1
|
Huber K. Review: Welfare in farm animals from an animal-centred point of view. Animal 2024; 18:101311. [PMID: 39265500 DOI: 10.1016/j.animal.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/14/2024] Open
Abstract
This review aimed to enlighten aspects of welfare from the farm animal-centred point of view rarely addressed such as those anatomical and physiological alterations induced in farm animals to obtain high performance. Hence, the major working hypothesis was that high-producing farm animals developed an imbalance between body structural and functional capacities and the genetic procedures applied to obtain industrial production of animal protein. This is called "disproportionality", a feature which cannot be compensated by feeding and management approaches. Consequences of disproportionality are the insidious development of disturbances of the metabolism, low-grade systemic inflammation and as a final stage, production diseases, developing throughout the productive life span of a farm animal and affecting animal welfare. Based on scientific evidence from literature, the review discusses disproportional conditions in broilers, laying hens, sows, piglets, dairy cows, bulls and calves as the most important farm animals for production of milk, meat, foetuses and eggs. As a conclusion, farm animal welfare must consider analysing issues from an animal-centered point of view because it seems evident that, due to genetics and management pressures, most of farm animals are already beyond their physiological limitations. Animal welfare from an animal-centered point must be addressed as an ethical step to establish limits to the strength placed on the animal's anatomical and physiological functionality. It may allow more sustainable and efficient farm animal production and the availability of healthy animal-derived protein for human nutrition worldwide.
Collapse
Affiliation(s)
- K Huber
- Institute of Animal Science (460d), University of Hohenheim, Fruwirthstrasse 35, 70599 Stuttgart, Germany.
| |
Collapse
|
2
|
Stremming J, Chang EI, White A, Rozance PJ, Brown LD. IGF-1 infusion increases growth in fetal sheep when euinsulinemia is maintained. J Endocrinol 2024; 262:e240058. [PMID: 38727325 PMCID: PMC11212460 DOI: 10.1530/joe-24-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024]
Abstract
Insulin-like growth factor 1 (IGF-1) is a critical fetal anabolic hormone. IGF-1 infusion to the normally growing sheep fetus increases the weight of some organs but does not consistently increase body weight. However, IGF-1 infusion profoundly decreases fetal plasma insulin concentrations, which may limit fetal growth potential. In this study, normally growing late-gestation fetal sheep received an intravenous infusion of either: IGF-1 (IGF), IGF-1 with insulin and dextrose to maintain fetal euinsulinemia and euglycemia (IGF+INS), or vehicle control (CON) for 1 week. The fetus underwent a metabolic study immediately prior to infusion start and after 1 week of the infusion to measure uterine and umbilical uptake rates of nutrients and oxygen. IGF+INS fetuses were 23% heavier than CON (P = 0.0081) and had heavier heart, liver, and adrenal glands than IGF and CON (P < 0.01). By design, final fetal insulin concentrations in IGF were 62% and 65% lower than IGF+INS and CON, respectively. Final glucose concentrations were similar in all groups. IGF+INS had lower final oxygen content than IGF and CON (P < 0.0001) and lower final amino acid concentrations than CON (P = 0.0002). Final umbilical oxygen uptake was higher in IGF+INS compared to IGF and CON (P < 0.05). Final umbilical uptake of several essential amino acids was higher in IGF+INS compared to CON (P < 0.05). In summary, maintaining euinsulinemia and euglycemia during fetal IGF-1 infusion is necessary to maximally support body growth. We speculate that IGF-1 and insulin stimulate placental nutrient transport to support fetal growth.
Collapse
Affiliation(s)
- Jane Stremming
- Department of Pediatrics, University of Colorado Anschutz
Medical Campus, Aurora, CO
| | - Eileen I Chang
- Department of Pediatrics, University of Colorado Anschutz
Medical Campus, Aurora, CO
| | - Alicia White
- Department of Pediatrics, University of Colorado Anschutz
Medical Campus, Aurora, CO
| | - Paul J Rozance
- Department of Pediatrics, University of Colorado Anschutz
Medical Campus, Aurora, CO
| | - Laura D Brown
- Department of Pediatrics, University of Colorado Anschutz
Medical Campus, Aurora, CO
| |
Collapse
|
3
|
Vargas-Foitzick R, García-Ordenes B, Iratchet D, Acuña A, Alcayaga S, Fernández C, Toledo K, Rodríguez M, Naranjo C, Bustamante R, Haeger PA. Exercise reduces physical alterations in a rat model of fetal alcohol spectrum disorders. Biol Res 2024; 57:41. [PMID: 38907274 PMCID: PMC11193177 DOI: 10.1186/s40659-024-00520-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/04/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) has serious physical consequences for children such as behavioral disabilities, growth disorders, neuromuscular problems, impaired motor coordination, and decreased muscle tone. However, it is not known whether loss of muscle strength occurs, and which interventions will effectively mitigate physical PAE impairments. We aimed to investigate whether physical alteration persists during adolescence and whether exercise is an effective intervention. RESULTS Using paradigms to evaluate different physical qualities, we described that early adolescent PAE animals have significant alterations in agility and strength, without alterations in balance and coordination compared to CTRL animals. We evaluated the effectiveness of 3 different exercise protocols for 4 weeks: Enrichment environment (EE), Endurance exercise (EEX), and Resistance exercise (REX). The enriched environment significantly improved the strength in the PAE group but not in the CTRL group whose strength parameters were maintained even during exercise. Resistance exercise showed the greatest benefits in gaining strength, and endurance exercise did not. CONCLUSION PAE induced a significant decrease in strength compared to CTRL in PND21. Resistance exercise is the most effective to reverse the effects of PAE on muscular strength. Our data suggests that individualized, scheduled, and supervised training of resistance is more beneficial than endurance or enriched environment exercise for adolescents FASD.
Collapse
Affiliation(s)
- Ronald Vargas-Foitzick
- Carrera de Kinesiología, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Bayron García-Ordenes
- Carrera de Kinesiología, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Núcleo de Investigación en Prevención y Tratamiento de Enfermedades Crónicas no Transmisibles (NiPTEC), Universidad Católica del Norte, Coquimbo, Chile
| | - Donovan Iratchet
- Carrera de Kinesiología, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Angie Acuña
- Carrera de Kinesiología, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Spencer Alcayaga
- Carrera de Kinesiología, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Cristian Fernández
- Carrera de Kinesiología, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Karla Toledo
- Carrera de Kinesiología, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Marianela Rodríguez
- Carrera de Kinesiología, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Carolina Naranjo
- Departamento de Ciencias Clínicas, Universidad Católica del Norte, Coquimbo, Chile
| | - René Bustamante
- Carrera de Kinesiología, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Núcleo de Investigación en Prevención y Tratamiento de Enfermedades Crónicas no Transmisibles (NiPTEC), Universidad Católica del Norte, Coquimbo, Chile
| | - Paola A Haeger
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile.
- Núcleo de Investigación en Prevención y Tratamiento de Enfermedades Crónicas no Transmisibles (NiPTEC), Universidad Católica del Norte, Coquimbo, Chile.
| |
Collapse
|
4
|
Beer HN, Lacey TA, Gibbs RL, Most MS, Hicks ZM, Grijalva PC, Marks-Nelson ES, Schmidt TB, Petersen JL, Yates DT. Daily Eicosapentaenoic Acid Infusion in IUGR Fetal Lambs Reduced Systemic Inflammation, Increased Muscle ADRβ2 Content, and Improved Myoblast Function and Muscle Growth. Metabolites 2024; 14:340. [PMID: 38921474 PMCID: PMC11205652 DOI: 10.3390/metabo14060340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024] Open
Abstract
Intrauterine growth-restricted (IUGR) fetuses exhibit systemic inflammation that contributes to programmed deficits in myoblast function and muscle growth. Thus, we sought to determine if targeting fetal inflammation improves muscle growth outcomes. Heat stress-induced IUGR fetal lambs were infused with eicosapentaenoic acid (IUGR+EPA; n = 9) or saline (IUGR; n = 8) for 5 days during late gestation and compared to saline-infused controls (n = 11). Circulating eicosapentaenoic acid was 42% less (p < 0.05) for IUGR fetuses but was recovered in IUGR+EPA fetuses. The infusion did not improve placental function or fetal O2 but resolved the 67% greater (p < 0.05) circulating TNFα observed in IUGR fetuses. This improved myoblast function and muscle growth, as the 23% reduction (p < 0.05) in the ex vivo differentiation of IUGR myoblasts was resolved in IUGR+EPA myoblasts. Semitendinosus, longissimus dorsi, and flexor digitorum superficialis muscles were 24-39% lighter (p < 0.05) for IUGR but not for IUGR+EPA fetuses. Elevated (p < 0.05) IL6R and reduced (p < 0.05) β2 adrenoceptor content in IUGR muscle indicated enhanced inflammatory sensitivity and diminished β2 adrenergic sensitivity. Although IL6R remained elevated, β2 adrenoceptor deficits were resolved in IUGR+EPA muscle, demonstrating a unique underlying mechanism for muscle dysregulation. These findings show that fetal inflammation contributes to IUGR muscle growth deficits and thus may be an effective target for intervention.
Collapse
Affiliation(s)
- Haley N. Beer
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Taylor A. Lacey
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Rachel L. Gibbs
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Micah S. Most
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Zena M. Hicks
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Pablo C. Grijalva
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Eileen S. Marks-Nelson
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ty B. Schmidt
- Meat Science and Muscle Biology, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Jessica L. Petersen
- Animal Breeding and Genetics, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| | - Dustin T. Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
5
|
Su Y, He S, Chen Q, Zhang H, Huang C, Zhao Q, Pu Y, He X, Jiang L, Ma Y, Zhao Q. Integrative ATAC-seq and RNA-seq analysis of myogenic differentiation of ovine skeletal muscle satellite cell. Genomics 2024; 116:110851. [PMID: 38692440 DOI: 10.1016/j.ygeno.2024.110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Skeletal muscle satellite cells (SMSCs) play an important role in regulating muscle growth and regeneration. Chromatin accessibility allows physical interactions that synergistically regulate gene expression through enhancers, promoters, insulators, and chromatin binding factors. However, the chromatin accessibility altas and its regulatory role in ovine myoblast differentiation is still unclear. Therefore, ATAC-seq and RNA-seq analysis were performed on ovine SMSCs at the proliferation stage (SCG) and differentiation stage (SCD). 17,460 DARs (differential accessibility regions) and 3732 DEGs (differentially expressed genes) were identified. Based on joint analysis of ATAC-seq and RNA-seq, we revealed that PI3K-Akt, TGF-β and other signaling pathways regulated SMSCs differentiation. We identified two novel candidate genes, FZD5 and MAP2K6, which may affect the proliferation and differentiation of SMSCs. Our data identify potential cis regulatory elements of ovine SMSCs. This study can provide a reference for exploring the mechanisms of the differentiation and regeneration of SMSCs in the future.
Collapse
Affiliation(s)
- Yingxiao Su
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Siqi He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Qian Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hechun Zhang
- Chaoyang Chaomu Breeding Farm Co., LTD, Chaoyang, Liaoning 122629, China
| | - Chang Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Qian Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yabin Pu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Xiaohong He
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Lin Jiang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193,China.
| |
Collapse
|
6
|
Cortes-Araya Y, Cheung S, Ho W, Stenhouse C, Ashworth CJ, Esteves CL, Donadeu FX. Effects of foetal size, sex and developmental stage on adaptive transcriptional responses of skeletal muscle to intrauterine growth restriction in pigs. Sci Rep 2024; 14:8500. [PMID: 38605102 PMCID: PMC11009347 DOI: 10.1038/s41598-024-57194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 03/15/2024] [Indexed: 04/13/2024] Open
Abstract
Intrauterine growth restriction (IUGR) occurs both in humans and domestic species. It has a particularly high incidence in pigs, and is a leading cause of neonatal morbidity and mortality as well as impaired postnatal growth. A key feature of IUGR is impaired muscle development, resulting in decreased meat quality. Understanding the developmental origins of IUGR, particularly at the molecular level, is important for developing effective strategies to mitigate its economic impact on the pig industry and animal welfare. The aim of this study was to characterise transcriptional profiles in the muscle of growth restricted pig foetuses at different gestational days (GD; gestational length ~ 115 days), focusing on selected genes (related to development, tissue injury and metabolism) that were previously identified as dysregulated in muscle of GD90 fetuses. Muscle samples were collected from the lightest foetus (L) and the sex-matched foetus with weight closest to the litter average (AW) from each of 22 Landrace x Large White litters corresponding to GD45 (n = 6), GD60 (n = 8) or GD90 (n = 8), followed by analyses, using RT-PCR and protein immunohistochemistry, of selected gene targets. Expression of the developmental genes, MYOD, RET and ACTN3 were markedly lower, whereas MSTN expression was higher, in the muscle of L relative to AW littermates beginning on GD45. Levels of all tissue injury-associated transcripts analysed (F5, PLG, KNG1, SELL, CCL16) were increased in L muscle on GD60 and, most prominently, on GD90. Among genes involved in metabolic regulation, KLB was expressed at higher levels in L than AW littermates beginning on GD60, whereas both IGFBP1 and AHSG were higher in L littermates on GD90 but only in males. Furthermore, the expression of genes specifically involved in lipid, hexose sugar or iron metabolism increased or, in the case of UCP3, decreased in L littermates on GD60 (UCP3, APOB, ALDOB) or GD90 (PNPLA3, TF), albeit in the case of ALDOB this only involved females. In conclusion, marked dysregulation of genes with critical roles in development in L foetuses can be observed from GD45, whereas for a majority of transcripts associated with tissue injury and metabolism differences between L and AW foetuses were apparent by GD60 or only at GD90, thus identifying different developmental windows for different types of adaptive responses to IUGR in the muscle of porcine foetuses.
Collapse
Affiliation(s)
- Y Cortes-Araya
- Division of Translational Bioscience, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - S Cheung
- Division of Translational Bioscience, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - W Ho
- Division of Translational Bioscience, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - C Stenhouse
- Division of Translational Bioscience, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
- Department of Animal Science, Pennsylvania State University, State College, PA, 16803, USA
| | - C J Ashworth
- Division of Translational Bioscience, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - C L Esteves
- Division of Translational Bioscience, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - F X Donadeu
- Division of Translational Bioscience, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| |
Collapse
|
7
|
van Beijsterveldt IALP, van Zelst BD, Dorrepaal DJ, van den Berg SAA, Hokken-Koelega ACS. Early life poly- and perfluoroalkyl substance levels and adiposity in the first 2 years of life. Eur J Endocrinol 2024; 190:338-346. [PMID: 38554392 DOI: 10.1093/ejendo/lvae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024]
Abstract
IMPORTANCE Poly- and perfluoroalkyl substances (PFASs) are nondegradable, man-made chemicals. They accumulate in humans with potential harmful effects, especially in susceptible periods of human development, such as the first months of life. We found that, in our cohort, exclusively breastfed (EBF) infants had 3 times higher PFAS plasma levels compared with exclusively formula-fed (EFF) infants at the age of 3 months. Thus, PFASs could potentially reduce the health benefits of breastfeeding. OBJECTIVE We investigated the associations between PFAS levels at the age of 3 months and accelerated gain in fat mass during the first 6 months of life, body composition at 2 years, and whether these associations differ between EBF and EFF infants. SETTING In 372 healthy term-born infants, we longitudinally assessed anthropometrics, body composition (by air-displacement plethysmography and dual-energy X-ray absorptiometry), and visceral and subcutaneous fat (by abdominal ultrasound) until the age of 2 years. MEASURES The plasma levels of 5 individual PFASs were determined by liquid chromatography-electrospray ionization-tandem mass spectrometry at the age of 3 months. MAIN OUTCOMES We studied associations between PFAS levels and outcomes using multiple regression analyses. RESULTS Higher early life plasma perfluorooctanoic acid and total PFAS levels were associated with an accelerated gain in fat mass percentage [FM%; >0.67 SD score (SDS)] during the first 6 months of life. Higher early life PFAS levels were associated with lower fat-free mass (FFM) SDS at the age of 2 years, but not with total FM% SDS at 2 years. Furthermore, we found opposite effects of PFAS levels (negative) and exclusive breastfeeding (positive) at the age of 3 months on FFM SDS at 2 years. CONCLUSION Higher PFAS levels in early life are associated with accelerated gains in FM% during the first 6 months of life and with lower FFM SDS at the age of 2 years, which have been associated with an unfavorable body composition and metabolic profile later in life. Our findings warrant further research with longer follow-up times.
