-interacting protein, AIP) or as part of a tumour-predisposing syndrome (e.g., multiple endocrine neoplasia (MEN) type 1, Carney complex, McCune-Albright syndrome or pituitary tumour and paraganglioma association). Genetic alterations in sporadic pituitary adenomas may include somatic mutations (e.g., GNAS, USP8). In this review, we take a practical approach: which genetic syndromes should be considered in case of different presentation, such as tumour type, family history, age of onset and additional clinical features of the patient. DESIGN Review of the recent literature in the field of genetics of pituitary tumours. RESULTS Genetic testing in the management of pituitary disease is recommended in a significant minority of the cases. Understanding the genetic basis of the disease helps to identify patients and at-risk family members, facilitates early diagnosis and therefore better long-term outcome and opens up new pathways leading to tumorigenesis. CONCLUSION We provide a concise overview of the genetics of pituitary tumours and discuss the current challenges and implications of these genetic findings in clinical practice.
Collapse
Affiliation(s)
- Eva C Coopmans
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Medicine, Division of Endocrinology, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Medicine, Endocrinology section, Pituitary Center Rotterdam, Erasmus University Medical Cente, Rotterdam, The Netherlands
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
17
|
Haworth O, Korbonits M. AIP: A double agent? The tissue-specific role of AIP as a tumour suppressor or as an oncogene. Br J Cancer 2022; 127:1175-1176. [PMID: 36064587 PMCID: PMC9519571 DOI: 10.1038/s41416-022-01964-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022] Open
Abstract
Aryl hydrocarbon receptor-interacting protein (AIP) is a co-chaperone to heat shock proteins and nuclear receptors. Loss-of-function heterozygote germline mutations lead to predisposition to growth hormone- or prolactin-secreting pituitary typically presenting in childhood. Based on these data AIP behaves as a tumour suppressor. However, previously in diffuse large B cell lymphoma and now in this new manuscript in the British Journal of Cancer on colorectal cancer, it seems that high expression of AIP is associated with tumour development and more aggressive disease. AIP, therefore, joins a distinguished group of proteins that can behave both as a tumour suppressor and as an oncogene.
Collapse
Affiliation(s)
- Oliver Haworth
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
18
|
Yamamoto M, Takahashi Y. Genetic and Epigenetic Pathogenesis of Acromegaly. Cancers (Basel) 2022; 14:cancers14163861. [PMID: 36010855 PMCID: PMC9405703 DOI: 10.3390/cancers14163861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Various genetic and epigenetic factors are involved in the pathogenesis of somatotroph tumors. Although GNAS mutations are the most prevalent cause of somatotroph tumors, the cause of half of all pathogenesis occurrences remains unclarified. However, recent findings including the pangenomic analysis, such as genome, transcriptome, and methylome approaches, and histological characteristics of pituitary tumors, the involvement of AIP and GPR101, the mechanisms of genomic instability, and possible involvement of miRNAs have gradually unveiled the whole landscape of underlying mechanisms of somatotroph tumors. In this review, we will focus on the recent advances in the pathogenesis of somatotroph tumors. Abstract Acromegaly is caused by excessive secretion of GH and IGF-I mostly from somatotroph tumors. Various genetic and epigenetic factors are involved in the pathogenesis of somatotroph tumors. While somatic mutations of GNAS are the most prevalent cause of somatotroph tumors, germline mutations in various genes (AIP, PRKAR1A, GPR101, GNAS, MEN1, CDKN1B, SDHx, MAX) are also known as the cause of somatotroph tumors. Moreover, recent findings based on multiple perspectives of the pangenomic approach including genome, transcriptome, and methylome analyses, histological characterization, genomic instability, and possible involvement of miRNAs have gradually unveiled the whole landscape of the underlying mechanisms of somatotroph tumors. In this review, we will focus on the recent advances in genetic and epigenetic pathogenesis of somatotroph tumors.
Collapse
Affiliation(s)
- Masaaki Yamamoto
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
- Correspondence: ; Tel.: +81-78-382-5861
| | - Yutaka Takahashi
- Division of Diabetes and Endocrinology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
- Department of Diabetes and Endocrinology, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
19
|
Solís-Fernández G, Montero-Calle A, Sánchez-Martínez M, Peláez-García A, Fernández-Aceñero MJ, Pallarés P, Alonso-Navarro M, Mendiola M, Hendrix J, Hardisson D, Bartolomé RA, Hofkens J, Rocha S, Barderas R. Aryl-hydrocarbon receptor-interacting protein regulates tumorigenic and metastatic properties of colorectal cancer cells driving liver metastasis. Br J Cancer 2022. [DOI: 10.1038/s41416-022-01762-1
expr 880987936 + 827650491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
20
|
Solís-Fernández G, Montero-Calle A, Sánchez-Martínez M, Peláez-García A, Fernández-Aceñero MJ, Pallarés P, Alonso-Navarro M, Mendiola M, Hendrix J, Hardisson D, Bartolomé RA, Hofkens J, Rocha S, Barderas R. Aryl-hydrocarbon receptor-interacting protein regulates tumorigenic and metastatic properties of colorectal cancer cells driving liver metastasis. Br J Cancer 2022; 126:1604-1615. [PMID: 35347323 PMCID: PMC9130499 DOI: 10.1038/s41416-022-01762-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Liver metastasis is the primary cause of colorectal cancer (CRC)-associated death. Aryl-hydrocarbon receptor-interacting protein (AIP), a putative positive intermediary in aryl-hydrocarbon receptor-mediated signalling, is overexpressed in highly metastatic human KM12SM CRC cells and other highly metastatic CRC cells. METHODS Meta-analysis and immunohistochemistry were used to assess the relevance of AIP. Cellular functions and signalling mechanisms mediated by AIP were assessed by gain-of-function experiments and in vitro and in vivo experiments. RESULTS A significant association of high AIP expression with poor CRC patients' survival was observed. Gain-of-function and quantitative proteomics experiments demonstrated that AIP increased tumorigenic and metastatic properties of isogenic KM12C (poorly metastatic) and KM12SM (highly metastatic to the liver) CRC cells. AIP overexpression dysregulated epithelial-to-mesenchymal (EMT) markers and induced several transcription factors and Cadherin-17 activation. The former induced the signalling activation of AKT, SRC and JNK kinases to increase adhesion, migration and invasion of CRC cells. In vivo, AIP expressing KM12 cells induced tumour growth and liver metastasis. Furthermore, KM12C (poorly metastatic) cells ectopically expressing AIP became metastatic to the liver. CONCLUSIONS Our data reveal new roles for AIP in regulating proteins associated with cancer and metastasis to induce tumorigenic and metastatic properties in colon cancer cells driving liver metastasis.
Collapse
Affiliation(s)
- Guillermo Solís-Fernández
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Leuven, Belgium
| | - Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
| | - Maricruz Sánchez-Martínez
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
| | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), E-28046, Madrid, Spain
| | | | - Pilar Pallarés
- Unidades Centrales, Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
| | - Miren Alonso-Navarro
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain
| | - Marta Mendiola
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), E-28046, Madrid, Spain
| | - Jelle Hendrix
- Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical Research Institute, Hasselt University, Agoralaan C (BIOMED), 3590 Diepenbeek, Hasselt, Belgium
| | - David Hardisson
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), E-28046, Madrid, Spain
| | | | - Johan Hofkens
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Leuven, Belgium
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Susana Rocha
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Leuven, Belgium.
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, Majadahonda, E-28220, Madrid, Spain.
| |
Collapse
|
21
|
Yadav RP, Boyd K, Artemyev NO. Molecular insights into the maturation of phosphodiesterase 6 by the specialized chaperone complex of HSP90 with AIPL1. J Biol Chem 2022; 298:101620. [PMID: 35065964 PMCID: PMC8857470 DOI: 10.1016/j.jbc.2022.101620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/18/2022] Open
Abstract
Phosphodiesterase 6 (PDE6) is a key effector enzyme in vertebrate phototransduction, and its maturation and function are known to critically depend on a specialized chaperone, aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1). Defects in PDE6 and AIPL1 underlie several severe retinal diseases, including retinitis pigmentosa and Leber congenital amaurosis. Here, we characterize the complex of AIPL1 with HSP90 and demonstrate its essential role in promoting the functional conformation of nascent PDE6. Our analysis suggests that AIPL1 preferentially binds to HSP90 in the closed state with a stoichiometry of 1:2, with the tetratricopeptide repeat domain and the tetratricopeptide repeat helix 7 extension of AIPL1 being the main contributors to the AIPL1/HSP90 interface. We demonstrate that mutations of these determinants markedly diminished both the affinity of AIPL1 for HSP90 and the ability of AIPL1 to cochaperone the maturation of PDE6 in a heterologous expression system. In addition, the FK506-binding protein (FKBP) domain of AIPL1 encloses a unique prenyl-binding site that anchors AIPL1 to posttranslational lipid modifications of PDE6. A mouse model with rod PDE6 lacking farnesylation of its PDE6A subunit revealed normal expression, trafficking, and signaling of the enzyme. Furthermore, AIPL1 was unexpectedly capable of inducing the maturation of unprenylated cone PDE6C, whereas mutant AIPL1 deficient in prenyl binding competently cochaperoned prenylated PDE6C. Thus, we conclude neither sequestration of the prenyl modifications is required for PDE6 maturation to proceed, nor is the FKBP-lipid interaction involved in the conformational switch of the enzyme into the functional state.
