1
|
Wang W, Flury AG, Rodriguez AT, Garrison JL, Brem RB. A role for worm cutl-24 in background- and parent-of-origin-dependent ER stress resistance. BMC Genomics 2022; 23:842. [PMID: 36539699 PMCID: PMC9764823 DOI: 10.1186/s12864-022-09063-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Organisms in the wild can acquire disease- and stress-resistance traits that outstrip the programs endogenous to humans. Finding the molecular basis of such natural resistance characters is a key goal of evolutionary genetics. Standard statistical-genetic methods toward this end can perform poorly in organismal systems that lack high rates of meiotic recombination, like Caenorhabditis worms. RESULTS Here we discovered unique ER stress resistance in a wild Kenyan C. elegans isolate, which in inter-strain crosses was passed by hermaphrodite mothers to hybrid offspring. We developed an unbiased version of the reciprocal hemizygosity test, RH-seq, to explore the genetics of this parent-of-origin-dependent phenotype. Among top-scoring gene candidates from a partial-coverage RH-seq screen, we focused on the neuronally-expressed, cuticlin-like gene cutl-24 for validation. In gene-disruption and controlled crossing experiments, we found that cutl-24 was required in Kenyan hermaphrodite mothers for ER stress tolerance in their inter-strain hybrid offspring; cutl-24 was also a contributor to the trait in purebred backgrounds. CONCLUSIONS These data establish the Kenyan strain allele of cutl-24 as a determinant of a natural stress-resistant state, and they set a precedent for the dissection of natural trait diversity in invertebrate animals without the need for a panel of meiotic recombinants.
Collapse
Affiliation(s)
- Wenke Wang
- Buck Institute for Research on Aging, Novato, CA, United States
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, United States
| | - Anna G Flury
- Buck Institute for Research on Aging, Novato, CA, United States
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, United States
| | - Andrew T Rodriguez
- Buck Institute for Research on Aging, Novato, CA, United States
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Jennifer L Garrison
- Buck Institute for Research on Aging, Novato, CA, United States.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States.
- Department of Cellular and Molecular Pharmacology, UC San Francisco, San Francisco, CA, United States.
- Global Consortium for Reproductive Longevity & Equality, Novato, CA, United States.
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, CA, United States.
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, United States.
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
2
|
Wallis DC, Nguyen DAH, Uebel CJ, Phillips CM. Visualization and Quantification of Transposon Activity in Caenorhabditis elegans RNAi Pathway Mutants. G3 (BETHESDA, MD.) 2019; 9:3825-3832. [PMID: 31533956 PMCID: PMC6829131 DOI: 10.1534/g3.119.400639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 09/17/2019] [Indexed: 12/26/2022]
Abstract
RNA silencing pathways play critical roles in maintaining quiescence of transposons in germ cells to promote genome integrity. However the precise mechanism by which different types of transposons are recognized by these pathways is not fully understood. Furthermore, the location in the germline where this transposition occurs after disruption of transposon silencing was previously unknown. Here we utilize the spatial and temporal organization of the Caenorhabditis elegans germline to demonstrate that transposition of DNA transposons in RNA silencing pathway mutants occur in all stages of adult germ cells. We further demonstrate that the double-strand breaks generated by transposons can restore homologous recombination in a mutant defective for the generation of meiosis-specific double-strand breaks. Finally, we detected clear differences in transposase expression and transposon excision between distinct branches of the RNA silencing pathway, emphasizing that there are multiple mechanisms by which transposons can be recognized and routed for small-RNA-mediated silencing.
Collapse
Affiliation(s)
- Dylan C Wallis
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Dieu An H Nguyen
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Celja J Uebel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| | - Carolyn M Phillips
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089
| |
Collapse
|
3
|
Nance J, Frøkjær-Jensen C. The Caenorhabditis elegans Transgenic Toolbox. Genetics 2019; 212:959-990. [PMID: 31405997 PMCID: PMC6707460 DOI: 10.1534/genetics.119.301506] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/01/2019] [Indexed: 12/30/2022] Open
Abstract
The power of any genetic model organism is derived, in part, from the ease with which gene expression can be manipulated. The short generation time and invariant developmental lineage have made Caenorhabditis elegans very useful for understanding, e.g., developmental programs, basic cell biology, neurobiology, and aging. Over the last decade, the C. elegans transgenic toolbox has expanded considerably, with the addition of a variety of methods to control expression and modify genes with unprecedented resolution. Here, we provide a comprehensive overview of transgenic methods in C. elegans, with an emphasis on recent advances in transposon-mediated transgenesis, CRISPR/Cas9 gene editing, conditional gene and protein inactivation, and bipartite systems for temporal and spatial control of expression.
Collapse
Affiliation(s)
- Jeremy Nance
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York 10016
| | - Christian Frøkjær-Jensen
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering Division (BESE), KAUST Environmental Epigenetics Program (KEEP), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
D'Alessandro M, Richard M, Stigloher C, Gache V, Boulin T, Richmond JE, Bessereau JL. CRELD1 is an evolutionarily-conserved maturational enhancer of ionotropic acetylcholine receptors. eLife 2018; 7:39649. [PMID: 30407909 PMCID: PMC6245729 DOI: 10.7554/elife.39649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022] Open
Abstract
The assembly of neurotransmitter receptors in the endoplasmic reticulum limits the number of receptors delivered to the plasma membrane, ultimately controlling neurotransmitter sensitivity and synaptic transfer function. In a forward genetic screen conducted in the nematode C. elegans, we identified crld-1 as a gene required for the synaptic expression of ionotropic acetylcholine receptors (AChR). We demonstrated that the CRLD-1A isoform is a membrane-associated ER-resident protein disulfide isomerase (PDI). It physically interacts with AChRs and promotes the assembly of AChR subunits in the ER. Mutations of Creld1, the human ortholog of crld-1a, are responsible for developmental cardiac defects. We showed that Creld1 knockdown in mouse muscle cells decreased surface expression of AChRs and that expression of mouse Creld1 in C. elegans rescued crld-1a mutant phenotypes. Altogether these results identify a novel and evolutionarily-conserved maturational enhancer of AChR biogenesis, which controls the abundance of functional receptors at the cell surface.