Collapse
Affiliation(s)
- Inge A L P van Beijsterveldt
- Department of Pediatrics, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Bertrand D van Zelst
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Demi J Dorrepaal
- Department of Pediatrics, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Sjoerd A A van den Berg
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anita C S Hokken-Koelega
- Department of Pediatrics, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
- Dutch Growth Research Foundation, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Sarri L, Balcells J, Seradj AR, de la Fuente G. Protein turnover in pigs: A review of interacting factors. J Anim Physiol Anim Nutr (Berl) 2024; 108:451-469. [PMID: 37975299 DOI: 10.1111/jpn.13906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 08/24/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Protein turnover defines the balance between two continuous and complex processes of protein metabolism, synthesis and degradation, which determine their deposition in tissues. Although the liver and intestine have been studied extensively for their important roles in protein digestion, absorption and metabolism, the study of protein metabolism has focused mainly on skeletal muscle tissue to understand the basis for its growth. Due to the high adaptability of skeletal muscle, its protein turnover is greatly affected by different internal and external factors, contributing to carcass lean-yield and animal growth. Amino acid (AA) labelling and tracking using isotope tracer methodology, together with the study of myofiber type profiling, signal transduction pathways and gene expression, has allowed the analysis of these mechanisms from different perspectives. Positive stimuli such as increased nutrient availability in the diet (e.g., AA), physical activity, the presence of certain hormones (e.g., testosterone) or a more oxidative myofiber profile in certain muscles or pig genotypes promote increased upregulation of translation and transcription-related genes, activation of mTORC1 signalling mechanisms and increased abundance of satellite cells, allowing for more efficient protein synthesis. However, fasting, animal aging, inactivity and stress, inflammation or sepsis produce the opposite effect. Deepening the understanding of modifying factors and their possible interaction may contribute to the design of optimal strategies to better control tissue growth and nutrient use (i.e., protein and AA), and thus advance the precision feeding strategy.
Collapse
Affiliation(s)
- Laura Sarri
- Departament de Ciència Animal, Universitat de Lleida- Agrotecnio-CERCA Center, Lleida, Spain
| | - Joaquim Balcells
- Departament de Ciència Animal, Universitat de Lleida- Agrotecnio-CERCA Center, Lleida, Spain
| | - Ahmad Reza Seradj
- Departament de Ciència Animal, Universitat de Lleida- Agrotecnio-CERCA Center, Lleida, Spain
| | - Gabriel de la Fuente
- Departament de Ciència Animal, Universitat de Lleida- Agrotecnio-CERCA Center, Lleida, Spain
| |
Collapse
|
9
|
Li Q, Hao M, Zhu J, Yi L, Cheng W, Xie Y, Zhao S. Comparison of differentially expressed genes in longissimus dorsi muscle of Diannan small ears, Wujin and landrace pigs using RNA-seq. Front Vet Sci 2024; 10:1296208. [PMID: 38249550 PMCID: PMC10796741 DOI: 10.3389/fvets.2023.1296208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Pig growth is an important economic trait that involves the co-regulation of multiple genes and related signaling pathways. High-throughput sequencing has become a powerful technology for establishing the transcriptome profiles and can be used to screen genome-wide differentially expressed genes (DEGs). In order to elucidate the molecular mechanism underlying muscle growth, this study adopted RNA sequencing (RNA-seq) to identify and compare DEGs at the genetic level in the longissimus dorsi muscle (LDM) between two indigenous Chinese pig breeds (Diannan small ears [DSE] pig and Wujin pig [WJ]) and one introduced pig breed (Landrace pig [LP]). Methods Animals under study were from two Chinese indigenous pig breeds (DSE pig, n = 3; WJ pig, n = 3) and one introduced pig breed (LP, n = 3) were used for RNA sequencing (RNA-seq) to identify and compare the expression levels of DEGs in the LDM. Then, functional annotation, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and Protein-Protein Interaction (PPI) network analysis were performed on these DEGs. Then, functional annotation, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and Protein-Protein Interaction (PPI) network analysis were performed on these DEGs. Results The results revealed that for the DSE, WJ, and LP libraries, more than 66, 65, and 71 million clean reads were generated by transcriptome sequencing, respectively. A total of 11,213 genes were identified in the LDM tissue of these pig breeds, of which 7,127 were co-expressed in the muscle tissue of the three samples. In total, 441 and 339 DEGs were identified between DSE vs. WJ and LP vs. DSE in the study, with 254, 193 up-regulated genes and 187, 193 down-regulated genes in DSE compared to WJ and LP. GO analysis and KEGG signaling pathway analysis showed that DEGs are significantly related to contractile fiber, sarcolemma, and dystrophin-associated glycoprotein complex, myofibril, sarcolemma, and myosin II complex, Glycolysis/Gluconeogenesis, Propanoate metabolism, and Pyruvate metabolism, etc. In combination with functional annotation of DEGs, key genes such as ENO3 and JUN were identified by PPI network analysis. Discussion In conclusion, the present study revealed key genes including DES, FLNC, PSMD1, PSMD6, PSME4, PSMB4, RPL11, RPL13A, ROS23, RPS29, MYH1, MYL9, MYL12B, TPM1, TPM4, ENO3, PGK1, PKM2, GPI, and the unannotated new gene ENSSSCG00000020769 and related signaling pathways that influence the difference in muscle growth and could provide a theoretical basis for improving pig muscle growth traits in the future.
Collapse
Affiliation(s)
- Qiuyan Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Meilin Hao
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Junhong Zhu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Lanlan Yi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Wenjie Cheng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yuxiao Xie
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Sumei Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
10
|
He W, Posey EA, Steele CC, Savell JW, Bazer FW, Wu G. Dietary glycine supplementation activates mechanistic target of rapamycin signaling pathway in tissues of pigs with intrauterine growth restriction. J Anim Sci 2024; 102:skae141. [PMID: 38761109 PMCID: PMC11217904 DOI: 10.1093/jas/skae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024] Open
Abstract
The mechanistic target of rapamycin (mTOR) cell signaling pathway serves as the central mechanism for the regulation of tissue protein synthesis and growth. We recently reported that supplementing 1% glycine to corn- and soybean meal-based diets enhanced growth performance between weaning and market weights in pigs with intrauterine growth restriction (IUGR). Results of recent studies have revealed an important role for glycine in activating mTOR and protein synthesis in C2C12 muscle cells. Therefore, the present study tested the hypothesis that dietary glycine supplementation enhanced the mTOR cell signaling pathway in skeletal muscle and other tissues of IUGR pigs. At weaning (21 d of age), IUGR pigs and litter mates with normal birth weights (NBW) were assigned randomly to one of the two groups: supplementation with either 1% glycine or 1.19% l-alanine (isonitrogenous control) to a corn- and soybean meal-based diet. Tissues were obtained from the pigs within 1 wk after the feeding trial ended at 188 d of age to determine the abundances of total and phosphorylated forms of mTOR and its two major downstream proteins: eukaryotic initiation factor 4E-binding protein-1 (4EBP1) and ribosomal protein S6 kinase-1 (p70S6K). Results showed that IUGR decreased (P < 0.05) the abundances of both total and phosphorylated mTOR, 4EBP1, and p70S6K in the gastrocnemius muscle and jejunum. In the longissimus lumborum muscle of IUGR pigs, the abundances of total mTOR did not differ (P > 0.05) but those for phosphorylated mTOR and both total and phosphorylated 4EBP1 and p70S6K were downregulated (P < 0.05), when compared to NBW pigs. These adverse effects of IUGR in the gastrocnemius muscle, longissimus lumborum muscle, and jejunum were prevented (P < 0.05) by dietary glycine supplementation. Interestingly, the abundances of total or phosphorylated mTOR, 4EBP1, and p70S6K in the liver were not affected (P > 0.05) by IUGR or glycine supplementation. Collectively, our findings indicate that IUGR impaired the mTOR cell signaling pathway in the tissues of pigs and that adequate glycine intake was crucial for maintaining active mTOR-dependent protein synthesis for the growth and development of skeletal muscle.
Collapse
Affiliation(s)
- Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Erin A Posey
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Chandler C Steele
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Jeffrey W Savell
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
Gibbs RL, Swanson RM, Beard JK, Hicks ZM, Most MS, Beer HN, Grijalva PC, Clement SM, Marks-Nelson ES, Schmidt TB, Petersen JL, Yates DT. Daily injection of the β2 adrenergic agonist clenbuterol improved poor muscle growth and body composition in lambs following heat stress-induced intrauterine growth restriction. Front Physiol 2023; 14:1252508. [PMID: 37745251 PMCID: PMC10516562 DOI: 10.3389/fphys.2023.1252508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Intrauterine growth restriction (IUGR) is associated with reduced β2 adrenergic sensitivity, which contributes to poor postnatal muscle growth. The objective of this study was to determine if stimulating β2 adrenergic activity postnatal would rescue deficits in muscle growth, body composition, and indicators of metabolic homeostasis in IUGR offspring. Methods: Time-mated ewes were housed at 40°C from day 40 to 95 of gestation to produce IUGR lambs. From birth, IUGR lambs received daily IM injections of 0.8 μg/kg clenbuterol HCl (IUGR+CLEN; n = 11) or saline placebo (IUGR; n = 12). Placebo-injected controls (n = 13) were born to pair-fed thermoneutral ewes. Biometrics were assessed weekly and body composition was estimated by ultrasound and bioelectrical impedance analysis (BIA). Lambs were necropsied at 60 days of age. Results: Bodyweights were lighter (p ≤ 0.05) for IUGR and IUGR+CLEN lambs than for controls at birth, day 30, and day 60. Average daily gain was less (p ≤ 0.05) for IUGR lambs than controls and was intermediate for IUGR+CLEN lambs. At day 58, BIA-estimated whole-body fat-free mass and ultrasound-estimated loin eye area were less (p ≤ 0.05) for IUGR but not IUGR+CLEN lambs than for controls. At necropsy, loin eye area and flexor digitorum superficialis muscles were smaller (p ≤ 0.05) for IUGR but not IUGR+CLEN lambs than for controls. Longissimus dorsi protein content was less (p ≤ 0.05) and fat-to-protein ratio was greater (p ≤ 0.05) for IUGR but not IUGR+CLEN lambs than for controls. Semitendinosus from IUGR lambs had less (p ≤ 0.05) β2 adrenoreceptor content, fewer (p ≤ 0.05) proliferating myoblasts, tended to have fewer (p = 0.08) differentiated myoblasts, and had smaller (p ≤ 0.05) muscle fibers than controls. Proliferating myoblasts and fiber size were recovered (p ≤ 0.05) in IUGR+CLEN lambs compared to IUGR lambs, but β2 adrenoreceptor content and differentiated myoblasts were not recovered. Semitendinosus lipid droplets were smaller (p ≤ 0.05) in size for IUGR lambs than for controls and were further reduced (p ≤ 0.05) in size for IUGR+CLEN lambs. Conclusion: These findings show that clenbuterol improved IUGR deficits in muscle growth and some metabolic parameters even without recovering the deficit in β2 adrenoreceptor content. We conclude that IUGR muscle remained responsive to β2 adrenergic stimulation postnatal, which may be a strategic target for improving muscle growth and body composition in IUGR-born offspring.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Dustin T. Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
12
|
White MR, Yates DT. Dousing the flame: reviewing the mechanisms of inflammatory programming during stress-induced intrauterine growth restriction and the potential for ω-3 polyunsaturated fatty acid intervention. Front Physiol 2023; 14:1250134. [PMID: 37727657 PMCID: PMC10505810 DOI: 10.3389/fphys.2023.1250134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Intrauterine growth restriction (IUGR) arises when maternal stressors coincide with peak placental development, leading to placental insufficiency. When the expanding nutrient demands of the growing fetus subsequently exceed the capacity of the stunted placenta, fetal hypoxemia and hypoglycemia result. Poor fetal nutrient status stimulates greater release of inflammatory cytokines and catecholamines, which in turn lead to thrifty growth and metabolic programming that benefits fetal survival but is maladaptive after birth. Specifically, some IUGR fetal tissues develop enriched expression of inflammatory cytokine receptors and other signaling cascade components, which increases inflammatory sensitivity even when circulating inflammatory cytokines are no longer elevated after birth. Recent evidence indicates that greater inflammatory tone contributes to deficits in skeletal muscle growth and metabolism that are characteristic of IUGR offspring. These deficits underlie the metabolic dysfunction that markedly increases risk for metabolic diseases in IUGR-born individuals. The same programming mechanisms yield reduced metabolic efficiency, poor body composition, and inferior carcass quality in IUGR-born livestock. The ω-3 polyunsaturated fatty acids (PUFA) are diet-derived nutraceuticals with anti-inflammatory effects that have been used to improve conditions of chronic systemic inflammation, including intrauterine stress. In this review, we highlight the role of sustained systemic inflammation in the development of IUGR pathologies. We then discuss the potential for ω-3 PUFA supplementation to improve inflammation-mediated growth and metabolic deficits in IUGR offspring, along with potential barriers that must be considered when developing a supplementation strategy.
Collapse
Affiliation(s)
| | - Dustin T. Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
13
|
Sidiqi A, Fariha F, Shanta SS, Dasiewicz A, Mahmud AA, Moore DR, Shankaran M, Hellerstein MK, Evans WJ, Gernand AD, Islam MM, Abrams SA, Harrington J, Nyangau E, Roth DE, O'Callaghan KM. Estimation of skeletal muscle mass in 4-year-old children using the D 3-creatine dilution method. Pediatr Res 2023; 94:1195-1202. [PMID: 37037953 PMCID: PMC10444613 DOI: 10.1038/s41390-023-02587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/07/2023] [Accepted: 03/18/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Given limited experience in applying the creatine-(methyl-D3) (D3Cr) dilution method to measure skeletal muscle mass (SMM) in young children, the feasibility of deployment in a fielding setting and performance of the method was assessed in a cohort of 4-year-old children in Dhaka, Bangladesh. METHODS Following D3Cr oral dose (10 mg) administration, single fasting urine samples were collected at 2-4 days (n = 100). Twenty-four-hour post-dose collections and serial spot urine samples on days 2, 3 and 4 were obtained in a subset of participants (n = 10). Urinary creatine, creatinine, D3Cr and D3-creatinine enrichment were analyzed by liquid chromatography-tandem mass spectrometry. Appendicular lean mass (ALM) was measured by dual-energy x-ray absorptiometry and grip strength was measured by a hand-held dynamometer. RESULTS SMM was measured successfully in 91% of participants, and there were no adverse events. Mean ± SD SMM was greater than ALM (4.5 ± 0.4 and 3.2 ± 0.6 kg, respectively). Precision of SMM was low (intraclass correlation = 0.20; 95% CI: 0.02, 0.75; n = 10). Grip strength was not associated with SMM in multivariable analysis (0.004 kg per 100 g of SMM; 95% CI: -0.031, 0.038; n = 91). CONCLUSIONS The D3Cr dilution method was feasible in a community setting. However, high within-child variability in SMM estimates suggests the need for further optimization of this approach. IMPACT The D3-creatine (D3Cr) stable isotope dilution method was considered a feasible method for the estimation of skeletal muscle mass (SMM) in young children in a community setting and was well accepted among participants. SMM was weakly associated with both dual-energy x-ray absorptiometry-derived values of appendicular lean mass and grip strength. High within-child variability in estimated values of SMM suggests that further optimization of the D3Cr stable isotope dilution method is required prior to implementation in community research settings.