Collapse
Affiliation(s)
- Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Kimberly Boyd
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.
| |
Collapse
|
22
|
Pekic S, Stojanovic M, Popovic V. Pituitary tumors and the risk of other malignancies: is the relationship coincidental or causal? ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2022; 2:R1-R13. [PMID: 37435457 PMCID: PMC10259320 DOI: 10.1530/eo-21-0033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/21/2021] [Indexed: 07/13/2023]
Abstract
Pituitary adenomas are benign neoplasms of the pituitary. The most prevalent are prolactinomas and non-functioning pituitary adenomas, followed by growth hormone- and ACTH-secreting adenomas. Most pituitary adenomas seem to be sporadic and their persistent growth is very atypical. No molecular markers predict their behavior. The occurrence of pituitary adenomas and malignancies in the same patient can be either pure coincidence or caused by shared underlying genetic susceptibility involved in tumorigenesis. Detailed family history on cancers/tumors in the first, second and third generation of family members on each side of the family has been reported in a few studies. They found an association of pituitary tumors with positive family history for breast, lung and colorectal cancer. We have reported that in about 50% of patients with pituitary adenomas, an association with positive family history for cancer has been found independent of secretory phenotype (acromegaly, prolactinoma, Cushing's disease or non-functioning pituitary adenomas). We also found earlier onset of pituitary tumors (younger age at diagnosis of pituitary tumors) in patients with a strong family history of cancer. In our recent unpublished series of 1300 patients with pituitary adenomas, 6.8% of patients were diagnosed with malignancy. The latency period between the diagnosis of pituitary adenoma and cancer was variable, and in 33% of patients, it was longer than 5 years. Besides the inherited trophic mechanisms (shared underlying genetic variants), the potential influence of shared complex epigenetic influences (environmental and behavioral factors - obesity, smoking, alcohol intake and insulin resistance) is discussed. Further studies are needed to better understand if patients with pituitary adenomas are at increased risk for cancer.
Collapse
Affiliation(s)
- Sandra Pekic
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Belgrade, Belgrade, Serbia
| | - Marko Stojanovic
- School of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center Belgrade, Belgrade, Serbia
| | - Vera Popovic
- School of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
23
|
Spada A, Mantovani G, Lania AG, Treppiedi D, Mangili F, Catalano R, Carosi G, Sala E, Peverelli E. Pituitary Tumors: Genetic and Molecular Factors Underlying Pathogenesis and Clinical Behavior. Neuroendocrinology 2022; 112:15-33. [PMID: 33524974 DOI: 10.1159/000514862] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/01/2021] [Indexed: 11/19/2022]
Abstract
Pituitary neuroendocrine tumors (PitNETs) are the most common intracranial neoplasms. Although generally benign, they can show a clinically aggressive course, with local invasion, recurrences, and resistance to medical treatment. No universally accepted biomarkers of aggressiveness are available yet, and predicting clinical behavior of PitNETs remains a challenge. In rare cases, the presence of germline mutations in specific genes predisposes to PitNET formation, as part of syndromic diseases or familial isolated pituitary adenomas, and associates to more aggressive, invasive, and drug-resistant tumors. The vast majority of cases is represented by sporadic PitNETs. Somatic mutations in the α subunit of the stimulatory G protein gene (gsp) and in the ubiquitin-specific protease 8 (USP8) gene have been recognized as pathogenetic factors in sporadic GH- and ACTH-secreting PitNETs, respectively, without an association with a worse clinical phenotype. Other molecular factors have been found to significantly affect PitNET drug responsiveness and invasive behavior. These molecules are cytoskeleton and/or scaffold proteins whose alterations prevent proper functioning of the somatostatin and dopamine receptors, targets of medical therapy, or promote the ability of tumor cells to invade surrounding tissues. The aim of the present review is to provide an overview of the genetic and molecular alterations that can contribute to determine PitNET clinical behavior. Understanding subcellular mechanisms underlying pituitary tumorigenesis and PitNET clinical phenotype will hopefully lead to identification of new potential therapeutic targets and new markers predicting the behavior and the response to therapeutic treatments of PitNETs.
Collapse
Affiliation(s)
- Anna Spada
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea G Lania
- Endocrinology, Diabetology and Medical Andrology Unit, Humanitas Clinical and Research Center, IRCCS, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Carosi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Sala
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy,
| |
Collapse
|
24
|
Peverelli E, Treppiedi D, Mangili F, Catalano R, Spada A, Mantovani G. Drug resistance in pituitary tumours: from cell membrane to intracellular signalling. Nat Rev Endocrinol 2021; 17:560-571. [PMID: 34194011 DOI: 10.1038/s41574-021-00514-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
The pharmacological treatment of pituitary tumours is based on the use of stable analogues of somatostatin and dopamine. The analogues bind to somatostatin receptor types 2 and 5 (SST2 and SST5) and dopamine receptor type 2 (DRD2), respectively, and generate signal transduction cascades in cancerous pituitary cells that culminate in the inhibition of hormone secretion, cell growth and invasion. Drug resistance occurs in a subset of patients and can involve different steps at different stages, such as following receptor activation by the agonist or during the final biological responses. Although the expression of somatostatin and dopamine receptors in cancer cells is a prerequisite for these drugs to reach a biological effect, their presence does not guarantee the success of the therapy. Successful therapy also requires the proper functioning of the machinery of signal transduction and the finely tuned regulation of receptor desensitization, internalization and intracellular trafficking. The present Review provides an updated overview of the molecular factors underlying the pharmacological resistance of pituitary tumours. The Review discusses the experimental evidence that supports a role for receptors and intracellular proteins in the function of SSTs and DRD2 and their clinical importance.
Collapse
Affiliation(s)
- Erika Peverelli
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy.
| | - Donatella Treppiedi
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Federica Mangili
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Rosa Catalano
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
- PhD Program in Endocrinological Sciences, Sapienza University of Rome, Rome, Italy
| | - Anna Spada
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
| | - Giovanna Mantovani
- University of Milan, Department of Clinical Sciences and Community Health, Milan, Italy
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Endocrinology Unit, Milan, Italy
| |
Collapse
|
25
|
Schernthaner-Reiter MH, Trivellin G, Roetzer T, Hainfellner JA, Starost MF, Stratakis CA. Prkar1a haploinsufficiency ameliorates the growth hormone excess phenotype in Aip-deficient mice. Hum Mol Genet 2021; 29:2951-2961. [PMID: 32821937 DOI: 10.1093/hmg/ddaa178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 12/24/2022] Open
Abstract
Mutations of the regulatory subunit (PRKAR1A) of the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA), leading to activation of the PKA pathway, are the genetic cause of Carney complex which is frequently accompanied by somatotroph tumors. Aryl hydrocarbon receptor-interacting protein (AIP) mutations lead to somatotroph tumorigenesis in mice and humans. The mechanisms of AIP-dependent pituitary tumorigenesis are still under investigation and evidence points to a connection between the AIP and PKA pathways. In this study, we explore the combined effects of Aip and Prkar1a deficiency on mouse phenotype and, specifically, pituitary histopathology. Aip+/- mice were compared with double heterozygous Aip+/-, Prkar1a+/- mice. The phenotype (including histopathology and serological studies) was recorded at 3, 6, 9 and 12 months of age. Detailed pituitary histological and immunohistochemical studies were performed at 12 months. Twelve-month old Aip+/- mice demonstrated phenotypic and biochemical evidence of GH excess including significantly elevated insulin-like growth factor 1 levels, larger weight and body length, higher hemoglobin and cholesterol levels and a higher frequency of growth plate thickening in comparison to Aip+/, Prkar1a+/- mice. Pituitary histopathology did not uncover any pituitary adenomas or somatotroph hyperplasia in either group. These results demonstrate a slow progression from elevated GH release to the formation of overt somatotropinomas in Aip+/- mice; the acromegalic phenotype of these mice is surprisingly ameliorated in Aip+/-, Prkar1a+/- mice. This highlights the complexities of interaction between the AIP and PKA pathway. Specifically targeting GH secretion rather than somatotroph proliferation may be an advantage in the medical treatment of AIP-dependent human acromegaly.