Collapse
Affiliation(s)
- Manuela D'Alessandro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Magali Richard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Christian Stigloher
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Vincent Gache
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Thomas Boulin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, United States
| | - Jean-Louis Bessereau
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U 1217, Institut NeuroMyoGène, Lyon, France
| |
Collapse
|
5
|
Zhou MB, Hu H, Miskey C, Lazarow K, Ivics Z, Kunze R, Yang G, Izsvák Z, Tang DQ. Transposition of the bamboo Mariner-like element Ppmar1 in yeast. Mol Phylogenet Evol 2017; 109:367-374. [PMID: 28189615 DOI: 10.1016/j.ympev.2017.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 12/30/2022]
Abstract
The moso bamboo genome contains the two structurally intact and thus potentially functional mariner-like elements Ppmar1 and Ppmar2. Both elements contain perfect terminal inverted repeats (TIRs) and a full-length intact transposase gene. Here we investigated whether Ppmar1 is functional in yeast (Saccharomyces cerevisiae). We have designed a two-component system consisting of a transposase expression cassette and a non-autonomous transposon on two separate plasmids. We demonstrate that the Ppmar1 transposase Pptpase1 catalyses excision of the non-autonomous Ppmar1NA element from the plasmid and reintegration at TA dinucleotide sequences in the yeast chromosomes. In addition, we generated 14 hyperactive Ppmar1 transposase variants by systematic single amino acid substitutions. The most active transposase variant, S171A, induces 10-fold more frequent Ppmar1NA excisions in yeast than the wild type transposase. The Ppmar1 transposon is a promising tool for insertion mutagenesis in moso bamboo and may be used in other plants as an alternative to the established transposon tagging systems.
Collapse
Affiliation(s)
- Ming-Bing Zhou
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, China
| | - Hui Hu
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, China
| | - Csaba Miskey
- Paul Ehrlich Institute, Paul Ehrlich Str. 51-59, 63225 Langen, Germany
| | - Katina Lazarow
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany
| | - Zoltán Ivics
- Paul Ehrlich Institute, Paul Ehrlich Str. 51-59, 63225 Langen, Germany
| | - Reinhard Kunze
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany
| | - Guojun Yang
- Department of Biology, University of Toronto, Mississauga, ON, Canada
| | - Zsuzsanna Izsvák
- Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany.
| | - Ding-Qin Tang
- The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, LinAn, China.
| |
Collapse
|
6
|
Chen X, Feng X, Guang S. Targeted genome engineering in Caenorhabditis elegans. Cell Biosci 2016; 6:60. [PMID: 27980716 PMCID: PMC5146831 DOI: 10.1186/s13578-016-0125-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/17/2016] [Indexed: 12/15/2022] Open
Abstract
The generation of mutants and transgenes are indispensible for biomedical research. In the nematode Caenorhabditis elegans, a series of methods have been developed to introduce genome modifications, including random mutagenesis by chemical reagents, ionizing radiation and transposon insertion. In addition, foreign DNA can be integrated into the genome through microparticle bombardment approach or by irradiation of animals carrying microinjected extrachromosomal arrays. Recent research has revolutionized the genome engineering technologies by using customized DNA nucleases to manipulate particular genes and genomic sequences. Many streamlined editing strategies are developed to simplify the experimental procedure and minimize the cost. In this review, we will summarize the recent progress of the site-specific genome editing methods in C. elegans, including the Cre/LoxP, FLP/FRT, MosTIC system, zinc-finger nucleases (ZFNs), transcriptional activator-like nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease. Particularly, the recent studies of CRISPR/Cas9-mediated genome editing method in C. elegans will be emphatically discussed.
Collapse
Affiliation(s)
- Xiangyang Chen
- School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, Anhui 230027 People's Republic of China
| | - Xuezhu Feng
- School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, Anhui 230027 People's Republic of China
| | - Shouhong Guang
- School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, Anhui 230027 People's Republic of China
| |
Collapse
|
7
|
Abstract
Mutagenesis drives natural selection. In the lab, mutations allow gene function to be deciphered. C. elegans is highly amendable to functional genetics because of its short generation time, ease of use, and wealth of available gene-alteration techniques. Here we provide an overview of historical and contemporary methods for mutagenesis in C. elegans, and discuss principles and strategies for forward (genome-wide mutagenesis) and reverse (target-selected and gene-specific mutagenesis) genetic studies in this animal.
Collapse
Affiliation(s)
- Lena M Kutscher
- Laboratory of Developmental Genetics, The Rockefeller University, New York NY 10065, USA.
| | | |
Collapse
|
8
|
Dickinson DJ, Ward JD, Reiner DJ, Goldstein B. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 2013; 10:1028-34. [PMID: 23995389 PMCID: PMC3905680 DOI: 10.1038/nmeth.2641] [Citation(s) in RCA: 705] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/12/2013] [Indexed: 12/16/2022]
Abstract
Study of the nematode Caenorhabditis elegans has provided important insights in a wide range of fields in biology. The ability to precisely modify genomes is critical to fully realize the utility of model organisms. Here, we report a method to edit the C. elegans genome using the Clustered Regularly Interspersed Short Palindromic Repeats (CRISPR) RNA-guided Cas9 nuclease followed by homologous recombination. We demonstrate that Cas9 is able to induce DNA double-strand breaks with specificity for targeted sites, and that these breaks can be efficiently repaired by homologous recombination. By supplying engineered homologous repair templates, we generated GFP knock-ins and targeted mutations. Together, our results outline a flexible methodology to produce essentially any desired modification in the C. elegans genome quickly and at low cost. This technology is an important addition to the array of genetic techniques already available in this experimentally tractable model organism.
Collapse
Affiliation(s)
- Daniel J Dickinson
- 1] Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA. [2] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | |
Collapse
|
9
|
Abstract
We have achieved targeted heritable genome modification in Caenorhabditis elegans by injecting mRNA of the nuclease Cas9 and Cas9 guide RNAs. This system rapidly creates precise genomic changes, including knockouts and transgene-instructed gene conversion.
Collapse
|
10
|
Farboud B, Nix P, Jow MM, Gladden JM, Meyer BJ. Molecular antagonism between X-chromosome and autosome signals determines nematode sex. Genes Dev 2013; 27:1159-78. [PMID: 23666922 DOI: 10.1101/gad.217026.113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sex is determined in Caenorhabditis elegans by the ratio of X chromosomes to the sets of autosomes, the X:A signal. A set of genes called X signal elements (XSEs) communicates X-chromosome dose by repressing the masculinizing sex determination switch gene xol-1 (XO lethal) in a dose-dependent manner. xol-1 is active in 1X:2A embryos (males) but repressed in 2X:2A embryos (hermaphrodites). Here we showed that the autosome dose is communicated by a set of autosomal signal elements (ASEs) that act in a cumulative, dose-dependent manner to counter XSEs by stimulating xol-1 transcription. We identified new ASEs and explored the biochemical basis by which ASEs antagonize XSEs to determine sex. Multiple antagonistic molecular interactions carried out on a single promoter explain how different X:A values elicit different sexual fates. XSEs (nuclear receptors and homeodomain proteins) and ASEs (T-box and zinc finger proteins) bind directly to several sites on xol-1 to counteract each other's activities and thereby regulate xol-1 transcription. Disrupting ASE- and XSE-binding sites in vivo recapitulated the misregulation of xol-1 transcription caused by disrupting cognate signal element genes. XSE- and ASE-binding sites are distinct and nonoverlapping, suggesting that direct competition for xol-1 binding is not how XSEs counter ASEs. Instead, XSEs likely antagonize ASEs by recruiting cofactors with reciprocal activities that induce opposite transcriptional states. Most ASE- and XSE-binding sites overlap xol-1's -1 nucleosome, which carries activating chromatin marks only when xol-1 is turned on. Coactivators and corepressors tethered by proteins similar to ASEs and XSEs are known to deposit and remove such marks. The concept of a sex signal comprising competing XSEs and ASEs arose as a theory for fruit flies a century ago. Ironically, while the recent work of others showed that the fly sex signal does not fit this simple paradigm, our work shows that the worm signal does.