Collapse
Affiliation(s)
- Aysha Sidiqi
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
- Centre for Global Child Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Farzana Fariha
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Shaila S Shanta
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Alison Dasiewicz
- Centre for Global Child Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Abdullah Al Mahmud
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Daniel R Moore
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada
| | - Mahalakshmi Shankaran
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Marc K Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - William J Evans
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Alison D Gernand
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - M Munirul Islam
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Steven A Abrams
- Department of Pediatrics, Dell Medical School at the University of Texas at Austin, Austin, TX, USA
| | - Jennifer Harrington
- Department of Pediatrics, Women's and Children's Health Network and University of Adelaide, Adelaide, SA, Australia
| | - Edna Nyangau
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Daniel E Roth
- Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada
- Centre for Global Child Health, Hospital for Sick Children, Toronto, ON, Canada
- Division of Paediatric Medicine, Department of Paediatrics, Hospital for Sick Children, Toronto, ON, Canada
| | - Karen M O'Callaghan
- Centre for Global Child Health, Hospital for Sick Children, Toronto, ON, Canada.
- Department of Nutritional Sciences, King's College London, London, UK.
| |
Collapse
|
14
|
Pepe GJ, Albrecht ED. Microvascular Skeletal-Muscle Crosstalk in Health and Disease. Int J Mol Sci 2023; 24:10425. [PMID: 37445602 DOI: 10.3390/ijms241310425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
As an organ system, skeletal muscle is essential for the generation of energy that underpins muscle contraction, plays a critical role in controlling energy balance and insulin-dependent glucose homeostasis, as well as vascular well-being, and regenerates following injury. To achieve homeostasis, there is requirement for "cross-talk" between the myogenic and vascular components and their regulatory factors that comprise skeletal muscle. Accordingly, this review will describe the following: [a] the embryonic cell-signaling events important in establishing vascular and myogenic cell-lineage, the cross-talk between endothelial cells (EC) and myogenic precursors underpinning the development of muscle, its vasculature and the satellite-stem-cell (SC) pool, and the EC-SC cross-talk that maintains SC quiescence and localizes ECs to SCs and angio-myogenesis postnatally; [b] the vascular-myocyte cross-talk and the actions of insulin on vasodilation and capillary surface area important for the uptake of glucose/insulin by myofibers and vascular homeostasis, the microvascular-myocyte dysfunction that characterizes the development of insulin resistance, diabetes and hypertension, and the actions of estrogen on muscle vasodilation and growth in adults; [c] the role of estrogen in utero on the development of fetal skeletal-muscle microvascularization and myofiber hypertrophy required for metabolic/vascular homeostasis after birth; [d] the EC-SC interactions that underpin myofiber vascular regeneration post-injury; and [e] the role of the skeletal-muscle vasculature in Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Gerald J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Eugene D Albrecht
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
15
|
Hicks MR, Pyle AD. The emergence of the stem cell niche. Trends Cell Biol 2023; 33:112-123. [PMID: 35934562 PMCID: PMC9868094 DOI: 10.1016/j.tcb.2022.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 02/03/2023]
Abstract
Stem cell niches are composed of dynamic microenvironments that support stem cells over a lifetime. The emerging niche is distinct from the adult because its main role is to support the progenitors that build organ systems in development. Emerging niches mature through distinct stages to form the adult niche and enable proper stem cell support. As a model of emerging niches, this review highlights how differences in the skeletal muscle microenvironment influence emerging versus satellite cell (SC) niche formation in skeletal muscle, which is among the most regenerative tissue systems. We contrast how stem cell niches regulate intrinsic properties between progenitor and stem cells throughout development to adulthood. We describe new applications for generating emerging niches from human pluripotent stem cells (hPSCs) using developmental principles and highlight potential applications for regeneration and therapeutics.
Collapse
Affiliation(s)
- Michael R Hicks
- Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - April D Pyle
- Microbiology, Immunology, and Molecular Genetics, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
16
|
Hagen MW, Louey S, Alaniz SM, Belcik T, Muller MM, Brown L, Lindner JR, Jonker SS. Changes in microvascular perfusion of heart and skeletal muscle in sheep around the time of birth. Exp Physiol 2023; 108:135-145. [PMID: 36420621 PMCID: PMC9805518 DOI: 10.1113/ep090809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022]
Abstract
NEW FINDINGS What is the central question of this study? How does the microvascular perfusion of striated muscle change during the dynamic developmental period between the late gestation fetus and early neonate? What is the main finding and its importance? In both myocardium and skeletal muscle, perfusion of striated muscle is significantly reduced in the neonate compared to the late term fetus, but flow reserve is unchanged. The results suggest striated muscle capillary networks grow more slowly relative to the myofibres they nourish during the perinatal period. ABSTRACT Microvascular perfusion of striated muscle is an important determinant of health throughout life. Birth is a transition with profound effects on the growth and function of striated muscle, but the regulation of microvascular perfusion around this transition is poorly understood. We used contrast-enhanced ultrasound perfusion imaging (CEUS) to study the perfusion of left ventricular myocardium and hindlimb biceps femoris, which are populations of muscle with different degrees of change in pre- to postnatal workloads and different capacities for postnatal proliferative growth. We studied separate groups of lambs in late gestation (135 days' gestational age; 92% of term) and shortly after birth (5 days' postnatal age). We used CEUS to quantify baseline perfusion, perfusion during hyperaemia induced by adenosine infusion (myocardium) or electrically stimulated unloaded exercise (skeletal muscle), flow reserve and oxygen delivery. We found heart-to-body weight ratio was greater in neonates than fetuses. Microvascular volume and overall perfusion were lower in neonates than fetuses in both muscle groups at baseline and with hyperaemia. Flux rate differed with muscle group, with myocardial flux being faster in neonates than fetuses, but skeletal muscle flux being slower. Oxygen delivery to skeletal muscle at baseline was lower in neonates than fetuses, but was not significantly different in myocardium. Flow reserve was not different between ages. Given the significant somatic growth, and the transition from hyperplastic to hypertrophic myocyte growth occurring in the perinatal period, we postulate that the primary driver of lower neonatal striated muscle perfusion is faster growth of myofibres than their associated capillary networks.
Collapse
Affiliation(s)
- Matthew W. Hagen
- Center for Developmental HealthOregon Health & Science UniversityPortlandORUSA
- Knight Cardiovascular InstituteOregon Health & Science UniversityPortlandORUSA
| | - Samantha Louey
- Center for Developmental HealthOregon Health & Science UniversityPortlandORUSA
- Knight Cardiovascular InstituteOregon Health & Science UniversityPortlandORUSA
| | - Sarah M. Alaniz
- Center for Developmental HealthOregon Health & Science UniversityPortlandORUSA
| | - Todd Belcik
- Knight Cardiovascular InstituteOregon Health & Science UniversityPortlandORUSA
| | - Matthew M. Muller
- Knight Cardiovascular InstituteOregon Health & Science UniversityPortlandORUSA
| | - Laura Brown
- Department of PediatricsUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Jonathan R. Lindner
- Knight Cardiovascular InstituteOregon Health & Science UniversityPortlandORUSA
- Division of Cardiovascular MedicineUniversity of Virginia Medical CenterCharlottesvilleVAUSA
| | - Sonnet S. Jonker
- Center for Developmental HealthOregon Health & Science UniversityPortlandORUSA
- Knight Cardiovascular InstituteOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
17
|
Kim SO, Albrecht ED, Pepe GJ. Estrogen promotes fetal skeletal muscle myofiber development important for insulin sensitivity in offspring. Endocrine 2022; 78:32-41. [PMID: 35715687 PMCID: PMC9474690 DOI: 10.1007/s12020-022-03108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/03/2022] [Indexed: 11/03/2022]
Abstract
Using our nonhuman primate baboon model, we showed that offspring born to mothers deprived of estrogen during the second half of gestation exhibited insulin resistance and a deficit in first phase insulin release. Although insulin resistance was not due to an impairment of fetal or offspring growth, nor to an alteration in adipose or hepatic sensitivity to insulin, skeletal muscle microvacularization critical for delivery of nutrients/insulin was significantly reduced in fetuses and offspring deprived of estrogen in utero. Skeletal muscle myofiber maturation occurs in utero and estrogen modulates myofiber growth in adults. Therefore, the current study determined whether fetal skeletal muscle development was altered in baboons in which estradiol levels were suppressed/restored during the second half of gestation by maternal treatment with letrozole ± estradiol benzoate. In estrogen-suppressed animals, fetal skeletal muscle fascicles were structurally less organized, smaller, and comprised of slow type I and fast type II fibers, the size, but not the number of which were smaller than in untreated baboons. Moreover, the proportion of non-muscle fiber tissue was greater and that of muscle fibers lower in estrogen-deprived fetuses. Thus, the maintenance of fetal body weight in estrogen-deprived animals was maintained at the expense of muscle fibers and likely reflected increased deposition of non-muscle proteins. Importantly, fetal skeletal muscle development, including fascicle organization, myofiber size and composition was normal in baboons treated with letrozole and estradiol benzoate. Collectively, these and our previous findings support our proposal that exposure of the fetus to estrogen is important for fetal skeletal muscle development and glucose homeostasis in adulthood.
Collapse
Affiliation(s)
- Soon Ok Kim
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Eugene D Albrecht
- Departments of Obstetrics/Gynecology/Reproductive Sciences and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gerald J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
18
|
Giakoumaki I, Pollock N, Aljuaid T, Sannicandro AJ, Alameddine M, Owen E, Myrtziou I, Ozanne SE, Kanakis I, Goljanek-Whysall K, Vasilaki A. Postnatal Protein Intake as a Determinant of Skeletal Muscle Structure and Function in Mice-A Pilot Study. Int J Mol Sci 2022; 23:8815. [PMID: 35955948 PMCID: PMC9369224 DOI: 10.3390/ijms23158815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/04/2022] Open
Abstract
Sarcopenia is characterised by an age-related decrease in the number of muscle fibres and additional weakening of the remaining fibres, resulting in a reduction in muscle mass and function. Many studies associate poor maternal nutrition during gestation and/or lactation with altered skeletal muscle homeostasis in the offspring and the development of sarcopenia. The aim of this study was to determine whether the musculoskeletal physiology in offspring born to mouse dams fed a low-protein diet during pregnancy was altered and whether any physiological changes could be modulated by the nutritional protein content in early postnatal stages. Thy1-YFP female mice were fed ad libitum on either a normal (20%) or a low-protein (5%) diet. Newborn pups were cross-fostered to different lactating dams (maintained on a 20% or 5% diet) to generate three groups analysed at weaning (21 days): Normal-to-Normal (NN), Normal-to-Low (NL) and Low-to-Normal (LN). Further offspring were maintained ad libitum on the same diet as during lactation until 12 weeks of age, creating another three groups (NNN, NLL, LNN). Mice on a low protein diet postnatally (NL, NLL) exhibited a significant reduction in body and muscle weight persisting up to 12 weeks, unlike mice on a low protein diet only prenatally (LN, LNN). Muscle fibre size was reduced in mice from the NL but not LN group, showing recovery at 12 weeks of age. Muscle force was reduced in NLL mice, concomitant with changes in the NMJ site and changes in atrophy-related and myosin genes. In addition, μCT scans of mouse tibiae at 12 weeks of age revealed changes in bone mass and morphology, resulting in a higher bone mass in the NLL group than the control NNN group. Finally, changes in the expression of miR-133 in the muscle of NLL mice suggest a regulatory role for this microRNA in muscle development in response to postnatal diet changes. Overall, this data shows that a low maternal protein diet and early postnatal life low-protein intake in mice can impact skeletal muscle physiology and function in early life while postnatal low protein diet favours bone integrity in adulthood.
Collapse
Affiliation(s)
- Ifigeneia Giakoumaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Natalie Pollock
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
- The MRC—Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool L7 8TX, UK
| | - Turki Aljuaid
- Department of Physiology, School of Medicine and REMEDI, CMNHS, NUI Galway, H91 TK33 Galway, Ireland
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Anthony J. Sannicandro
- Department of Physiology, School of Medicine and REMEDI, CMNHS, NUI Galway, H91 TK33 Galway, Ireland
| | - Moussira Alameddine
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Euan Owen
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Ioanna Myrtziou
- Chester Medical School, University of Chester, Bache Hall, Countess View, Chester CH2 1BR, UK
| | - Susan E. Ozanne
- University of Cambridge MRC Metabolic Diseases Unit and Metabolic Research Laboratories, Institute of Metabolic Science, Addenbrooke’s Hospital Cambridge, Cambridge CB2 0QQ, UK
| | - Ioannis Kanakis
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Chester Medical School, University of Chester, Bache Hall, Countess View, Chester CH2 1BR, UK
| | - Katarzyna Goljanek-Whysall
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
- The MRC—Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool L7 8TX, UK
- Department of Physiology, School of Medicine and REMEDI, CMNHS, NUI Galway, H91 TK33 Galway, Ireland
| | - Aphrodite Vasilaki
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool L7 8TX, UK
- The MRC—Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), University of Liverpool, Liverpool L7 8TX, UK
| |
Collapse
|
19
|
Posont RJ, Most MS, Cadaret CN, Marks-Nelson ES, Beede KA, Limesand SW, Schmidt TB, Petersen JL, Yates DT. Primary myoblasts from intrauterine growth-restricted fetal sheep exhibit intrinsic dysfunction of proliferation and differentiation that coincides with enrichment of inflammatory cytokine signaling pathways. J Anim Sci 2022; 100:6652330. [PMID: 35908792 PMCID: PMC9339287 DOI: 10.1093/jas/skac145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is linked to lifelong reductions in muscle mass due to intrinsic functional deficits in myoblasts, but the mechanisms underlying these deficits are not known. Our objective was to determine if the deficits were associated with changes in inflammatory and adrenergic regulation of IUGR myoblasts, as was previously observed in IUGR muscle. Primary myoblasts were isolated from IUGR fetal sheep produced by hyperthermia-induced placental insufficiency (PI-IUGR; n = 9) and their controls (n = 9) and from IUGR fetal sheep produced by maternofetal inflammation (MI-IUGR; n = 6) and their controls (n = 7). Proliferation rates were less (P < 0.05) for PI-IUGR myoblasts than their controls and were not affected by incubation with IL-6, TNF-α, norepinephrine, or insulin. IκB kinase inhibition reduced (P < 0.05) proliferation of control myoblasts modestly in basal media but substantially in TNF-α-added media and reduced (P < 0.05) PI-IUGR myoblast proliferation substantially in basal and TNF-α-added media. Proliferation was greater (P < 0.05) for MI-IUGR myoblasts than their controls and was not affected by incubation with TNF-α. Insulin increased (P < 0.05) proliferation in both MI-IUGR and control myoblasts. After 72-h differentiation, fewer (P < 0.05) PI-IUGR myoblasts were myogenin+ than controls in basal and IL-6 added media but not TNF-α-added media. Fewer (P < 0.05) PI-IUGR myoblasts were desmin+ than controls in basal media only. Incubation with norepinephrine did not affect myogenin+ or desmin+ percentages, but insulin increased (P < 0.05) both markers in control and PI-IUGR myoblasts. After 96-h differentiation, fewer (P < 0.05) MI-IUGR myoblasts were myogenin+ and desmin+ than controls regardless of media, although TNF-α reduced (P < 0.05) desmin+ myoblasts for both groups. Differentiated PI-IUGR myoblasts had greater (P < 0.05) TNFR1, ULK2, and TNF-α-stimulated TLR4 gene expression, and PI-IUGR semitendinosus muscle had greater (P < 0.05) TNFR1 and IL6 gene expression, greater (P < 0.05) c-Fos protein, and less (P < 0.05) IκBα protein. Differentiated MI-IUGR myoblasts had greater (P < 0.05) TNFR1 and IL6R gene expression, tended to have greater (P = 0.07) ULK2 gene expression, and had greater (P < 0.05) β-catenin protein and TNF-α-stimulated phosphorylation of NFκB. We conclude that these enriched components of TNF-α/TNFR1/NFκB and other inflammatory pathways in IUGR myoblasts contribute to their dysfunction and help explain impaired muscle growth in the IUGR fetus.
