1
|
Montaño-Campaz ML, Oliveira EE, Toro-Restrepo B, Bacca T, Feuillet-Hurtado C, Afanador JGM, Moreira RPL, Mendes LA, Aguiar RWS, Dias LG. Siparuna gesnerioides and Siparuna guianensis Essential Oils in Aedes aegypti Control: Phytoanalysis, Molecular Insights for Larvicidal Activity and Selectivity to Non-Target Organisms. PLANTS (BASEL, SWITZERLAND) 2025; 14:1322. [PMID: 40364351 PMCID: PMC12073273 DOI: 10.3390/plants14091322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/09/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025]
Abstract
Synthetic insecticides are widely used against mosquitoes, but misuse has led to environmental and health concerns. Plant-derived alternatives, such as essential oils, seem to offer a safer option, minimizing these problems without compromising efficacy. In this study, we evaluated the essential oil from Siparuna gesnerioides (Kunth) A.DC., a Neotropical plant, for its effectiveness in controlling Aedes (Stegomyia) aegypti (Linnaeus) larvae, a major vector of human diseases. We first assessed the phytochemistry of the essential oil and used in silico approaches to predict potential physiological targets of its larvicidal activities. Selectivity assays were conducted with Belostoma anurum (Herrich-Schäffer), a non-target predatory water bug. The major constituents of S. gesnerioides essential oil were γ-elemene (45.8%) and germacrene D (43.8%). This essential oil effectively killed larvae from both susceptible and resistant mosquito strains (LC50 = 0.070 μg/mL). However, such concentrations killed more than 80% of B. anurum nymphs. Molecular modeling suggested that the essential oil major components (γ-elemene and germacrene D) interact stably with mosquito acetylcholinesterases (AChEs), indicating a potential mechanism of action. Our results reinforce the potential of Siparuna essential oils in mosquito control. Nevertheless, the non-selective impact on mosquito predators, as seen with S. gesnerioides, highlights the need for caution in field applications.
Collapse
Affiliation(s)
- Milton L. Montaño-Campaz
- Centro de Bioinformática y Biología Computacional de Colombia—BIOS, Ecoparque Los Yarumos, Manizales 170002, Caldas, Colombia;
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
- Grupo de Investigación Bionat, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Manizales 170001, Caldas, Colombia
| | - Eugenio E. Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Beatriz Toro-Restrepo
- Grupo de Investigación Bionat, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Manizales 170001, Caldas, Colombia
| | - Tito Bacca
- Facultad de Ingeniería Agronómica, Universidad del Tolima, Ibagué 730001, Tolima, Colombia
| | - Carolina Feuillet-Hurtado
- Grupo de Investigación Bionat, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Manizales 170001, Caldas, Colombia
| | - Javier G. Mantilla Afanador
- Research Institute in Microbiology and Agroindustrial Biotechnology, Universidad Católica de Manizales, Carrera 23, 60–63, Manizales 170002, Caldas, Colombia
| | | | - Luiza Alves Mendes
- Departamento de Química, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Raimundo Wagner S. Aguiar
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Tocantins, Gurupi 77402-970, TO, Brazil
| | - Lucimar G. Dias
- Grupo de Investigación Bionat, Facultad de Ciencias Exactas y Naturales, Universidad de Caldas, Manizales 170001, Caldas, Colombia
| |
Collapse
|
2
|
Accoti A, Multini LC, Diouf B, Becker M, Vulcan J, Sylla M, Yap DY, Khanipov K, Diallo M, Gaye A, Dickson LB. The influence of the larval microbiome on susceptibility to Zika virus is mosquito genotype-dependent. PLoS Pathog 2023; 19:e1011727. [PMID: 37903174 PMCID: PMC10635568 DOI: 10.1371/journal.ppat.1011727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/09/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023] Open
Abstract
The microbiome of the mosquito Aedes aegypti is largely determined by the environment and influences mosquito susceptibility for arthropod-borne viruses (arboviruses). Larval interactions with different bacteria can have carry-over effects on adult Ae. aegypti replication of arboviruses, but little is known about the role that mosquito host genetics play in determining how larval-bacterial interactions shape Ae aegypti susceptibility to arboviruses. To address this question, we isolated single bacterial isolates and complex microbiomes from Ae. aegypti larvae from various field sites in Senegal. Either single bacterial isolates or complex microbiomes were added to two different genetic backgrounds of Ae. aegypti in a gnotobiotic larval system. Using 16S amplicon sequencing we showed that the bacterial community structure differs between the two genotypes of Ae. aegypti when given identical microbiomes, and the abundance of single bacterial taxa differed between Ae. aegypti genotypes. Using single bacterial isolates or the entire preserved complex microbiome, we tested the ability of specific larval microbiomes to drive differences in infection rates for Zika virus in different genetic backgrounds of Ae. aegypti. We observed that the proportion of Zika virus-infected adults was dependent on the interaction between the larval microbiome and Ae. aegypti host genetics. By using the larval microbiome as a component of the environment, these results demonstrate that interactions between the Ae. aegypti genotype and its environment can influence Zika virus infection. As Ae. aegypti expands and adapts to new environments under climate change, an understanding of how different genotypes interact with the same environment will be crucial for implementing arbovirus transmission control strategies.