Collapse
Affiliation(s)
- Marie Helene Schernthaner-Reiter
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA.,Clinical Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Giampaolo Trivellin
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA.,Laboratory of Cellular and Molecular Endocrinology and Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center - IRCCS, 20089 Rozzano, Italy
| | - Thomas Roetzer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Matthew F Starost
- Office of Research Services (ORS), Division of Veterinary Resources (DVR), Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Florez Romero A, Rojas W, Reverend L. C, Torres L, Quintero G. Proteína moduladora de la actividad del receptor de aril hidrocarburos (AIP): genética, bioquímica e impacto clínico. REPERTORIO DE MEDICINA Y CIRUGÍA 2021. [DOI: 10.31260/repertmedcir.01217273.888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
El gen AIP (proteína moduladora de la actividad del receptor de aril hidrocarburos) se localiza en la región 11q13.2 y codifica para una proteína de 330 aminoácidos que interactúa con el factor de transcripción AhR (receptor para aril hidrocarburos). Las mutaciones en este gen se han asociado con adenomas pituitarios aislados de tipo familiar (APAF). Se caracterizan por una presentación temprana (alrededor de 20 años), por lo regular producen hormona de crecimiento y/o prolactina, tienen un comportamiento clínico agresivo y poca respuesta a análogos de somatostatina.
Collapse
|
27
|
Genetics of Acromegaly and Gigantism. J Clin Med 2021; 10:jcm10071377. [PMID: 33805450 PMCID: PMC8036715 DOI: 10.3390/jcm10071377] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022] Open
Abstract
Growth hormone (GH)-secreting pituitary tumours represent the most genetically determined pituitary tumour type. This is true both for germline and somatic mutations. Germline mutations occur in several known genes (AIP, PRKAR1A, GPR101, GNAS, MEN1, CDKN1B, SDHx, MAX) as well as familial cases with currently unknown genes, while somatic mutations in GNAS are present in up to 40% of tumours. If the disease starts before the fusion of the epiphysis, then accelerated growth and increased final height, or gigantism, can develop, where a genetic background can be identified in half of the cases. Hereditary GH-secreting pituitary adenoma (PA) can manifest as isolated tumours, familial isolated pituitary adenoma (FIPA) including cases with AIP mutations or GPR101 duplications (X-linked acrogigantism, XLAG) or can be a part of systemic diseases like multiple endocrine neoplasia type 1 or type 4, McCune-Albright syndrome, Carney complex or phaeochromocytoma/paraganglioma-pituitary adenoma association. Family history and a search for associated syndromic manifestations can help to draw attention to genetic causes; many of these are now tested as part of gene panels. Identifying genetic mutations allows appropriate screening of associated comorbidities as well as finding affected family members before the clinical manifestation of the disease. This review focuses on germline and somatic mutations predisposing to acromegaly and gigantism.
Collapse
|
28
|
Srirangam Nadhamuni V, Korbonits M. Novel Insights into Pituitary Tumorigenesis: Genetic and Epigenetic Mechanisms. Endocr Rev 2020; 41:bnaa006. [PMID: 32201880 PMCID: PMC7441741 DOI: 10.1210/endrev/bnaa006] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/19/2020] [Indexed: 02/08/2023]
Abstract
Substantial advances have been made recently in the pathobiology of pituitary tumors. Similar to many other endocrine tumors, over the last few years we have recognized the role of germline and somatic mutations in a number of syndromic or nonsyndromic conditions with pituitary tumor predisposition. These include the identification of novel germline variants in patients with familial or simplex pituitary tumors and establishment of novel somatic variants identified through next generation sequencing. Advanced techniques have allowed the exploration of epigenetic mechanisms mediated through DNA methylation, histone modifications and noncoding RNAs, such as microRNA, long noncoding RNAs and circular RNAs. These mechanisms can influence tumor formation, growth, and invasion. While genetic and epigenetic mechanisms often disrupt similar pathways, such as cell cycle regulation, in pituitary tumors there is little overlap between genes altered by germline, somatic, and epigenetic mechanisms. The interplay between these complex mechanisms driving tumorigenesis are best studied in the emerging multiomics studies. Here, we summarize insights from the recent developments in the regulation of pituitary tumorigenesis.
Collapse
Affiliation(s)
- Vinaya Srirangam Nadhamuni
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, UK
| |
Collapse
|
29
|
Abstract
Pituitary adenomas are common intracranial neoplasms, with diverse phenotypes. Most of these tumors occur sporadically and are not part of genetic disorders. Over the last decades numerous genetic studies have led to identification of somatic and germline mutations associated with pituitary tumors, which has advanced the understanding of pituitary tumorigenesis. Exploring the genetic background of pituitary neuroendocrine tumors can lead to early diagnosis associated with better outcomes, and their molecular mechanisms should lead to novel targeted therapies even for sporadic tumors. This article summarizes the genes and the syndromes associated with pituitary tumors.
Collapse
Affiliation(s)
- Sayka Barry
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
30
|
Urolithin A suppresses high glucose-induced neuronal amyloidogenesis by modulating TGM2-dependent ER-mitochondria contacts and calcium homeostasis. Cell Death Differ 2020; 28:184-202. [PMID: 32704090 DOI: 10.1038/s41418-020-0593-1] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/19/2022] Open
Abstract
Hyperglycemia in diabetes mellitus (DM) patients is a causative factor for amyloidogenesis and induces neuropathological changes, such as impaired neuronal integrity, neurodegeneration, and cognitive impairment. Regulation of mitochondrial calcium influx from the endoplasmic reticulum (ER) is considered a promising strategy for the prevention of mitochondrial ROS (mtROS) accumulation that occurs in the Alzheimer's disease (AD)-associated pathogenesis in DM patients. Among the metabolites of ellagitannins that are produced in the gut microbiome, urolithin A has received an increasing amount of attention as a novel candidate with anti-oxidative and neuroprotective effects in AD. Here, we investigated the effect of urolithin A on high glucose-induced amyloidogenesis caused by mitochondrial calcium dysregulation and mtROS accumulation resulting in neuronal degeneration. We also identified the mechanism related to mitochondria-associated ER membrane (MAM) formation. We found that urolithin A-lowered mitochondrial calcium influx significantly alleviated high glucose-induced mtROS accumulation and expression of amyloid beta (Aβ)-producing enzymes, such as amyloid precursor protein (APP) and β-secretase-1 (BACE1), as well as Aβ production. Urolithin A injections in a streptozotocin (STZ)-induced diabetic mouse model alleviated APP and BACE1 expressions, Tau phosphorylation, Aβ deposition, and cognitive impairment. In addition, high glucose stimulated MAM formation and transglutaminase type 2 (TGM2) expression. We first discovered that urolithin A significantly reduced high glucose-induced TGM2 expression. In addition, disruption of the AIP-AhR complex was involved in urolithin A-mediated suppression of high glucose-induced TGM2 expression. Markedly, TGM2 silencing inhibited inositol 1, 4, 5-trisphosphate receptor type 1 (IP3R1)-voltage-dependent anion-selective channel protein 1 (VDAC1) interactions and prevented high glucose-induced mitochondrial calcium influx and mtROS accumulation. We also found that urolithin A or TGM2 silencing prevented Aβ-induced mitochondrial calcium influx, mtROS accumulation, Tau phosphorylation, and cell death in neuronal cells. In conclusion, we suggest that urolithin A is a promising candidate for the development of therapies to prevent DM-associated AD pathogenesis by reducing TGM2-dependent MAM formation and maintaining mitochondrial calcium and ROS homeostasis.
Collapse
|
31
|
Sun D, Stopka-Farooqui U, Barry S, Aksoy E, Parsonage G, Vossenkämper A, Capasso M, Wan X, Norris S, Marshall JL, Clear A, Gribben J, MacDonald TT, Buckley CD, Korbonits M, Haworth O. Aryl Hydrocarbon Receptor Interacting Protein Maintains Germinal Center B Cells through Suppression of BCL6 Degradation. Cell Rep 2020; 27:1461-1471.e4. [PMID: 31042473 PMCID: PMC6506688 DOI: 10.1016/j.celrep.2019.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/03/2018] [Accepted: 03/28/2019] [Indexed: 10/29/2022] Open
Abstract
B cell lymphoma-6 (BCL6) is highly expressed in germinal center B cells, but how its expression is maintained is still not completely clear. Aryl hydrocarbon receptor interacting protein (AIP) is a co-chaperone of heat shock protein 90. Deletion of Aip in B cells decreased BCL6 expression, reducing germinal center B cells and diminishing adaptive immune responses. AIP was required for optimal AKT signaling in response to B cell receptor stimulation, and AIP protected BCL6 from ubiquitin-mediated proteasomal degradation by the E3-ubiquitin ligase FBXO11 by binding to the deubiquitinase UCHL1, thus helping to maintain the expression of BCL6. AIP was highly expressed in primary diffuse large B cell lymphomas compared to healthy tissue and other tumors. Our findings describe AIP as a positive regulator of BCL6 expression with implications for the pathobiology of diffuse large B cell lymphoma.