Collapse
Affiliation(s)
- Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Micah S Most
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Caitlin N Cadaret
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Eileen S Marks-Nelson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Kristin A Beede
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Sean W Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ 65721, USA
| | - Ty B Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
20
|
Reis NG, Assis AP, Lautherbach N, Gonçalves DA, Silveira WA, Morgan HJN, Valentim RR, Almeida LF, Heck LC, Zanon NM, Koike TE, Santos AR, Miyabara EH, Kettelhut IC, Navegantes LC. Maternal vitamin D deficiency affects the morphology and function of glycolytic muscle in adult offspring rats. J Cachexia Sarcopenia Muscle 2022; 13:2175-2187. [PMID: 35582969 PMCID: PMC9398225 DOI: 10.1002/jcsm.12986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Fetal stage is a critical developmental window for the skeletal muscle, but little information is available about the impact of maternal vitamin D (Vit. D) deficiency (VDD) on offspring lean mass development in the adult life of male and female animals. METHODS Female rats (Wistar Hannover) were fed either a control (1000 IU Vit. D3/kg) or a VDD diet (0 IU Vit. D3/kg) for 6 weeks and during gestation and lactation. At weaning, male and female offspring were randomly separated and received a standard diet up to 180 days old. RESULTS Vitamin D deficiency induced muscle atrophy in the male (M-VDD) offspring at the end of weaning, an effect that was reverted along the time. Following 180 days, fast-twitch skeletal muscles [extensor digitorum longus (EDL)] from the M-VDD showed a decrease (20%; P < 0.05) in the number of total fibres but an increase in the cross-sectional area of IIB (17%; P < 0.05), IIA (19%; P < 0.05) and IIAX (21%; P < 0.05) fibres. The fibre hypertrophy was associated with the higher protein levels of MyoD (73%; P < 0.05) and myogenin (55% %; P < 0.05) and in the number of satellite cells (128.8 ± 14 vs. 91 ± 7.6 nuclei Pax7 + in the M-CTRL; P < 0.05). M-VDD increased time to fatigue during ex vivo contractions of EDL muscles and showed an increase in the phosphorylation levels of IGF-1/insulin receptor and their downstream targets related to anabolic processes and myogenic activation, including Ser 473 Akt and Ser 21/9 GSK-3β. In such muscles, maternal VDD induced a compensatory increase in the content of calcitriol (two-fold; P < 0.05) and CYP27B1 (58%; P < 0.05), a metabolizing enzyme that converts calcidiol to calcitriol. Interestingly, most morphological and biochemical changes found in EDL were not observed in slow-twitch skeletal muscles (soleus) from the M-VDD group as well as in both EDL and soleus muscles from the female offspring. CONCLUSIONS These data show that maternal VDD selectively affects the development of type-II muscle fibres in male offspring rats but not in female offspring rats and suggest that the enhancement of their size and fatigue resistance in fast-twitch skeletal muscle (EDL) is probably due to a compensatory increase in the muscle content of Vit. D in the adult age.
Collapse
Affiliation(s)
- Natany G Reis
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana P Assis
- Department of Biochemistry & Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Natália Lautherbach
- Department of Biochemistry & Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Dawit A Gonçalves
- Exercise Physiology Laboratory, School of Physical Education, Physiotherapy and Occupational Therapy, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Wilian A Silveira
- Institute of Biological and Natural Science, Federal University of Triângulo Mineiro, Uberaba, MG, Brazil
| | - Henrique J N Morgan
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafael R Valentim
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas F Almeida
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lilian C Heck
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Neusa M Zanon
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Tatiana E Koike
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, SP, Brazil
| | - Audrei R Santos
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, SP, Brazil
| | - Elen H Miyabara
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, SP, Brazil
| | - Isis C Kettelhut
- Department of Biochemistry & Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz C Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
21
|
Association of the triglyceride-glucose index with weight-adjusted appendicular lean mass in Chinese adolescents aged 12-18 years old. Sci Rep 2022; 12:11160. [PMID: 35778446 PMCID: PMC9249753 DOI: 10.1038/s41598-022-15012-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
There is no study exploring the association between triglyceride-glucose (TyG) index and skeletal muscle mass in Chinese adolescents. Therefore, the objective of this study is to explore the association between TyG index and appendicular lean mass (ALM) in Chinese adolescents. In this study, 1336 adolescents (805 boys, 60.25%) aged 12-18 years in China were randomly selected through a stratified cluster sampling. According to the tertiles of TyG index, we separated all participants into three groups, and LM was measured by Bioelectrical Impedance Analysis. The TyG index was negatively related to ALM/weight in Chinese adolescents whether stratified by gender (boys: β = - 0.293; girls: β = - 0.195; all P < 0.001). After adjusting for age and BMI, a significant correlation between the TyG index and ALM/weight was observed only in boys (β = - 0.169, P = 0.001). The highest TyG index tertile was significantly associated with low ALM/weight after adjusting for all covariates in the full sample (OR = 3.04, 95% CI 1.12-8.26, P = 0.029) and boys (OR = 4.68, 95% CI 1.22-17.95, P = 0.025) only in overweight/obese group. Our findings suggested elevated levels of TyG index may be a risk factor of low ALM/weight in Chinese adolescents, especially in boys.
Collapse
|
22
|
Dybdahl M, Dalgård C, Glintborg D, Andersen MS, Christesen HT. Maternal Testosterone Concentrations in Third Trimester and Offspring Handgrip Strength at 5 Years: Odense Child Cohort. J Clin Endocrinol Metab 2022; 107:e3029-e3038. [PMID: 35276008 PMCID: PMC9202699 DOI: 10.1210/clinem/dgac143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Maternal testosterone in pregnancy may have conditioning effects on offspring muscle strength. PURPOSE To investigate possible associations between maternal testosterone concentrations in third trimester and offspring handgrip strength (HGS) at 5 years. METHODS In the prospective, population-based Odense Child Cohort, total testosterone (TT) at gestational week 27-28 and 5-year HGS were measured in 1017 mother-child pairs. TT was measured by liquid chromatography-tandem mass spectrometry and free testosterone (FT) was calculated from TT and sex hormone-binding globulin (SHBG). Multivariable regression analyses were performed with HGS < 10th percentile as cutoff for low HGS. RESULTS Third-trimester FT concentration was 0.004 (0.002-0.007) nmol/L, geometric mean (mean - SD; mean + SD). The mean (SD) 5-year HGS was 8.7 (1.8) kg in boys and 8.1 (1.7) kg in girls (P < 0.001). Higher FT concentrations were associated with lower HGS (β = -0.186, P = 0.048), after adjustment for maternal age, parity, offspring sex, and 5-year height and weight. FT > 0.004 nmol/L was associated with higher risk of 5-year HGS < 10th percentile with odds ratios (95% CI) of 1.58 (1.01, 2.47; P = 0.047; n = 1,017) and 1.69 (1.05, 2.74; P = 0.032) after further adjustment for children's organized sports in subgroup analysis (n = 848). Lower HGS in relation to higher FT concentrations was found in all linear models but was not always statistically significant. HGS was not associated with maternal TT and SHBG levels. CONCLUSION Third trimester FT was inversely associated with offspring muscle strength assessed by HGS at 5 years of age, which may suggest a negative effect of maternal FT on offspring muscle strength.
Collapse
Affiliation(s)
- Malene Dybdahl
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense C, Denmark
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense C, Denmark
| | - Christine Dalgård
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense C, Denmark
| | - Dorte Glintborg
- Department of Endocrinology, Odense University Hospital, University of Southern Denmark, Odense C, Denmark
| | - Marianne Skovsager Andersen
- Department of Endocrinology, Odense University Hospital, University of Southern Denmark, Odense C, Denmark
- Odense Patient Data Exploratory Network (OPEN), University of Southern Denmark, Odense C, Denmark
| | - Henrik Thybo Christesen
- Correspondence: Henrik Thybo Christesen, MD, PhD, Hans Christian Andersen Children’s Hospital, Odense University Hospital, Kløvervænget 23, 5000 Odense C, Denmark.
| |
Collapse
|
23
|
Córdoba-Rodríguez DP, Iglesia I, Gómez-Bruton A, Álvarez Sauras ML, Miguel-Berges ML, Flores-Barrantes P, Casajús JA, Moreno LA, Rodríguez G. Early Life Factors Associated with Lean Body Mass in Spanish Children: CALINA Study. CHILDREN 2022; 9:children9050585. [PMID: 35626762 PMCID: PMC9139173 DOI: 10.3390/children9050585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022]
Abstract
Early life is critical for the programming of body composition. The literature links perinatal factors with fat mass development and its future effects (e.g., obesity); however, little evidence exists between early life factors and lean body mass (LBM). This study follows up on a cohort of 416 Spanish children at ages six to eight, previously evaluated at birth in the CALINA study. Here, we studied the association between early life factors, LBM, and limb strength. Parental origin/nutritional status, maternal smoking during pregnancy, gestational diabetes/weight gain/age, birth weight (BW), early feeding, and rapid weight gain (RWG) were collected from primary care records. Bioimpedance analysis, dual-energy X-ray absorptiometry, peripheral quantitative computed tomography, and a handgrip/standing long jump test were used to assess fat-free mass index (FFMI), total lean soft tissue mass index (TLSTMI), muscle cross-sectional area index (MCSAI), and limb strength, respectively. In girls, maternal smoking, gestational age, and BW were positively associated with FFM/LSTM. In boys, the parents’ BMI, BW, and RWG were positively associated with FFM/LSTM. BW was associated with handgrip strength in both. Maternal BMI in girls and RWG in boys were negatively associated with the standing long jump. Early life programming plays a key role in determining LBM in children.
Collapse
Affiliation(s)
- Diana Paola Córdoba-Rodríguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Iris Iglesia
- Growth, Exercise, Nutrition and Development (GENUD) Research Group, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.G.-B.); (M.L.M.-B.); (P.F.-B.); (J.A.C.); (L.A.M.); (G.R.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Red de Salud Materno Infantil y del Desarrollo (SAMID), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin Network (RICORS), RD21/0012/0012, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-876843756
| | - Alejandro Gómez-Bruton
- Growth, Exercise, Nutrition and Development (GENUD) Research Group, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.G.-B.); (M.L.M.-B.); (P.F.-B.); (J.A.C.); (L.A.M.); (G.R.)
- Departamento de Fisiatría y Enfermería, Facultad de Ciencias de la Salud y del Deporte (FCSD), Universidad de Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III Madrid, 28029 Madrid, Spain
| | | | - María L. Miguel-Berges
- Growth, Exercise, Nutrition and Development (GENUD) Research Group, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.G.-B.); (M.L.M.-B.); (P.F.-B.); (J.A.C.); (L.A.M.); (G.R.)
| | - Paloma Flores-Barrantes
- Growth, Exercise, Nutrition and Development (GENUD) Research Group, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.G.-B.); (M.L.M.-B.); (P.F.-B.); (J.A.C.); (L.A.M.); (G.R.)
| | - José Antonio Casajús
- Growth, Exercise, Nutrition and Development (GENUD) Research Group, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.G.-B.); (M.L.M.-B.); (P.F.-B.); (J.A.C.); (L.A.M.); (G.R.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Departamento de Fisiatría y Enfermería, Facultad de Ciencias de la Salud y del Deporte (FCSD), Universidad de Zaragoza, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III Madrid, 28029 Madrid, Spain
| | - Luis A. Moreno
- Growth, Exercise, Nutrition and Development (GENUD) Research Group, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.G.-B.); (M.L.M.-B.); (P.F.-B.); (J.A.C.); (L.A.M.); (G.R.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III Madrid, 28029 Madrid, Spain
| | - Gerardo Rodríguez
- Growth, Exercise, Nutrition and Development (GENUD) Research Group, Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50009 Zaragoza, Spain; (A.G.-B.); (M.L.M.-B.); (P.F.-B.); (J.A.C.); (L.A.M.); (G.R.)
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Red de Salud Materno Infantil y del Desarrollo (SAMID), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Área de Pediatría, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
24
|
Zeng C, Shi H, Kirkpatrick LT, Ricome A, Park S, Scheffler JM, Hannon KM, Grant AL, Gerrard DE. Driving an Oxidative Phenotype Protects Myh4 Null Mice From Myofiber Loss During Postnatal Growth. Front Physiol 2022; 12:785151. [PMID: 35283757 PMCID: PMC8908108 DOI: 10.3389/fphys.2021.785151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/28/2021] [Indexed: 12/17/2022] Open
Abstract
Postnatal muscle growth is accompanied by increases in fast fiber type compositions and hypertrophy, raising the possibility that a slow to fast transition may be partially requisite for increases in muscle mass. To test this hypothesis, we ablated the Myh4 gene, and thus myosin heavy chain IIB protein and corresponding fibers in mice, and examined its consequences on postnatal muscle growth. Wild-type and Myh4–/– mice had the same number of muscle fibers at 2 weeks postnatal. However, the gastrocnemius muscle lost up to 50% of its fibers between 2 and 4 weeks of age, though stabilizing thereafter. To compensate for the lack of functional IIB fibers, type I, IIA, and IIX(D) fibers increased in prevalence and size. To address whether slowing the slow-to-fast fiber transition process would rescue fiber loss in Myh4–/– mice, we stimulated the oxidative program in muscle of Myh4–/– mice either by overexpression of PGC-1α, a well-established model for fast-to-slow fiber transition, or by feeding mice AICAR, a potent AMP kinase agonist. Forcing an oxidative metabolism in muscle only partially protected the gastrocnemius muscle from loss of fibers in Myh4–/– mice. To explore whether traditional means of stimulating muscle hypertrophy could overcome the muscling deficits in postnatal Myh4–/– mice, myostatin null mice were bred with Myh4–/– mice, or Myh4–/– mice were fed the growth promotant clenbuterol. Interestingly, both genetic and pharmacological stimulations had little impact on mice lacking a functional Myh4 gene suggesting that the existing muscle fibers have maximized its capacity to enlarge to compensate for the lack of its neighboring IIB fibers. Curiously, however, cell signaling events responsible for IIB fiber formation remained intact in the tissue. These findings further show disrupting the slow-to-fast transition of muscle fibers compromises muscle growth postnatally and suggest that type IIB myosin heavy chain expression and its corresponding fiber type may be necessary for fiber maintenance, transition and hypertrophy in mice. The fact that forcing muscle metabolism toward a more oxidative phenotype can partially compensates for the lack of an intact Myh4 gene provides new avenues for attenuating the loss of fast-twitch fibers in aged or diseased muscles.
Collapse
Affiliation(s)
- Caiyun Zeng
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Hao Shi
- Meat Science and Muscle Biology Research Group, Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, United States
| | - Laila T. Kirkpatrick
- Meat Science and Muscle Biology Research Group, Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, United States
| | - Aymeric Ricome
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Sungkwon Park
- Department of Animal Sciences, Purdue University, West Lafayette, IN, United States
| | - Jason M. Scheffler
- Meat Science and Muscle Biology Research Group, Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, United States
| | - Kevin M. Hannon
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States
| | - Alan L. Grant
- Meat Science and Muscle Biology Research Group, Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, United States
| | - David E. Gerrard
- Meat Science and Muscle Biology Research Group, Virginia Tech, Department of Animal and Poultry Sciences, Blacksburg, VA, United States
- *Correspondence: David E. Gerrard,
| |
Collapse
|
25
|
Mulligan MK, Kleiman JE, Caldemeyer AC, Harding JCS, Pasternak JA. Porcine reproductive and respiratory virus 2 infection of the fetus results in multi-organ cell cycle suppression. Vet Res 2022; 53:13. [PMID: 35189966 PMCID: PMC8860275 DOI: 10.1186/s13567-022-01030-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/02/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractPorcine reproductive and respiratory syndrome virus (PRRSV) infection during late gestation negatively affects fetal development. The objective of this study was to identify the fetal organs most severely impacted following infection, and evaluate the relationship between this response and fetal phenotypes. RNA was extracted from fetal heart, liver, lung, thymus, kidney, spleen, and loin muscle, collected following late gestation viral challenge of pregnant gilts. Initially, gene expression for three cell cycle promoters (CDK1, CDK2, CDK4) and one inhibitor (CDKN1A) were evaluated in biologically extreme phenotypic subsets including gestational age-matched controls (CON), uninfected (UNIF), high-viral load viable (HV-VIA), and high-viral load meconium-stained (HV-MEC) fetuses. There were no differences between CON and UNIF groups for any gene, indicating no impact of maternal infection alone. Relative to CON, high-viral load (HV-VIA, HV-MEC) fetuses showed significant downregulation of at least one CDK gene in all tissues except liver, while CDKN1A was upregulated in all tissues except muscle, with the heart and kidney most severely impacted. Subsequent evaluation of additional genes known to be upregulated following activation of P53 or TGFb/SMAD signaling cascades indicated neither pathway was responsible for the observed increase in CDKN1A. Finally, analysis of heart and kidney from a larger unselected population of infected fetuses from the same animal study showed that serum thyroxin and viral load were highly correlated with the expression of CDKN1A in both tissues. Collectively these results demonstrate the widespread suppression in cell division across all tissues in PRRSV infected fetuses and indicate a non-canonical regulatory mechanism.