Collapse
Affiliation(s)
- Anastasia Accoti
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Laura C. Multini
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Babakar Diouf
- Medical Zoology Unit, Institute Pasteur Dakar, Dakar, Senegal
| | - Margaret Becker
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
| | - Julia Vulcan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Massamba Sylla
- Laboratory Vectors & Parasites, Department of Livestock Sciences and Techniques Sine Saloum University El Hadji Ibrahima NIASS (USSEIN), Kaffrine, Senegal
| | - Dianne Y. Yap
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mawlouth Diallo
- Medical Zoology Unit, Institute Pasteur Dakar, Dakar, Senegal
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
| | - Alioune Gaye
- Medical Zoology Unit, Institute Pasteur Dakar, Dakar, Senegal
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
| | - Laura B. Dickson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Vector-borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
3
|
Accoti A, Multini LC, Diouf B, Becker M, Vulcan J, Sylla M, Yap DAY, Khanipov K, Weaver SC, Diallo M, Gaye A, Dickson LB. The influence of the larval microbiome on susceptibility to Zika virus is mosquito genotype dependent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540191. [PMID: 37215022 PMCID: PMC10197687 DOI: 10.1101/2023.05.10.540191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The microbiome of the mosquito Aedes aegypti is largely determined by the environment and influences mosquito susceptibility for arthropod-borne viruses (arboviruses). Larval interactions with different bacteria can influence adult Ae. aegypti replication of arboviruses, but little is known about the role that mosquito host genetics play in determining how larval-bacterial interactions shape Ae aegypti susceptibility to arboviruses. To address this question, we isolated single bacterial isolates and complex microbiomes from Ae. aegypti larvae from various field sites in Senegal. Either single bacterial isolates or complex microbiomes were added to two different genetic backgrounds of Ae. aegypti in a gnotobiotic larval system. Using 16S amplicon sequencing we show that similarities in bacterial community structures when given identical microbiomes between different genetic backgrounds of Ae. aegypti was dependent on the source microbiome, and the abundance of single bacterial taxa differed between Ae. aegypti genotypes. Using single bacterial isolates or the entire preserved complex microbiome, we tested the ability of specific microbiomes to drive differences in infection rates for Zika virus in different genetic backgrounds of Ae. aegypti . We observed that the proportion of Zika virus-infected adults was dependent on the interaction between the larval microbiome and Ae. aegypti host genetics. By using the larval microbiome as a component of the environment, these results demonstrate that interactions between the Ae. aegypti genotype and its environment can influence Zika virus infection. As Ae. aegypti expands and adapts to new environments under climate change, an understanding of how different genotypes interact with the same environment will be crucial for implementing arbovirus transmission control strategies.
Collapse
|
4
|
Love RR, Sikder JR, Vivero RJ, Matute DR, Schrider DR. Strong Positive Selection in Aedes aegypti and the Rapid Evolution of Insecticide Resistance. Mol Biol Evol 2023; 40:msad072. [PMID: 36971242 PMCID: PMC10118305 DOI: 10.1093/molbev/msad072] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/13/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Aedes aegypti vectors the pathogens that cause dengue, yellow fever, Zika virus, and chikungunya and is a serious threat to public health in tropical regions. Decades of work has illuminated many aspects of Ae. aegypti's biology and global population structure and has identified insecticide resistance genes; however, the size and repetitive nature of the Ae. aegypti genome have limited our ability to detect positive selection in this mosquito. Combining new whole genome sequences from Colombia with publicly available data from Africa and the Americas, we identify multiple strong candidate selective sweeps in Ae. aegypti, many of which overlap genes linked to or implicated in insecticide resistance. We examine the voltage-gated sodium channel gene in three American cohorts and find evidence for successive selective sweeps in Colombia. The most recent sweep encompasses an intermediate-frequency haplotype containing four candidate insecticide resistance mutations that are in near-perfect linkage disequilibrium with one another in the Colombian sample. We hypothesize that this haplotype may continue to rapidly increase in frequency and perhaps spread geographically in the coming years. These results extend our knowledge of how insecticide resistance has evolved in this species and add to a growing body of evidence suggesting that Ae. aegypti has an extensive genomic capacity to rapidly adapt to insecticide-based vector control.
Collapse
Affiliation(s)
- R Rebecca Love
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NCUSA
| | - Josh R Sikder
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NCUSA
| | - Rafael J Vivero
- Programa de Estudio y Control de Enfermedades Tropicales, PECET, Universidad de Antioquia, Chapel Hill, NCColombia
| | - Daniel R Matute
- Department of Biology, College of Arts and Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Daniel R Schrider
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NCUSA
| |
Collapse
|
5
|
Kubik TD, Snell TK, Saavedra-Rodriguez K, Wilusz J, Anderson JR, Lozano-Fuentes S, Black WC, Campbell CL. Aedes aegypti miRNA-33 modulates permethrin induced toxicity by regulating VGSC transcripts. Sci Rep 2021; 11:7301. [PMID: 33790374 PMCID: PMC8012613 DOI: 10.1038/s41598-021-86665-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Aedes aegypti is a major vector of Zika, dengue, and other arboviruses. Permethrin adulticidal spraying, which targets the voltage-gated sodium channel (VGSC), is commonly done to reduce local mosquito populations and protect humans from exposure to arbovirus pathogens transmitted by this dangerous pest. Permethrin resistance, however, is a growing problem and understanding its underlying molecular basis may identify avenues to combat it. We identified a single G:C polymorphism in pre-miR-33 that was genetically associated with permethrin resistance; resulting isoforms had structural differences that may affect DICER-1/pre-miRNA processing rates. We then assessed the effects of overexpression of pre-miR-33 isoforms on permethrin toxicological phenotypes, VGSC transcript abundance and protein levels for two genetically related mosquito strains. One strain had its naturally high permethrin resistance levels maintained by periodic treatment, and the other was released from selection. VGSC protein levels were lower in the permethrin resistant strain than in the related permethrin-susceptible strain. Overexpression of the G-pre-miR-33 isoform reduced VGSC expression levels in both strains. To further elucidate changes in gene expression associated with permethrin resistance, exome-capture gDNA deep sequencing, genetic association mapping and subsequent gene set enrichment analysis revealed that transport genes, in particular, were selected in resistant versus susceptible mosquitoes. Collectively, these data indicate that miR-33 regulates VGSC expression as part of a nuanced system of neuronal regulation that contributes to a network of heritable features determining permethrin resistance.