Collapse
Affiliation(s)
- Dijue Sun
- Center of Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Urszula Stopka-Farooqui
- Center of Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sayka Barry
- Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ezra Aksoy
- Center of Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Gregory Parsonage
- Experimental Medicine & Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Anna Vossenkämper
- Center for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Melania Capasso
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Xinyu Wan
- Center of Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sherine Norris
- Center of Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jennifer L Marshall
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew Clear
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - John Gribben
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Thomas T MacDonald
- Center for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Christopher D Buckley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK
| | - Márta Korbonits
- Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Oliver Haworth
- Center of Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Department of Biological Sciences, Westminster University, London W1W 6UW, UK.
| |
Collapse
|
32
|
Coopmans EC, Muhammad A, Daly AF, de Herder WW, van Kemenade FJ, Beckers A, de Haan M, van der Lely AJ, Korpershoek E, Neggers SJCMM. The role of AIP variants in pituitary adenomas and concomitant thyroid carcinomas in the Netherlands: a nationwide pathology registry (PALGA) study. Endocrine 2020; 68:640-649. [PMID: 32333269 PMCID: PMC7308253 DOI: 10.1007/s12020-020-02303-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/04/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Germline mutations in the aryl-hydrocarbon receptor interacting protein (AIP) have been identified often in the setting of familial isolated pituitary adenoma (FIPA). To date there is no strong evidence linking germline AIP mutations to other neoplasms apart from the pituitary. Our primary objective was to investigate the prevalence of AIP gene mutations and mutations in genes that have been associated with neuroendocrine tumors in series of tumors from patients presenting with both pituitary adenomas and differentiated thyroid carcinomas (DTCs). METHODS Pathology samples were retrieved from all pituitary adenomas in patients with concomitant DTCs, including one with a known germline AIP variant. Subsequently, two additional patients with known germline AIP variants were included, of which one presented only with a follicular thyroid carcinoma (FTC). RESULTS In total, 17 patients (14 DTCs and 15 pituitary adenomas) were investigated by targeted next generation sequencing (NGS). The pituitary tumor samples revealed no mutations, while among the thyroid tumor samples BRAF (6/14, 42.9%) was the most frequently mutated gene, followed by NRAS (3/11, 27.3%). In one AIP-mutated FIPA kindred, the AIP-variant c.853C>T; p.Q285* was confirmed in the FTC specimen, including evidence of loss of heterozygosity (LOH) at the AIP locus in the tumor DNA. CONCLUSION Although most observed variants in pituitary adenomas and DTCs were similar to those of sporadic DTCs, we confirmed in one AIP mutation-positive case the AIP-variant and LOH at this locus in an FTC specimen, which raises the potential role of the AIP mutation as a rare initiating event.
Collapse
Affiliation(s)
- E C Coopmans
- Department of Medicine, Endocrinology section, Pituitary Center Rotterdam, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - A Muhammad
- Department of Medicine, Endocrinology section, Pituitary Center Rotterdam, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A F Daly
- Department of Endocrinology, Centre Hospitalier Universitaire de Liege, University of Liege, 4000, Liege, Belgium
| | - W W de Herder
- Department of Medicine, Endocrinology section, Pituitary Center Rotterdam, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - F J van Kemenade
- Department of Pathology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liege, University of Liege, 4000, Liege, Belgium
| | - M de Haan
- Department of Pathology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A J van der Lely
- Department of Medicine, Endocrinology section, Pituitary Center Rotterdam, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - E Korpershoek
- Department of Pathology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - S J C M M Neggers
- Department of Medicine, Endocrinology section, Pituitary Center Rotterdam, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
33
|
Vitali E, Boemi I, Piccini S, Tarantola G, Smiroldo V, Lavezzi E, Brambilla T, Zerbi A, Carnaghi C, Mantovani G, Spada A, Lania AG. A novel insight into the anticancer mechanism of metformin in pancreatic neuroendocrine tumor cells. Mol Cell Endocrinol 2020; 509:110803. [PMID: 32251713 DOI: 10.1016/j.mce.2020.110803] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 03/24/2020] [Accepted: 03/29/2020] [Indexed: 12/12/2022]
Abstract
The antidiabetic drug metformin displays anticancer properties in several neoplasms. In pituitary NETs, aryl hydrocarbon receptor-interacting protein (AIP) is up-regulated by the somatostatin analog octreotide. Metformin inhibited QGP-1 cell proliferation in a dose- and time-dependent manner, at concentrations similar to those achievable in treated patients (-31 ± 12%, p < 0.05 vs basal at 100 μM). Moreover, metformin decreased pancreatic neuroendocrine tumors (PAN-NETs) cell proliferation (-62 ± 15%, p < 0.0001 vs basal at 10 mM), without any additive effect when combined with octreotide. Both octreotide and metformin induced AIP up-regulation. AIP silencing abolished the reduction of mTOR phosphorylation induced by metformin and octreotide. Moreover, metformin decreased HSP70, increased Zac1 and AhR expression; these effects were abolished in AIP silenced QGP-1 cells. In conclusion, metformin acts as an anticancer agent in PAN-NET cells, its activity is mediated by AIP and its interacting proteins. These findings provide a novel insight into the antitumorigenic mechanism of metformin.
Collapse
Affiliation(s)
- E Vitali
- Laboratory of Cellular and Molecular Endocrinology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy.
| | - I Boemi
- Laboratory of Cellular and Molecular Endocrinology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - S Piccini
- Endocrinology and Diabetology Unit Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - G Tarantola
- Laboratory of Cellular and Molecular Endocrinology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - V Smiroldo
- Oncology Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - E Lavezzi
- Endocrinology and Diabetology Unit Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - T Brambilla
- Department of Pathology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - A Zerbi
- Pancreas Surgery Unit, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy
| | - C Carnaghi
- Oncology Unit, Bolzano Hospital, Bolzano, Italy
| | - G Mantovani
- Endocrinology and Diabetology Unit, IRCCS Ospedale Maggiore Policlinico, Milano, Italy
| | - A Spada
- Endocrinology and Diabetology Unit, IRCCS Ospedale Maggiore Policlinico, Milano, Italy
| | - A G Lania
- Laboratory of Cellular and Molecular Endocrinology, Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy; Endocrinology and Diabetology Unit Humanitas Clinical and Research Center - IRCCS, Rozzano, Italy; Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| |
Collapse
|
34
|
Gummadavelli A, Dinauer C, McGuone D, Vining EM, Erson-Omay EZ, Omay SB. Large-scale second-hit AIP deletion causing a pediatric growth hormone-secreting pituitary adenoma: Case report and review of literature. J Clin Neurosci 2020; 78:420-422. [PMID: 32336638 DOI: 10.1016/j.jocn.2020.04.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/18/2020] [Indexed: 02/04/2023]
Abstract
Gigantism (early-onset acromegaly) is a rare pediatric disorder caused by a growth hormone (GH)-secreting pituitary adenoma. Approximately 50% patients of gigantism have a germline mutation, most commonly an inactivating mutation in the aryl-hydrocarbon interacting receptor protein (AIP) gene on chromosome 11q13.2. We present an 11-year-old male patient with a GH-secreting pituitary macroadenoma who presented with excessive growth spurts, behavioral changes, and frontal headaches. He was successfully treated with an endoscopic endonasal gross total resection and subsequently demonstrated biochemical cure. Whole-exome sequencing showed a heterozygous germline mutation in the AIP gene suggesting pituitary adenoma predisposition. Analysis of the tumor tissue revealed a large-scale deletion on chromosome 11 overlapping with AIP leading to bi-allelic AIP loss. Coincident germline and somatic AIP mutations were likely causal in formation of a GH-secreting adenoma with an aggressive phenotype. This case exemplifies the need for early diagnosis and curative surgery in the management of AIP-mutated pituitary adenomas.
