1
|
Gupta S, Niels Groen S, Zaidem ML, Sajise AGC, Calic I, Natividad M, McNally K, Vergara GV, Satija R, Franks SJ, Singh RK, Joly-Lopez Z, Purugganan MD. Systems genomics of salinity stress response in rice. eLife 2025; 13:RP99352. [PMID: 39976326 PMCID: PMC11841989 DOI: 10.7554/elife.99352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Populations can adapt to stressful environments through changes in gene expression. However, the fitness effect of gene expression in mediating stress response and adaptation remains largely unexplored. Here, we use an integrative field dataset obtained from 780 plants of Oryza sativa ssp. indica (rice) grown in a field experiment under normal or moderate salt stress conditions to examine selection and evolution of gene expression variation under salinity stress conditions. We find that salinity stress induces increased selective pressure on gene expression. Further, we show that trans-eQTLs rather than cis-eQTLs are primarily associated with rice's gene expression under salinity stress, potentially via a few master-regulators. Importantly, and contrary to the expectations, we find that cis-trans reinforcement is more common than cis-trans compensation which may be reflective of rice diversification subsequent to domestication. We further identify genetic fixation as the likely mechanism underlying this compensation/reinforcement. Additionally, we show that cis- and trans-eQTLs are under balancing and purifying selection, respectively, giving us insights into the evolutionary dynamics of gene expression variation. By examining genomic, transcriptomic, and phenotypic variation across a rice population, we gain insights into the molecular and genetic landscape underlying adaptive salinity stress responses, which is relevant for other crops and other stresses.
Collapse
Affiliation(s)
- Sonal Gupta
- Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| | - Simon Niels Groen
- Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
- Department of Nematology and Department of Botany & Plant Sciences, University of California, RiversideRiversideUnited States
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, RiversideRiversideUnited States
| | - Maricris L Zaidem
- Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
- Department of Biology, University of OxfordOxfordUnited Kingdom
| | | | - Irina Calic
- Department of Biological Sciences, Fordham UniversityBronxUnited States
- Inari Agriculture NvGentBelgium
| | | | | | - Georgina V Vergara
- International Rice Research InstituteLos BañosPhilippines
- Institute of Crop Science, University of the PhilippinesLos BañosPhilippines
| | - Rahul Satija
- Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
- New York Genome CenterNew YorkUnited States
| | - Steven J Franks
- Department of Biological Sciences, Fordham UniversityBronxUnited States
| | - Rakesh K Singh
- International Rice Research InstituteLos BañosPhilippines
- International Center for Biosaline AgricultureDubaiUnited Arab Emirates
| | - Zoé Joly-Lopez
- Département de Chimie, Université du Quebéc à MontréalMontrealCanada
| | - Michael D Purugganan
- Center for Genomics and Systems Biology, New York UniversityNew YorkUnited States
| |
Collapse
|
2
|
Gupta S, Groen SC, Zaidem ML, Sajise AGC, Calic I, Natividad MA, McNally KL, Vergara GV, Satija R, Franks SJ, Singh RK, Joly-Lopez Z, Purugganan MD. Systems genomics of salinity stress response in rice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596807. [PMID: 38895411 PMCID: PMC11185513 DOI: 10.1101/2024.05.31.596807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Populations can adapt to stressful environments through changes in gene expression. However, the fitness effect of gene expression in mediating stress response and adaptation remains largely unexplored. Here, we use an integrative field dataset obtained from 780 plants of Oryza sativa ssp. indica (rice) grown in a field experiment under normal or moderate salt stress conditions to examine selection and evolution of gene expression variation under salinity stress conditions. We find that salinity stress induces increased selective pressure on gene expression. Further, we show that trans-eQTLs rather than cis-eQTLs are primarily associated with rice's gene expression under salinity stress, potentially via a few master-regulators. Importantly, and contrary to the expectations, we find that cis-trans reinforcement is more common than cis-trans compensation which may be reflective of rice diversification subsequent to domestication. We further identify genetic fixation as the likely mechanism underlying this compensation/reinforcement. Additionally, we show that cis- and trans-eQTLs are under balancing and purifying selection, respectively, giving us insights into the evolutionary dynamics of gene expression variation. By examining genomic, transcriptomic, and phenotypic variation across a rice population, we gain insights into the molecular and genetic landscape underlying adaptive salinity stress responses, which is relevant for other crops and other stresses.
Collapse
Affiliation(s)
- Sonal Gupta
- Center for Genomics and Systems Biology, New York University, New York, NY USA
| | - Simon C. Groen
- Center for Genomics and Systems Biology, New York University, New York, NY USA
- Department of Nematology and Department of Botany & Plant Sciences, University of California, Riverside, CA USA
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA USA
| | - Maricris L. Zaidem
- Center for Genomics and Systems Biology, New York University, New York, NY USA
- Department of Biology, University of Oxford, Oxford, England
| | | | - Irina Calic
- Department of Biological Sciences, Fordham University, Bronx, NY USA
- Inari Agriculture Nv, Gent, Belgium
| | | | | | - Georgina V. Vergara
- International Rice Research Institute, Los Baños, Philippines
- Institute of Crop Science, University of the Philippines, Los Baños, Philippines
| | - Rahul Satija
- Center for Genomics and Systems Biology, New York University, New York, NY USA
- New York Genome Center, New York, NY USA
| | - Steven J. Franks
- Department of Biological Sciences, Fordham University, Bronx, NY USA
| | - Rakesh K. Singh
- International Rice Research Institute, Los Baños, Philippines
- International Center for Biosaline Agriculture, Dubai, UAE (current affiliation)
| | - Zoé Joly-Lopez
- Center for Genomics and Systems Biology, New York University, New York, NY USA
- Département de Chimie, Université du Quebéc à Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|
3
|
Payne C, Bovio R, Powell DL, Gunn TR, Banerjee SM, Grant V, Rosenthal GG, Schumer M. Genomic insights into variation in thermotolerance between hybridizing swordtail fishes. Mol Ecol 2024; 33:e16489. [PMID: 35510780 DOI: 10.1111/mec.16489] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/22/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Abstract
Understanding how organisms adapt to changing environments is a core focus of research in evolutionary biology. One common mechanism is adaptive introgression, which has received increasing attention as a potential route to rapid adaptation in populations struggling in the face of ecological change, particularly global climate change. However, hybridization can also result in deleterious genetic interactions that may limit the benefits of adaptive introgression. Here, we used a combination of genome-wide quantitative trait locus mapping and differential gene expression analyses between the swordtail fish species Xiphophorus malinche and X. birchmanni to study the consequences of hybridization on thermotolerance. While these two species are adapted to different thermal environments, we document a complicated architecture of thermotolerance in hybrids. We identify a region of the genome that contributes to reduced thermotolerance in individuals heterozygous for X. malinche and X. birchmanni ancestry, as well as widespread misexpression in hybrids of genes that respond to thermal stress in the parental species, particularly in the circadian clock pathway. We also show that a previously mapped hybrid incompatibility between X. malinche and X. birchmanni contributes to reduced thermotolerance in hybrids. Together, our results highlight the challenges of understanding the impact of hybridization on complex ecological traits and its potential impact on adaptive introgression.