Collapse
Affiliation(s)
- Tristan D Kubik
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1685, Fort Collins, CO, 80523, USA
| | - Trey K Snell
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1685, Fort Collins, CO, 80523, USA
| | - Karla Saavedra-Rodriguez
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1685, Fort Collins, CO, 80523, USA
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1685, Fort Collins, CO, 80523, USA
| | - John R Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1685, Fort Collins, CO, 80523, USA
| | - Saul Lozano-Fuentes
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1685, Fort Collins, CO, 80523, USA
| | - William C Black
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1685, Fort Collins, CO, 80523, USA
| | - Corey L Campbell
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1685, Fort Collins, CO, 80523, USA.
| |
Collapse
|
6
|
The Genetic Basis for Salivary Gland Barriers to Arboviral Transmission. INSECTS 2021; 12:insects12010073. [PMID: 33467430 PMCID: PMC7830681 DOI: 10.3390/insects12010073] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
Arthropod-borne viruses (arboviruses) infect mosquito salivary glands and then escape to saliva prior to virus transmission. Arbovirus transmission from mosquitoes can be modulated by salivary gland infection barriers (SGIBs) and salivary gland escape barriers (SGEBs). We determined the influence of SGIBs and SGEBs by estimating the quantitative genetic contributions of Aedes aegypti half-sib families (Mapastepec, Mexico) infected with three dengue 2 (DENV2), two chikungunya (CHIKV), and two Zika (ZIKV) genotypes. We determined virus titer per salivary gland and saliva at seven days post-infection and virus prevalence in the half-sib population. CHIKV or ZIKV genotypes did not present SGIB, whereas DENV2 genotypes showed low rates of SGIB. However, virus titer and prevalence due to additive genetic factors in the half-sib family displayed a significant narrow-sense heritability (h2) for SGIB in two of the three DENV2 genotypes and one CHIKV and one ZIKV genotype. SGEBs were detected in all seven virus strains: 60-88% of DENV2 and 48-62% of CHIKV or ZIKV genotype infections. SGEB h2 was significant for all CHIKV or ZIKV genotypes but not for any of the DENV2 genotypes. SGIBs and SGEBs exhibited classical gene-by-gene interaction dynamics and are influenced by genetic factors in the mosquito and the virus.
Collapse
|
7
|
Compton A, Sharakhov IV, Tu Z. Recent advances and future perspectives in vector-omics. CURRENT OPINION IN INSECT SCIENCE 2020; 40:94-103. [PMID: 32650287 PMCID: PMC8041138 DOI: 10.1016/j.cois.2020.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/07/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
We have reviewed recent progress and the remaining challenges in vector-omics. We have highlighted several technologies and applications that facilitate novel biological insights beyond achieving a reference-quality genome assembly. Among other topics, we have discussed the applications of chromatin conformation capture, chromatin accessibility assays, optical mapping, full-length RNA sequencing, single cell RNA analysis, proteomics, and population genomics. We anticipate that we will witness a great expansion in vector-omics research not only in its application in a broad range of species, but also its ability to uncover novel genetic elements and tackle previously inaccessible regions of the genome. It is our hope that the continued innovation in device portability, cost reduction, and informatics support will in the foreseeable future bring vector-omics to every vector laboratory and field station in the world, which will have an unparalleled impact on basic research and the control of vector-borne infectious diseases.
Collapse
Affiliation(s)
- Austin Compton
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States; Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Igor V Sharakhov
- Fralin Life Science Institute, Virginia Tech, Blacksburg, VA 24061, United States; Department of Entomology, Virginia Tech, Blacksburg, VA 24061, United States; The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, United States; Department of Genetics and Cell Biology, Tomsk State University, Tomsk 634050, Russia
| | - Zhijian Tu
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, United States; Department of Entomology, Virginia Tech, Blacksburg, VA 24061, United States; The Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA 24061, United States.