Collapse
Affiliation(s)
- Abhijeet Gummadavelli
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Catherine Dinauer
- Department of Surgery (Pediatric Endocrinology), Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Declan McGuone
- Department of Pathology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Eugenia M Vining
- Department of Surgery (Otolaryngology), Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - E Zeynep Erson-Omay
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| | - Sacit Bulent Omay
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
35
|
Wu X, Schnitzler GR, Gao GF, Diamond B, Baker AR, Kaplan B, Williamson K, Westlake L, Lorrey S, Lewis TA, Garvie CW, Lange M, Hayat S, Seidel H, Doench J, Cherniack AD, Kopitz C, Meyerson M, Greulich H. Mechanistic insights into cancer cell killing through interaction of phosphodiesterase 3A and schlafen family member 12. J Biol Chem 2020; 295:3431-3446. [PMID: 32005668 DOI: 10.1074/jbc.ra119.011191] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/27/2020] [Indexed: 01/08/2023] Open
Abstract
Cytotoxic molecules can kill cancer cells by disrupting critical cellular processes or by inducing novel activities. 6-(4-(Diethylamino)-3-nitrophenyl)-5-methyl-4,5-dihydropyridazin-3(2H)-one (DNMDP) is a small molecule that kills cancer cells by generation of novel activity. DNMDP induces complex formation between phosphodiesterase 3A (PDE3A) and schlafen family member 12 (SLFN12) and specifically kills cancer cells expressing elevated levels of these two proteins. Here, we examined the characteristics and covariates of the cancer cell response to DNMDP. On average, the sensitivity of human cancer cell lines to DNMDP is correlated with PDE3A expression levels. However, DNMDP could also bind the related protein, PDE3B, and PDE3B supported DNMDP sensitivity in the absence of PDE3A expression. Although inhibition of PDE3A catalytic activity did not account for DNMDP sensitivity, we found that expression of the catalytic domain of PDE3A in cancer cells lacking PDE3A is sufficient to confer sensitivity to DNMDP, and substitutions in the PDE3A active site abolish compound binding. Moreover, a genome-wide CRISPR screen identified the aryl hydrocarbon receptor-interacting protein (AIP), a co-chaperone protein, as required for response to DNMDP. We determined that AIP is also required for PDE3A-SLFN12 complex formation. Our results provide mechanistic insights into how DNMDP induces PDE3A-SLFN12 complex formation, thereby killing cancer cells with high levels of PDE3A and SLFN12 expression.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Cancer Program, Broad Institute, Cambridge, Massachusetts 02142
| | | | - Galen F Gao
- Cancer Program, Broad Institute, Cambridge, Massachusetts 02142
| | - Brett Diamond
- Cancer Program, Broad Institute, Cambridge, Massachusetts 02142
| | - Andrew R Baker
- Cancer Program, Broad Institute, Cambridge, Massachusetts 02142
| | - Bethany Kaplan
- Cancer Program, Broad Institute, Cambridge, Massachusetts 02142
| | | | | | - Selena Lorrey
- Cancer Program, Broad Institute, Cambridge, Massachusetts 02142
| | - Timothy A Lewis
- Center for the Development of Therapeutics, Broad Institute, Cambridge, Massachusetts 02142
| | - Colin W Garvie
- Center for the Development of Therapeutics, Broad Institute, Cambridge, Massachusetts 02142
| | - Martin Lange
- Research and Development, Pharmaceuticals, Bayer AG, 13342 Berlin, Germany
| | - Sikander Hayat
- Research and Development, Pharmaceuticals, Bayer AG, 13342 Berlin, Germany
| | - Henrik Seidel
- Research and Development, Pharmaceuticals, Bayer AG, 13342 Berlin, Germany
| | - John Doench
- Genetic Perturbation Platform, Broad Institute, Cambridge, Massachusetts 02142
| | - Andrew D Cherniack
- Cancer Program, Broad Institute, Cambridge, Massachusetts 02142; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Charlotte Kopitz
- Research and Development, Pharmaceuticals, Bayer AG, 13342 Berlin, Germany
| | - Matthew Meyerson
- Cancer Program, Broad Institute, Cambridge, Massachusetts 02142; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215
| | - Heidi Greulich
- Cancer Program, Broad Institute, Cambridge, Massachusetts 02142; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.
| |
Collapse
|
36
|
Schernthaner-Reiter MH, Trivellin G, Stratakis CA. Chaperones, somatotroph tumors and the cyclic AMP (cAMP)-dependent protein kinase (PKA) pathway. Mol Cell Endocrinol 2020; 499:110607. [PMID: 31586652 DOI: 10.1016/j.mce.2019.110607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 02/08/2023]
Abstract
The cAMP-PKA pathway plays an essential role in the pituitary gland, governing cell differentiation and survival, and maintenance of endocrine function. Somatotroph growth hormone transcription and release as well as cell proliferation are regulated by the cAMP-PKA pathway; cAMP-PKA pathway abnormalities are frequently detected in sporadic as well as in hereditary somatotroph tumors and more rarely in other pituitary tumors. Inactivating variants of the aryl hydrocarbon receptor-interacting protein (AIP)-coding gene are the genetic cause of a subset of familial isolated pituitary adenomas (FIPA). Multiple functional links between the co-chaperone AIP and the cAMP-PKA pathway have been described. This review explores the role of chaperones including AIP in normal pituitary function as well as in somatotroph tumors, and their interaction with the cAMP-PKA pathway.
Collapse
Affiliation(s)
| | - Giampaolo Trivellin
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, USA
| |
Collapse
|
37
|
Schernthaner-Reiter MH, Trivellin G, Stratakis CA. Interaction of AIP with protein kinase A (cAMP-dependent protein kinase). Hum Mol Genet 2019; 27:2604-2613. [PMID: 29726992 DOI: 10.1093/hmg/ddy166] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/29/2018] [Accepted: 05/01/2018] [Indexed: 01/07/2023] Open
Abstract
Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene cause mostly somatotropinomas and/or prolactinomas in a subset of familial isolated pituitary adenomas (FIPA). AIP has been shown to interact with phosphodiesterases (PDEs) and G proteins, suggesting a link to the cyclic AMP (cAMP)-dependent protein kinase (PKA) pathway. Upregulation of PKA is seen in sporadic somatotropinomas that carry GNAS mutations, and those in Carney complex that are due to PRKAR1A mutations. To elucidate the mechanism of AIP-dependent pituitary tumorigenesis, we studied potential functional and physical interactions of AIP with PKA's main subunits PRKAR1A (R1α) and PRKACA (Cα). We found that AIP physically interacts with both R1α and Cα; this interaction is enhanced when all three components are present, but maintained during Cα-R1α dissociation by PKA activation, indicating that AIP binds Cα/R1α both in complex and separately. The interaction between AIP and R1α/Cα is reduced when the frequent AIP pathogenic mutation p.R304* is present. AIP protein levels are regulated both by translation and the ubiquitin/proteasome pathway and Cα stabilizes both AIP and R1α protein levels. AIP reduction by siRNA leads to an increase of PKA activity, which is disproportionately enhanced during PDE4-inhibition. We show that AIP interacts with the PKA pathway on multiple levels, including a physical interaction with both the main regulatory (R1α) and catalytic (Cα) PKA subunits and a functional interaction with PDE4-dependent PKA activation. These findings provide novel insights on the mechanisms of AIP-dependent pituitary tumorigenesis.
Collapse
Affiliation(s)
- Marie Helene Schernthaner-Reiter
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Giampaolo Trivellin
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
38
|
Genetics of Pituitary Tumours. EXPERIENTIA. SUPPLEMENTUM 2019. [PMID: 31588533 DOI: 10.1007/978-3-030-25905-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Pituitary tumours are relatively common in the general population. Most often they occur sporadically, with somatic mutations accounting for a significant minority of somatotroph and corticotroph adenomas. Pituitary tumours can also develop secondary to germline mutations as part of a complex syndrome or as familial isolated pituitary adenomas. Tumours occurring in a familial setting may present at a younger age and can behave more aggressively with resistance to treatment. This chapter will focus on the genetics and molecular pathogenesis of pituitary tumours.
Collapse
|
39
|
Yadav RP, Boyd K, Yu L, Artemyev NO. Interaction of the tetratricopeptide repeat domain of aryl hydrocarbon receptor-interacting protein-like 1 with the regulatory Pγ subunit of phosphodiesterase 6. J Biol Chem 2019; 294:15795-15807. [PMID: 31488544 DOI: 10.1074/jbc.ra119.010666] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/03/2019] [Indexed: 12/13/2022] Open
Abstract
Phosphodiesterase-6 (PDE6) is key to both phototransduction and health of rods and cones. Proper folding of PDE6 relies on the chaperone activity of aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1), and mutations in both PDE6 and AIPL1 can cause a severe form of blindness. Although AIPL1 and PDE6 are known to interact via the FK506-binding protein domain of AIPL1, the contribution of the tetratricopeptide repeat (TPR) domain of AIPL1 to its chaperone function is poorly understood. Here, we demonstrate that AIPL1-TPR interacts specifically with the regulatory Pγ subunit of PDE6. Use of NMR chemical shift perturbation (CSP) mapping technique revealed the interface between the C-terminal portion of Pγ and AIPL1-TPR. Our solution of the crystal structure of the AIPL1-TPR domain provided additional information, which together with the CSP data enabled us to generate a model of this interface. Biochemical analysis of chimeric AIPL1-AIP proteins supported this model and also revealed a correlation between the affinity of AIPL1-TPR for Pγ and the ability of Pγ to potentiate the chaperone activity of AIPL1. Based on these results, we present a model of the larger AIPL1-PDE6 complex. This supports the importance of simultaneous interactions of AIPL1-FK506-binding protein with the prenyl moieties of PDE6 and AIPL1-TPR with the Pγ subunit during the folding and/or assembly of PDE6. This study sheds new light on the versatility of TPR domains in protein folding by describing a novel TPR-protein binding partner, Pγ, and revealing that this subunit imparts AIPL1 selectivity for its client.