Collapse
Affiliation(s)
- Behnom Farboud
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
11
|
Positive modulation of a Cys-loop acetylcholine receptor by an auxiliary transmembrane subunit. Nat Neurosci 2012; 15:1374-81. [DOI: 10.1038/nn.3197] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/30/2012] [Indexed: 02/07/2023]
|
12
|
Robert VJP. Engineering the Caenorhabditis elegans genome by Mos1-induced transgene-instructed gene conversion. Methods Mol Biol 2012; 859:189-201. [PMID: 22367873 DOI: 10.1007/978-1-61779-603-6_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Mos1-induced transgene-instructed gene conversion (MosTIC) is a technique of choice to engineer the genome of the nematode Caenorhabditis elegans. MosTIC is initiated by the excision of Mos1, a DNA transposon of the Tc1/Mariner super family that can be mobilized in the germ line of C. elegans. Mos1 excision creates a DNA double-strand break that is repaired by several cellular mechanisms, including transgene-instructed gene conversion. For MosTIC, the transgenic repair template used by the gene conversion machinery is made of sequences that share DNA homologies with the genomic region to engineer and carries the modifications to be introduced in the genome. In this chapter, we present two MosTIC protocols routinely used.
Collapse
Affiliation(s)
- Valérie J P Robert
- Laboratory of Molecular and Cellular Biology, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
13
|
Boulin T, Hobert O. From genes to function: the C. elegans genetic toolbox. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:114-37. [PMID: 23801671 DOI: 10.1002/wdev.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review aims to provide an overview of the technologies which make the nematode Caenorhabditis elegans an attractive genetic model system. We describe transgenesis techniques and forward and reverse genetic approaches to isolate mutants and clone genes. In addition, we discuss the new possibilities offered by genome engineering strategies and next-generation genome analysis tools.
Collapse
Affiliation(s)
- Thomas Boulin
- Department of Biology, Institut de Biologie de l'École Normale Supérieure, Paris, France.
| | | |
Collapse
|
14
|
Robert VJP, Bessereau JL. Genome engineering by transgene-instructed gene conversion in C. elegans. Methods Cell Biol 2011; 106:65-88. [PMID: 22118274 DOI: 10.1016/b978-0-12-544172-8.00003-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The nematode Caenorhabditis elegans is an anatomically simple metazoan that has been used over the last 40 years to address an extremely wide range of biological questions. One major advantage of the C. elegans system is the possibility to conduct large-scale genetic screens on randomly mutagenized animals, either looking for a phenotype of interest and subsequently relate the mutated gene to the biological process under study ("forward genetics"), or screening for molecular lesions impairing the function of a specific gene and later analyze the phenotype of the mutant ("reverse genetics"). However, the nature of the genomic lesion is not controlled in either strategy. Here we describe a technique to engineer customized mutations in the C. elegans genome by homologous recombination. This technique, called MosTIC (for Mos1 excision induced transgene-instructed gene conversion), requires a C. elegans strain containing an insertion of the Drosophila transposon Mos1 within the locus to modify. Expression of the Mos transposase in the germ line triggers Mos1 excision, which causes a DNA double strand break (DSB) in the chromosome at the excision site. The DSB locally stimulates DNA repair by homologous recombination, which can sometimes occur between the chromosome and a transgene containing sequence homologous to the broken locus. In that case, sequence variations contained in the repair template will be copied by gene conversion into the genome. Here we provide a detailed protocol of the MosTIC technique, which can be used to introduce point mutations and generate knockout and knock-in alleles.
Collapse
Affiliation(s)
- Valérie J P Robert
- Ecole Normale Supérieure, Institut de Biologie de l'ENS, IBENS, Paris, France
| | | |
Collapse
|
15
|
Abstract
The ability to manipulate the genome of organisms at will is perhaps the single most useful ability for the study of biological systems. Techniques for the generation of transgenics in the nematode Caenorhabditis elegans became available in the late 1980s. Since then, improvements to the original approach have been made to address specific limitations with transgene expression, expand on the repertoire of the types of biological information that transgenes can provide, and begin to develop methods to target transgenes to defined chromosomal locations. Many recent, detailed protocols have been published, and hence in this chapter, we will review various approaches to making C. elegans transgenics, discuss their applications, and consider their relative advantages and disadvantages. Comments will also be made on anticipated future developments and on the application of these methods to other nematodes.
Collapse
Affiliation(s)
- Vida Praitis
- Biology Department, Grinnell College, Grinnell, Iowa, USA
| | | |
Collapse
|
16
|
Thomas X, Hedhili S, Beuf L, Demattéi MV, Laparra H, Khong GN, Breitler JC, Montandon F, Carnus E, Norre F, Burtin D, Gantet P, Bigot Y, Renault S. The mariner Mos1 transposase produced in tobacco is active in vitro. Genetica 2010; 138:519-30. [PMID: 19847655 DOI: 10.1007/s10709-009-9414-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 10/05/2009] [Indexed: 11/25/2022]
Abstract
The mariner-like transposon Mos1 is used for insertional mutagenesis and transgenesis in different animals (insects, nematodes), but has never been used in plants. In this paper, the transposition activity of Mos1 was tested in Nicotiana tabacum, but no transposition event was detected. In an attempt to understand the absence of in planta transposition, Mos1 transposase (MOS1) was produced and purified from transgenic tobacco (HMNtMOS1). HMNtMOS1 was able to perform all transposition reaction steps in vitro: binding to ITR, excision and integration of the same pseudo-transposon used in in planta transposition assays. The in vitro transposition reaction was not inhibited by tobacco nuclear proteins, and did not depend on the temperature used for plant growth. Several hypotheses are proposed that could explain the inhibition of HMNtMOS1 activity in planta.