| |
Collapse
|
8
|
Fernando HSD, Hapugoda M, Perera R, Black IV WC, De Silva BGDNK. Mitochondrial metabolic genes provide phylogeographic relationships of global collections of Aedes aegypti (Diptera: Culicidae). PLoS One 2020; 15:e0235430. [PMID: 32722672 PMCID: PMC7386613 DOI: 10.1371/journal.pone.0235430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Phylogeographic relationships among global collections of the mosquito Aedes aegypti were evaluated using the mitochondrial Cytochrome C Oxidase 1 (CO1) and NADH dehydrogenase subunit 4 (ND4) genes including new sequences from Sri Lanka. Phylogeographic analysis estimated that Ae. aegypti arose as a species ~614 thousand years ago (kya) in the late Pleistocene. At 545 kya an “early” East African clade arose that continued to differentiate in East Africa, and eventually gave rise to three lineages one of which is distributed throughout all tropical and subtropical regions, a second that contains Southeast Asian/Sri Lankan mosquitoes and a third that contains mostly New World mosquitoes. West African collections were not represented in this early clade. The late clade continued to differentiate throughout Africa and gave rise to a lineage that spread globally. The most recent branches of the late clade are represented by South-East Asia and India/Pakistan collections. Analysis of migration rates suggests abundant gene flow between India/Pakistan and the rest of the world with the exception of Africa.
Collapse
Affiliation(s)
- H. S. D. Fernando
- Department of Zoology, Center for Biotechnology, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Menaka Hapugoda
- Molecular Medicine Unit, Faculty of Medicine, University of Kelaniya, Kelaniya, Sri Lanka
| | - Rushika Perera
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - William C. Black IV
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - B. G. D. N. K. De Silva
- Department of Zoology, Center for Biotechnology, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
- * E-mail:
| |
Collapse
|
9
|
Dickson LB, Merkling SH, Gautier M, Ghozlane A, Jiolle D, Paupy C, Ayala D, Moltini-Conclois I, Fontaine A, Lambrechts L. Exome-wide association study reveals largely distinct gene sets underlying specific resistance to dengue virus types 1 and 3 in Aedes aegypti. PLoS Genet 2020; 16:e1008794. [PMID: 32463828 PMCID: PMC7282673 DOI: 10.1371/journal.pgen.1008794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/09/2020] [Accepted: 04/23/2020] [Indexed: 11/29/2022] Open
Abstract
Although specific interactions between host and pathogen genotypes have been well documented in invertebrates, the identification of host genes involved in discriminating pathogen genotypes remains a challenge. In the mosquito Aedes aegypti, the main dengue virus (DENV) vector worldwide, statistical associations between host genetic markers and DENV types or strains were previously detected, but the host genes underlying this genetic specificity have not been identified. In particular, it is unknown whether DENV type- or strain-specific resistance relies on allelic variants of the same genes or on distinct gene sets. Here, we investigated the genetic architecture of DENV resistance in a population of Ae. aegypti from Bakoumba, Gabon, which displays a stronger resistance phenotype to DENV type 1 (DENV-1) than to DENV type 3 (DENV-3) infection. Following experimental exposure to either DENV-1 or DENV-3, we sequenced the exomes of large phenotypic pools of mosquitoes that are either resistant or susceptible to each DENV type. Using variation in single-nucleotide polymorphism (SNP) frequencies among the pools, we computed empirical p values based on average gene scores adjusted for the differences in SNP counts, to identify genes associated with infection in a DENV type-specific manner. Among the top 5% most significant genes, 263 genes were significantly associated with resistance to both DENV-1 and DENV-3, 287 genes were only associated with DENV-1 resistance and 290 were only associated with DENV-3 resistance. The shared significant genes were enriched in genes with ATP binding activity and sulfur compound transmembrane transporter activity, whereas the genes uniquely associated with DENV-3 resistance were enriched in genes with zinc ion binding activity. Together, these results indicate that specific resistance to different DENV types relies on largely non-overlapping sets of genes in this Ae. aegypti population and pave the way for further mechanistic studies. Compatibility between hosts and pathogens is often genetically specific in invertebrates but host genes underlying this genetic specificity have not been elucidated. We investigated the genetic architecture of dengue virus type-specific resistance in the mosquito vector Aedes aegypti. We used a natural population of Ae. aegypti from Bakoumba, Gabon, which is differentially resistant to dengue virus type 1 and dengue virus type 3. We surveyed genetic variation in protein-coding regions of the mosquito genome and compared the frequency of genetic polymorphisms between groups of mosquitoes that are either resistant or susceptible to each dengue virus type. We found that the Ae. aegypti genes associated with resistance to dengue virus type 1 or dengue virus type 3 were largely non-overlapping. This finding indicates that different sets of host genes, rather than different variants of the same genes, confer pathogen-specific resistance in this population. This study is an important step towards identification of mechanisms underlying the genetic specificity of invertebrate host-pathogen interactions.