Collapse
Affiliation(s)
- Ravi P Yadav
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Kimberly Boyd
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Liping Yu
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242.,NMR Core Facility, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242 .,Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242
| |
Collapse
|
40
|
Stojanovic M, Wu Z, Stiles CE, Miljic D, Soldatovic I, Pekic S, Doknic M, Petakov M, Popovic V, Strasburger C, Korbonits M. Circulating aryl hydrocarbon receptor-interacting protein (AIP) is independent of GH secretion. Endocr Connect 2019; 8:326-337. [PMID: 30830858 PMCID: PMC6432870 DOI: 10.1530/ec-19-0082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/04/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Aryl hydrocarbon receptor-interacting protein (AIP) is evolutionarily conserved and expressed widely throughout the organism. Loss-of-function AIP mutations predispose to young-onset pituitary adenomas. AIP co-localizes with growth hormone in normal and tumorous somatotroph secretory vesicles. AIP protein is detectable in circulation. We aimed to investigate possible AIP and GH co-secretion, by studying serum AIP and GH levels at baseline and after GH stimulation or suppression, in GH deficiency (GHD) and in acromegaly patients. SUBJECTS AND METHODS Insulin tolerance test (ITT) was performed in GHD patients (n = 13) and age-BMI-matched normal GH axis control patients (n = 31). Oral glucose tolerance test (OGTT) was performed in active acromegaly patients (n = 26) and age-BMI-matched normal GH axis control patients (n = 18). In-house immunometric assay was developed for measuring circulating AIP. RESULTS Serum AIP levels were in the 0.1 ng/mL range independently of gender, age or BMI. Baseline AIP did not differ between GHD and non-GHD or between acromegaly and patients with no acromegaly. There was no change in peak, trough or area under the curve during OGTT or ITT. Serum AIP did not correlate with GH during ITT or OGTT. CONCLUSIONS Human circulating serum AIP in vivo was assessed by a novel immunometric assay. AIP levels were independent of age, sex or BMI and unaffected by hypoglycaemia or hyperglycaemia. Despite co-localization in secretory vesicles, AIP and GH did not correlate at baseline or during GH stimulation or suppression tests. A platform of reliable serum AIP measurement is established for further research of its circulatory source, role and impact.
Collapse
Affiliation(s)
- Marko Stojanovic
- Neuroendocrinology Department, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Serbia, Belgrade, Serbia
- University of Belgrade, Medical Faculty, Belgrade, Serbia
| | - Zida Wu
- Department of Medicine for Endocrinology, Diabetes and Nutritional Medicine, Charité Universitätsmedizin, Campus Mitte, Berlin, Germany
| | - Craig E Stiles
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dragana Miljic
- Neuroendocrinology Department, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Serbia, Belgrade, Serbia
- University of Belgrade, Medical Faculty, Belgrade, Serbia
| | - Ivan Soldatovic
- University of Belgrade, Medical Faculty, Belgrade, Serbia
- Insitute of Medical Statistics and Informatics, Belgrade, Serbia
| | - Sandra Pekic
- Neuroendocrinology Department, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Serbia, Belgrade, Serbia
- University of Belgrade, Medical Faculty, Belgrade, Serbia
| | - Mirjana Doknic
- Neuroendocrinology Department, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Serbia, Belgrade, Serbia
- University of Belgrade, Medical Faculty, Belgrade, Serbia
| | - Milan Petakov
- Neuroendocrinology Department, Clinic for Endocrinology, Diabetes and Metabolic Diseases, Clinical Centre of Serbia, Belgrade, Serbia
- University of Belgrade, Medical Faculty, Belgrade, Serbia
| | - Vera Popovic
- University of Belgrade, Medical Faculty, Belgrade, Serbia
| | - Christian Strasburger
- Department of Medicine for Endocrinology, Diabetes and Nutritional Medicine, Charité Universitätsmedizin, Campus Mitte, Berlin, Germany
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
41
|
Yu L, Yadav RP, Artemyev NO. NMR resonance assignments of the TPR domain of human aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1). BIOMOLECULAR NMR ASSIGNMENTS 2019; 13:79-83. [PMID: 30341566 PMCID: PMC6440825 DOI: 10.1007/s12104-018-9856-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/14/2018] [Indexed: 06/08/2023]
Abstract
Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is a photoreceptor-specific chaperone of phosphodiesterase-6, a key effector enzyme in the phototransduction cascade. It contains an N-terminal FK506-binding protein (FKBP) domain and a C-terminal tetratricopeptide repeat (TPR) domain. Mutations in AIPL1, including many missense mutations in both FKBP and TPR domains, have been associated with Leber congenital amaurosis, a severe inherited retinopathy that causes blindness. TPR-domain containing proteins are known to interact with HSP90. However, the structure of AIPL1-TPR domain is presently not determined and little is known about the contribution of the TPR domain to the chaperone function of AIPL1. Here, we report the backbone and sidechain assignments of the TPR domain of AIPL1. These assignments reveal that AIPL1-TPR is an α-helical protein containing seven α-helices connected via short loops. Peak broadening or structural disorder is observed for a cluster of hydrophobic residues of W218, W222 and L223. Therefore, these assignments provide a framework for further structural determination of AIPL1-TPR domain and its interactions with various binding partners for elucidation of the mechanism of TPR contribution to the chaperone function of AIPL1.
Collapse
Affiliation(s)
- Liping Yu
- Department of Biochemistry, University of Iowa Carver College of Medicine, B291 CBRB, 285 Newton Road, Iowa City, IA, 52242, USA.
- CCOM NMR Core Facility, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Ravi P Yadav
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, 5-532 BSB, 51 Newton Road, Iowa City, IA, 52242, USA
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, 5-532 BSB, 51 Newton Road, Iowa City, IA, 52242, USA.
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| |
Collapse
|
42
|
Yelamanchi SD, Tyagi A, Mohanty V, Dutta P, Korbonits M, Chavan S, Advani J, Madugundu AK, Dey G, Datta KK, Rajyalakshmi M, Sahasrabuddhe NA, Chaturvedi A, Kumar A, Das AA, Ghosh D, Jogdand GM, Nair HH, Saini K, Panchal M, Sarvaiya MA, Mohanraj SS, Sengupta N, Saxena P, Subramani PA, Kumar P, Akkali R, Reshma SV, Santhosh RS, Rastogi S, Kumar S, Ghosh SK, Irlapati VK, Srinivasan A, Radotra BD, Mathur PP, Wong GW, Satishchandra P, Chatterjee A, Gowda H, Bhansali A, Pandey A, Shankar SK, Mahadevan A, Prasad TSK. Proteomic Analysis of the Human Anterior Pituitary Gland. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 22:759-769. [PMID: 30571610 DOI: 10.1089/omi.2018.0160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The pituitary function is regulated by a complex system involving the hypothalamus and biological networks within the pituitary. Although the hormones secreted from the pituitary have been well studied, comprehensive analyses of the pituitary proteome are limited. Pituitary proteomics is a field of postgenomic research that is crucial to understand human health and pituitary diseases. In this context, we report here a systematic proteomic profiling of human anterior pituitary gland (adenohypophysis) using high-resolution Fourier transform mass spectrometry. A total of 2164 proteins were identified in this study, of which 105 proteins were identified for the first time compared with high-throughput proteomic-based studies from human pituitary glands. In addition, we identified 480 proteins with secretory potential and 187 N-terminally acetylated proteins. These are the first region-specific data that could serve as a vital resource for further investigations on the physiological role of the human anterior pituitary glands and the proteins secreted by them. We anticipate that the identification of previously unknown proteins in the present study will accelerate biomedical research to decipher their role in functioning of the human anterior pituitary gland and associated human diseases.