Collapse
Affiliation(s)
- Cheyenne Payne
- Department of Biology, Stanford University, Stanford, California, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, México
| | - Richard Bovio
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, México
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Daniel L Powell
- Department of Biology, Stanford University, Stanford, California, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, México
| | - Theresa R Gunn
- Department of Biology, Stanford University, Stanford, California, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, México
| | - Shreya M Banerjee
- Department of Biology, Stanford University, Stanford, California, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, México
| | - Victoria Grant
- Department of Biology, Stanford University, Stanford, California, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, México
| | - Gil G Rosenthal
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, México
- Department of Biology, Texas A&M University, College Station, Texas, USA
- Department of Biology, University of Padua, Italy
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California, USA
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, México
- Department of Biology, University of Padua, Italy
- Hanna H. Gray Fellow, Howard Hughes Medical Institute, Stanford, California, USA
| |
Collapse
|
4
|
Bell AD, Valencia F, Paaby AB. Stabilizing selection and adaptation shape cis and trans gene expression variation in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618466. [PMID: 39464158 PMCID: PMC11507773 DOI: 10.1101/2024.10.15.618466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
An outstanding question in the evolution of gene expression is the relative influence of neutral processes versus natural selection, including adaptive change driven by directional selection as well as stabilizing selection, which may include compensatory dynamics. These forces shape patterns of gene expression variation within and between species, including the regulatory mechanisms governing expression in cis and trans. In this study, we interrogate intraspecific gene expression variation among seven wild C. elegans strains, with varying degrees of genomic divergence from the reference strain N2, leveraging this system's unique advantages to comprehensively evaluate gene expression evolution. By capturing allele-specific and between-strain changes in expression, we characterize the regulatory architecture and inheritance mode of gene expression variation within C. elegans and assess their relationship to nucleotide diversity, genome evolutionary history, gene essentiality, and other biological factors. We conclude that stabilizing selection is a dominant influence in maintaining expression phenotypes within the species, and the discovery that genes with higher overall expression tend to exhibit fewer expression differences supports this conclusion, as do widespread instances of cis differences compensated in trans. Moreover, analyses of human expression data replicate our finding that higher expression genes have less variable expression. We also observe evidence for directional selection driving expression divergence, and that expression divergence accelerates with increasing genomic divergence. To provide community access to the data from this first analysis of allele-specific expression in C. elegans, we introduce an interactive web application, where users can submit gene-specific queries to view expression, regulatory pattern, inheritance mode, and other information: https://wildworm.biosci.gatech.edu/ase/.
Collapse
Affiliation(s)
- Avery Davis Bell
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Francisco Valencia
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| | - Annalise B. Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
5
|
Leclercq J, Torres-Paz J, Policarpo M, Agnès F, Rétaux S. Evolution of the regulation of developmental gene expression in blind Mexican cavefish. Development 2024; 151:dev202610. [PMID: 39007346 DOI: 10.1242/dev.202610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Developmental evolution and diversification of morphology can arise through changes in the regulation of gene expression or protein-coding sequence. To unravel mechanisms underlying early developmental evolution in cavefish of the species Astyanax mexicanus, we compared transcriptomes of surface-dwelling and blind cave-adapted morphs at the end of gastrulation. Twenty percent of the transcriptome was differentially expressed. Allelic expression ratios in cave X surface hybrids showed that cis-regulatory changes are the quasi-exclusive contributors to inter-morph variations in gene expression. Among a list of 108 genes with change at the cis-regulatory level, we explored the control of expression of rx3, which is a master eye gene. We discovered that cellular rx3 levels are cis-regulated in a cell-autonomous manner, whereas rx3 domain size depends on non-autonomous Wnt and Bmp signalling. These results highlight how uncoupled mechanisms and regulatory modules control developmental gene expression and shape morphological changes. Finally, a transcriptome-wide search for fixed coding mutations and differential exon use suggested that variations in coding sequence have a minor contribution. Thus, during early embryogenesis, changes in gene expression regulation are the main drivers of cavefish developmental evolution.
Collapse
Affiliation(s)
- Julien Leclercq
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| | - Jorge Torres-Paz
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| | - Maxime Policarpo
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| | - François Agnès
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| |
Collapse
|
6
|
McColgan Á, DiFrisco J. Understanding developmental system drift. Development 2024; 151:dev203054. [PMID: 39417684 PMCID: PMC11529278 DOI: 10.1242/dev.203054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Developmental system drift (DSD) occurs when the genetic basis for homologous traits diverges over time despite conservation of the phenotype. In this Review, we examine the key ideas, evidence and open problems arising from studies of DSD. Recent work suggests that DSD may be pervasive, having been detected across a range of different organisms and developmental processes. Although developmental research remains heavily reliant on model organisms, extrapolation of findings to non-model organisms can be error-prone if the lineages have undergone DSD. We suggest how existing data and modelling approaches may be used to detect DSD and estimate its frequency. More direct study of DSD, we propose, can inform null hypotheses for how much genetic divergence to expect on the basis of phylogenetic distance, while also contributing to principles of gene regulatory evolution.
Collapse
Affiliation(s)
- Áine McColgan
- Theoretical Biology Lab, The Francis Crick Institute, London NW1 1AT, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - James DiFrisco
- Theoretical Biology Lab, The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
7
|
Majane AC, Cridland JM, Blair LK, Begun DJ. Evolution and genetics of accessory gland transcriptome divergence between Drosophila melanogaster and D. simulans. Genetics 2024; 227:iyae039. [PMID: 38518250 PMCID: PMC11151936 DOI: 10.1093/genetics/iyae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 08/27/2023] [Accepted: 02/15/2024] [Indexed: 03/24/2024] Open
Abstract
Studies of allele-specific expression in interspecific hybrids have provided important insights into gene-regulatory divergence and hybrid incompatibilities. Many such investigations in Drosophila have used transcriptome data from complex mixtures of many tissues or from gonads, however, regulatory divergence may vary widely among species, sexes, and tissues. Thus, we lack sufficiently broad sampling to be confident about the general biological principles of regulatory divergence. Here, we seek to fill some of these gaps in the literature by characterizing regulatory evolution and hybrid misexpression in a somatic male sex organ, the accessory gland, in F1 hybrids between Drosophila melanogaster and D. simulans. The accessory gland produces seminal fluid proteins, which play an important role in male and female fertility and may be subject to adaptive divergence due to male-male or male-female interactions. We find that trans differences are relatively more abundant than cis, in contrast to most of the interspecific hybrid literature, though large effect-size trans differences are rare. Seminal fluid protein genes have significantly elevated levels of expression divergence and tend to be regulated through both cis and trans divergence. We find limited misexpression (over- or underexpression relative to both parents) in this organ compared to most other Drosophila studies. As in previous studies, male-biased genes are overrepresented among misexpressed genes and are much more likely to be underexpressed. ATAC-Seq data show that chromatin accessibility is correlated with expression differences among species and hybrid allele-specific expression. This work identifies unique regulatory evolution and hybrid misexpression properties of the accessory gland and suggests the importance of tissue-specific allele-specific expression studies.
Collapse
Affiliation(s)
- Alex C Majane
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Julie M Cridland
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - Logan K Blair
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| | - David J Begun
- Department of Evolution and Ecology, University of California, Davis, CA 95616, USA
| |
Collapse
|
8
|
Boman J, Qvarnström A, Mugal CF. Regulatory and evolutionary impact of DNA methylation in two songbird species and their naturally occurring F 1 hybrids. BMC Biol 2024; 22:124. [PMID: 38807214 PMCID: PMC11134931 DOI: 10.1186/s12915-024-01920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Regulation of transcription by DNA methylation in 5'-CpG-3' context is a widespread mechanism allowing differential expression of genetically identical cells to persist throughout development. Consequently, differences in DNA methylation can reinforce variation in gene expression among cells, tissues, populations, and species. Despite a surge in studies on DNA methylation, we know little about the importance of DNA methylation in population differentiation and speciation. Here we investigate the regulatory and evolutionary impact of DNA methylation in five tissues of two Ficedula flycatcher species and their naturally occurring F1 hybrids. RESULTS We show that the density of CpG in the promoters of genes determines the strength of the association between DNA methylation and gene expression. The impact of DNA methylation on gene expression varies among tissues with the brain showing unique patterns. Differentially expressed genes between parental species are predicted by genetic and methylation differentiation in CpG-rich promoters. However, both these factors fail to predict hybrid misexpression suggesting that promoter mismethylation is not a main determinant of hybrid misexpression in Ficedula flycatchers. Using allele-specific methylation estimates in hybrids, we also determine the genome-wide contribution of cis- and trans effects in DNA methylation differentiation. These distinct mechanisms are roughly balanced in all tissues except the brain, where trans differences predominate. CONCLUSIONS Overall, this study provides insight on the regulatory and evolutionary impact of DNA methylation in songbirds.
Collapse
Affiliation(s)
- Jesper Boman
- Department of Ecology and Genetics (IEG), Division of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden.
| | - Anna Qvarnström
- Department of Ecology and Genetics (IEG), Division of Animal Ecology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden
| | - Carina F Mugal
- Department of Ecology and Genetics (IEG), Division of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden.