Collapse
|
26
|
Risha MA, Ali A, Siengdee P, Trakooljul N, Dannenberger D, Wimmers K, Ponsuksili S. Insights into molecular pathways and fatty acid membrane composition during the temperature stress response in the murine C2C12 cell model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151019. [PMID: 34662617 DOI: 10.1016/j.scitotenv.2021.151019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Daily and seasonal temperature fluctuations are inevitable due to climate change, which highlights the importance of studying the detrimental effects of temperature fluctuations on the health, productivity, and product quality of farm animals. Muscle membrane composition and the molecular signals are vital for muscle cell differentiation and muscle growth, but their response to temperature stress is not well characterized. Temperature changes can lead to modification of membrane components of the cell, which may affect its surroundings and intracellular signaling pathways. Using C2C12 myoblast cells as a model of skeletal muscle development, this study was designed to investigate the effects of high temperature (39 °C and 41 °C) and low temperature (35 °C) on molecular pathways in the cells as well as the cell membrane fatty acid composition. Our results show that several genes were differentially expressed in C2C12 cells cultured under heat or cold stress, and these genes were enriched important KEGG pathways including PI3K-Akt signaling pathway, lysosome and HIF- signaling pathway, Wnt signaling pathway and AMPK signaling pathway. Our analysis further reveals that several membrane transporters and genes involved in lipid metabolism and fatty acid elongation were also differentially expressed in C2C12 cells cultured under high or low temperature. Additionally, temperature stress shifts the fatty acid composition in the cell membranes, including the proportion of saturated, monounsaturated and polyunsaturated fatty acids. This study revealed an interference between fatty acid composition in the membranes and changing molecular pathways including lipid metabolism and fatty acids elongation mediated under thermal stress. These findings will reinforce a better understanding of the adaptive mechanisms in skeletal muscle under temperature stress.
Collapse
Affiliation(s)
- Marua Abu Risha
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Asghar Ali
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Puntita Siengdee
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Genomics Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Dirk Dannenberger
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Muscle Biology and Growth, Lipid metabolism and muscular adaptation workgroup, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Genomics Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany; Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Functional Genome Analysis Research Unit, Wilhelm-Stahl-Allee 2, D-18196 Dummerstorf, Germany.
| |
Collapse
|
27
|
Cortes-Araya Y, Stenhouse C, Salavati M, Dan-Jumbo SO, Ho W, Ashworth CJ, Clark E, Esteves CL, Donadeu FX. KLB dysregulation mediates disrupted muscle development in intrauterine growth restriction. J Physiol 2022; 600:1771-1790. [PMID: 35081669 PMCID: PMC9303651 DOI: 10.1113/jp281647] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract Intrauterine growth restriction (IUGR) is a leading cause of neonatal morbidity and mortality in humans and domestic animals. Developmental adaptations of skeletal muscle in IUGR lead to increased risk of premature muscle loss and metabolic disease in later life. Here, we identified β‐Klotho (KLB), a fibroblast growth factor 21 (FGF21) co‐receptor, as a novel regulator of muscle development in IUGR. Using the pig as a naturally‐occurring disease model, we performed transcriptome‐wide profiling of fetal muscle (day 90 of pregnancy) from IUGR and normal‐weight (NW) littermates. We found that, alongside large‐scale transcriptional changes comprising multiple developmental, tissue injury and metabolic gene pathways, KLB was increased in IUGR muscle. Moreover, FGF21 concentrations were increased in plasma in IUGR fetuses. Using cultures of fetal muscle progenitor cells (MPCs), we showed reduced myogenic capacity of IUGR compared to NW muscle in vitro, as evidenced by differences in fusion indices and myogenic transcript levels, as well as mechanistic target of rapamycin (mTOR) activity. Moreover, transfection of MPCs with KLB small interfering RNA promoted myogenesis and mTOR activation, whereas treatment with FGF21 had opposite and dose‐dependent effects in porcine and also in human fetal MPCs. In conclusion, our results identify KLB as a novel and potentially critical mediator of impaired muscle development in IUGR, through conserved mechanisms in pigs and humans. Our data shed new light onto the pathogenesis of IUGR, a significant cause of lifelong ill‐health in humans and animals. Key points Intrauterine growth restriction (IUGR) is associated with large‐scale transcriptional changes in developmental, tissue injury and metabolic gene pathways in fetal skeletal muscle. Levels of the fibroblast growth factor 21 (FGF21) co‐receptor, β‐Klotho (KLB) are increased in IUGR fetal muscle, and FGF21 concentrations are increased in IUGR fetal plasma. KLB mediates a reduction in muscle development through inhibition of mechanistic target of rapamycin signalling. These effects of KLB on muscle cells are conserved in pig and human, suggesting a vital role of this protein in the regulation of muscle development and function in mammals.
Collapse
Affiliation(s)
- Yennifer Cortes-Araya
- Division of Functional Genetics and Development, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Claire Stenhouse
- Division of Functional Genetics and Development, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.,Present address: Physiology of Reproduction, Department of Animal Science, Texas A&M University, 440 Kleberg Center, College Station, Texas, 77843-2471, USA
| | - Mazdak Salavati
- Division of Functional Genetics and Development, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Susan O Dan-Jumbo
- Division of Functional Genetics and Development, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - William Ho
- Division of Functional Genetics and Development, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Cheryl J Ashworth
- Division of Functional Genetics and Development, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Emily Clark
- Division of Functional Genetics and Development, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Cristina L Esteves
- Division of Functional Genetics and Development, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - F Xavier Donadeu
- Division of Functional Genetics and Development, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
28
|
Córdoba-Rodríguez DP, Iglesia I, Gomez-Bruton A, Rodríguez G, Casajús JA, Morales-Devia H, Moreno LA. Fat-free/lean body mass in children with insulin resistance or metabolic syndrome: a systematic review and meta-analysis. BMC Pediatr 2022; 22:58. [PMID: 35065638 PMCID: PMC8783460 DOI: 10.1186/s12887-021-03041-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lean / Fat Free Body Mass (LBM) is metabolically involved in active processes such as resting energy expenditure, glucose uptake, and myokine secretion. Nonetheless, its association with insulin sensitivity / resistance / glucose tolerance and metabolic syndrome remains unclear in childhood. METHODS The current investigation aimed to examine the differences in fat-free mass /lean body mass according to the presence of insulin sensitivity/insulin resistance/glucose tolerance/metabolic syndrome in children. A systematic search was carried out in Medline/PubMed, Embase, Scopus, Web of Science, and SciELO, covering the period from each database's respective start to 21 June 2021. Two researchers evaluated 7111 studies according to the inclusion criteria: original human studies, written in English or Spanish, evaluating fat-free mass/lean body mass in children and adolescents including both with and without insulin sensitivity/insulin resistance /glucose tolerance and metabolic syndrome and reported the differences between them in terms of fat free mass/lean body mass. The results of the studies were combined with insulin sensitivity, insulin, resistance, glucose tolerance and metabolic syndrome. The standardized mean difference (SMD) in each study was calculated and combined using the random-effects model. Heterogeneity between studies was tested using the index of heterogeneity (I2), leave-one-out sensitivity analyses were performed, and publication bias was assessed using the Egger and Begg tests. RESULTS Finally, 15 studies which compared groups defined according to different glucose homeostasis criteria or metabolic syndrome out of 103 eligible studies were included in this systematic review and 12 studies in the meta-analysis. Meta-analysis showed lower fat-free mass/lean body mass percentage in participants with insulin resistance/glucose tolerance/metabolic syndrome (SMD -0.47; 95% CI, - 0.62 to - 0.32) while in mass units (kg), higher values were found in the same group (SMD, 1.01; 95% CI, 0.43 to 1.60). CONCLUSIONS Our results identified lower values of fat-free mass/lean body mass (%) in children and adolescents with insulin resistance/glucose tolerance/metabolic syndrome and higher values of fat-free mass/lean body mass when these are expressed in kg. The evidence of the impact of lean mass on children's glucose homeostasis or metabolic syndrome is limited, so future studies research should focus on explaining the effect of fat-free mass/lean body mass on different metabolic outcomes. Moreover, it may be interesting to evaluate the quality (muscle density) or functional (muscle strength) outcomes in addition to both absolute (kg) and relative (%) values in future studies. The systematic review was prospectively registered at PROSPERO (registration number CRD42019124734; available at: http://www.crd.york.ac.uk/prospero [accessed: 05 April 2019]).
Collapse
Affiliation(s)
| | - Iris Iglesia
- Growth, Exercise, Nutrition and Development (GENUD) Research Group, Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Red de Salud Materno Infantil y del Desarrollo (SAMID), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro Gomez-Bruton
- Growth, Exercise, Nutrition and Development (GENUD) Research Group, Universidad de Zaragoza, Zaragoza, Spain
- Faculty of Health and Sport Sciences (FCSD), Department of Physiatry and Nursing, University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Gerardo Rodríguez
- Growth, Exercise, Nutrition and Development (GENUD) Research Group, Universidad de Zaragoza, Zaragoza, Spain
- Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Red de Salud Materno Infantil y del Desarrollo (SAMID), Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Pediatría, Universidad de Zaragoza, Zaragoza, Spain
| | - José Antonio Casajús
- Growth, Exercise, Nutrition and Development (GENUD) Research Group, Universidad de Zaragoza, Zaragoza, Spain
- Faculty of Health and Sport Sciences (FCSD), Department of Physiatry and Nursing, University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Hernan Morales-Devia
- Biblioteca General Alfonso Borrero Cabal, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Luis A. Moreno
- Growth, Exercise, Nutrition and Development (GENUD) Research Group, Universidad de Zaragoza, Zaragoza, Spain
- Red de Salud Materno Infantil y del Desarrollo (SAMID), Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
29
|
Cadaret CN, Posont RJ, Swanson RM, Beard JK, Gibbs RL, Barnes TL, Marks-Nelson ES, Petersen JL, Yates DT. Intermittent maternofetal oxygenation during late gestation improved birthweight, neonatal growth, body symmetry, and muscle metabolism in intrauterine growth-restricted lambs. J Anim Sci 2022; 100:skab358. [PMID: 34865027 PMCID: PMC8722764 DOI: 10.1093/jas/skab358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 02/05/2023] Open
Abstract
In humans and animals, intrauterine growth restriction (IUGR) results from fetal programming responses to poor intrauterine conditions. Chronic fetal hypoxemia elevates circulating catecholamines, which reduces skeletal muscle β2 adrenoceptor content and contributes to growth and metabolic pathologies in IUGR-born offspring. Our objective was to determine whether intermittent maternofetal oxygenation during late gestation would improve neonatal growth and glucose metabolism in IUGR-born lambs. Pregnant ewes were housed at 40 °C from the 40th to 95th day of gestational age (dGA) to produce IUGR-born lambs (n = 9). A second group of IUGR-born lambs received prenatal O2 supplementation via maternal O2 insufflation (100% humidified O2, 10 L/min) for 8 h/d from dGA 130 to parturition (IUGR+O2, n = 10). Control lambs (n = 15) were from pair-fed thermoneutral ewes. All lambs were weaned at birth, hand-reared, and fitted with hindlimb catheters at day 25. Glucose-stimulated insulin secretion (GSIS) and hindlimb hyperinsulinemic-euglycemic clamp (HEC) studies were performed at days 28 and 29, respectively. At day 30, lambs were euthanized and ex vivo HEC studies were performed on isolated muscle. Without maternofetal oxygenation, IUGR lambs were 40% lighter (P < 0.05) at birth and maintained slower (P < 0.05) growth rates throughout the neonatal period compared with controls. At 30 d of age, IUGR lambs had lighter (P < 0.05) hindlimbs and flexor digitorum superficialis (FDS) muscles. IUGR+O2 lambs exhibited improved (P < 0.05) birthweight, neonatal growth, hindlimb mass, and FDS mass compared with IUGR lambs. Hindlimb insulin-stimulated glucose utilization and oxidation rates were reduced (P < 0.05) in IUGR but not IUGR+O2 lambs. Ex vivo glucose oxidation rates were less (P < 0.05) in muscle from IUGR but not IUGR+O2 lambs. Surprisingly, β2 adrenoceptor content and insulin responsiveness were reduced (P < 0.05) in muscle from IUGR and IUGR+O2 lambs compared with controls. In addition, GSIS was reduced (P < 0.05) in IUGR lambs and only modestly improved (P < 0.05) in IUGR+O2. Insufflation of O2 also increased (P < 0.05) acidosis and hypercapnia in dams, perhaps due to the use of 100% O2 rather than a gas mixture with a lesser O2 percentage. Nevertheless, these findings show that intermittent maternofetal oxygenation during late gestation improved postnatal growth and metabolic outcomes in IUGR lambs without improving muscle β2 adrenoceptor content.
Collapse
Affiliation(s)
- Caitlin N Cadaret
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Robert J Posont
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Rebecca M Swanson
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Joslyn K Beard
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Rachel L Gibbs
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Taylor L Barnes
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583
| | | | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Dustin T Yates
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68583
| |
Collapse
|
30
|
Rudar M, Naberhuis JK, Suryawan A, Nguyen HV, Stoll B, Style CC, Verla MA, Olutoye OO, Burrin DG, Fiorotto ML, Davis TA. Intermittent bolus feeding does not enhance protein synthesis, myonuclear accretion, or lean growth more than continuous feeding in a premature piglet model. Am J Physiol Endocrinol Metab 2021; 321:E737-E752. [PMID: 34719946 PMCID: PMC8714968 DOI: 10.1152/ajpendo.00236.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Optimizing enteral nutrition for premature infants may help mitigate extrauterine growth restriction and adverse chronic health outcomes. Previously, we showed in neonatal pigs born at term that lean growth is enhanced by intermittent bolus compared with continuous feeding. The objective was to determine if prematurity impacts how body composition, muscle protein synthesis, and myonuclear accretion respond to feeding modality. Following preterm delivery, pigs were fed equivalent amounts of formula delivered either as intermittent boluses (INT; n = 30) or continuously (CONT; n = 14) for 21 days. Body composition was measured by dual-energy X-ray absorptiometry (DXA) and muscle growth was assessed by morphometry, myonuclear accretion, and satellite cell abundance. Tissue anabolic signaling and fractional protein synthesis rates were determined in INT pigs in postabsorptive (INT-PA) and postprandial (INT-PP) states and in CONT pigs. Body weight gain and composition did not differ between INT and CONT pigs. Longissimus dorsi (LD) protein synthesis was 34% greater in INT-PP than INT-PA pigs (P < 0.05) but was not different between INT-PP and CONT pigs. Phosphorylation of 4EBP1 and S6K1 and eIF4E·eIF4G abundance in LD paralleled changes in LD protein synthesis. Satellite cell abundance, myonuclear accretion, and fiber cross-sectional area in LD did not differ between groups. These results suggest that, unlike pigs born at term, intermittent bolus feeding does not enhance lean growth more than continuous feeding in pigs born preterm. Premature birth attenuates the capacity of skeletal muscle to respond to cyclical surges in insulin and amino acids with intermittent feeding in early postnatal life.NEW & NOTEWORTHY Extrauterine growth restriction often occurs in premature infants but may be mitigated by optimizing enteral feeding strategies. We show that intermittent bolus feeding does not increase skeletal muscle protein synthesis, myonuclear accretion, or lean growth more than continuous feeding in preterm pigs. This attenuated anabolic response of muscle to intermittent bolus feeding, compared with previous observations in pigs born at term, may contribute to deficits in lean mass that many premature infants exhibit into adulthood.