Collapse
Affiliation(s)
| | - Ankur Tyagi
- 2 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Varshasnata Mohanty
- 2 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Pinaki Dutta
- 3 Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Márta Korbonits
- 4 Department of Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, United Kingdom
| | - Sandip Chavan
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Jayshree Advani
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India.,5 Manipal Academy of Higher Education, Manipal, India
| | - Anil K Madugundu
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India.,5 Manipal Academy of Higher Education, Manipal, India.,6 Center for Molecular Medicine, National Institute of Mental Health & Neurosciences, Bangalore, India.,7 Department of Laboratory Medicine and Pathology and Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota
| | - Gourav Dey
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India.,5 Manipal Academy of Higher Education, Manipal, India
| | - Keshava K Datta
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - M Rajyalakshmi
- 8 Department of Biotechnology, BMS College of Engineering, Bangalore, India
| | | | - Abhishek Chaturvedi
- 9 Department of Biochemistry, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Amit Kumar
- 10 Institute of Life Sciences, Nalco Square, Bhubaneswar, India
| | - Apabrita Ayan Das
- 11 Cell Biology and Physiology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Dhiman Ghosh
- 12 Protein Engineering and Neurobiology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, India
| | | | - Haritha H Nair
- 13 Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Keshav Saini
- 14 Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Manoj Panchal
- 15 Department of Life Science, Central University of South Bihar, Gaya, India
| | | | - Soundappan S Mohanraj
- 17 Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Nabonita Sengupta
- 18 Neuroinflammation Laboratory, National Brain Research Centre, Manesar, India
| | - Priti Saxena
- 14 Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | | | - Pradeep Kumar
- 20 Department of Biotechnology, VBS Purvanchal University, Jaunpur, India
| | - Rakhil Akkali
- 21 Department of Biotechnology, Indian Institute of Technology, Madras, India
| | | | | | - Sangita Rastogi
- 24 Microbiology Laboratory, National Institute of Pathology, New Delhi, India
| | - Sudarshan Kumar
- 25 Proteomics and Structural Biology Laboratory, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Susanta Kumar Ghosh
- 19 Department of Molecular Parasitology, National Institute of Malaria Research, Bangalore, India
| | | | - Anand Srinivasan
- 27 Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bishan Das Radotra
- 28 Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Premendu P Mathur
- 29 Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - G William Wong
- 30 Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Aditi Chatterjee
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Harsha Gowda
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Anil Bhansali
- 3 Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Akhilesh Pandey
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India.,5 Manipal Academy of Higher Education, Manipal, India.,6 Center for Molecular Medicine, National Institute of Mental Health & Neurosciences, Bangalore, India.,7 Department of Laboratory Medicine and Pathology and Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota.,32 McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,33 Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland.,34 Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,35 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susarla K Shankar
- 36 Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, India.,37 Human Brain Tissue Repository, National Institute of Mental Health and Neuro Sciences, Neurobiology Research Centre, Bangalore, India
| | - Anita Mahadevan
- 36 Department of Neuropathology, National Institute of Mental Health and Neuro Sciences, Bangalore, India.,37 Human Brain Tissue Repository, National Institute of Mental Health and Neuro Sciences, Neurobiology Research Centre, Bangalore, India
| | - T S Keshava Prasad
- 1 Institute of Bioinformatics, International Technology Park, Bangalore, India.,2 Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| |
Collapse
|
43
|
Pepe S, Korbonits M, Iacovazzo D. Germline and mosaic mutations causing pituitary tumours: genetic and molecular aspects. J Endocrinol 2019; 240:R21-R45. [PMID: 30530903 DOI: 10.1530/joe-18-0446] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022]
Abstract
While 95% of pituitary adenomas arise sporadically without a known inheritable predisposing mutation, in about 5% of the cases they can arise in a familial setting, either isolated (familial isolated pituitary adenoma or FIPA) or as part of a syndrome. FIPA is caused, in 15-30% of all kindreds, by inactivating mutations in the AIP gene, encoding a co-chaperone with a vast array of interacting partners and causing most commonly growth hormone excess. While the mechanisms linking AIP with pituitary tumorigenesis have not been fully understood, they are likely to involve several pathways, including the cAMP-dependent protein kinase A pathway via defective G inhibitory protein signalling or altered interaction with phosphodiesterases. The cAMP pathway is also affected by other conditions predisposing to pituitary tumours, including X-linked acrogigantism caused by duplications of the GPR101 gene, encoding an orphan G stimulatory protein-coupled receptor. Activating mosaic mutations in the GNAS gene, coding for the Gα stimulatory protein, cause McCune-Albright syndrome, while inactivating mutations in the regulatory type 1α subunit of protein kinase A represent the most frequent genetic cause of Carney complex, a syndromic condition with multi-organ manifestations also involving the pituitary gland. In this review, we discuss the genetic and molecular aspects of isolated and syndromic familial pituitary adenomas due to germline or mosaic mutations, including those secondary to AIP and GPR101 mutations, multiple endocrine neoplasia type 1 and 4, Carney complex, McCune-Albright syndrome, DICER1 syndrome and mutations in the SDHx genes underlying the association of familial paragangliomas and phaeochromocytomas with pituitary adenomas.
Collapse
Affiliation(s)
- Sara Pepe
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Donato Iacovazzo
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|
44
|
Bizzi MF, Bolger GB, Korbonits M, Ribeiro-Oliveira Jr. A. Phosphodiesterases and cAMP Pathway in Pituitary Diseases. Front Endocrinol (Lausanne) 2019; 10:141. [PMID: 30941100 PMCID: PMC6433792 DOI: 10.3389/fendo.2019.00141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/15/2019] [Indexed: 12/21/2022] Open
Abstract
Human phosphodiesterases (PDEs) comprise a complex superfamily of enzymes derived from 24 genes separated into 11 PDE gene families (PDEs 1-11), expressed in different tissues and cells, including heart and brain. The isoforms PDE4, PDE7, and PDE8 are specific for the second messenger cAMP, which is responsible for mediating diverse physiological actions involving different hormones and neurotransmitters. The cAMP pathway plays an important role in the development and function of endocrine tissues while phosphodiesterases are responsible for ensuring the appropriate intensity of the actions of this pathway by hydrolyzing cAMP to its inactive form 5'-AMP. PDE1, PDE2, PDE4, and PDE11A are highly expressed in the pituitary, and overexpression of some PDE4 isoforms have been demonstrated in different pituitary adenoma subtypes. This observed over-expression in pituitary adenomas, although of unknown etiology, has been considered a compensatory response to tumorigenesis. PDE4A4/5 has a unique interaction with the co-chaperone aryl hydrocarbon receptor-interacting protein (AIP), a protein implicated in somatotroph tumorigenesis via germline loss-of-function mutations. Based on the association of low PDE4A4 expression with germline AIP-mutation-positive samples, the available data suggest that lack of AIP hinders the upregulation of PDE4A4 protein seen in sporadic somatotrophinomas. This unique disturbance of the cAMP-PDE pathway observed in the majority of AIP-mutation positive adenomas could contribute to their well-described poor response to somatostatin analogs and may support a role in tumorigenesis.
Collapse
Affiliation(s)
- Mariana Ferreira Bizzi
- Department of Internal Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Graeme B. Bolger
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Pharmacology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Márta Korbonits
- Center for Endocrinology, Barts and The London School of Medicine, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Antonio Ribeiro-Oliveira Jr.
- Department of Internal Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Antonio Ribeiro-Oliveira Jr.
| |
Collapse
|
45
|
Abstract
In the general population, height is determined by a complex interplay between genetic and environmental factors. Pituitary gigantism is a rare but very important subgroup of patients with excessive height, as it has an identifiable and clinically treatable cause. The disease is caused by chronic growth hormone and insulin-like growth factor 1 secretion from a pituitary somatotrope adenoma that forms before the closure of the epiphyses. If not controlled effectively, this hormonal hypersecretion could lead to extremely elevated final adult height. The past 10 years have seen marked advances in the understanding of pituitary gigantism, including the identification of genetic causes in ~50% of cases, such as mutations in the AIP gene or chromosome Xq26.3 duplications in X-linked acrogigantism syndrome. Pituitary gigantism has a male preponderance, and patients usually have large pituitary adenomas. The large tumour size, together with the young age of patients and frequent resistance to medical therapy, makes the management of pituitary gigantism complex. Early diagnosis and rapid referral for effective therapy appear to improve outcomes in patients with pituitary gigantism; therefore, a high level of clinical suspicion and efficient use of diagnostic resources is key to controlling overgrowth and preventing patients from reaching very elevated final adult heights.