- CNRS, Laboratory of Biometry and Evolutionary Biology (LBBE), UMR 5558, University of Lyon 1, Villeurbanne, France.
| |
Collapse
|
9
|
Shaw DE, Naftaly AS, White MA. Positive Selection Drives cis-regulatory Evolution Across the Threespine Stickleback Y Chromosome. Mol Biol Evol 2024; 41:msae020. [PMID: 38306314 PMCID: PMC10899008 DOI: 10.1093/molbev/msae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024] Open
Abstract
Allele-specific gene expression evolves rapidly on heteromorphic sex chromosomes. Over time, the accumulation of mutations on the Y chromosome leads to widespread loss of gametolog expression, relative to the X chromosome. It remains unclear if expression evolution on degrading Y chromosomes is primarily driven by mutations that accumulate through processes of selective interference, or if positive selection can also favor the down-regulation of coding regions on the Y chromosome that contain deleterious mutations. Identifying the relative rates of cis-regulatory sequence evolution across Y chromosomes has been challenging due to the limited number of reference assemblies. The threespine stickleback (Gasterosteus aculeatus) Y chromosome is an excellent model to identify how regulatory mutations accumulate on Y chromosomes due to its intermediate state of divergence from the X chromosome. A large number of Y-linked gametologs still exist across 3 differently aged evolutionary strata to test these hypotheses. We found that putative enhancer regions on the Y chromosome exhibited elevated substitution rates and decreased polymorphism when compared to nonfunctional sites, like intergenic regions and synonymous sites. This suggests that many cis-regulatory regions are under positive selection on the Y chromosome. This divergence was correlated with X-biased gametolog expression, indicating the loss of expression from the Y chromosome may be favored by selection. Our findings provide evidence that Y-linked cis-regulatory regions exhibit signs of positive selection quickly after the suppression of recombination and allow comparisons with recent theoretical models that suggest the rapid divergence of regulatory regions may be favored to mask deleterious mutations on the Y chromosome.
Collapse
Affiliation(s)
- Daniel E Shaw
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | - Michael A White
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Dixit T. A synthesis of coevolution across levels of biological organization. Evolution 2024; 78:211-220. [PMID: 38085659 DOI: 10.1093/evolut/qpad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 02/03/2024]
Abstract
In evolutionary ecology, coevolution is typically defined as reciprocal evolution of interacting species. However, outside the context of interacting species, the term "coevolution" is also used at levels of biological organization within species (e.g., between males and females, between cells, and between genes or proteins). Furthermore, although evolution is typically defined as "genetic change over time", coevolution need not involve genetic changes in the interacting parties, since cultures can also evolve. In this review, I propose that coevolution be defined more broadly as "reciprocal adaptive evolution at any level of biological organisation". The classification of reciprocal evolution at all levels of biological organization as coevolution would maintain consistency in terminology. More importantly, the broader definition should facilitate greater integration of coevolution research across disciplines. For example, principles usually discussed only in the context of coevolution between species or coevolution between genes (e.g., tight and diffuse coevolution, and compensatory coevolution, respectively) could be more readily applied to new fields. The application of coevolutionary principles to new contexts could also provide benefits to society, for instance in deducing the dynamics of coevolution between cancer cells and cells of the human immune system.
Collapse
Affiliation(s)
- Tanmay Dixit
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- DST-NRF Centre of Excellence at the FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, Cape Town, South Africa
| |
Collapse
|
11
|
Kautt AF, Chen J, Lewarch CL, Hu C, Turner K, Lassance JM, Baier F, Bedford NL, Bendesky A, Hoekstra HE. Evolution of gene expression across brain regions in behaviourally divergent deer mice. Mol Ecol 2024:e17270. [PMID: 38263608 DOI: 10.1111/mec.17270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
The evolution of innate behaviours is ultimately due to genetic variation likely acting in the nervous system. Gene regulation may be particularly important because it can evolve in a modular brain-region specific fashion through the concerted action of cis- and trans-regulatory changes. Here, to investigate transcriptional variation and its regulatory basis across the brain, we perform RNA sequencing (RNA-Seq) on ten brain subregions in two sister species of deer mice (Peromyscus maniculatus and P. polionotus)-which differ in a range of innate behaviours, including their social system-and their F1 hybrids. We find that most of the variation in gene expression distinguishes subregions, followed by species. Interspecific differential expression (DE) is pervasive (52-59% of expressed genes), whereas the number of DE genes between sexes is modest overall (~3%). Interestingly, the identity of DE genes varies considerably across brain regions. Much of this modularity is due to cis-regulatory divergence, and while 43% of genes were consistently assigned to the same gene regulatory class across subregions (e.g. conserved, cis- or trans-regulatory divergence), a similar number were assigned to two or more different gene regulatory classes. Together, these results highlight the modularity of gene expression differences and divergence in the brain, which may be key to explain how the evolution of brain gene expression can contribute to the astonishing diversity of animal behaviours.
Collapse
Affiliation(s)
- Andreas F Kautt
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - Jenny Chen
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - Caitlin L Lewarch
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - Caroline Hu
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - Kyle Turner
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - Jean-Marc Lassance
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - Felix Baier
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - Nicole L Bedford
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - Andres Bendesky
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| | - Hopi E Hoekstra
- Department of Organismic & Evolutionary Biology, Department of Molecular & Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Tsouris A, Brach G, Schacherer J, Hou J. Non-additive genetic components contribute significantly to population-wide gene expression variation. CELL GENOMICS 2024; 4:100459. [PMID: 38190102 PMCID: PMC10794783 DOI: 10.1016/j.xgen.2023.100459] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/19/2023] [Accepted: 11/09/2023] [Indexed: 01/09/2024]
Abstract
Gene expression variation, an essential step between genotype and phenotype, is collectively controlled by local (cis) and distant (trans) regulatory changes. Nevertheless, how these regulatory elements differentially influence gene expression variation remains unclear. Here, we bridge this gap by analyzing the transcriptomes of a large diallel panel consisting of 323 unique hybrids originating from genetically divergent Saccharomyces cerevisiae isolates. Our analysis across 5,087 transcript abundance traits showed that non-additive components account for 36% of the gene expression variance on average. By comparing allele-specific read counts in parent-hybrid trios, we found that trans-regulatory changes underlie the majority of gene expression variation in the population. Remarkably, most cis-regulatory variations are also exaggerated or attenuated by additional trans effects. Overall, we showed that the transcriptome is globally buffered at the genetic level mainly due to trans-regulatory variation in the population.
Collapse
Affiliation(s)
- Andreas Tsouris
- Université de Strasbourg, CNRS, GMGM UMR, 7156 Strasbourg, France
| | - Gauthier Brach
- Université de Strasbourg, CNRS, GMGM UMR, 7156 Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR, 7156 Strasbourg, France; Institut Universitaire de France (IUF), Paris, France.
| | - Jing Hou
- Université de Strasbourg, CNRS, GMGM UMR, 7156 Strasbourg, France.
| |
Collapse
|
13
|
Pereira V, Kuzmin E. Trans-regulatory variant network contributes to missing heritability. CELL GENOMICS 2024; 4:100470. [PMID: 38216282 PMCID: PMC10794830 DOI: 10.1016/j.xgen.2023.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 01/14/2024]
Abstract
In a recent Cell Genomics article, Tsouris et al.1 analyze the transcriptomes of a large diallel panel of hybrids from Saccharomyces cerevisiae natural isolates to study cis- and trans-regulatory changes underlying gene expression variation. Vanessa Pereira and Elena Kuzmin discuss the authors' findings and the wider context in missing heritability research in this preview.
Collapse
Affiliation(s)
- Vanessa Pereira
- Department of Biology, Concordia University, Montreal, Canada; Centre for Applied Synthetic Biology, Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Elena Kuzmin
- Department of Biology, Concordia University, Montreal, Canada; Centre for Applied Synthetic Biology, Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada; Department of Human Genetics, Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Canada.
| |
Collapse
|
14
|
Louder MIM, Justen H, Kimmitt AA, Lawley KS, Turner LM, Dickman JD, Delmore KE. Gene regulation and speciation in a migratory divide between songbirds. Nat Commun 2024; 15:98. [PMID: 38167733 PMCID: PMC10761872 DOI: 10.1038/s41467-023-44352-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Behavioral variation abounds in nature. This variation is important for adaptation and speciation, but its molecular basis remains elusive. Here, we use a hybrid zone between two subspecies of songbirds that differ in migration - an ecologically important and taxonomically widespread behavior---to gain insight into this topic. We measure gene expression in five brain regions. Differential expression between migratory states was dominated by circadian genes in all brain regions. The remaining patterns were largely brain-region specific. For example, expression differences between the subspecies that interact with migratory state likely help maintain reproductive isolation in this system and were documented in only three brain regions. Contrary to existing work on regulatory mechanisms underlying species-specific traits, two lines of evidence suggest that trans- (vs. cis) regulatory changes underlie these patterns - no evidence for allele-specific expression in hybrids and minimal associations between genomic differentiation and expression differences. Additional work with hybrids shows expression levels were often distinct (transgressive) from parental forms. Behavioral contrasts and functional enrichment analyses allowed us to connect these patterns to mitonuclear incompatibilities and compensatory responses to stress that could exacerbate selection on hybrids and contribute to speciation.