Collapse
Affiliation(s)
- Marko Rudar
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Department of Animal Sciences, Auburn University, Auburn, Alabama
| | - Jane K Naberhuis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Agus Suryawan
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Hanh V Nguyen
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Barbara Stoll
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Candace C Style
- The Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio
| | - Mariatu A Verla
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Oluyinka O Olutoye
- The Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio
| | - Douglas G Burrin
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marta L Fiorotto
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
31
|
Gibbs RL, Yates DT. The Price of Surviving on Adrenaline: Developmental Programming Responses to Chronic Fetal Hypercatecholaminemia Contribute to Poor Muscle Growth Capacity and Metabolic Dysfunction in IUGR-Born Offspring. FRONTIERS IN ANIMAL SCIENCE 2021; 2:769334. [PMID: 34966907 PMCID: PMC8713512 DOI: 10.3389/fanim.2021.769334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Maternofetal stress induces fetal programming that restricts skeletal muscle growth capacity and metabolic function, resulting in intrauterine growth restriction (IUGR) of the fetus. This thrifty phenotype aids fetal survival but also yields reduced muscle mass and metabolic dysfunction after birth. Consequently, IUGR-born individuals are at greater lifelong risk for metabolic disorders that reduce quality of life. In livestock, IUGR-born animals exhibit poor growth efficiency and body composition, making these animals more costly and less valuable. Specifically, IUGR-associated programming causes a greater propensity for fat deposition and a reduced capacity for muscle accretion. This, combined with metabolic inefficiency, means that these animals produce less lean meat from greater feed input, require more time on feed to reach market weight, and produce carcasses that are of less quality. Despite the health and economic implications of IUGR pathologies in humans and food animals, knowledge regarding their specific underlying mechanisms is lacking. However, recent data indicate that adaptive programing of adrenergic sensitivity in multiple tissues is a contributing factor in a number of IUGR pathologies including reduced muscle mass, peripheral insulin resistance, and impaired glucose metabolism. This review highlights the findings that support the role for adrenergic programming and how it relates to the lifelong consequences of IUGR, as well as how dysfunctional adrenergic signaling pathways might be effective targets for improving outcomes in IUGR-born offspring.
Collapse
Affiliation(s)
- Rachel L. Gibbs
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Dustin T. Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
32
|
Hicks ZM, Beer HN, Herrera NJ, Gibbs RL, Lacey TA, Grijalva PC, Most MA, Yates DT. Hindlimb tissue composition shifts between the fetal and juvenile stages in the lamb. Transl Anim Sci 2021. [DOI: 10.1093/tas/txab164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zena M Hicks
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| | - Haley N Beer
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| | - Nicolas J Herrera
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| | - Rachel L Gibbs
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| | - Taylor A Lacey
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| | - Pablo C Grijalva
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| | - Micah A Most
- Department of Animal Science, University of Nebraska – Lincoln, NE 68583, USA
| | | |
Collapse
|
33
|
Hicks ZM, Yates DT. Going Up Inflame: Reviewing the Underexplored Role of Inflammatory Programming in Stress-Induced Intrauterine Growth Restricted Livestock. FRONTIERS IN ANIMAL SCIENCE 2021; 2. [PMID: 34825243 PMCID: PMC8612632 DOI: 10.3389/fanim.2021.761421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The impact of intrauterine growth restriction (IUGR) on health in humans is well-recognized. It is the second leading cause of perinatal mortality worldwide, and it is associated with deficits in metabolism and muscle growth that increase lifelong risk for hypertension, obesity, hyperlipidemia, and type 2 diabetes. Comparatively, the barrier that IUGR imposes on livestock production is less recognized by the industry. Meat animals born with low birthweight due to IUGR are beset with greater early death loss, inefficient growth, and reduced carcass merit. These animals exhibit poor feed-to-gain ratios, less lean mass, and greater fat deposition, which increase production costs and decrease value. Ultimately, this reduces the amount of meat produced by each animal and threatens the economic sustainability of livestock industries. Intrauterine growth restriction is most commonly the result of fetal programming responses to placental insufficiency, but the exact mechanisms by which this occurs are not well-understood. In uncompromised pregnancies, inflammatory cytokines are produced at modest rates by placental and fetal tissues and play an important role in fetal development. However, unfavorable intrauterine conditions can cause cytokine activity to be excessive during critical windows of fetal development. Our recent evidence indicates that this impacts developmental programming of muscle growth and metabolism and contributes to the IUGR phenotype. In this review, we outline the role of inflammatory cytokine activity in the development of normal and IUGR phenotypes. We also highlight the contributions of sheep and other animal models in identifying mechanisms for IUGR pathologies.
Collapse
Affiliation(s)
- Zena M Hicks
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Dustin T Yates
- Stress Physiology Laboratory, Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
34
|
Cui J, Song L, Wang R, Hu S, Yang Z, Zhang Z, Sun B, Cui W. Maternal Metformin Treatment during Gestation and Lactation Improves Skeletal Muscle Development in Offspring of Rat Dams Fed High-Fat Diet. Nutrients 2021; 13:nu13103417. [PMID: 34684418 PMCID: PMC8538935 DOI: 10.3390/nu13103417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/04/2022] Open
Abstract
Maternal high-fat (HF) diet is associated with offspring metabolic disorder. This study intended to determine whether maternal metformin (MT) administration during gestation and lactation prevents the effect of maternal HF diet on offspring’s skeletal muscle (SM) development and metabolism. Pregnant Sprague-Dawley rats were divided into four groups according to maternal diet {CHOW (11.8% fat) or HF (60% fat)} and MT administration {control (CT) or MT (300 mg/kg/day)} during gestation and lactation: CH-CT, CH-MT, HF-CT, HF-MT. All offspring were weaned on CHOW diet. SM was collected at weaning and 18 weeks in offspring. Maternal metformin reduced plasma insulin, leptin, triglyceride and cholesterol levels in male and female offspring. Maternal metformin increased MyoD expression but decreased Ppargc1a, Drp1 and Mfn2 expression in SM of adult male and female offspring. Decreased MRF4 expression in SM, muscle dysfunction and mitochondrial vacuolization were observed in weaned HF-CT males, while maternal metformin normalized them. Maternal metformin increased AMPK phosphorylation and decreased 4E-BP1 phosphorylation in SM of male and female offspring. Our data demonstrate that maternal metformin during gestation and lactation can potentially overcome the negative effects of perinatal exposure to HF diet in offspring, by altering their myogenesis, mitochondrial biogenesis and dynamics through AMPK/mTOR pathways in SM.
Collapse
Affiliation(s)
- Jiaqi Cui
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Lin Song
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (L.S.); (R.W.); (S.H.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an 710061, China
| | - Rui Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (L.S.); (R.W.); (S.H.)
| | - Shuyuan Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (L.S.); (R.W.); (S.H.)
| | - Zhao Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
| | - Zengtie Zhang
- Department of Pathology, Xi’an Jiao Tong University Health Science Center, Xi’an 710061, China;
| | - Bo Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (L.S.); (R.W.); (S.H.)
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an 710061, China
- Correspondence: (B.S.); (W.C.)
| | - Wei Cui
- Department of Endocrinology and Second Department of Geriatrics, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China;
- Correspondence: (B.S.); (W.C.)
| |
Collapse
|
35
|
Muroya S, Zhang Y, Kinoshita A, Otomaru K, Oshima K, Gotoh Y, Oshima I, Sano M, Roh S, Oe M, Ojima K, Gotoh T. Maternal Undernutrition during Pregnancy Alters Amino Acid Metabolism and Gene Expression Associated with Energy Metabolism and Angiogenesis in Fetal Calf Muscle. Metabolites 2021; 11:metabo11090582. [PMID: 34564398 PMCID: PMC8465837 DOI: 10.3390/metabo11090582] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022] Open
Abstract
To elucidate the mechanisms underlying maternal undernutrition (MUN)-induced fetal skeletal muscle growth impairment in cattle, the longissimus thoracis muscle of Japanese Black fetal calves at 8.5 months in utero was analyzed by an integrative approach with metabolomics and transcriptomics. The pregnant cows were fed on 60% (low-nutrition, LN) or 120% (high-nutrition, HN) of their overall nutritional requirement during gestation. MUN markedly decreased the bodyweight and muscle weight of the fetus. The levels of amino acids (AAs) and arginine-related metabolites including glutamine, gamma-aminobutyric acid (GABA), and putrescine were higher in the LN group than those in the HN group. Metabolite set enrichment analysis revealed that the highly different metabolites were associated with the metabolic pathways of pyrimidine, glutathione, and AAs such as arginine and glutamate, suggesting that MUN resulted in AA accumulation rather than protein accumulation. The mRNA expression levels of energy metabolism-associated genes, such as PRKAA1, ANGPTL4, APLNR, CPT1B, NOS2, NOS3, UCP2, and glycolytic genes were lower in the LN group than in the HN group. The gene ontology/pathway analysis revealed that the downregulated genes in the LN group were associated with glucose metabolism, angiogenesis, HIF-1 signaling, PI3K-Akt signaling, pentose phosphate, and insulin signaling pathways. Thus, MUN altered the levels of AAs and expression of genes associated with energy expenditure, glucose homeostasis, and angiogenesis in the fetal muscle.
Collapse
Affiliation(s)
- Susumu Muroya
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan; (M.O.); (K.O.)
- Correspondence: (S.M.); (T.G.)
| | - Yi Zhang
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (A.K.); (I.O.)
| | - Aoi Kinoshita
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (A.K.); (I.O.)
| | - Kounosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan;
| | - Kazunaga Oshima
- Division of Year-Round Grazing Research, NARO Western Region Agricultural Research Center, 60 Yoshinaga, Ohda 694-0013, Shimane, Japan; (K.O.); (Y.G.)
| | - Yuji Gotoh
- Division of Year-Round Grazing Research, NARO Western Region Agricultural Research Center, 60 Yoshinaga, Ohda 694-0013, Shimane, Japan; (K.O.); (Y.G.)
| | - Ichiro Oshima
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (A.K.); (I.O.)
| | - Mitsue Sano
- Faculty of Human Culture, University of Shiga Prefecture, 2500 Hassaka-cho, Hikone 522-8533, Shiga, Japan;
| | - Sanggun Roh
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan;
| | - Mika Oe
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan; (M.O.); (K.O.)
| | - Koichi Ojima
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan; (M.O.); (K.O.)
| | - Takafumi Gotoh
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (A.K.); (I.O.)
- Correspondence: (S.M.); (T.G.)
| |
Collapse
|
36
|
Córdoba-Rodríguez DP, Iglesia I, Gomez-Bruton A, Miguel-Berges ML, Flores-Barrantes P, Casajús JA, Moreno LA, Rodríguez G. Quantitative peripheral computed tomography to measure muscle area and assess lean soft tissue mass in children. Ann Hum Biol 2021; 48:93-100. [PMID: 33470135 DOI: 10.1080/03014460.2021.1877352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Skeletal muscle is one of the main components of lean soft tissue mass (LSTM). Low levels in children affect locomotion, posture, and increase the risk of metabolic syndrome. AIM (1) To evaluate the association between muscle cross-sectional area (MCSA) of the lower left leg measured by peripheral quantitative computed tomography (pQCT) and total LSTM; namely, total left leg and left lower leg LSTM assessed by dual-energy X-ray absorptiometry (DXA) in a group of children, (2) to examine if MCSA is a predictor of LSTM, (3) to determine the ability of pQCT to identify children with low LSTM. SUBJECTS AND METHODS Lower left leg MCSA and LSTM were measured using pQCT and DXA, respectively, in 396 children. RESULTS Statistically significant positive correlations were found between the lower leg MCSA - total LSTM (r² = 0.789), total leg LSTM (r² = 0.79), and lower leg LSTM (r² = 0.791) (p < .01). MCSA explained 64-68% of the variance in LSTM. Receiver operator characteristic (ROC) curves determined the capacity of the lower left leg MCSA to identify low LSTM in girls (AUC 0.95) and boys (AUC 0.87). CONCLUSIONS Our results showed that lower left leg MCSA, measured using pQCT, could be a tool to predict low LSTM in children.
Collapse
Affiliation(s)
- Diana Paola Córdoba-Rodríguez
- Food, Nutrition, and Health Research Group, Faculty of Science, Pontificia Universidad Javeriana, Bogota, DC, Colombia
| | - Iris Iglesia
- Growth, Exercise, Nutrition, and Development (GENUD) Research Group, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain.,Red de Salud Materno Infantil y del Desarrollo (SAMID), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro Gomez-Bruton
- Growth, Exercise, Nutrition, and Development (GENUD) Research Group, Universidad de Zaragoza, Zaragoza, Spain.,Department of Physiatry and Nursing, Faculty of Health and Sport Sciences (FCSD), Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Madrid, Spain
| | - María L Miguel-Berges
- Growth, Exercise, Nutrition, and Development (GENUD) Research Group, Universidad de Zaragoza, Zaragoza, Spain
| | - Paloma Flores-Barrantes
- Growth, Exercise, Nutrition, and Development (GENUD) Research Group, Universidad de Zaragoza, Zaragoza, Spain
| | - José Antonio Casajús
- Growth, Exercise, Nutrition, and Development (GENUD) Research Group, Universidad de Zaragoza, Zaragoza, Spain.,Department of Physiatry and Nursing, Faculty of Health and Sport Sciences (FCSD), Universidad de Zaragoza, Zaragoza, Spain
| | - Luis A Moreno
- Growth, Exercise, Nutrition, and Development (GENUD) Research Group, Universidad de Zaragoza, Zaragoza, Spain.,Department of Physiatry and Nursing, Faculty of Health and Sport Sciences (FCSD), Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Madrid, Spain
| | - Gerardo Rodríguez
- Growth, Exercise, Nutrition, and Development (GENUD) Research Group, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain.,Red de Salud Materno Infantil y del Desarrollo (SAMID), Instituto de Salud Carlos III, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Madrid, Spain.,Departamento de Pediatría, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
37
|
Pendleton AL, Wesolowski SR, Regnault TRH, Lynch RM, Limesand SW. Dimming the Powerhouse: Mitochondrial Dysfunction in the Liver and Skeletal Muscle of Intrauterine Growth Restricted Fetuses. Front Endocrinol (Lausanne) 2021; 12:612888. [PMID: 34079518 PMCID: PMC8165279 DOI: 10.3389/fendo.2021.612888] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/22/2021] [Indexed: 11/14/2022] Open
Abstract
Intrauterine growth restriction (IUGR) of the fetus, resulting from placental insufficiency (PI), is characterized by low fetal oxygen and nutrient concentrations that stunt growth rates of metabolic organs. Numerous animal models of IUGR recapitulate pathophysiological conditions found in human fetuses with IUGR. These models provide insight into metabolic dysfunction in skeletal muscle and liver. For example, cellular energy production and metabolic rate are decreased in the skeletal muscle and liver of IUGR fetuses. These metabolic adaptations demonstrate that fundamental processes in mitochondria, such as substrate utilization and oxidative phosphorylation, are tempered in response to low oxygen and nutrient availability. As a central metabolic organelle, mitochondria coordinate cellular metabolism by coupling oxygen consumption to substrate utilization in concert with tissue energy demand and accretion. In IUGR fetuses, reducing mitochondrial metabolic capacity in response to nutrient restriction is advantageous to ensure fetal survival. If permanent, however, these adaptations may predispose IUGR fetuses toward metabolic diseases throughout life. Furthermore, these mitochondrial defects may underscore developmental programming that results in the sequela of metabolic pathologies. In this review, we examine how reduced nutrient availability in IUGR fetuses impacts skeletal muscle and liver substrate catabolism, and discuss how enzymatic processes governing mitochondrial function, such as the tricarboxylic acid cycle and electron transport chain, are regulated. Understanding how deficiencies in oxygen and substrate metabolism in response to placental restriction regulate skeletal muscle and liver metabolism is essential given the importance of these tissues in the development of later lifer metabolic dysfunction.