Collapse
Affiliation(s)
- Xavier Thomas
- Université François Rabelais de Tours, GICC, Parc de Grandmont, 37200 Tours, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gendrel M, Rapti G, Richmond JE, Bessereau JL. A secreted complement-control-related protein ensures acetylcholine receptor clustering. Nature 2009; 461:992-6. [PMID: 19794415 DOI: 10.1038/nature08430] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Accepted: 08/14/2009] [Indexed: 01/02/2023]
Abstract
Efficient neurotransmission at chemical synapses relies on spatial congruence between the presynaptic active zone, where synaptic vesicles fuse, and the postsynaptic differentiation, where neurotransmitter receptors concentrate. Diverse molecular systems have evolved to localize receptors at synapses, but in most cases, they rely on scaffolding proteins localized below the plasma membrane. A few systems have been suggested to control the synaptic localization of neurotransmitter receptors through extracellular interactions, such as the pentraxins that bind AMPA receptors and trigger their aggregation. However, it is not yet clear whether these systems have a central role in the organization of postsynaptic domains in vivo or rather provide modulatory functions. Here we describe an extracellular scaffold that is necessary to cluster acetylcholine receptors at neuromuscular junctions in the nematode Caenorhabditis elegans. It involves the ectodomain of the previously identified transmembrane protein LEV-10 (ref. 6) and a novel extracellular protein, LEV-9. LEV-9 is secreted by the muscle cells and localizes at cholinergic neuromuscular junctions. Acetylcholine receptors, LEV-9 and LEV-10 are interdependent for proper synaptic localization and physically interact based on biochemical evidence. Notably, the function of LEV-9 relies on eight complement control protein (CCP) domains. These domains, also called 'sushi domains', are usually found in proteins regulating complement activity in the vertebrate immune system. Because the complement system does not exist in protostomes, our results suggest that some of the numerous uncharacterized CCP proteins expressed in the mammalian brain might be directly involved in the organization of the synapse, independently from immune functions.
Collapse
|
18
|
Lampe DJ. Bacterial genetic methods to explore the biology of mariner transposons. Genetica 2009; 138:499-508. [PMID: 19711186 DOI: 10.1007/s10709-009-9401-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022]
Abstract
Mariners are small DNA mediated transposons of eukaryotes that fortuitously function in bacteria. Using bacterial genetics, it is possible to study a variety of properties of mariners, including transpositional ability, dominant-negative regulation, overexpresson inhibition, and the function of cis-acting sequences like the inverted terminal repeats. In conjunction with biochemical techniques, the structure of the transposase can be elucidated and the activity of the elements can be improved for genetic tool use. Finally, it is possible to uncover functional transposase genes directly from genomes given a suitable bacterial genetic screen.
Collapse
Affiliation(s)
- David J Lampe
- Department of Biological Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, PA 15116, USA.
| |
Collapse
|
19
|
Germon S, Bouchet N, Casteret S, Carpentier G, Adet J, Bigot Y, Augé-Gouillou C. Mariner Mos1 transposase optimization by rational mutagenesis. Genetica 2009; 137:265-76. [PMID: 19533383 DOI: 10.1007/s10709-009-9375-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 05/25/2009] [Indexed: 11/28/2022]
Abstract
Mariner transposons are probably the most widespread transposable element family in animal genomes. To date, they are believed not to require species-specific host factors for transposition. Despite this, Mos1, one of the most-studied mariner elements (with Himar1), has been shown to be active in insects, but inactive in mammalian genomes. To circumvent this problem, one strategy consists of both enhancing the activity of the Mos1 transposase (MOS1), and making it insensitive to activity-altering post-translational modifications. Here, we report rational mutagenesis studies performed to obtain hyperactive and non-phosphorylable MOS1 variants. Transposition assays in bacteria have made it possible to isolate numerous hyperactive MOS1 variants. The best mutant combinations, named FETY and FET, are 60- and 800-fold more active than the wild-type MOS1 version, respectively. However, there are serious difficulties in using them, notably because they display severe cytotoxicity. On the other hand, three positions lying within the HTH motif, T88, S99, and S104 were found to be sensitive to phosphorylation. Our efforts to obtain active non-phosphorylable mutants at S99 and S104 positions were unsuccessful, as these residues, like the co-linear amino acids in their close vicinity, are critical for MOS1 activity. Even if host factors are not essential for transposition, our data demonstrate that the host machinery is essential in regulating MOS1 activity.
Collapse
Affiliation(s)
- Stéphanie Germon
- GICC, Université François Rabelais de Tours, 37200, Tours, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Manipulating the Caenorhabditis elegans genome using mariner transposons. Genetica 2009; 138:541-9. [PMID: 19347589 DOI: 10.1007/s10709-009-9362-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 03/20/2009] [Indexed: 12/16/2022]
Abstract
Tc1, one of the founding members of the Tc1/mariner transposon superfamily, was identified in the nematode Caenorhabditis elegans more than 25 years ago. Over the years, Tc1 and other endogenous mariner transposons became valuable tools for mutagenesis and targeted gene inactivation in C. elegans. However, transposition is naturally repressed in the C. elegans germline by an RNAi-like mechanism, necessitating the use of mutant strains in which transposition was globally derepressed, which causes drawbacks such as uncontrolled proliferation of the transposons in the genome and accumulation of background mutations. The more recent mobilization of the Drosophila mariner transposon Mos1 in the C. elegans germline circumvented the problems inherent to endogenous transposons. Mos1 transposition strictly depends on the expression of the Mos transposase, which can be controlled in the germline using inducible promoters. First, Mos1 can be used for insertional mutagenesis. The mobilization of Mos1 copies present on an extrachromosomal array results in the generation of a small number of Mos1 genomic insertions that can be rapidly cloned by inverse PCR. Second, Mos1 insertions can be used for genome engineering. Triggering the excision of a genomic Mos1 insertion causes a chromosomal break, which can be repaired by transgene-instructed gene conversion. This process is used to introduce specific changes in a given gene, such as point mutations, deletions or insertions of a tag, and to create single-copy transgenes.
Collapse
|
21
|
Bazopoulou D, Tavernarakis N. The NemaGENETAG initiative: large scale transposon insertion gene-tagging in Caenorhabditis elegans. Genetica 2009; 137:39-46. [PMID: 19343510 DOI: 10.1007/s10709-009-9361-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 03/20/2009] [Indexed: 12/01/2022]
Abstract
The nematode Caenorhabditis elegans is a widely appreciated, powerful platform in which to study important biological mechanisms related to human health. More than 65% of human disease genes have homologues in the C. elegans genome, and essential aspects of mammalian cell biology, neurobiology and development are faithfully recapitulated in this organism. The EU-funded NemaGENETAG project was initiated with the aim to develop cutting-edge tools and resources that will facilitate modelling of human pathologies in C. elegans, and advance our understanding of animal development and physiology. The main objective of the project involves the generation and evaluation of a large collection of transposon-tagged mutants. In the process of achieving this objective the NemaGENETAG consortium also endeavours to optimize and automate existing transposon-mediated mutagenesis methodologies based on the Mos1 transposable element, in addition to developing alternatives using other transposon systems. The final product of this initiative-a comprehensive collection of transposon-tagged alleles-together with the acquisition of efficient transposon-based tools for mutagenesis and transgenesis in C. elegans, should yield a wealth of information on gene function, immediately relevant to key biological processes and to pharmaceutical research and development.