Collapse
Affiliation(s)
| | - Hannah Justen
- Biology Department, Texas A&M University, College Station, TX, USA
| | | | - Koedi S Lawley
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Leslie M Turner
- Milner Centre for Evolution, Department of Biology & Biochemistry, University of Bath, Bath, UK
| | - J David Dickman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Kira E Delmore
- Biology Department, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
15
|
Ishita Y, Onodera A, Ekino T, Chihara T, Okumura M. Co-option of an Astacin Metalloprotease Is Associated with an Evolutionarily Novel Feeding Morphology in a Predatory Nematode. Mol Biol Evol 2023; 40:msad266. [PMID: 38105444 PMCID: PMC10753534 DOI: 10.1093/molbev/msad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/14/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Animals consume a wide variety of food sources to adapt to different environments. However, the genetic mechanisms underlying the acquisition of evolutionarily novel feeding morphology remain largely unknown. While the nematode Caenorhabditis elegans feeds on bacteria, the satellite species Pristionchus pacificus exhibits predatory feeding behavior toward other nematodes, which is an evolutionarily novel feeding habit. Here, we found that the astacin metalloprotease Ppa-NAS-6 is required for the predatory killing by P. pacificus. Ppa-nas-6 mutants were defective in predation-associated characteristics, specifically the tooth morphogenesis and tooth movement during predation. Comparison of expression patterns and rescue experiments of nas-6 in P. pacificus and C. elegans suggested that alteration of the spatial expression patterns of NAS-6 may be vital for acquiring predation-related traits. Reporter analysis of the Ppa-nas-6 promoter in C. elegans revealed that the alteration in expression patterns was caused by evolutionary changes in cis- and trans-regulatory elements. This study suggests that the co-option of a metalloprotease is involved in an evolutionarily novel feeding morphology.
Collapse
Affiliation(s)
- Yuuki Ishita
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Ageha Onodera
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Taisuke Ekino
- School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
16
|
Zhang K, Yang Q, Du M, Zhang Z, Wang W, Zhang G, Li A, Li L. Genome-wide mapping of regulatory variants for temperature- and salinity-adaptive genes reveals genetic basis of genotype-by-environment interaction in Crassostrea ariakensis. ENVIRONMENTAL RESEARCH 2023; 236:116614. [PMID: 37442261 DOI: 10.1016/j.envres.2023.116614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/14/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
Regulatory variants in gene expression serve as bridges linking genetic variation and phenotypic plasticity. Environmental conditions typically influence the effects of regulatory variants on phenotypic plasticity; however, such genotype-by-environment interactions (G × E) are poorly understood. This study aimed to investigate the genetic basis of G × E in estuarine oyster (Crassostrea ariakensis), which is an important model animal for studying environmental adaption owing to its high plasticity and large intraspecific divergence. Genome-wide mapping of expression quantitative trait loci (eQTLs) for 23 environmental adaptive genes was performed for 256 estuarine oysters. We identified 1194 eQTL single nucleotide polymorphisms (eSNPs), including 433 cis-eSNPs in four genes and 722 trans-eSNPs in eight genes. The expression variation explanation of cis-eSNPs (9.95%) was significantly higher than that of trans-eSNPs (9.15%). We specifically showed cis- and trans-eSNPs with high linkage disequilibrium (LD) for Traf7, Slc6a5, Ggt, and Dap3. For example, we identified a cis-regulatory LD block containing 68 cis-eSNP and a trans-regulatory LD block, including 20 trans-eSNPs in Traf7. A high proportion (85%) of 40 vital eSNPs exhibited significant G × E effects. We identified crossing and nonparallel interactions of G × E, with the tag cis-eSNPs of Baat and Slc6a5 as representatives. Our results indicated that cis-eQTLs are highly conserved. This study provides insights into the understanding of adaptive evolutionary mechanisms and phenotypic response prediction to variable environments, as well as the genetic improvement for superior adaptive traits for genetic resource conservation and aquaculture.
Collapse
Affiliation(s)
- Kexin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Mingyang Du
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Ao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China.
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China; Shandong Technology Innovation Center of Oyster Seed Industry, Qingdao 266000, China.
| |
Collapse
|
17
|
Tsouris A, Brach G, Schacherer J, Hou J. Non-additive genetic components contribute significantly to population-wide gene expression variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.21.550013. [PMID: 37546809 PMCID: PMC10401925 DOI: 10.1101/2023.07.21.550013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Gene expression variation, an essential step between genomic variation and phenotypic landscape, is collectively controlled by local (cis) and distant (trans) regulatory changes. Nevertheless, how these regulatory elements differentially influence the heritability of expression traits remains unclear. Here, we bridge this gap by analyzing the transcriptomes of a large diallel panel consisting of 323 unique hybrids originated from genetically divergent yeast isolates. We estimated the broad- and narrow-sense heritability across 5,087 transcript abundance traits and showed that non-additive components account for 36% of the phenotypic variance on average. By comparing allelic expression ratios in the hybrid and the corresponding parental pair, we identified regulatory changes in 25% of all cases, with a majority acting in trans. We further showed that trans-regulation could underlie coordinated expression variation across highly connected genes, resulting in significantly higher non-additive variance and most likely in some of the missing heritability of gene expression traits.
Collapse
Affiliation(s)
- Andreas Tsouris
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Gauthier Brach
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
- Institut Universitaire de France (IUF), Paris, France
| | - Jing Hou
- Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| |
Collapse
|
18
|
Cutter AD. Speciation and development. Evol Dev 2023; 25:289-327. [PMID: 37545126 DOI: 10.1111/ede.12454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Understanding general principles about the origin of species remains one of the foundational challenges in evolutionary biology. The genomic divergence between groups of individuals can spawn hybrid inviability and hybrid sterility, which presents a tantalizing developmental problem. Divergent developmental programs may yield either conserved or divergent phenotypes relative to ancestral traits, both of which can be responsible for reproductive isolation during the speciation process. The genetic mechanisms of developmental evolution involve cis- and trans-acting gene regulatory change, protein-protein interactions, genetic network structures, dosage, and epigenetic regulation, all of which also have roots in population genetic and molecular evolutionary processes. Toward the goal of demystifying Darwin's "mystery of mysteries," this review integrates microevolutionary concepts of genetic change with principles of organismal development, establishing explicit links between population genetic process and developmental mechanisms in the production of macroevolutionary pattern. This integration aims to establish a more unified view of speciation that binds process and mechanism.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Harry ND, Zakas C. Maternal patterns of inheritance alter transcript expression in eggs. BMC Genomics 2023; 24:191. [PMID: 37038099 PMCID: PMC10084599 DOI: 10.1186/s12864-023-09291-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/01/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Modifications to early development can lead to evolutionary diversification. The early stages of development are under maternal control, as mothers produce eggs loaded with nutrients, proteins and mRNAs that direct early embryogenesis. Maternally provided mRNAs are the only expressed genes in initial stages of development and are tightly regulated. Differences in maternal mRNA provisioning could lead to phenotypic changes in embryogenesis and ultimately evolutionary changes in development. However, the extent that maternal mRNA expression in eggs can vary is unknown for most developmental models. Here, we use a species with dimorphic development- where females make eggs and larvae of different sizes and life-history modes-to investigate the extent of variation in maternal mRNA provisioning to the egg. RESULTS We find that there is significant variation in gene expression across eggs of different development modes, and that there are both qualitative and quantitative differences in mRNA expression. We separate parental effects from allelic effects, and find that both mechanisms contribute to mRNA expression differences. We also find that offspring of intraspecific crosses differentially provision their eggs based on the parental cross direction (a parental effect), which has not been previously demonstrated in reproductive traits like oogenesis. CONCLUSION We find that maternally controlled initiation of development is functionally distinct between eggs of different sizes and maternal genotypes. Both allele-specific effects and parent-of-origin effects contribute to gene expression differences in eggs. The latter indicates an intergenerational effect where a parent's genotype can affect gene expression in an egg made by the next generation.