Collapse
Affiliation(s)
- Alexander L. Pendleton
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Stephanie R. Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | | | - Ronald M. Lynch
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| | - Sean W. Limesand
- School of Animal and Comparative Biomedical Sciences, The University of Arizona, Tucson, AZ, United States
| |
Collapse
|
38
|
Ali A, Murani E, Hadlich F, Liu X, Wimmers K, Ponsuksili S. Prenatal Skeletal Muscle Transcriptome Analysis Reveals Novel MicroRNA-mRNA Networks Associated with Intrauterine Growth Restriction in Pigs. Cells 2021; 10:cells10051007. [PMID: 33923344 PMCID: PMC8145024 DOI: 10.3390/cells10051007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Intrauterine growth restriction (IUGR) occurs in 15–20% of pig neonates and poses huge economic losses to the pig industry. IUGR piglets have reduced skeletal muscle growth, which may persist after birth. Prenatal muscle growth is regulated by complex molecular pathways that are not well understood. MicroRNAs (miRNAs) have emerged as the main regulators of vital pathways and biological processes in the body. This study was designed to identify miRNA–mRNA networks regulating prenatal skeletal muscle development in pigs. We performed an integrative miRNA–mRNA transcriptomic analysis in longissimus dorsi muscle from IUGR fetuses and appropriate for gestational age (AGA) fetuses at 63 days post conception. Our data showed that 47 miRNAs and 3257 mRNAs were significantly upregulated, and six miRNAs and 477 mRNAs were significantly downregulated in IUGR compared to AGA fetuses. Moreover, 47 upregulated miRNAs were negatively correlated and can potentially target 326 downregulated genes, whereas six downregulated miRNAs were negatively correlated and can potentially target 1291 upregulated genes. These miRNA–mRNA networks showed enrichment in biological processes and pathways critical for fetal growth, development, and metabolism. The miRNA–mRNA networks identified in this study can potentially serve as indicators of prenatal fetal growth and development as well as postnatal carcass quality.
Collapse
Affiliation(s)
- Asghar Ali
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Eduard Murani
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Frieder Hadlich
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Xuan Liu
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany
| | - Siriluck Ponsuksili
- Leibniz Institute for Farm Animal Biology, Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
39
|
Kozieł S, Chakraborty R, Bose K, Ignasiak Z, Gomula A, Nowak-Szczepanska N. The effect of a natural disaster on handgrip strength in prepubertal Indian children exposed to a severe cyclone during the prenatal and early postnatal growth. Sci Rep 2021; 11:7473. [PMID: 33811238 PMCID: PMC8018953 DOI: 10.1038/s41598-021-86845-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/16/2021] [Indexed: 11/09/2022] Open
Abstract
Natural disasters (NDs) experienced by women and their children during prenatal and infant growth may have long-lasting effects on offspring’s development. Handgrip strength (HGS) is one of the measures of muscular strength and an indicator of health status. This study compared HGS in children exposed to cyclone Aila in India during their prenatal and infant growth compared to a control group from a non-affected, adjacent area. The total sample involved 444 boys and 423 girls aged 7–9 years, categorised into 3 groups: prenatally exposed to Aila, exposed to Aila in infancy, and the control group, non-exposed to Aila. Results revealed that prenatally exposed children of both sexes had significantly lower HGS than the controls (at least, p < 0.001 in boys; p < 0.05 in girls). On the other hand, the postnatally exposed boys, but not the girls, showed lower HGS than the controls. A significant effect of a group factor (ND exposure) on HGS was observed even after controlling for confounding variables (age, height, BMI, birth weight, gestational age; at least, p < 0.05). Our findings indicate that prenatal or early postnatal experience of a ND may have association with impaired HGS in prepubertal children.
Collapse
Affiliation(s)
- Sławomir Kozieł
- Department of Anthropology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Raja Chakraborty
- Department of Anthropology, Dinabandhu Mahavidyalaya, Bongaon, West Bengal, India.
| | - Kaushik Bose
- Department of Anthropology, Vidyasagar University, Midnapore, West Bengal, India
| | - Zofia Ignasiak
- Department of Biostructure, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Aleksandra Gomula
- Department of Anthropology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Natalia Nowak-Szczepanska
- Department of Anthropology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
40
|
Rudar M, Naberhuis JK, Suryawan A, Nguyen HV, Stoll B, Style CC, Verla MA, Olutoye OO, Burrin DG, Fiorotto ML, Davis TA. Prematurity blunts the insulin- and amino acid-induced stimulation of translation initiation and protein synthesis in skeletal muscle of neonatal pigs. Am J Physiol Endocrinol Metab 2021; 320:E551-E565. [PMID: 33427053 PMCID: PMC7988778 DOI: 10.1152/ajpendo.00203.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Extrauterine growth restriction in premature infants is largely attributed to reduced lean mass accretion and is associated with long-term morbidities. Previously, we demonstrated that prematurity blunts the feeding-induced stimulation of translation initiation signaling and protein synthesis in skeletal muscle of neonatal pigs. The objective of the current study was to determine whether the blunted feeding response is mediated by reduced responsiveness to insulin, amino acids, or both. Pigs delivered by cesarean section preterm (PT; 103 days, n = 25) or at term (T; 112 days, n = 26) were subject to euinsulinemic-euaminoacidemic-euglycemic (FAST), hyperinsulinemic-euaminoacidemic-euglycemic (INS), or euinsulinemic-hyperaminoacidemic-euglycemic (AA) clamps four days after delivery. Indices of mechanistic target of rapamycin complex 1 (mTORC1) signaling and fractional protein synthesis rates were measured after 2 h. Although longissimus dorsi (LD) muscle protein synthesis increased in response to both INS and AA, the increase was 28% lower in PT than in T. Upstream of mTORC1, Akt phosphorylation, an index of insulin signaling, was increased with INS but was 40% less in PT than in T. The abundances of mTOR·RagA and mTOR·RagC, indices of amino acid signaling, increased with AA but were 25% less in PT than in T. Downstream of mTORC1, eIF4E·eIF4G abundance was increased by both INS and AA but attenuated by prematurity. These results suggest that preterm birth blunts both insulin- and amino acid-induced activation of mTORC1 and protein synthesis in skeletal muscle, thereby limiting the anabolic response to feeding. This anabolic resistance likely contributes to the high prevalence of extrauterine growth restriction in prematurity.NEW & NOTEWORTHY Extrauterine growth faltering is a major complication of premature birth, but the underlying cause is poorly understood. Our results demonstrate that preterm birth blunts both the insulin-and amino acid-induced activation of mTORC1-dependent translation initiation and protein synthesis in skeletal muscle, thereby limiting the anabolic response to feeding. This anabolic resistance likely contributes to the reduced accretion of lean mass and extrauterine growth restriction of premature infants.
Collapse
Affiliation(s)
- Marko Rudar
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Department of Animal Sciences, Auburn University, Auburn, Alabama
| | - Jane K Naberhuis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Agus Suryawan
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Hanh V Nguyen
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Barbara Stoll
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Candace C Style
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Mariatu A Verla
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Oluyinka O Olutoye
- Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Douglas G Burrin
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Marta L Fiorotto
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Teresa A Davis
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
41
|
Gleason JL, Tekola-Ayele F, Sundaram R, Hinkle SN, Vafai Y, Buck Louis GM, Gerlanc N, Amyx M, Bever AM, Smarr MM, Robinson M, Kannan K, Grantz KL. Association Between Maternal Caffeine Consumption and Metabolism and Neonatal Anthropometry: A Secondary Analysis of the NICHD Fetal Growth Studies-Singletons. JAMA Netw Open 2021; 4:e213238. [PMID: 33764424 PMCID: PMC7994948 DOI: 10.1001/jamanetworkopen.2021.3238] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
IMPORTANCE Higher caffeine consumption during pregnancy has been associated with lower birth weight. However, associations of caffeine consumption, based on both plasma concentrations of caffeine and its metabolites, and self-reported caffeinated beverage intake, with multiple measures of neonatal anthropometry, have yet to be examined. OBJECTIVE To evaluate the association between maternal caffeine intake and neonatal anthropometry, testing effect modification by fast or slow caffeine metabolism genotype. DESIGN, SETTING, AND PARTICIPANTS A longitudinal cohort study, the National Institute of Child Health and Human Development Fetal Growth Studies-Singletons, enrolled 2055 nonsmoking women at low risk for fetal growth abnormalities with complete information on caffeine consumption from 12 US clinical sites between 2009 and 2013. Secondary analysis was completed in 2020. EXPOSURES Caffeine was evaluated by both plasma concentrations of caffeine and paraxanthine and self-reported caffeinated beverage consumption measured/reported at 10-13 weeks gestation. Caffeine metabolism defined as fast or slow using genotype information from the single nucleotide variant rs762551 (CYP1A2*1F). MAIN OUTCOMES AND MEASURES Neonatal anthropometric measures, including birth weight, length, and head, abdominal, arm, and thigh circumferences, skin fold and fat mass measures. The β coefficients represent the change in neonatal anthropometric measure per SD change in exposure. RESULTS A total of 2055 participants had a mean (SD) age of 28.3 (5.5) years, mean (SD) body mass index of 23.6 (3.0), and 580 (28.2%) were Hispanic, 562 (27.4%) were White, 518 (25.2%) were Black, and 395 (19.2%) were Asian/Pacific Islander. Delivery occurred at a mean (SD) of 39.2 (1.7) gestational weeks. Compared with the first quartile of plasma caffeine level (≤28 ng/mL), neonates of women in the fourth quartile (>659 ng/mL) had lower birth weight (β = -84.3 g; 95% CI, -145.9 to -22.6 g; P = .04 for trend), length (β = -0.44 cm; 95% CI, -0.78 to -0.12 cm; P = .04 for trend), and head (β = -0.28 cm; 95% CI, -0.47 to -0.09 cm; P < .001 for trend), arm (β = -0.25 cm; 95% CI, -0.41 to -0.09 cm: P = .02 for trend), and thigh (β = -0.29 cm; 95% CI, -0.58 to -0.04 cm; P = .07 for trend) circumference. Similar reductions were observed for paraxanthine quartiles, and for continuous measures of caffeine and paraxanthine concentrations. Compared with women who reported drinking no caffeinated beverages, women who consumed approximately 50 mg per day (~ 1/2 cup of coffee) had neonates with lower birth weight (β = -66 g; 95% CI, -121 to -10 g), smaller arm (β = -0.17 cm; 95% CI, -0.31 to -0.02 cm) and thigh (β = -0.32 cm; 95% CI, -0.55 to -0.09 cm) circumference, and smaller anterior flank skin fold (β = -0.24 mm; 95% CI, -0.47 to -0.01 mm). Results did not differ by fast or slow caffeine metabolism genotype. CONCLUSIONS AND RELEVANCE In this cohort study, small reductions in neonatal anthropometric measurements with increasing caffeine consumption were observed. Findings suggest that caffeine consumption during pregnancy, even at levels much lower than the recommended 200 mg per day of caffeine, are associated with decreased fetal growth.
Collapse
Affiliation(s)
- Jessica L. Gleason
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Fasil Tekola-Ayele
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Rajeshwari Sundaram
- Biostatistics Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Stefanie N. Hinkle
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Yassaman Vafai
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Germaine M. Buck Louis
- Office of the Dean, College of Health and Human Services, George Mason University, Fairfax, Virginia
| | | | - Melissa Amyx
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Alaina M. Bever
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Melissa M. Smarr
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Morgan Robinson
- Department of Pediatrics, New York University School of Medicine, New York
- Department of Environmental Medicine, New York University School of Medicine, New York
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York
- Department of Environmental Medicine, New York University School of Medicine, New York
| | - Katherine L. Grantz
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
42
|
Sandoval C, Askelson K, Lambo CA, Dunlap KA, Satterfield MC. Effect of maternal nutrient restriction on expression of glucose transporters (SLC2A4 and SLC2A1) and insulin signaling in skeletal muscle of SGA and Non-SGA sheep fetuses. Domest Anim Endocrinol 2021; 74:106556. [PMID: 33120168 DOI: 10.1016/j.domaniend.2020.106556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/08/2023]
Abstract
Maternal nutrient restriction (NR) causes small for gestational age (SGA) offspring, which are at higher risk for accelerated postnatal growth and developing insulin resistance in adulthood. Skeletal muscle is essential for whole-body glucose metabolism, as 80% of insulin-mediated glucose uptake occurs in this tissue. Maternal NR can alter fetal skeletal muscle mass, expression of glucose transporters, insulin signaling, and myofiber type composition. It also leads to accumulation of intramuscular triglycerides (IMTG), which correlates to insulin resistance. Using a 50% NR treatment from gestational day (GD) 35 to GD 135 in sheep, we routinely observe a spectral phenotype of fetal weights within the NR group. Thus, we classified those fetuses into NR(Non-SGA; n = 11) and NR(SGA; n = 11). The control group (n = 12) received 100% of nutrient requirements throughout pregnancy. At GD 135, fetal plasma and gastrocnemius and soleus muscles were collected. In fetal plasma, total insulin was lower in NR(SGA) fetuses compared NR(Non-SGA) and control fetuses (P < 0.01), whereas total IGF-1 was lower in NR(SGA) fetuses compared with control fetuses (P < 0.05). Within gastrocnemius, protein expression of insulin receptor (INSRB; P < 0.05) and the glucose transporters, solute carrier family 2 member 1 and solute carrier family 2 member 4, was higher (P < 0.05) in NR(SGA) fetuses compared with NR(Non-SGA) fetuses; IGF-1 receptor protein was increased (P < 0.01) in NR(SGA) fetuses compared with control fetuses, and a lower (P < 0.01) proportion of type I myofibers (insulin sensitive and oxidative) was observed in SGA fetuses. For gastrocnemius muscle, the expression of lipoprotein lipase (LPL) messenger RNA (mRNA) was upregulated (P < 0.05) in both NR(SGA) and NR(Non-SGA) fetuses compared with control fetuses, whereas carnitine palmitoyltransferase 1B (CPT1B) mRNA was higher (P < 0.05) in NR(Non-SGA) fetuses compared with control fetuses, but there were no differences (P > 0.05) for protein levels of LPL or CPT1B. Within soleus, there were no differences (P > 0.05) for any characteristic except for the proportion of type I myofibers, which was lower (P < 0.05) in NR(SGA) fetuses compared with control fetuses. Accumulation of IMTG did not differ (P > 0.05) in gastrocnemius or soleus muscles. Collectively, the results indicate molecular differences between SGA and Non-SGA fetuses for most characteristics, suggesting that maternal NR induces a spectral phenotype for the metabolic programming of those fetuses.