Collapse
Affiliation(s)
- Daphne Bazopoulou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, 70013, Heraklion, Crete, Greece
| | | |
Collapse
|
22
|
Qian H, Robertson AP, Powell-Coffman JA, Martin RJ. Levamisole resistance resolved at the single-channel level in Caenorhabditis elegans. FASEB J 2008; 22:3247-54. [PMID: 18519804 DOI: 10.1096/fj.08-110502] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sydney Brenner promoted Caenorhabditis elegans as a model organism, and subsequent investigations pursued resistance to the nicotinic anthelmintic drug levamisole in C. elegans at a genetic level. These studies have advanced our understanding of genes associated with neuromuscular transmission and resistance to the antinematodal drug. In lev-8 and lev-1 mutant C. elegans, levamisole resistance is associated with reductions in levamisole-activated whole muscle cell currents. Although lev-8 and lev-1 are known to code for nicotinic acetylcholine receptor (nAChR) subunits, an explanation for why these currents get smaller is not available. In wild-type adults, nAChRs aggregate at neuromuscular junctions and are not accessible for single-channel recording. Here we describe a use of LEV-10 knockouts, in which aggregation is lost, to make in situ recordings of nAChR channel currents. Our observations provide an explanation for levamisole resistance produced by LEV-8 and LEV-1 mutants at the single-channel level.
Collapse
Affiliation(s)
- Hai Qian
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
23
|
Moerman DG, Barstead RJ. Towards a mutation in every gene in Caenorhabditis elegans. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:195-204. [PMID: 18417533 DOI: 10.1093/bfgp/eln016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The combined efforts of the Caenorhabditis elegans Knockout Consortium and individuals within the worm community are moving us closer to the goal of identifying mutations in every gene in the nematode C. elegans. At present, we count about 7000 deletion alleles that fall within 5500 genes. The principal method used to detect deletion mutations in the nematode utilizes polymerase chain reaction (PCR). More recently, the Moerman group has incorporated array comparative genome hybridization (aCGH) to detect deletions across the entire coding genome. Other methods used to detect mutant alleles in C. elegans include targeting induced local lesion in genomes (TILLING), transposon tagging, using either Tc1 or Mos1 and resequencing. These combined strategies have improved the overall throughput of the gene-knockout labs, and have broadened the types of mutations that we, and others, can identify. In this review, we will discuss these different approaches.
Collapse
Affiliation(s)
- Donald G Moerman
- Department of Zoology, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver B.C. V6T 1Z3 Canada.
| | | |
Collapse
|
24
|
Abstract
We describe a protocol for mutating genes in the nematode Caenorhabditis elegans using the Mos1 transposon of Drosophila mauritiana. Mutated genes containing a Mos1 insertion are molecularly tagged by this heterologous transposable element. Mos1 insertions can therefore be identified in as little as 3 weeks using only basic molecular biology techniques. Mutagenic efficiency of Mos1 is tenfold lower than classical chemical mutagens. However, the ease and speed with which mutagenic insertions can be mapped compares favorably with the vast amount of work involved in classical genetic mapping. Therefore, Mos1 could be the tool of choice when screening procedures are efficient. In addition, Mos1 mutagenesis can greatly simplify the mapping of mutations that exhibit low penetrance, subtle or synthetic phenotypes. The recent development of targeted engineering of C. elegans loci carrying Mos1 insertions further increases the attractiveness of Mos1-mediated mutagenesis.
Collapse
|
25
|
Strange K. Revisiting the Krogh Principle in the post-genome era: Caenorhabditis elegans as a model system for integrative physiology research. ACTA ACUST UNITED AC 2008; 210:1622-31. [PMID: 17449828 DOI: 10.1242/jeb.000125] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Molecular biology drove a powerful reductionist or ;molecule-centric' approach to biological research in the last half of the 20th century. Reductionism is the attempt to explain complex phenomena by defining the functional properties of the individual components that comprise multi-component systems. Systems biology has emerged in the post-genome era as the successor to reductionism. In my opinion, systems biology and physiology are synonymous. Both disciplines seek to understand multi-component processes or 'systems' and the underlying pathways of information flow from an organism's genes up through increasingly complex levels of organization. The physiologist and Nobel laureate August Krogh believed that there is an ideal organism in which almost every physiological problem could be studied most readily (the 'Krogh Principle'). If an investigator's goal were to define a physiological process from the level of genes to the whole animal, the optimal model organism for him/her to utilize would be one that is genetically and molecularly tractable. In other words, an organism in which forward and reverse genetic analyses could be carried out readily, rapidly and economically. Non-mammalian model organisms such as Escherichia coli, Saccharomyces, Caenorhabditis elegans, Drosophila, zebrafish and the plant Arabidopsis are cornerstones of systems biology research. The nematode C. elegans provides a particularly striking example of the experimental utility of non-mammalian model organisms. The aim of this paper is to illustrate how genetic, functional genomic, molecular and physiological methods can be combined in C. elegans to develop a systems biological understanding of fundamental physiological processes common to all animals. I present examples of the experimental tools available for the study of C. elegans and discuss how we have used them to gain new insights into osmotic stress signaling in animal cells.
Collapse
Affiliation(s)
- Kevin Strange
- Departments of Anesthesiology, Molecular Physiology and Biophysics, and Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
26
|
Mátés L, Izsvák Z, Ivics Z. Technology transfer from worms and flies to vertebrates: transposition-based genome manipulations and their future perspectives. Genome Biol 2007; 8 Suppl 1:S1. [PMID: 18047686 PMCID: PMC2106849 DOI: 10.1186/gb-2007-8-s1-s1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To meet the increasing demand of linking sequence information to gene function in vertebrate models, genetic modifications must be introduced and their effects analyzed in an easy, controlled, and scalable manner. In the mouse, only about 10% (estimate) of all genes have been knocked out, despite continuous methodologic improvement and extensive effort. Moreover, a large proportion of inactivated genes exhibit no obvious phenotypic alterations. Thus, in order to facilitate analysis of gene function, new genetic tools and strategies are currently under development in these model organisms. Loss of function and gain of function mutagenesis screens based on transposable elements have numerous advantages because they can be applied in vivo and are therefore phenotype driven, and molecular analysis of the mutations is straightforward. At present, laboratory harnessing of transposable elements is more extensive in invertebrate models, mostly because of their earlier discovery in these organisms. Transposons have already been found to facilitate functional genetics research greatly in lower metazoan models, and have been applied most comprehensively in Drosophila. However, transposon based genetic strategies were recently established in vertebrates, and current progress in this field indicates that transposable elements will indeed serve as indispensable tools in the genetic toolkit for vertebrate models. In this review we provide an overview of transposon based genetic modification techniques used in higher and lower metazoan model organisms, and we highlight some of the important general considerations concerning genetic applications of transposon systems.