Collapse
Affiliation(s)
- Laura B. Dickson
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Sarah H. Merkling
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Mathieu Gautier
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
| | - Amine Ghozlane
- Hub de Bioinformatique et Biostatistique–Département Biologie Computationnelle, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Davy Jiolle
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Christophe Paupy
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Diego Ayala
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Isabelle Moltini-Conclois
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
- MIVEGEC, Univ. Montpellier, IRD, CNRS, Montpellier, France
| | - Albin Fontaine
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
| | - Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, UMR2000, CNRS, Paris, France
- * E-mail:
| |
Collapse
|
10
|
Fernando H, Hapugoda M, Perera R, Black IV WC, De Silva B. Gene Flow Patterns Among Aedes aegypti (Diptera: Culicidae) Populations in Sri Lanka. INSECTS 2020; 11:E169. [PMID: 32155917 PMCID: PMC7143927 DOI: 10.3390/insects11030169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/27/2023]
Abstract
In Sri Lanka, dengue is the most serious arboviral disease. Recent increases in dengue cases suggest a higher infection rate and spread of the disease to new areas. The present study explores gene flow patterns of Ae. aegypti, the main vector of dengue disease, among 10 collection sites including major ports and inland cities using variations at 11 microsatellite loci. Discriminant analysis of principal components (DAPC) and k-means clustering estimated eight genetic clusters. Analysis of Molecular Variance (AMOVA) estimated equal variances among cities and among collections in Colombo, Sri Lanka. Significant evidence, although weak, was detected for isolation by distance. Analysis of gene flow rates and directions using MIGRATE-n indicated that populations throughout the island served as a source of immigrants for Colombo with abundant gene flow among major commercial cities in Sri Lanka, which appear to receive migrant mosquitoes from throughout Sri Lanka. The observed patterns probably arise through human movement of Ae. aegypti during commerce from throughout Sri Lanka into Colombo increasing the risk of spread. The patterns uncovered in this study are significant for global health as Sri Lanka is situated along a key international shipping route.
Collapse
Affiliation(s)
- H.S.D. Fernando
- Center for Biotechnology, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka;
| | - Menaka Hapugoda
- Molecular Medicine Unit, Faculty of Medicine, University of Kelaniya, Kelaniya 11010, Sri Lanka;
| | - Rushika Perera
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (R.P.)
| | - William C. Black IV
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (R.P.)
| | - B.G.D.N.K. De Silva
- Center for Biotechnology, Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka;
| |
Collapse
|
11
|
Saavedra‐Rodriguez K, Campbell CL, Lenhart A, Penilla P, Lozano‐Fuentes S, Black WC. Exome-wide association of deltamethrin resistance in Aedes aegypti from Mexico. INSECT MOLECULAR BIOLOGY 2019; 28:591-604. [PMID: 30758862 PMCID: PMC6766855 DOI: 10.1111/imb.12575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Aedes aegypti is the major vector of a number of arboviruses that cause disease in humans. Without vaccines or pharmaceuticals, pyrethroid insecticides remain the major tool for public health protection. Pyrethroid resistance is now widespread. Replacement substitutions in the voltage-gated sodium channel (vgsc) that reduce the stability of pyrethroid binding account for most of the resistance, but metabolic mechanisms also inactivate pyrethroids. High-throughput sequencing and the A. aegypti L5 annotated physical map has allowed interrogation of the exome for genes and single-nucleotide polymorphisms associated with pyrethroid resistance. We exposed females of A. aegypti from Mexico to a deltamethrin discriminating dose to designate them as resistant (active after 1 h) or susceptible (knocked down with no recovery after 4 h). The vgsc on chromosome 3 had the highest association, followed by genes proximal to vgsc. We identified potential detoxification genes located singly (eg HPX8C) or within clusters in chromosome 2 [three esterase clusters, two of cytochrome P450 monooxygenases (CYP)] and chromosome 3 (one cluster of 16 CYP325 and seven CYP9 genes). Deltamethrin resistance in A. aegypti is associated with mutations in the vgsc gene and a large assortment of genes.
Collapse
Affiliation(s)
- K. Saavedra‐Rodriguez
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsCOUSA
| | - C. L. Campbell
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsCOUSA
| | - A. Lenhart
- Division of Parasitic Diseases and MalariaCenter for Global Health, Centers for Disease Control and PreventionAtlantaGAUSA
| | - P. Penilla
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsCOUSA
- Division of Parasitic Diseases and MalariaCenter for Global Health, Centers for Disease Control and PreventionAtlantaGAUSA
| | - S. Lozano‐Fuentes
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsCOUSA
| | - W. C. Black
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsCOUSA
| |
Collapse
|
12
|
Prolonged mosquitocidal activity of Siparuna guianensis essential oil encapsulated in chitosan nanoparticles. PLoS Negl Trop Dis 2019; 13:e0007624. [PMID: 31398198 PMCID: PMC6703692 DOI: 10.1371/journal.pntd.0007624] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/21/2019] [Accepted: 07/10/2019] [Indexed: 01/03/2023] Open
Abstract
Background The use of synthetic insecticides is one of the most common strategies for controlling disease vectors such as mosquitos. However, their overuse can result in serious risks to human health, to the environment, as well as to the selection of insecticidal resistant insect strains. The development of efficient and eco-friendly insect control is urgent, and essential oils have been presented as potential alternatives to synthetic insecticides. Moreover, nanoencapsulation techniques can enhance their efficiency by protecting from degradation and providing a controlled release rate. Results We assessed the potential of chitosan nanoparticles in encapsulating Siparuna guianensis essential oil, and maintaining its efficiency and prolonging its activity for the control of Aedes aegypti larvae. The encapsulation was characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), with an encapsulation efficiency ranging from 84.8% to 88.0%. Toxicity studies have demonstrated efficacy against mosquito larvae over 50% for 19 days with 100% mortality during the first week. This persistent action is presumably due to the enhanced contact and slow and maintained release conferred by chitosan nanoparticles. Furthermore, the exposure of aquatic non-target organisms (e.g. embryos and small adult fishes) revealed adequate selectivity of these nanoparticles. Conclusions The encapsulation of S. guianensis essential oil in chitosan nanoparticles showed promising potential as a larvicide control alternative and should be considered within strategies for fighting Ae. aegypti. Numerous outbreaks of infectious diseases such as dengue, zika, and chikungunya in tropical countries have occurred where the mosquito Aedes aegypti is the transmitting vector. In Brazil, these infections are responsible for deaths and severe sequelae. Thus, many efforts have been made by governmental and research groups to control these outbreaks. However, complete success in this control has so far remained unachieved. Parallel to the need to develop new technologies that contribute to the control of insects that transmit diseases, there is a growing societal awareness regarding the risks associated with the use of synthetic insecticides, which has led to a search for natural alternatives such as essential oils from plants. Thus, our group conducted experiments to evaluate the application of nanotechnology in obtaining an efficient prolonged release system to combat Ae. aegypti larvae using the essential oil of a plant native to the Cerrado and Amazonian forests. These results demonstrate that using a simple and easily scalable encapsulation technique; it is possible to keep the low toxicity against non-target organism and prolong the activity of an essential oil in water and maintain larval mortality at a significant level for more than a week with a single application.