Collapse
Affiliation(s)
- C Sandoval
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA; Instituto de Investigaciones Agropecuarias, Región de Magallanes y la Antártica Chilena, Punta Arenas 6212707, Chile
| | - K Askelson
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - C A Lambo
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - K A Dunlap
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
| | - M C Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX 77845, USA.
| |
Collapse
|
43
|
Ferreira M, Niehues MB, Tomaz LA, Baldassini W, Ladeira M, Arrigoni M, Martins CL, Gionbelli T, Paulino P, Neto ORM. Dry matter intake, performance, carcass traits and expression of genes of muscle protein metabolism in cattle fed increasing levels of de-oiled wet distillers grains. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114627] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Jing J, Pu Y, Gingrich J, Veiga-Lopez A. Gestational Exposure to Bisphenol A and Bisphenol S Leads to Fetal Skeletal Muscle Hypertrophy Independent of Sex. Toxicol Sci 2020; 172:292-302. [PMID: 31501865 DOI: 10.1093/toxsci/kfz198] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gestational exposure to bisphenol A (BPA) can lead to offspring insulin resistance. However, despite the role that the skeletal muscle plays in glucose homeostasis, it remains unknown whether gestational exposure to BPA, or its analog bisphenol S (BPS), impairs skeletal muscle development. We hypothesized that gestational exposure to BPA or BPS will impair fetal muscle development and lead to muscle-specific insulin resistance. To test this, pregnant sheep (n = 7-8/group) were exposed to BPA or BPS from gestational day (GD) 30 to 100. At GD120, fetal skeletal muscle was harvested to evaluate fiber size, fiber type, and gene and protein expression related to myogenesis, fiber size, fiber type, and inflammation. Fetal primary myoblasts were isolated to evaluate proliferation and differentiation. In fetal skeletal muscle, myofibers were larger in BPA and BPS groups in both females and males. BPA females had higher MYH1 (reflective of type-IIX fast glycolytic fibers), whereas BPS females had higher MYH2 and MYH7, and higher myogenic regulatory factors (Myf5, MyoG, MyoD, and MRF4) mRNA expression. No differences were observed in males. Myoblast proliferation was not altered in gestationally BPA- or BPS-exposed myoblasts, but upon differentiation, area and diameter of myotubes were larger independent of sex. Females had larger myofibers and myotubes than males in all treatment groups. In conclusion, gestational exposure to BPA or BPS does not result in insulin resistance in fetal myoblasts but leads to fetal fiber hypertrophy in skeletal muscle independent of sex and alters fiber type distribution in a sex-specific manner.
Collapse
Affiliation(s)
- Jiongjie Jing
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Yong Pu
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Jeremy Gingrich
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824.,Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Almudena Veiga-Lopez
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
45
|
Verbeek RJ, Mulder PB, Sollie KM, van der Hoeven JH, den Dunnen WFA, Maurits NM, Sival DA. Development of muscle ultrasound density in healthy fetuses and infants. PLoS One 2020; 15:e0235836. [PMID: 32649730 PMCID: PMC7351181 DOI: 10.1371/journal.pone.0235836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/23/2020] [Indexed: 11/19/2022] Open
Abstract
Muscle ultrasound density (MUD) is a non-invasive parameter to indicate neuromuscular integrity in both children and adults. In healthy fetuses and infants, physiologic MUD values during development are still lacking. We therefore aimed to determine the physiologic, age-related MUD trend of biceps, quadriceps, tibialis anterior, hamstrings, gluteal and calf muscles, from pre- to the first year of postnatal life. To avoid a bias by pregnancy-related signal disturbances, we expressed fetal MUD as a ratio against bone ultrasound density. We used the full-term prenatal MUD ratio and the newborn postnatal MUD value as reference points, so that MUD development could be quantified from early pre- into postnatal life. Results: During the prenatal period, the total muscle group revealed a developmental MUD trend concerning a fetal increase in MUD-ratio from the 2nd trimester up to the end of the 3rd trimester [median increase: 27% (range 16-45), p < .001]. After birth, MUD-values increased up to the sixth month [median increase: 11% (range -7-27), p = 0.025] and stabilized thereafter. Additionally, there were also individual MUD characteristics per muscle group and developmental stage, such as relatively low MUD values of fetal hamstrings and high values of the paediatric gluteus muscles. These MUD trends are likely to concur with analogous developmentally, maturation-related alterations in the muscle water to peptide content ratios.
Collapse
Affiliation(s)
- Renate J. Verbeek
- Department of (Pediatric) Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| | - Petra B. Mulder
- Department of Obstetrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Krystyna M. Sollie
- Department of Obstetrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johannes H. van der Hoeven
- Department of (Pediatric) Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wilfred F. A. den Dunnen
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Natalia M. Maurits
- Department of (Pediatric) Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Deborah A. Sival
- Department of Pediatrics, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, The Netherlands
| |
Collapse
|
46
|
Pendleton AL, Antolic AT, Kelly AC, Davis MA, Camacho LE, Doubleday K, Anderson MJ, Langlais PR, Lynch RM, Limesand SW. Lower oxygen consumption and Complex I activity in mitochondria isolated from skeletal muscle of fetal sheep with intrauterine growth restriction. Am J Physiol Endocrinol Metab 2020; 319:E67-E80. [PMID: 32396498 PMCID: PMC7468780 DOI: 10.1152/ajpendo.00057.2020] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/25/2023]
Abstract
Fetal sheep with placental insufficiency-induced intrauterine growth restriction (IUGR) have lower hindlimb oxygen consumption rates (OCRs), indicating depressed mitochondrial oxidative phosphorylation capacity in their skeletal muscle. We hypothesized that OCRs are lower in skeletal muscle mitochondria from IUGR fetuses, due to reduced electron transport chain (ETC) activity and lower abundances of tricarboxylic acid (TCA) cycle enzymes. IUGR sheep fetuses (n = 12) were created with mid-gestation maternal hyperthermia and compared with control fetuses (n = 12). At 132 ± 1 days of gestation, biceps femoris muscles were collected, and the mitochondria were isolated. Mitochondria from IUGR muscle have 47% lower State 3 (Complex I-dependent) OCRs than controls, whereas State 4 (proton leak) OCRs were not different between groups. Furthermore, Complex I, but not Complex II or IV, enzymatic activity was lower in IUGR fetuses compared with controls. Proteomic analysis (n = 6/group) identified 160 differentially expressed proteins between groups, with 107 upregulated and 53 downregulated mitochondria proteins in IUGR fetuses compared with controls. Although no differences were identified in ETC subunit protein abundances, abundances of key TCA cycle enzymes [isocitrate dehydrogenase (NAD+) 3 noncatalytic subunit β (IDH3B), succinate-CoA ligase ADP-forming subunit-β (SUCLA2), and oxoglutarate dehydrogenase (OGDH)] were lower in IUGR mitochondria. IUGR mitochondria had a greater abundance of a hypoxia-inducible protein, NADH dehydrogenase 1α subcomplex 4-like 2, which is known to incorporate into Complex I and lower Complex I-mediated NADH oxidation. Our findings show that mitochondria from IUGR skeletal muscle adapt to hypoxemia and hypoglycemia by lowering Complex I activity and TCA cycle enzyme concentrations, which together, act to lower OCR and NADH production/oxidation in IUGR skeletal muscle.
Collapse
Affiliation(s)
- Alexander L Pendleton
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona
| | - Andrew T Antolic
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Amy C Kelly
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Melissa A Davis
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Leticia E Camacho
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Kevin Doubleday
- Department of Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, Arizona
| | - Miranda J Anderson
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| | - Paul R Langlais
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona
- Department of Medicine, University of Arizona, Tucson, Arizona
| | - Ronald M Lynch
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Sean W Limesand
- Physiological Sciences Graduate Interdisciplinary Program, University of Arizona, Tucson, Arizona
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
47
|
Lacham-Kaplan O, Camera DM, Hawley JA. Divergent Regulation of Myotube Formation and Gene Expression by E2 and EPA during In-Vitro Differentiation of C2C12 Myoblasts. Int J Mol Sci 2020; 21:E745. [PMID: 31979341 PMCID: PMC7037418 DOI: 10.3390/ijms21030745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/21/2022] Open
Abstract
Estrogen (E2) and polyunsaturated fatty acids (n-3PUFA) supplements independently support general wellbeing and enhance muscle regeneration in-vivo and myotube formation in-vitro. However, the combined effect of E2 and n-3PUFA on myoblast differentiation is not known. The purpose of the study was to identify whether E2 and n-3PUFA possess a synergistic effect on in-vitro myogenesis. Mouse C2C12 myoblasts, a reliable model to reiterate myogenic events in-vitro, were treated with 10nM E2 and 50μM eicosapentaenoic acid (EPA) independently or combined, for 0-24 h or 0-120 h during differentiation. Immunofluorescence, targeted qPCR and next generation sequencing (NGS) were used to characterize morphological changes and differential expression of key genes involved in the regulation of myogenesis and muscle function pathways. E2 increased estrogen receptor α (Erα) and the expression of the mitogen-activated protein kinase 11 (Mapk11) within 1 h of treatment and improved myoblast differentiation and myotube formation. A significant reduction (p < 0.001) in myotube formation and in the expression of myogenic regulatory factors Mrfs (MyoD, Myog and Myh1) and the myoblast fusion related gene, Tmem8c, was observed in the presence of EPA and the combined E2/EPA treatment. Additionally, EPA treatment at 48 h of differentiation inhibited the majority of genes associated with the myogenic and striated muscle contraction pathways. In conclusion, EPA and E2 had no synergistic effect on myotube formation in-vitro. Independently, EPA inhibited myoblast differentiation and overrides the stimulatory effect of E2 when used in combination with E2.
Collapse
Affiliation(s)
- Orly Lacham-Kaplan
- Exercise and Nutrition Research Program, Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne 3000, Australia;
| | - Donny M. Camera
- Department of Health and Medical Sciences, Swinburne University of Technology, Melbourne 3122, Australia;
| | - John A. Hawley
- Exercise and Nutrition Research Program, Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne 3000, Australia;
| |
Collapse
|
48
|
Sandoval C, Wu G, Smith SB, Dunlap KA, Satterfield MC. Maternal Nutrient Restriction and Skeletal Muscle Development: Consequences for Postnatal Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:153-165. [PMID: 32761575 DOI: 10.1007/978-3-030-45328-2_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Severe undernutrition and famine continue to be a worldwide concern, as cases have been increasing in the past 5 years, particularly in developing countries. The occurrence of nutrient restriction (NR) during pregnancy affects fetal growth, leading to small for gestational age (SGA) or intrauterine growth restricted (IUGR) offspring. During adulthood, SGA and IUGR offspring are at a higher risk for the development of metabolic syndrome. Skeletal muscle is particularly sensitive to prenatal NR. This tissue plays an essential role in oxidation and glucose metabolism because roughly 80% of insulin-mediated glucose uptake occurs in muscle, and it represents around 40% of body weight. Alterations in myofiber number, hypertrophy and myofiber type composition, decreased protein synthesis, lower mitochondrial content and activity of oxidative enzymes, and increased accumulation of intramuscular triglycerides are among the described programming effects of maternal NR on skeletal muscle. Together, these features would add to a phenotype that is prone to insulin resistance, type 2 diabetes, obesity, and metabolic syndrome. Insights from diverse animal models (i.e. ovine, swine, and rodent) have provided valuable information regarding the molecular mechanisms behind those altered developmental pathways. Understanding those molecular signatures supports the development of efficient treatments to counteract the effects of maternal NR on skeletal muscle, and its negative implications for postnatal health.
Collapse
Affiliation(s)
- Camila Sandoval
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Stephen B Smith
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Kathrin A Dunlap
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - M Carey Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
49
|
Rudar M, Columbus DA, Steinhoff-Wagner J, Suryawan A, Nguyen HV, Fleischmann R, Davis TA, Fiorotto ML. Leucine Supplementation Does Not Restore Diminished Skeletal Muscle Satellite Cell Abundance and Myonuclear Accretion When Protein Intake Is Limiting in Neonatal Pigs. J Nutr 2020; 150:22-30. [PMID: 31518419 PMCID: PMC6946895 DOI: 10.1093/jn/nxz216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/10/2019] [Accepted: 08/08/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Rapid growth of skeletal muscle in the neonate requires the coordination of protein deposition and myonuclear accretion. During this developmental stage, muscle protein synthesis is highly sensitive to amino acid supply, especially Leu, but we do not know if this is true for satellite cells, the source of muscle fiber myonuclei. OBJECTIVE We examined whether dietary protein restriction reduces myonuclear accretion in the neonatal pig, and if any reduction in myonuclear accretion is mitigated by restoring Leu intake. METHODS Neonatal pigs (1.53 ± 0.2 kg) were fitted with jugular vein and gastric catheters and fed 1 of 3 isoenergetic milk replacers every 4 h for 21 d: high protein [HP; 22.5 g protein/(kg/d); n= 8]; restricted protein [RP; 11.2 g protein/(kg/d); n= 10]; or restricted protein with Leu [RPL; 12.0 g protein/(kg/d); n= 10]. Pigs were administered 5-bromo-2'-deoxyuridine (BrdU; 15 mg/kg) intravenously every 12 h from days 6 to 8. Blood was sampled on days 6 and 21 to measure plasma Leu concentrations. On day 21, pigs were killed and the longissimus dorsi (LD) muscle was collected to measure cell morphometry, satellite cell abundance, myonuclear accretion, and insulin-like growth factor (IGF) system expression. RESULTS Compared with HP pigs, postprandial plasma Leu concentration in RP pigs was 37% and 47% lower on days 6 and 21, respectively (P < 0.05); Leu supplementation in RPL pigs restored postprandial Leu to HP concentrations. Dietary protein restriction reduced LD myofiber cross-sectional area by 21%, satellite cell abundance by 35%, and BrdU+ myonuclear abundance by 25% (P < 0.05); Leu did not reverse these outcomes. Dietary protein restriction reduced LD muscle IGF2 expression by 60%, but not IGF1 or IGF1R expression (P < 0.05); Leu did not rescue IGF2 expression. CONCLUSIONS Satellite cell abundance and myonuclear accretion in neonatal pigs are compromised when dietary protein intake is restricted and are not restored with Leu supplementation.
Collapse
Affiliation(s)
- Marko Rudar
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Daniel A Columbus
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Julia Steinhoff-Wagner
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Agus Suryawan
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hanh V Nguyen
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Ryan Fleischmann
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Teresa A Davis
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Marta L Fiorotto
- USDA/Agricultural Research Service Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA,Address correspondence to MLF (E-mail: )
| |
Collapse
|
50
|
Chang EI, Rozance PJ, Wesolowski SR, Nguyen LM, Shaw SC, Sclafani RA, Bjorkman KK, Peter AK, Hay WW, Brown LD. Rates of myogenesis and myofiber numbers are reduced in late gestation IUGR fetal sheep. J Endocrinol 2019; 244:339-352. [PMID: 31751294 PMCID: PMC7192794 DOI: 10.1530/joe-19-0273] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022]
Abstract
Intrauterine growth-restricted (IUGR) fetuses are born with reduced skeletal muscle mass. We hypothesized that reduced rates of myogenesis would contribute to fewer and smaller myofibers in IUGR fetal hindlimb muscle compared to the normally growing fetus. We tested this hypothesis in IUGR fetal sheep with progressive placental insufficiency produced by exposing pregnant ewes to elevated ambient temperatures from 38 to 116 days gestation (dGA; term = 147 dGA). Surgically catheterized control (CON, n = 8) and IUGR (n = 13) fetal sheep were injected with intravenous 5-bromo-2′-deoxyuridine (BrdU) prior to muscle collection (134 dGA). Rates of myogenesis, defined as the combined processes of myoblast proliferation, differentiation, and fusion into myofibers, were determined in biceps femoris (BF), tibialis anterior (TA), and flexor digitorum superficialis (FDS) muscles. Total myofiber number was determined for the entire cross-section of the FDS muscle. In IUGR fetuses, the number of BrdU+ myonuclei per myofiber cross-section was lower in BF, TA, and FDS (P < 0.05), total myonuclear number per myofiber cross-section was lower in BF and FDS (P < 0.05), and total myofiber number was lower in FDS (P < 0.005) compared to CON. mRNA expression levels of cyclins, cyclin-dependent protein kinases, and myogenic regulatory factors were lower (P < 0.05), and inhibitors of the cell cycle were higher (P < 0.05) in IUGR BF compared to CON. Markers of apoptosis were not different in IUGR BF muscle. These results show that in IUGR fetuses, reduced rates of myogenesis produce fewer numbers of myonuclei, which may limit hypertrophic myofiber growth. Fewer myofibers of smaller size contribute to smaller muscle mass in the IUGR fetus.
Collapse
Affiliation(s)
- Eileen I. Chang
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Paul J. Rozance
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Stephanie R. Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Leanna M. Nguyen
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Steven C. Shaw
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Robert A. Sclafani
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kristen K. Bjorkman
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Angela K. Peter
- Department of Molecular, Cellular and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - William W. Hay
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| | - Laura D. Brown
- Department of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center, Aurora, Colorado, USA
| |
Collapse
|