Collapse
Affiliation(s)
- Lajos Mátés
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str, 13092 Berlin, Germany
| | | | | |
Collapse
|
27
|
The hermes transposon of Musca domestica is an efficient tool for the mutagenesis of Schizosaccharomyces pombe. Genetics 2007; 177:2519-23. [PMID: 17947404 DOI: 10.1534/genetics.107.081075] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Currently, no transposon-based method for the mutagenesis of Schizosaccharomyces pombe exists. We have developed such a system based on the introduction of the hermes transposon from the housefly into S. pombe. This system efficiently disrupts open reading frames and allows the insertion sites to be readily identified.
Collapse
|
28
|
Updike DL, Mango SE. Genetic suppressors of Caenorhabditis elegans pha-4/FoxA identify the predicted AAA helicase ruvb-1/RuvB. Genetics 2007; 177:819-33. [PMID: 17720918 PMCID: PMC2034646 DOI: 10.1534/genetics.107.076653] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 07/31/2007] [Indexed: 01/08/2023] Open
Abstract
FoxA transcription factors are critical regulators of gut development and function. FoxA proteins specify gut fate during early embryogenesis, drive gut differentiation and morphogenesis at later stages, and affect gut function to mediate nutritional responses. The level of FoxA is critical for these roles, yet we know relatively little about regulators for this family of proteins. To address this issue, we conducted a genetic screen for mutants that suppress a partial loss of pha-4, the sole FoxA factor of Caenorhabditis elegans. We identified 55 mutants using either chemical or insertional mutagenesis. Forty-two of these were informational suppressors that affected nonsense-mediated decay, while the remaining 13 were pha-4 suppressors. These 13 alleles defined at least six different loci. On the basis of mutational frequencies for C. elegans and the genetic dominance of four of the suppressors, we predict that many of the suppressors are either unusual loss-of-function mutations in negative regulators or rare gain-of-function mutations in positive regulators. We characterized one dominant suppressor molecularly and discovered the mutation alters a likely cis-regulatory region within pha-4 itself. A second suppressor defined a new locus, the predicted AAA+ helicase ruvb-1. These results indicate that our screen successfully found cis- or trans-acting regulators of pha-4.
Collapse
Affiliation(s)
- Dustin L Updike
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
29
|
Winter AD, Keskiaho K, Kukkola L, McCormack G, Felix MA, Myllyharju J, Page AP. Differences in collagen prolyl 4-hydroxylase assembly between two Caenorhabditis nematode species despite high amino acid sequence identity of the enzyme subunits. Matrix Biol 2007; 26:382-95. [PMID: 17321733 DOI: 10.1016/j.matbio.2007.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 01/23/2007] [Indexed: 11/24/2022]
Abstract
The collagen prolyl 4-hydroxylases (P4Hs) are essential for proper extracellular matrix formation in multicellular organisms. The vertebrate enzymes are alpha(2)beta(2) tetramers, in which the beta subunits are identical to protein disulfide isomerase (PDI). Unique P4H forms have been shown to assemble from the Caenorhabditis elegans catalytic alpha subunit isoforms PHY-1 and PHY-2 and the beta subunit PDI-2. A mixed PHY-1/PHY-2/(PDI-2)(2) tetramer is the major form, while PHY-1/PDI-2 and PHY-2/PDI-2 dimers are also assembled but less efficiently. Cloning and characterization of the orthologous subunits from the closely related nematode Caenorhabditis briggsae revealed distinct differences in the assembly of active P4H forms in spite of the extremely high amino acid sequence identity (92-97%) between the C. briggsae and C. elegans subunits. In addition to a PHY-1/PHY-2(PDI-2)(2) tetramer and a PHY-1/PDI-2 dimer, an active (PHY-2)(2)(PDI-2)(2) tetramer was formed in C. briggsae instead of a PHY-2/PDI-2 dimer. Site-directed mutagenesis studies and generation of inter-species hybrid polypeptides showed that the N-terminal halves of the Caenorhabditis PHY-2 polypeptides determine their assembly properties. Genetic disruption of C. briggsae phy-1 (Cb-dpy-18) via a Mos1 insertion resulted in a small (short) phenotype that is less severe than the dumpy (short and fat) phenotype of the corresponding C. elegans mutants (Ce-dpy-18). C. briggsae phy-2 RNA interference produced no visible phenotype in the wild type nematodes but produced a severe dumpy phenotype and larval arrest in phy-1 mutants. Genetic complementation of the C. briggsae and C. elegans phy-1 mutants was achieved by injection of a wild type phy-1 gene from either species.
Collapse
Affiliation(s)
- Alan D Winter
- Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road Glasgow, G61 1QH, Scotland, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
30
|
Yook K, Hodgkin J. Mos1 mutagenesis reveals a diversity of mechanisms affecting response of Caenorhabditis elegans to the bacterial pathogen Microbacterium nematophilum. Genetics 2007; 175:681-97. [PMID: 17151260 PMCID: PMC1800622 DOI: 10.1534/genetics.106.060087] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 11/15/2006] [Indexed: 11/18/2022] Open
Abstract
A specific host-pathogen interaction exists between Caenorhabditis elegans and the gram-positive bacterium Microbacterium nematophilum. This bacterium is able to colonize the rectum of susceptible worms and induces a defensive tail-swelling response in the host. Previous mutant screens have identified multiple loci that affect this interaction. Some of these loci correspond to known genes, but many bus genes [those with a bacterially unswollen (Bus) mutant phenotype] have yet to be cloned. We employed Mos1 transposon mutagenesis as a means of more rapidly cloning bus genes and identifying new mutants with altered pathogen response. This approach revealed new infection-related roles for two well-characterized and much-studied genes, egl-8 and tax-4. It also allowed the cloning of a known bus gene, bus-17, which encodes a predicted galactosyltransferase, and of a new bus gene, bus-19, which encodes a novel, albeit ancient, protein. The results illustrate advantages and disadvantages of Mos1 transposon mutagenesis in this system.