Collapse
|
13
|
Oberhofer G, Ivy T, Hay BA. Cleave and Rescue, a novel selfish genetic element and general strategy for gene drive. Proc Natl Acad Sci U S A 2019; 116:6250-6259. [PMID: 30760597 PMCID: PMC6442612 DOI: 10.1073/pnas.1816928116] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
There is great interest in being able to spread beneficial traits throughout wild populations in ways that are self-sustaining. Here, we describe a chromosomal selfish genetic element, CleaveR [Cleave and Rescue (ClvR)], able to achieve this goal. ClvR comprises two linked chromosomal components. One, germline-expressed Cas9 and guide RNAs (gRNAs)-the Cleaver-cleaves and thereby disrupts endogenous copies of a gene whose product is essential. The other, a recoded version of the essential gene resistant to cleavage and gene conversion with cleaved copies-the Rescue-provides essential gene function. ClvR enhances its transmission, and that of linked genes, by creating conditions in which progeny lacking ClvR die because they have no functional copies of the essential gene. In contrast, those who inherit ClvR survive, resulting in an increase in ClvR frequency. ClvR is predicted to spread to fixation under diverse conditions. To test these predictions, we generated a ClvR element in Drosophila melanogasterClvRtko is located on chromosome 3 and uses Cas9 and four gRNAs to disrupt melanogaster technical knockout (tko), an X-linked essential gene. Rescue activity is provided by tko from Drosophila virilisClvRtko results in germline and maternal carryover-dependent inactivation of melanogaster tko (>99% per generation); lethality caused by this loss is rescued by the virilis transgene; ClvRtko activities are robust to genetic diversity in strains from five continents; and uncleavable but functional melanogaster tko alleles were not observed. Finally, ClvRtko spreads to transgene fixation. The simplicity of ClvR suggests it may be useful for altering populations in diverse species.
Collapse
Affiliation(s)
- Georg Oberhofer
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Tobin Ivy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
14
|
Campbell CL, Saavedra-Rodriguez K, Kubik TD, Lenhart A, Lozano-Fuentes S, Black WC. Vgsc-interacting proteins are genetically associated with pyrethroid resistance in Aedes aegypti. PLoS One 2019; 14:e0211497. [PMID: 30695054 PMCID: PMC6350986 DOI: 10.1371/journal.pone.0211497] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/15/2019] [Indexed: 11/18/2022] Open
Abstract
Association mapping of factors that condition pyrethroid resistance in Aedes aegypti has consistently identified genes in multiple functional groups. Toward better understanding of the mechanisms involved, we examined high throughput sequencing data (HTS) from two Aedes aegypti aegypti collections from Merida, Yucatan, Mexico treated with either permethrin or deltamethrin. Exome capture enrichment for coding regions and the AaegL5 annotation were used to identify genes statistically associated with resistance. The frequencies of single nucleotide polymorphisms (SNPs) were compared between resistant and susceptible mosquito pools using a contingency χ2 analysis. The -log10(χ2p value) was calculated at each SNP site, with a weighted average determined from all sites in each gene. Genes with -log10(χ2p value) ≥ 4.0 and present among all 3 treatment groups were subjected to gene set enrichment analysis (GSEA). We found that several functional groups were enriched compared to all coding genes. These categories were transport, signal transduction and metabolism, in order from highest to lowest statistical significance. Strikingly, 21 genes with demonstrated association to synaptic function were identified. In the high association group (n = 1,053 genes), several genes were identified that also genetically or physically interact with the voltage-gated sodium channel (VGSC). These genes were eg., CHARLATAN (CHL), a transcriptional regulator, several ankyrin-domain proteins, PUMILIO (PUM), a translational repressor, and NEDD4 (E3 ubiquitin-protein ligase). There were 13 genes that ranked among the top 10%: these included VGSC; CINGULIN, a predicted neuronal gap junction protein, and the aedine ortholog of NERVY (NVY), a transcriptional regulator. Silencing of CHL and NVY followed by standard permethrin bottle bioassays validated their association with permethrin resistance. Importantly, VGSC levels were also reduced about 50% in chl- or nvy-dsRNA treated mosquitoes. These results are consistent with the contribution of a variety of neuronal pathways to pyrethroid resistance in Ae. aegypti.