Collapse
Affiliation(s)
- Nathan D Harry
- Department of Biological Sciences, North Carolina State University, 112 Derieux Place, Raleigh, NC, 27607, USA
| | - Christina Zakas
- Department of Biological Sciences, North Carolina State University, 112 Derieux Place, Raleigh, NC, 27607, USA.
| |
Collapse
|
20
|
Gao Z, Yang X, Chen J, Rausher MD, Shi T. Expression inheritance and constraints on cis- and trans-regulatory mutations underlying lotus color variation. PLANT PHYSIOLOGY 2023; 191:1662-1683. [PMID: 36417237 PMCID: PMC10022630 DOI: 10.1093/plphys/kiac522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Both cis- and trans-regulatory mutations drive changes in gene expression that underpin plant phenotypic evolution. However, how and why these two major types of regulatory mutations arise in different genes and how gene expression is inherited and associated with these regulatory changes are unclear. Here, by studying allele-specific expression in F1 hybrids of pink-flowered sacred lotus (Nelumbo nucifera) and yellow-flowered American lotus (N. lutea), we reveal the relative contributions of cis- and trans-regulatory changes to interspecific expression rewiring underlying petal color change and how the expression is inherited in hybrids. Although cis-only variants influenced slightly more genes, trans-only variants had a stronger impact on expression differences between species. In F1 hybrids, genes under cis-only and trans-only regulatory effects showed a propensity toward additive and dominant inheritance, respectively, whereas transgressive inheritance was observed in genes carrying both cis- and trans-variants acting in opposite directions. By investigating anthocyanin and carotenoid coexpression networks in petals, we found that the same category of regulatory mutations, particularly trans-variants, tend to rewire hub genes in coexpression modules underpinning flower color differentiation between species; we identified 45 known genes with cis- and trans-regulatory variants significantly correlated with flower coloration, such as ANTHOCYANIN 5-AROMATIC ACYLTRANSFERASE (ACT), GLUTATHIONE S-TRANSFERASE F11 (GSTF11), and LYCOPENE Ε-CYCLASE (LCYE). Notably, the relative abundance of genes in different categories of regulatory divergence was associated with the inferred magnitude of constraints like expression level and breadth. Overall, our study suggests distinct selective constraints and modes of gene expression inheritance among different regulatory mutations underlying lotus petal color divergence.
Collapse
Affiliation(s)
- Zhiyan Gao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China
| | - Jinming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Mark D Rausher
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | - Tao Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
21
|
Duan T, Sicard A, Glémin S, Lascoux M. Expression pattern of resynthesized allotetraploid Capsella is determined by hybridization, not whole-genome duplication. THE NEW PHYTOLOGIST 2023; 237:339-353. [PMID: 36254103 PMCID: PMC10099941 DOI: 10.1111/nph.18542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Polyploidization, the process leading to the increase in chromosome sets, is a major evolutionary transition in plants. Whole-genome duplication (WGD) within the same species gives rise to autopolyploids, whereas allopolyploids result from a compound process with two distinct components: WGD and interspecific hybridization. To dissect the instant effects of WGD and hybridization on gene expression and phenotype, we created a series of synthetic hybrid and polyploid Capsella plants, including diploid hybrids, autotetraploids of both parental species, and two kinds of resynthesized allotetraploids with different orders of WGD and hybridization. Hybridization played a major role in shaping the relative expression pattern of the neo-allopolyploids, whereas WGD had almost no immediate effect on relative gene expression pattern but, nonetheless, still affected phenotypes. No transposable element-mediated genomic shock scenario was observed in either neo-hybrids or neo-polyploids. Finally, WGD and hybridization interacted and the distorting effects of WGD were less strong in hybrids. Whole-genome duplication may even improve hybrid fertility. In summary, while the initial relative gene expression pattern in neo-allotetraploids was almost entirely determined by hybridization, WGD only had trivial effects on relative expression patterns, both processes interacted and had a strong impact on physical attributes and meiotic behaviors.
Collapse
Affiliation(s)
- Tianlin Duan
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life LaboratoryUppsala University75236UppsalaSweden
| | - Adrien Sicard
- Department of Plant BiologySwedish University of Agricultural Sciences750 07UppsalaSweden
| | - Sylvain Glémin
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life LaboratoryUppsala University75236UppsalaSweden
- UMR CNRS 6553 ECOBIOCampus Beaulieu, bât 14a, p.118, CS 7420535042RennesFrance
| | - Martin Lascoux
- Department of Ecology and Genetics, Evolutionary Biology Centre and Science for Life LaboratoryUppsala University75236UppsalaSweden
| |
Collapse
|
22
|
Mating system and speciation I: Accumulation of genetic incompatibilities in allopatry. PLoS Genet 2022; 18:e1010353. [PMID: 36520924 PMCID: PMC9799327 DOI: 10.1371/journal.pgen.1010353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/29/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Self-fertilisation is widespread among hermaphroditic species across the tree of life. Selfing has many consequences on the genetic diversity and the evolutionary dynamics of populations, which may in turn affect macroevolutionary processes such as speciation. On the one hand, because selfing increases genetic drift and reduces migration rate among populations, it may be expected to promote speciation. On the other hand, because selfing reduces the efficacy of selection, it may be expected to hamper ecological speciation. To better understand under which conditions and in which direction selfing affects the build-up of reproductive isolation, an explicit population genetics model is required. Here, we focus on the interplay between genetic drift, selection and genetic linkage by studying speciation without gene flow. We test how fast populations with different rates of selfing accumulate mutations leading to genetic incompatibilities. When speciation requires populations to pass through a fitness valley caused by underdominant and compensatory mutations, selfing reduces the depth and/or breadth of the valley, and thus overall facilitates the fixation of incompatibilities. When speciation does not require populations to pass through a fitness valley, as for Bateson-Dobzhanzky-Muller incompatibilities (BDMi), the lower effective population size and higher genetic linkage in selfing populations both facilitate the fixation of incompatibilities. Interestingly, and contrary to intuitive expectations, local adaptation does not always accelerate the fixation of incompatibilities in outcrossing relative to selfing populations. Our work helps to clarify how incompatibilities accumulate in selfing vs. outcrossing lineages, and has repercussions on the pace of speciation as well as on the genetic architecture of reproductive isolation.
Collapse
|
23
|
Vilgalys TP, Fogel AS, Anderson JA, Mututua RS, Warutere JK, Siodi IL, Kim SY, Voyles TN, Robinson JA, Wall JD, Archie EA, Alberts SC, Tung J. Selection against admixture and gene regulatory divergence in a long-term primate field study. Science 2022; 377:635-641. [PMID: 35926022 PMCID: PMC9682493 DOI: 10.1126/science.abm4917] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetic admixture is central to primate evolution. We combined 50 years of field observations of immigration and group demography with genomic data from ~9 generations of hybrid baboons to investigate the consequences of admixture in the wild. Despite no obvious fitness costs to hybrids, we found signatures of selection against admixture similar to those described for archaic hominins. These patterns were concentrated near genes where ancestry is strongly associated with gene expression. Our analyses also show that introgression is partially predictable across the genome. This study demonstrates the value of integrating genomic and field data for revealing how "genomic signatures of selection" (e.g., reduced introgression in low-recombination regions) manifest in nature; moreover, it underscores the importance of other primates as living models for human evolution.