Collapse
Affiliation(s)
- Karen Yook
- Genetics Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | |
Collapse
|
31
|
Squina FM, Pedrosa AL, Nunes VS, Cruz AK, Tosi LRO. Shuttle mutagenesis and targeted disruption of a telomere-located essential gene of Leishmania. Parasitology 2006; 134:511-22. [PMID: 17169165 DOI: 10.1017/s0031182006001892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 10/06/2006] [Accepted: 10/10/2006] [Indexed: 11/06/2022]
Abstract
Leishmania mutants have contributed greatly to extend our knowledge of this parasite's biology. Here we report the use of the mariner in vitro transposition system as a source of reagents for shuttle mutagenesis and targeted disruption of Leishmania genes. The locus-specific integration was achieved by the disruption of the subtelomeric gene encoding a DNA-directed RNA polymerase III subunit (RPC2). Further inactivation of RPC2 alleles required the complementation of the intact gene, which was transfected in an episomal context. However, attempts to generate a RPC2 chromosomal null mutant resulted in genomic rearrangements that maintained copies of the intact locus in the genome. The maintenance of the RPC2 chromosomal locus in complemented mutants was not mediated by an increase in the number of copies and did not involve chromosomal translocations, which are the typical characteristics of the genomic plasticity of this parasite. Unlike the endogenous locus, the selectable marker used to disrupt RPC2 did not display a tendency to remain in its chromosomal location but was targeted into supernumerary episomal molecules.
Collapse
Affiliation(s)
- F M Squina
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brasil
| | | | | | | | | |
Collapse
|
32
|
Duverger Y, Belougne J, Scaglione S, Brandli D, Beclin C, Ewbank JJ. A semi-automated high-throughput approach to the generation of transposon insertion mutants in the nematode Caenorhabditis elegans. Nucleic Acids Res 2006; 35:e11. [PMID: 17164286 PMCID: PMC1903375 DOI: 10.1093/nar/gkl1046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The generation of a large collection of defined transposon insertion mutants is of general interest to the Caenorhabditis elegans research community and has been supported by the European Union. We describe here a semi-automated high-throughput method for mutant production and screening, using the heterologous transposon Mos1. The procedure allows routine culture of several thousand independent nematode strains in parallel for multiple generations before stereotyped molecular analyses. Using this method, we have already generated >17 500 individual strains carrying Mos1 insertions. It could be easily adapted to forward and reverse genetic screens and may influence researchers faced with making a choice of model organism.
Collapse
Affiliation(s)
- Yohann Duverger
- Centre d'Immunologie de Marseille-Luminy, Université de la MéditerranéeCase 906, 13288 Marseille cedex 9, France
- INSERMU631, 13288 Marseille, France
- CNRSUMR6102, 13288 Marseille, France
| | - Jérôme Belougne
- CNRS, Institut de Biologie du Développement de Marseille-LuminyMarseille, France
| | - Sarah Scaglione
- Centre d'Immunologie de Marseille-Luminy, Université de la MéditerranéeCase 906, 13288 Marseille cedex 9, France
- INSERMU631, 13288 Marseille, France
- CNRSUMR6102, 13288 Marseille, France
| | - Dominique Brandli
- CNRS, Institut de Biologie du Développement de Marseille-LuminyMarseille, France
| | - Christophe Beclin
- CNRS, Institut de Biologie du Développement de Marseille-LuminyMarseille, France
| | - Jonathan J. Ewbank
- Centre d'Immunologie de Marseille-Luminy, Université de la MéditerranéeCase 906, 13288 Marseille cedex 9, France
- INSERMU631, 13288 Marseille, France
- CNRSUMR6102, 13288 Marseille, France
- To whom correspondence should be addressed. Tel: +33 491 269 472; Fax: +33 491 269 430;
| |
Collapse
|
33
|
Robert V, Bessereau JL. Targeted engineering of the Caenorhabditis elegans genome following Mos1-triggered chromosomal breaks. EMBO J 2006; 26:170-83. [PMID: 17159906 PMCID: PMC1782371 DOI: 10.1038/sj.emboj.7601463] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 11/02/2006] [Indexed: 01/08/2023] Open
Abstract
The Drosophila element Mos1 is a class II transposon, which moves by a 'cut-and-paste' mechanism and can be experimentally mobilized in the Caenorhabditis elegans germ line. Here, we triggered the excision of identified Mos1 insertions to create chromosomal breaks at given sites and further manipulate the broken loci. Double-strand break (DSB) repair could be achieved by gene conversion using a transgene containing sequences homologous to the broken chromosomal region as a repair template. Consequently, mutations engineered in the transgene could be copied to a specific locus at high frequency. This pathway was further characterized to develop an efficient tool--called MosTIC--to manipulate the C. elegans genome. Analysis of DSB repair during MosTIC experiments demonstrated that DSBs could also be sealed by end-joining in the germ line, independently from the evolutionarily conserved Ku80 and ligase IV factors. In conjunction with a publicly available Mos1 insertion library currently being generated, MosTIC will provide a general tool to customize the C. elegans genome.
Collapse
Affiliation(s)
- Valérie Robert
- ENS, Biologie cellulaire de la synapse, Paris, France; Inserm, U789, Paris, France
| | - Jean-Louis Bessereau
- ENS, Biologie cellulaire de la synapse, Paris, France; Inserm, U789, Paris, France
- Ecole Normale Supérieure, INSERM U789, 46 Rue d'Ulm, Paris 75005, France. Tel.: +33 1 44 32 23 05; Fax: +33 1 44 32 36 54; E-mail:
| |
Collapse
|
34
|
Captan VV, Goszczynski B, McGhee JD. Neither maternal nor zygotic med-1/med-2 genes play a major role in specifying the Caenorhabditis elegans endoderm. Genetics 2006; 175:969-74. [PMID: 17151237 PMCID: PMC1800632 DOI: 10.1534/genetics.106.066662] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The med-1 and med-2 genes encode small, highly similar proteins related to GATA-type transcription factors and have been proposed as necessary for specification of both the mesoderm and the endoderm of Caenorhabditis elegans. However, we have previously presented evidence that neither maternal nor zygotic expression of the med-1/2 genes is necessary to specify the C. elegans endoderm. Contradicting our conclusions, a recent report presented evidence, based on presumed transgene-induced cosuppression, that the med-1/2 genes do indeed show an endoderm-specifying maternal effect. In this article, we reinvestigate med-2(-); med-1(-) embryos using a med-2- specific null allele instead of the chromosomal deficiences used previously and confirm our previous results: the large majority (approximately 84%) of med-2(-); med-1(-) embryos express gut granules. We also reinvestigate the possibility of a maternal med-1/2 effect by direct injection of med dsRNA into sensitized (med-deficient) hermaphrodites using the standard protocol known to be effective in ablating maternal transcripts, but again find no evidence for any significant maternal med-1/2 effect. We do, however, show that expression of gut granules in med-1/2-deficient embryos is exquisitely sensitive to RNAi against the vacuolar ATPase-encoding unc-32 gene [present on the same multicopy med-1(+)-containing transgenic balancer used in support of the maternal med-1/2 effect]. We thus suggest that the experimental evidence for a maternal med-1/2 effect should be reexamined and may instead reflect cosuppression caused by multiple transgenic unc-32 sequences, not med sequences.