Collapse
Affiliation(s)
- Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium.
| | - Patrick Petrossians
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
| | - Julien Hanson
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases and Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines, Liège Université, Liège, Belgium
| | - Adrian F Daly
- Department of Endocrinology, Centre Hospitalier Universitaire de Liège, Liège Université, Liège, Belgium
| |
Collapse
|
46
|
Cai F, Hong Y, Xu J, Wu Q, Reis C, Yan W, Wang W, Zhang J. A Novel Mutation of Aryl Hydrocarbon Receptor Interacting Protein Gene Associated with Familial Isolated Pituitary Adenoma Mediates Tumor Invasion and Growth Hormone Hypersecretion. World Neurosurg 2018; 123:e45-e59. [PMID: 30447469 DOI: 10.1016/j.wneu.2018.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 11/02/2018] [Accepted: 11/04/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene were identified in nearly 20% of families with familial isolated pituitary adenoma. Some variants of AIP have been confirmed to induce tumor cell proliferation and invasiveness; however, the mechanism is still unclear. METHODS A novel missense mutation (c.512C>T, p.T171I) was discovered in 3 patients from a Chinese family with familial isolated pituitary adenoma. In silico and multiplex ligation-dependent probe amplification analysis predicted the mutation to be pathogenic. GH3 and 293FT cell lines were used to verify the variant's effect on cell proliferation (Cell Counting Kit-8), invasiveness (Transwell) and growth hormone (GH) secretion (enzyme-linked immunosorbent assay) by transfection with different vectors: control, blank vector, wild-type AIP, p.T171I variant (experimental group), p.Q315* variant, and AIP small interfering RNA. Furthermore, Zac1, Sstr2, interleukin (IL)-6, and Stat3/phosphorylation-Stat3 expression (reverse transcription polymerase chain reaction, Western blot) in each group was also evaluated. RESULTS The experimental group, p.Q315* variant group, and AIP small interfering RNA-overexpressing group promoted cell proliferation at 24 and 48 hours, respectively (compared with the control group; P < 0.01 for both). Similarly, the cells in the experimental group manifested more invasion and GH secretion compared with the control group (P < 0.01 and P < 0.05, respectively). Furthermore, the experimental group cells expressed less Sstr2 (a prerequisite for the responsiveness to somatostatin analogues) and Zac1 (tumor suppressor gene), but more IL-6 and phosphorylated-Stat3 (GH-secretion related). CONCLUSIONS The novel AIP mutation c.512C>T (p.T171I) is a pathogenic variant that promoted cell proliferation, invasiveness, and GH secretion through regulation of Sstr2, Zac1, and IL-6/phosphorylated-Stat3 expression.
Collapse
Affiliation(s)
- Feng Cai
- Department of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Hong
- Department of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghong Xu
- Department of Pathology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qun Wu
- Department of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Cesar Reis
- Department of Preventive Medicine, Loma Linda University School of Medicine, Loma Linda, California, USA; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, California, USA
| | - Wei Yan
- Department of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
47
|
Hernández-Ramírez LC, Morgan RM, Barry S, D’Acquisto F, Prodromou C, Korbonits M. Multi-chaperone function modulation and association with cytoskeletal proteins are key features of the function of AIP in the pituitary gland. Oncotarget 2018; 9:9177-9198. [PMID: 29507682 PMCID: PMC5823669 DOI: 10.18632/oncotarget.24183] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 01/01/2018] [Indexed: 11/25/2022] Open
Abstract
Despite the well-recognized role of loss-of-function mutations of the aryl hydrocarbon receptor interacting protein gene (AIP) predisposing to pituitary adenomas, the pituitary-specific function of this tumor suppressor remains an enigma. To determine the repertoire of interacting partners for the AIP protein in somatotroph cells, wild-type and variant AIP proteins were used for pull-down/quantitative mass spectrometry experiments against lysates of rat somatotropinoma-derived cells; relevant findings were validated by co-immunoprecipitation and co-localization. Global gene expression was studied in AIP mutation positive and negative pituitary adenomas via RNA microarrays. Direct interaction with AIP was confirmed for three known and six novel partner proteins. Novel interactions with HSPA5 and HSPA9, together with known interactions with HSP90AA1, HSP90AB1 and HSPA8, indicate that the function/stability of multiple chaperone client proteins could be perturbed by a deficient AIP co-chaperone function. Interactions with TUBB, TUBB2A, NME1 and SOD1 were also identified. The AIP variants p.R304* and p.R304Q showed impaired interactions with HSPA8, HSP90AB1, NME1 and SOD1; p.R304* also displayed reduced binding to TUBB and TUBB2A, and AIP-mutated tumors showed reduced TUBB2A expression. Our findings suggest that cytoskeletal organization, cell motility/adhesion, as well as oxidative stress responses, are functions that are likely to be involved in the tumor suppressor activity of AIP.
Collapse
Affiliation(s)
- Laura C. Hernández-Ramírez
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
- Present address: Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892-1862, USA
| | - Rhodri M.L. Morgan
- Genome Damage and Stability Centre, University of Sussex, Brighton, Falmer, BN1 9RQ, UK
- Present address: Protein Crystallography Facility, Centre for Structural Biology, Flowers Building, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Sayka Barry
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Fulvio D’Acquisto
- Centre for Microvascular Research, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | | | - Márta Korbonits
- Centre for Endocrinology, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| |
Collapse
|
48
|
Cannavo S, Trimarchi F, Ferraù F. Acromegaly, genetic variants of the aryl hydrocarbon receptor pathway and environmental burden. Mol Cell Endocrinol 2017; 457:81-88. [PMID: 27998805 DOI: 10.1016/j.mce.2016.12.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022]
Abstract
Increasing evidence suggests that environmental contaminants can exert endocrine disruptors activities and that pollution exposition can have a role in tumorigenic processes. Several environmental pollutants have been shown to affect pituitary cells biology and function. The aryl hydrocarbon receptor (AHR) pathway is involved in xenobiotics' metabolism and in tumorigenesis. A deregulation of the AHR pathway could have a role in pituitary tumours' pathophysiology, especially in the GH secreting ones. AHR-interacting protein (AIP) is one of the key partners of AHR and is implicated in pituitary tumours' pathogenesis. Moreover, an increased prevalence of acromegaly has been reported in a highly polluted area of the province of Messina (Sicily, Italy). Nevertheless, at present, few data are available about the potential role of environmental factors in the pathogenesis and clinical expression of GH secreting pituitary tumours. This review is aimed at discussing the evidences on the potential links among environmental pollutants, the AHR pathway and the pathophysiology of GH-secreting pituitary adenomas.
Collapse
Affiliation(s)
- S Cannavo
- Department of Clinical and Experimental Medicine - Endocrinology Unit, University of Messina, Italy
| | - F Trimarchi
- Department of Clinical and Experimental Medicine - Endocrinology Unit, University of Messina, Italy
| | - F Ferraù
- Department of Clinical and Experimental Medicine - Endocrinology Unit, University of Messina, Italy.
| |
Collapse
|
49
|
Yadav RP, Artemyev NO. AIPL1: A specialized chaperone for the phototransduction effector. Cell Signal 2017; 40:183-189. [PMID: 28939106 PMCID: PMC6022367 DOI: 10.1016/j.cellsig.2017.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/11/2017] [Accepted: 09/18/2017] [Indexed: 12/12/2022]
Abstract
Molecular chaperones play pivotal roles in protein folding, quality control, assembly of multimeric protein complexes, protein trafficking, stress responses, and other essential cellular processes. Retinal photoreceptor rod and cone cells have an unusually high demand for production, quality control, and trafficking of key phototransduction components, and thus, require a robust and specialized chaperone machinery to ensure the fidelity of sensing and transmission of visual signals. Misfolding and/or mistrafficking of photoreceptor proteins are known causes for debilitating blinding diseases. Phosphodiesterase 6, the effector enzyme of the phototransduction cascade, relies on a unique chaperone aryl hydrocarbon receptor (AhR)-interacting protein-like 1 (AIPL1) for its stability and function. The structure of AIPL1 and its relationship with the client remained obscure until recently. This review summarizes important recent advances in understanding the mechanisms underlying normal function of AIPL1 and the protein perturbations caused by pathogenic mutations.
Collapse
Affiliation(s)
- Ravi P Yadav
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States
| | - Nikolai O Artemyev
- Department of Molecular Physiology and Biophysics, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States; Department of Ophthalmology and Visual Sciences, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States.
| |
Collapse
|
50
|
Ibáñez-Costa A, Korbonits M. AIP and the somatostatin system in pituitary tumours. J Endocrinol 2017; 235:R101-R116. [PMID: 28835453 DOI: 10.1530/joe-17-0254] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/22/2017] [Indexed: 12/22/2022]
Abstract
Classic somatostatin analogues aimed at somatostatin receptor type 2, such as octreotide and lanreotide, represent the mainstay of medical treatment for acromegaly. These agents have the potential to decrease hormone secretion and reduce tumour size. Patients with a germline mutation in the aryl hydrocarbon receptor-interacting protein gene, AIP, develop young-onset acromegaly, poorly responsive to pharmacological therapy. In this review, we summarise the most recent studies on AIP-related pituitary adenomas, paying special attention to the causes of somatostatin resistance; the somatostatin receptor profile including type 2, type 5 and truncated variants; the role of G proteins in this pathology; the use of first and second generation somatostatin analogues; and the role of ZAC1, a zinc-finger protein with expression linked to AIP in somatotrophinoma models and acting as a key mediator of octreotide response.
Collapse
Affiliation(s)
- Alejandro Ibáñez-Costa
- Centre for EndocrinologyWilliam Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Márta Korbonits
- Centre for EndocrinologyWilliam Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| |
Collapse
|