Collapse
Affiliation(s)
- Tauras P. Vilgalys
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA,Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - Arielle S. Fogel
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA,University Program in Genetics and Genomics, Duke University, Durham, NC, USA
| | - Jordan A. Anderson
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | | | | | | | - Sang Yoon Kim
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Tawni N. Voyles
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | | | - Jeffrey D. Wall
- Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - Elizabeth A. Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Susan C. Alberts
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA,Department of Biology, Duke University, Durham, NC, USA,Duke University Population Research Institute, Duke University, Durham, NC, USA
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA,Department of Biology, Duke University, Durham, NC, USA,Duke University Population Research Institute, Duke University, Durham, NC, USA,Canadian Institute for Advanced Research, Toronto, Canada,Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany,Corresponding author
| |
Collapse
|
24
|
Behling AH, Winter DJ, Ganley ARD, Cox MP. Cross-kingdom transcriptomic trends in the evolution of hybrid gene expression. J Evol Biol 2022; 35:1126-1137. [PMID: 35830478 PMCID: PMC9546207 DOI: 10.1111/jeb.14059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
Hybridization is a route to speciation that occurs widely across the eukaryote tree of life. The success of allopolyploids (hybrid species with increased ploidy) and homoploid hybrids (with unchanged ploidy) is well documented. However, their formation and establishment is not straightforward, with a suite of near‐instantaneous and longer term biological repercussions faced by the new species. Central to these challenges is the rewiring of gene regulatory networks following the merger of distinct genomes inherited from both parental species. Research on the evolution of hybrid gene expression has largely involved studies on a single hybrid species or a few gene families. Here, we present the first standardized transcriptome‐wide study exploring the fates of genes following hybridization across three kingdoms: animals, plants and fungi. Within each kingdom, we pair an allopolyploid system with a closely related homoploid hybrid to decouple the influence of increased ploidy from genome merger. Genome merger, not changes in ploidy, has the greatest effect on posthybridization expression patterns across all study systems. Strikingly, we find that differentially expressed genes in parent species preferentially switch to more similar expression in hybrids across all kingdoms, likely as a consequence of regulatory trans‐acting cross‐talk within the hybrid nucleus. We also highlight the prevalence of gene loss or silencing among extremely differentially expressed genes in hybrid species across all kingdoms. These shared patterns suggest that the evolutionary process of hybridization leads to common high‐level expression outcomes, regardless of the particular species or kingdom.
Collapse
Affiliation(s)
- Anna H Behling
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - David J Winter
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Austen R D Ganley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Murray P Cox
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
25
|
Yazdi HP, Ravinet M, Rowe M, Saetre GP, Guldvog CØ, Eroukhmanoff F, Marzal A, Magallanes S, Runemark A. Extensive transgressive gene expression in testis but not ovary in the homoploid hybrid Italian sparrow. Mol Ecol 2022; 31:4067-4077. [PMID: 35726533 PMCID: PMC9542029 DOI: 10.1111/mec.16572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/01/2022] [Accepted: 05/12/2022] [Indexed: 11/30/2022]
Abstract
Hybridization can result in novel allelic combinations which can impact the hybrid phenotype through changes in gene expression. While misexpression in F1 hybrids is well documented, how gene expression evolves in stabilized hybrid taxa remains an open question. As gene expression evolves in a stabilizing manner, break‐up of co‐evolved cis‐ and trans‐regulatory elements could lead to transgressive patterns of gene expression in hybrids. Here, we address to what extent gonad gene expression has evolved in an established and stable homoploid hybrid, the Italian sparrow (Passer italiae). Through comparison of gene expression in gonads from individuals of the two parental species (i.e., house and Spanish sparrow) to that of Italian sparrows, we find evidence for strongly transgressive expression in male Italian sparrows—2530 genes (22% of testis genes tested for inheritance) exhibit expression patterns outside the range of both parent species. In contrast, Italian sparrow ovary expression was similar to that of one of the parent species, the house sparrow (Passer domesticus). Moreover, the Italian sparrow testis transcriptome is 26 times as diverged from those of the parent species as the parental transcriptomes are from each other, despite being genetically intermediate. This highlights the potential for regulation of gene expression to produce novel variation following hybridization. Genes involved in mitochondrial respiratory chain complexes and protein synthesis are enriched in the subset that is over‐dominantly expressed in Italian sparrow testis, suggesting that selection on key functions has moulded the hybrid Italian sparrow transcriptome.
Collapse
Affiliation(s)
| | - Mark Ravinet
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Melissah Rowe
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), AB, Wageningen, The Netherlands
| | - Glenn-Peter Saetre
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, PO, Oslo, Norway
| | - Caroline Øien Guldvog
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, PO, Oslo, Norway
| | - Fabrice Eroukhmanoff
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, PO, Oslo, Norway
| | - Alfonso Marzal
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Badajoz, Spain
| | - Sergio Magallanes
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, Badajoz, Spain.,Department of Wetland Ecology, Doñana Biological Station (EBD-CSIC), Avda. Américo Vespucio, 41092, Seville, Spain
| | - Anna Runemark
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
26
|
Gu H, Wang L, Lv X, Yang W, Chen Y, Li K, Zhang J, Jia Y, Ning Z, Qu L. RNA-Seq Analysis Reveals Expression Regulatory Divergence of W-Linked Genes between Two Contrasting Chicken Breeds. Animals (Basel) 2022; 12:ani12091218. [PMID: 35565645 PMCID: PMC9103786 DOI: 10.3390/ani12091218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Understanding the mode of gene expression and regulation is essential for understanding the evolutionary process. Many previous studies tried to explain regulatory changes at the autosomal level, but little research has extended these explorations to the field of sex chromosomes due to their complex sex-limit features. Here, we first adopted an innovative method of identifying regulatory divergence of W-linked genes. Compared with cis-regulatory divergence, trans acting genes were more extensive in the W chromosome. We also found that divergent sex specific selection cannot strongly affect the expression evolution of the W chromosome. This insensitivity to selection may be one of the reasons why regulatory divergence is so small between autosomal and sex chromosomes. Abstract The regulation of gene expression is a complex process involving organism function and phenotypic diversity, and is caused by cis- and trans- regulation. While prior studies identified the regulatory pattern of the autosome rewiring in hybrids, the role of gene regulation in W sex chromosomes is not clear due to their degradation and sex-limit expression. Here, we developed reciprocal crosses of two chicken breeds, White Leghorn and Cornish Game, which exhibited broad differences in gender-related traits, and assessed the expression of the genes on the W chromosome to disentangle the contribution of cis- and trans-factors to expression divergence. We found that female-specific selection does not have a significant effect on W chromosome gene-expression patterns. For different tissues, there were most parental divergence expression genes in muscle, and also more heterosis compared with two other tissues. Notably, a broader pattern of trans regulation in the W chromosome was observed, which is consistent with autosomes. Taken together, this work describes the regulatory divergence of W-linked genes between two contrasting breeds and indicates sex chromosomes have a unique regulation and expression mechanism.
Collapse
Affiliation(s)
- Hongchang Gu
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.G.); (Z.N.)
| | - Liang Wang
- Beijing Municipal General Station of Animal Science, Beijing 100107, China; (L.W.); (X.L.); (W.Y.); (Y.C.); (K.L.); (J.Z.)
| | - Xueze Lv
- Beijing Municipal General Station of Animal Science, Beijing 100107, China; (L.W.); (X.L.); (W.Y.); (Y.C.); (K.L.); (J.Z.)
| | - Weifang Yang
- Beijing Municipal General Station of Animal Science, Beijing 100107, China; (L.W.); (X.L.); (W.Y.); (Y.C.); (K.L.); (J.Z.)
| | - Yu Chen
- Beijing Municipal General Station of Animal Science, Beijing 100107, China; (L.W.); (X.L.); (W.Y.); (Y.C.); (K.L.); (J.Z.)
| | - Kaiyang Li
- Beijing Municipal General Station of Animal Science, Beijing 100107, China; (L.W.); (X.L.); (W.Y.); (Y.C.); (K.L.); (J.Z.)
| | - Jianwei Zhang
- Beijing Municipal General Station of Animal Science, Beijing 100107, China; (L.W.); (X.L.); (W.Y.); (Y.C.); (K.L.); (J.Z.)
| | - Yaxiong Jia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Zhonghua Ning
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.G.); (Z.N.)
| | - Lujiang Qu
- National Engineering Laboratory for Animal Breeding, Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (H.G.); (Z.N.)
- Correspondence:
| |
Collapse
|
27
|
Quan C, Chen G, Li S, Jia Z, Yu P, Tu J, Shen J, Yi B, Fu T, Dai C, Ma C. Transcriptome shock in interspecific F1 allotriploid hybrids between Brassica species. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2336-2353. [PMID: 35139197 DOI: 10.1093/jxb/erac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Interspecific hybridization drives the evolution of angiosperms and can be used to introduce novel alleles for important traits or to activate heterosis in crop breeding. Hybridization brings together gene expression networks from two different species, potentially causing global alterations of gene expression in the F1 plants which is called 'transcriptome shock'. Here, we explored such a transcriptome shock in allotriploid Brassica hybrids. We generated interspecific F1 allotriploid hybrids between the allotetraploid species Brassica napus and three accessions of the diploid species Brassica rapa. RNA-seq of the F1 hybrids and the parental plants revealed that 26.34-30.89% of genes were differentially expressed between the parents. We also analyzed expression level dominance and homoeolog expression bias between the parents and the F1 hybrids. The expression-level dominance biases of the Ar, An, and Cn subgenomes was genotype and stage dependent, whereas significant homoeolog expression bias was observed among three subgenomes from different parents. Furthermore, more genes were involved in trans regulation than in cis regulation in allotriploid F1 hybrids. Our findings provide new insights into the transcriptomic responses of cross-species hybrids and hybrids showing heterosis, as well as a new method for promoting the breeding of desirable traits in polyploid Brassica species.