Collapse
Affiliation(s)
- Vasile V Captan
- Department of Biochemistry and Molecular Biology, Genes and Development Research Group, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | |
Collapse
|
35
|
Gilchrist EJ, O'Neil NJ, Rose AM, Zetka MC, Haughn GW. TILLING is an effective reverse genetics technique for Caenorhabditis elegans. BMC Genomics 2006; 7:262. [PMID: 17049087 PMCID: PMC1626091 DOI: 10.1186/1471-2164-7-262] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 10/18/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND TILLING (Targeting Induced Local Lesions in Genomes) is a reverse genetic technique based on the use of a mismatch-specific enzyme that identifies mutations in a target gene through heteroduplex analysis. We tested this technique in Caenorhabditis elegans, a model organism in which genomics tools have been well developed, but limitations in reverse genetics have restricted the number of heritable mutations that have been identified. RESULTS To determine whether TILLING represents an effective reverse genetic strategy for C. elegans we generated an EMS-mutagenised population of approximately 1500 individuals and screened for mutations in 10 genes. A total of 71 mutations were identified by TILLING, providing multiple mutant alleles for every gene tested. Some of the mutations identified are predicted to be silent, either because they are in non-coding DNA or because they affect the third bp of a codon which does not change the amino acid encoded by that codon. However, 59% of the mutations identified are missense alleles resulting in a change in one of the amino acids in the protein product of the gene, and 3% are putative null alleles which are predicted to eliminate gene function. We compared the types of mutation identified by TILLING with those previously reported from forward EMS screens and found that 96% of TILLING mutations were G/C-to-A/T transitions, a rate significantly higher than that found in forward genetic screens where transversions and deletions were also observed. The mutation rate we achieved was 1/293 kb, which is comparable to the mutation rate observed for TILLING in other organisms. CONCLUSION We conclude that TILLING is an effective and cost-efficient reverse genetics tool in C. elegans. It complements other reverse genetic techniques in this organism, can provide an allelic series of mutations for any locus and does not appear to have any bias in terms of gene size or location. For eight of the 10 target genes screened, TILLING has provided the first genetically heritable mutations which can be used to study their functions in vivo.
Collapse
Affiliation(s)
- Erin J Gilchrist
- Department of Botany, 6270 University Blvd, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Nigel J O'Neil
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Ann M Rose
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Monique C Zetka
- Department of Biology, McGill University, Stewart Building N5/16, 1205 Avenue Docteur Penfield, Montreal, QC, H3A 1B1, Canada
| | - George W Haughn
- Department of Botany, 6270 University Blvd, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
36
|
N/A, 张 万. N/A. Shijie Huaren Xiaohua Zazhi 2006; 14:1714-1720. [DOI: 10.11569/wcjd.v14.i17.1714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
37
|
Richardson JM, Dawson A, O'hagan N, Taylor P, Finnegan DJ, Walkinshaw MD. Mechanism of Mos1 transposition: insights from structural analysis. EMBO J 2006; 25:1324-34. [PMID: 16511570 PMCID: PMC1422158 DOI: 10.1038/sj.emboj.7601018] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 02/01/2006] [Indexed: 11/09/2022] Open
Abstract
We present the crystal structure of the catalytic domain of Mos1 transposase, a member of the Tc1/mariner family of transposases. The structure comprises an RNase H-like core, bringing together an aspartic acid triad to form the active site, capped by N- and C-terminal alpha-helices. We have solved structures with either one Mg2+ or two Mn2+ ions in the active site, consistent with a two-metal mechanism for catalysis. The lack of hairpin-stabilizing structural motifs is consistent with the absence of a hairpin intermediate in Mos1 excision. We have built a model for the DNA-binding domain of Mos1 transposase, based on the structure of the bipartite DNA-binding domain of Tc3 transposase. Combining this with the crystal structure of the catalytic domain provides a model for the paired-end complex formed between a dimer of Mos1 transposase and inverted repeat DNA. The implications for the mechanisms of first and second strand cleavage are discussed.
Collapse
Affiliation(s)
| | - Angela Dawson
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Natasha O'hagan
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Paul Taylor
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - David J Finnegan
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
38
|
Li X, Massey HC, Nolan TJ, Schad GA, Kraus K, Sundaram M, Lok JB. Successful transgenesis of the parasitic nematode Strongyloides stercoralis requires endogenous non-coding control elements. Int J Parasitol 2006; 36:671-9. [PMID: 16500658 DOI: 10.1016/j.ijpara.2005.12.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 12/16/2005] [Accepted: 12/22/2005] [Indexed: 11/23/2022]
Abstract
Critical investigations into the cellular and molecular biology of parasitic nematodes have been hindered by a lack of modern molecular genetic techniques for these organisms. One such technique is transgenesis. To our knowledge, the findings reported here demonstrate the first heritable DNA transformation and transgene expression in the intestinal parasite Strongyloides stercoralis. When microinjected into the syncitial gonads of free-living S. stercoralis females, a construct fusing the S. stercoralis era-1 promoter, the coding region for green fluorescent protein (gfp) and the S. stercoralis era-1 3' untranslated region was expressed in intestinal cells of normally developing F1 transgenic larvae. The frequency of transformation and GFP expression among F1 larvae was 5.3%. By contrast, expression of several promoter::gfp fusions incorporating only Caenorhabditis elegans regulatory elements was restricted to abortively developing F1 embryos of S. stercoralis. Despite its lack of regulated expression, PCR revealed that one of these C. elegans-based vector constructs, the sur-5::gfp fusion, is incorporated into F1 larval progeny of microinjected female worms and then transmitted to the F2 through F5 generations during two host passages conducted without selection and punctuated by free-living generations reared in culture. Heritable DNA transformation and regulated transgene expression, as demonstrated here for S. stercoralis, constitute the essential components of a practical system for transgenesis in this parasite. This system has the potential to significantly advance the molecular and cellular biological study of S. stercoralis and of parasitic nematodes generally.
Collapse
Affiliation(s)
- Xinshe Li
- Department of Pathobiology, School of Veterinary Medicine and University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6050, USA
| | | | | | | | | | | | | |
Collapse
|