Collapse
Affiliation(s)
- Corey L Campbell
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Karla Saavedra-Rodriguez
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Tristan D Kubik
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Audrey Lenhart
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Saul Lozano-Fuentes
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - William C Black
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
15
|
Jones RT, Tusting LS, Smith HMP, Segbaya S, Macdonald MB, Bangs MJ, Logan JG. The impact of industrial activities on vector-borne disease transmission. Acta Trop 2018; 188:142-151. [PMID: 30165072 DOI: 10.1016/j.actatropica.2018.08.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/25/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022]
Abstract
Industrial activities have produced profound changes in the natural environment, including the mass removal of trees, fragmentation of habitats, and creation of larval mosquito breeding sites, that have allowed the vectors of disease pathogens to thrive. We conducted a review of the literature to assess the impact of industrial activities on vector-borne disease transmission. Our study shows that industrial activities may be coupled with significant changes to human demographics that can potentially increase contact between pathogens, vectors and hosts, and produce a shift of parasites and susceptible populations between low and high disease endemic areas. Indeed, where vector-borne diseases and industrial activities intersect, large numbers of potentially immunologically naïve people may be exposed to infection and lack the knowledge and means to protect themselves from infection. Such areas are typically associated with inadequate access to quality health care, thus allowing industrial development and production sites to become important foci of transmission. The altered local vector ecologies, and the changes in disease dynamics that changes affect, create challenges for under-resourced health care and vector-control systems.
Collapse
Affiliation(s)
- Robert T Jones
- ARCTEC, London School of Hygiene & Tropical Medicine, London, United Kingdom.
| | - Lucy S Tusting
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Hugh M P Smith
- ARCTEC, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | | | - Michael J Bangs
- International SOS, Ltd., Papua Province, Indonesia; International SOS, Ltd., Lualaba Province, Democratic Republic of Congo
| | - James G Logan
- ARCTEC, London School of Hygiene & Tropical Medicine, London, United Kingdom; Department of Disease Control, London School of Hygiene & Tropical Medicine, United Kingdom
| |
Collapse
|
16
|
Behavior of homing endonuclease gene drives targeting genes required for viability or female fertility with multiplexed guide RNAs. Proc Natl Acad Sci U S A 2018; 115:E9343-E9352. [PMID: 30224454 PMCID: PMC6176634 DOI: 10.1073/pnas.1805278115] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Homing endonuclease gene (HEG)-based gene drive can bring about population suppression when genes required for viability or fertility are targeted. However, these strategies are vulnerable to failure through mechanisms that create alleles resistant to cleavage but that retain wild-type gene function. We show that resistance allele creation can be prevented through the use of guide RNAs designed to cleave a gene at four target sites. However, homing rates were modest, and the HEGs were unstable during homing. In addition, use of a promoter active in the female germline resulted in levels of HEG carryover that compromised the viability or fertility of HEG-bearing heterozygotes, thereby preventing drive. We propose strategies that can help to overcome these problems in next-generation HEG systems. A gene drive method of particular interest for population suppression utilizes homing endonuclease genes (HEGs), wherein a site-specific, nuclease-encoding cassette is copied, in the germline, into a target gene whose loss of function results in loss of viability or fertility in homozygous, but not heterozygous, progeny. Earlier work in Drosophila and mosquitoes utilized HEGs consisting of Cas9 and a single guide RNA (gRNA) that together target a specific gene for cleavage. Homing was observed, but resistant alleles immune to cleavage, while retaining wild-type gene function, were also created through nonhomologous end joining. Such alleles prevent drive and population suppression. Targeting a gene for cleavage at multiple positions has been suggested as a strategy to prevent the appearance of resistant alleles. To test this hypothesis, we generated two suppression HEGs in Drosophila melanogaster targeting genes required for embryonic viability or fertility, using a HEG consisting of CRISPR/Cas9 and gRNAs designed to cleave each gene at four positions. Rates of target locus cleavage were very high, and multiplexing of gRNAs prevented resistant allele formation. However, germline homing rates were modest, and the HEG cassette was unstable during homing events, resulting in frequent partial copying of HEGs that lacked gRNAs, a dominant marker gene, or Cas9. Finally, in drive experiments, the HEGs failed to spread due to the high fitness load induced in offspring as a result of maternal carryover of Cas9/gRNA complex activity. Alternative design principles are proposed that may mitigate these problems in future gene drive engineering.