Collapse
Affiliation(s)
- Chengtao Quan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Guoting Chen
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Sijia Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhibo Jia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Pugang Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
28
|
Fezza TJ, Siderhurst MS, Jang EB, Stacy EA, Price DK. Phenotypic disruption of cuticular hydrocarbon production in hybrids between sympatric species of Hawaiian picture-wing Drosophila. Sci Rep 2022; 12:4865. [PMID: 35318342 PMCID: PMC8941103 DOI: 10.1038/s41598-022-08635-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Interspecies hybrids can express phenotypic traits far outside the range of parental species. The atypical traits of hybrids provide insight into differences in the factors that regulate the expression of these traits in the parental species. In some cases, the unusual phenotypic traits of hybrids can lead to phenotypic dysfunction with hybrids experiencing reduced survival or reproduction. Cuticular hydrocarbons (CHCs) in insects are important phenotypic traits that serve several functions, including desiccation resistance and pheromones for mating. We used gas chromatography mass spectrometry to investigate the differences in CHC production between two closely related sympatric Hawaiian picture-wing Drosophila species, Drosophila heteroneura and D. silvestris, and their F1 and backcross hybrid offspring. CHC profiles differed between males of the two species, with substantial sexual dimorphism in D. silvestris but limited sexual dimorphism in D. heteroneura. Surprisingly, F1 hybrids did not produce three CHCs, and the abundances of several other CHCs occurred outside the ranges present in the two parental species. Backcross hybrids produced all CHCs with greater variation than observed in F1 or parental species. Overall, these results suggest that the production of CHCs was disrupted in F1 and backcross hybrids, which may have important consequences for their survival or reproduction.
Collapse
Affiliation(s)
- Thomas J Fezza
- Tropical Conservation Biology and Environmental Sciences, University of Hawaii at Hilo, 200 West Kawili St., Hilo, HI, 96720, USA
| | - Matthew S Siderhurst
- Department of Chemistry, Eastern Mennonite University, 1200 Park Rd, Harrisonburg, VA, 22802, USA
| | - Eric B Jang
- Tropical Crop and Commodity Protection Research, D.K.I, U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 64 Nowelo Street, Hilo, HI, 96720, USA
| | - Elizabeth A Stacy
- Tropical Conservation Biology and Environmental Sciences, University of Hawaii at Hilo, 200 West Kawili St., Hilo, HI, 96720, USA.,School of Life Sciences, University of Nevada, Las Vegas, USA
| | - Donald K Price
- Tropical Conservation Biology and Environmental Sciences, University of Hawaii at Hilo, 200 West Kawili St., Hilo, HI, 96720, USA. .,School of Life Sciences, University of Nevada, Las Vegas, USA.
| |
Collapse
|
29
|
Carlson CH, Choi Y, Chan AP, Town CD, Smart LB. Nonadditive gene expression is correlated with nonadditive phenotypic expression in interspecific triploid hybrids of willow (Salix spp.). G3 (BETHESDA, MD.) 2022; 12:6472355. [PMID: 35100357 PMCID: PMC9210313 DOI: 10.1093/g3journal/jkab436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Many studies have highlighted the complex and diverse basis for heterosis in inbred crops. Despite the lack of a consensus model, it is vital that we turn our attention to understanding heterosis in undomesticated, heterozygous, and polyploid species, such as willow (Salix spp.). Shrub willow is a dedicated energy crop bred to be fast-growing and high yielding on marginal land without competing with food crops. A trend in willow breeding is the consistent pattern of heterosis in triploids produced from crosses between diploid and tetraploid species. Here, we test whether differentially expressed genes are associated with heterosis in triploid families derived from diploid Salix purpurea, diploid Salix viminalis, and tetraploid Salix miyabeana parents. Three biological replicates of shoot tips from all family progeny and parents were collected after 12 weeks in the greenhouse and RNA extracted for RNA-Seq analysis. This study provides evidence that nonadditive patterns of gene expression are correlated with nonadditive phenotypic expression in interspecific triploid hybrids of willow. Expression-level dominance was most correlated with heterosis for biomass yield traits and was highly enriched for processes involved in starch and sucrose metabolism. In addition, there was a global dosage effect of parent alleles in triploid hybrids, with expression proportional to copy number variation. Importantly, differentially expressed genes between family parents were most predictive of heterosis for both field and greenhouse collected traits. Altogether, these data will be used to progress models of heterosis to complement the growing genomic resources available for the improvement of heterozygous perennial bioenergy crops.
Collapse
Affiliation(s)
- Craig H Carlson
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| | - Yongwook Choi
- Plant Genomics, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Agnes P Chan
- Plant Genomics, J. Craig Venter Institute, Rockville, MD 20850, USA
| | | | - Lawrence B Smart
- Horticulture Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, USA
| |
Collapse
|
30
|
Bodelón A, Fablet M, Veber P, Vieira C, García Guerreiro MP. OUP accepted manuscript. Genome Biol Evol 2022; 14:6526395. [PMID: 35143649 PMCID: PMC8872975 DOI: 10.1093/gbe/evac024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
Interspecific hybridization is often seen as a genomic stress that may lead to new gene expression patterns and deregulation of transposable elements (TEs). The understanding of expression changes in hybrids compared with parental species is essential to disentangle their putative role in speciation processes. However, to date we ignore the detailed mechanisms involved in genomic deregulation in hybrids. We studied the ovarian transcriptome and epigenome of the Drosophila buzzatii and Drosophila koepferae species together with their F1 hybrid females. We found a trend toward underexpression of genes and TE families in hybrids. The epigenome in hybrids was highly similar to the parental epigenomes and showed intermediate histone enrichments between parental species in most cases. Differential gene expression in hybrids was often associated only with changes in H3K4me3 enrichments, whereas differential TE family expression in hybrids may be associated with changes in H3K4me3, H3K9me3, or H3K27me3 enrichments. We identified specific genes and TE families, which their differential expression in comparison with the parental species was explained by their differential chromatin mark combination enrichment. Finally, cis–trans compensatory regulation could also contribute in some way to the hybrid deregulation. This work provides the first study of histone content in Drosophila interspecific hybrids and their effect on gene and TE expression deregulation.
Collapse
Affiliation(s)
- Alejandra Bodelón
- Grup de Genòmica, Bioinformática i Biologia Evolutiva, Departament de Genètica i Microbiologia (Edifici C), Universitat Autònoma de Barcelona, Spain
| | - Marie Fablet
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
- Institut universitaire de France, France
| | - Philippe Veber
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Maria Pilar García Guerreiro
- Grup de Genòmica, Bioinformática i Biologia Evolutiva, Departament de Genètica i Microbiologia (Edifici C), Universitat Autònoma de Barcelona, Spain
- Corresponding author: E-mail:
| |
Collapse
|
31
|
Interspecific hybridization as a driver of fungal evolution and adaptation. Nat Rev Microbiol 2021; 19:485-500. [PMID: 33767366 DOI: 10.1038/s41579-021-00537-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 02/01/2023]
Abstract
Cross-species gene transfer is often associated with bacteria, which have evolved several mechanisms that facilitate horizontal DNA exchange. However, the increased availability of whole-genome sequences has revealed that fungal species also exchange DNA, leading to intertwined lineages, blurred species boundaries or even novel species. In contrast to prokaryotes, fungal DNA exchange originates from interspecific hybridization, where two genomes are merged into a single, often highly unstable, polyploid genome that evolves rapidly into stabler derivatives. The resulting hybrids can display novel combinations of genetic and phenotypic variation that enhance fitness and allow colonization of new niches. Interspecific hybridization led to the emergence of important pathogens of humans and plants (for example, various Candida and 'powdery mildew' species, respectively) and industrially important yeasts, such as Saccharomyces hybrids that are important in the production of cold-fermented lagers or cold-cellared Belgian ales. In this Review, we discuss the genetic processes and evolutionary implications of fungal interspecific hybridization and highlight some of the best-studied examples. In addition, we explain how hybrids can be used to study molecular mechanisms underlying evolution, adaptation and speciation, and serve as a route towards development of new variants for industrial applications.