Collapse
|
17
|
Dickson LB, Ghozlane A, Volant S, Bouchier C, Ma L, Vega-Rúa A, Dusfour I, Jiolle D, Paupy C, Mayanja MN, Kohl A, Lutwama JJ, Duong V, Lambrechts L. Diverse laboratory colonies of Aedes aegypti harbor the same adult midgut bacterial microbiome. Parasit Vectors 2018; 11:207. [PMID: 29587819 PMCID: PMC5870067 DOI: 10.1186/s13071-018-2780-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/06/2018] [Indexed: 03/25/2023] Open
Abstract
Background Host-associated microbes, collectively known as the microbiota, play an important role in the biology of multicellular organisms. In mosquito vectors of human pathogens, the gut bacterial microbiota influences vectorial capacity and has become the subject of intense study. In laboratory studies of vector biology, genetic effects are often inferred from differences between geographically and genetically diverse colonies of mosquitoes that are reared in the same insectary. It is unclear, however, to what extent genetic effects can be confounded by uncontrolled differences in the microbiota composition among mosquito colonies. To address this question, we used 16S metagenomics to compare the midgut bacterial microbiome of six laboratory colonies of Aedes aegypti recently derived from wild populations representing the geographical range and genetic diversity of the species. Results We found that the diversity, abundance, and community structure of the midgut bacterial microbiome was remarkably similar among the six different colonies of Ae. aegypti, regardless of their geographical origin. We also confirmed the relatively low complexity of bacterial communities inhabiting the mosquito midgut. Conclusions Our finding that geographically diverse colonies of Ae. aegypti reared in the same insectary harbor a similar gut bacterial microbiome supports the conclusion that the gut microbiota of adult mosquitoes is environmentally determined regardless of the host genotype. Thus, uncontrolled differences in microbiota composition are unlikely to represent a significant confounding factor in genetic studies of vector biology. Electronic supplementary material The online version of this article (10.1186/s13071-018-2780-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laura B Dickson
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, CNRS UMR 2000, Paris, France.
| | - Amine Ghozlane
- Bioinformatics and Biostatistics Hub, C3BI, USR 3756 CNRS, Institut Pasteur, Paris, France.,Genomics Facility - Biomics Pole, CITECH, Institut Pasteur, Paris, France
| | - Stevenn Volant
- Bioinformatics and Biostatistics Hub, C3BI, USR 3756 CNRS, Institut Pasteur, Paris, France
| | | | - Laurence Ma
- Genomics Facility - Biomics Pole, CITECH, Institut Pasteur, Paris, France
| | - Anubis Vega-Rúa
- Laboratory of Medical Entomology, Environment and Health Unit, Institut Pasteur de la Guadeloupe, Guadeloupe, France
| | - Isabelle Dusfour
- Vector Control and Adaptation, Institut Pasteur de la Guyane, Vectopole Amazonien Emile Abonnenc, Cayenne, French Guiana
| | - Davy Jiolle
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France.,Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Christophe Paupy
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France.,Centre International de Recherches Médicales de Franceville, Franceville, Gabon
| | - Martin N Mayanja
- Department of Arbovirology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Julius J Lutwama
- Department of Arbovirology, Uganda Virus Research Institute, Entebbe, Uganda
| | - Veasna Duong
- Virology Unit, Institut Pasteur in Cambodia, Phnom Penh, Cambodia
| | - Louis Lambrechts
- Insect-Virus Interactions Group, Department of Genomes and Genetics, Institut Pasteur, CNRS UMR 2000, Paris, France.
| |
Collapse
|
18
|
Campbell CL, Dickson LB, Lozano-Fuentes S, Juneja P, Jiggins FM, Black WC. Alternative patterns of sex chromosome differentiation in Aedes aegypti (L). BMC Genomics 2017; 18:943. [PMID: 29202694 PMCID: PMC5716240 DOI: 10.1186/s12864-017-4348-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/23/2017] [Indexed: 12/16/2022] Open
Abstract
Background Some populations of West African Aedes aegypti, the dengue and zika vector, are reproductively incompatible; our earlier study showed that divergence and rearrangements of genes on chromosome 1, which bears the sex locus (M), may be involved. We also previously described a proposed cryptic subspecies SenAae (PK10, Senegal) that had many more high inter-sex FST genes on chromosome 1 than did Ae.aegypti aegypti (Aaa, Pai Lom, Thailand). The current work more thoroughly explores the significance of those findings. Results Intersex standardized variance (FST) of single nucleotide polymorphisms (SNPs) was characterized from genomic exome capture libraries of both sexes in representative natural populations of Aaa and SenAae. Our goal was to identify SNPs that varied in frequency between males and females, and most were expected to occur on chromosome 1. Use of the assembled AaegL4 reference alleviated the previous problem of unmapped genes. Because the M locus gene nix was not captured and not present in AaegL4, the male-determining locus, per se, was not explored. Sex-associated genes were those with FST values ≥ 0.100 and/or with increased expected heterozygosity (Hexp, one-sided T-test, p < 0.05) in males. There were 85 genes common to both collections with high inter-sex FST values; all genes but one were located on chromosome 1. Aaa showed the expected cluster of high inter-sex FST genes proximal to the M locus, whereas SenAae had inter-sex FST genes along the length of chromosome 1. In addition, the Aaa M-locus proximal region showed increased Hexp levels in males, whereas SenAae did not. In SenAae, chromosomal rearrangements and subsequent suppressed recombination may have accelerated X-Y differentiation. Conclusions The evidence presented here is consistent with differential evolution of proto-Y chromosomes in Aaa and SenAae. Electronic supplementary material The online version of this article (doi: 10.1186/s12864-017-4348-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Corey L Campbell
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1692, Fort Collins, CO, 80523, USA.
| | - Laura B Dickson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1692, Fort Collins, CO, 80523, USA
| | - Saul Lozano-Fuentes
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1692, Fort Collins, CO, 80523, USA
| | - Punita Juneja
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Francis M Jiggins
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - William C Black
- Department of Microbiology, Immunology and Pathology, Colorado State University, Campus Delivery 1692, Fort Collins, CO, 80523, USA
| |
Collapse
|