Collapse
|
32
|
Suvorov A, Scornavacca C, Fujimoto MS, Bodily P, Clement M, Crandall KA, Whiting MF, Schrider DR, Bybee SM. Deep ancestral introgression shapes evolutionary history of dragonflies and damselflies. Syst Biol 2021; 71:526-546. [PMID: 34324671 PMCID: PMC9017697 DOI: 10.1093/sysbio/syab063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Introgression is an important biological process affecting at least 10% of the extant species in the animal kingdom. Introgression significantly impacts inference of phylogenetic species relationships where a strictly binary tree model cannot adequately explain reticulate net-like species relationships. Here we use phylogenomic approaches to understand patterns of introgression along the evolutionary history of a unique, non-model insect system: dragonflies and damselflies (Odonata). We demonstrate that introgression is a pervasive evolutionary force across various taxonomic levels within Odonata. In particular, we show that the morphologically "intermediate" species of Anisozygoptera (one of the three primary suborders within Odonata besides Zygoptera and Anisoptera), which retain phenotypic characteristics of the other two suborders, experienced high levels of introgression likely coming from zygopteran genomes. Additionally, we find evidence for multiple cases of deep inter-superfamilial ancestral introgression.
Collapse
Affiliation(s)
- Anton Suvorov
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Celine Scornavacca
- Institut des Sciences de l'Evolution Université de Montpellier, CNRS, IRD, EPHE CC 064, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - M Stanley Fujimoto
- Department of Computer Science, Brigham Young University, Provo, UT, United States
| | - Paul Bodily
- Department of Computer Science, Idaho State University, Pocatello, ID, United States
| | - Mark Clement
- Department of Computer Science, Brigham Young University, Provo, UT, United States
| | - Keith A Crandall
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Michael F Whiting
- Department of Biology, Brigham Young University, Provo, UT, United States.,M.L. Bean Museum, Brigham Young University, Provo, UT, United States
| | - Daniel R Schrider
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Seth M Bybee
- Department of Biology, Brigham Young University, Provo, UT, United States.,M.L. Bean Museum, Brigham Young University, Provo, UT, United States
| |
Collapse
|
33
|
Identification of Distant Regulatory Elements Using Expression Quantitative Trait Loci Mapping for Heat-Responsive Genes in Oysters. Genes (Basel) 2021; 12:genes12071040. [PMID: 34356056 PMCID: PMC8303352 DOI: 10.3390/genes12071040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/17/2022] Open
Abstract
Many marine ectotherms, especially those inhabiting highly variable intertidal zones, develop high phenotypic plasticity in response to rapid climate change by modulating gene expression levels. Herein, we examined the regulatory architecture of heat-responsive gene expression plasticity in oysters using expression quantitative trait loci (eQTL) analysis. Using a backcross family of Crassostrea gigas and its sister species Crassostrea angulata under acute stress, 56 distant regulatory regions accounting for 6–26.6% of the gene expression variation were identified for 19 heat-responsive genes. In total, 831 genes and 164 single nucleotide polymorphisms (SNPs) that could potentially regulate expression of the target genes were screened in the eQTL region. The association between three SNPs and the corresponding target genes was verified in an independent family. Specifically, Marker13973 was identified for heat shock protein (HSP) family A member 9 (HspA9). Ribosomal protein L10a (RPL10A) was detected approximately 2 kb downstream of the distant regulatory SNP. Further, Marker14346-48 and Marker14346-85 were in complete linkage disequilibrium and identified for autophagy-related gene 7 (ATG7). Nuclear respiratory factor 1 (NRF1) was detected approximately 3 kb upstream of the two SNPs. These results suggested regulatory relationships between RPL10A and HSPA9 and between NRF1 and ATG7. Our findings indicate that distant regulatory mutations play an important role in the regulation of gene expression plasticity by altering upstream regulatory factors in response to heat stress. The identified eQTLs provide candidate biomarkers for predicting the persistence of oysters under future climate change scenarios.
Collapse
|
34
|
Kerwin RE, Sweigart AL. Rampant Misexpression in a Mimulus (Monkeyflower) Introgression Line Caused by Hybrid Sterility, Not Regulatory Divergence. Mol Biol Evol 2021; 37:2084-2098. [PMID: 32196085 PMCID: PMC7306685 DOI: 10.1093/molbev/msaa071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Divergence in gene expression regulation is common between closely related species and may give rise to incompatibilities in their hybrid progeny. In this study, we investigated the relationship between regulatory evolution within species and reproductive isolation between species. We focused on a well-studied case of hybrid sterility between two closely related yellow monkeyflower species, Mimulus guttatus and Mimulus nasutus, that is caused by two epistatic loci, hybrid male sterility 1 (hms1) and hybrid male sterility 2 (hms2). We compared genome-wide transcript abundance across male and female reproductive tissues (i.e., stamens and carpels) from four genotypes: M. guttatus, M. nasutus, and sterile and fertile progeny from an advanced M. nasutus–M. guttatus introgression line carrying the hms1–hms2 incompatibility. We observed substantial variation in transcript abundance between M. guttatus and M. nasutus, including distinct but overlapping patterns of tissue-biased expression, providing evidence for regulatory divergence between these species. We also found rampant genome-wide misexpression, but only in the affected tissues (i.e., stamens) of sterile introgression hybrids carrying incompatible alleles at hms1 and hms2. Examining patterns of allele-specific expression in sterile and fertile introgression hybrids, we found evidence for interspecific divergence in cis- and trans-regulation, including compensatory cis–trans mutations likely to be driven by stabilizing selection. Nevertheless, species divergence in gene regulatory networks cannot explain the vast majority of the gene misexpression we observe in Mimulus introgression hybrids, which instead likely manifests as a downstream consequence of sterility itself.
Collapse
Affiliation(s)
- Rachel E Kerwin
- Department of Genetics, University of Georgia, Athens, GA.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI
| | | |
Collapse
|
35
|
Yan Y, Li Z, Li Y, Wu Z, Yang R. Correlated Evolution of Large DNA Fragments in the 3D Genome of Arabidopsis thaliana. Mol Biol Evol 2021; 37:1621-1636. [PMID: 32044988 DOI: 10.1093/molbev/msaa031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In eukaryotes, the three-dimensional (3D) conformation of the genome is far from random, and this nonrandom chromatin organization is strongly correlated with gene expression and protein function, which are two critical determinants of the selective constraints and evolutionary rates of genes. However, whether genes and other elements that are located close to each other in the 3D genome evolve in a coordinated way has not been investigated in any organism. To address this question, we constructed chromatin interaction networks (CINs) in Arabidopsis thaliana based on high-throughput chromosome conformation capture data and demonstrated that adjacent large DNA fragments in the CIN indeed exhibit more similar levels of polymorphism and evolutionary rates than random fragment pairs. Using simulations that account for the linear distance between fragments, we proved that the 3D chromosomal organization plays a role in the observed correlated evolution. Spatially interacting fragments also exhibit more similar mutation rates and functional constraints in both coding and noncoding regions than the random expectations, indicating that the correlated evolution between 3D neighbors is a result of combined evolutionary forces. A collection of 39 genomic and epigenomic features can explain much of the variance in genetic diversity and evolutionary rates across the genome. Moreover, features that have a greater effect on the evolution of regional sequences tend to show higher similarity between neighboring fragments in the CIN, suggesting a pivotal role of epigenetic modifications and chromatin organization in determining the correlated evolution of large DNA fragments in the 3D genome.
Collapse
Affiliation(s)
- Yubin Yan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhaohong Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ye Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zefeng Wu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruolin Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
36
|
Sánchez-Ramírez S, Weiss JG, Thomas CG, Cutter AD. Widespread misregulation of inter-species hybrid transcriptomes due to sex-specific and sex-chromosome regulatory evolution. PLoS Genet 2021; 17:e1009409. [PMID: 33667233 PMCID: PMC7968742 DOI: 10.1371/journal.pgen.1009409] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/17/2021] [Accepted: 02/09/2021] [Indexed: 01/04/2023] Open
Abstract
When gene regulatory networks diverge between species, their dysfunctional expression in inter-species hybrid individuals can create genetic incompatibilities that generate the developmental defects responsible for intrinsic post-zygotic reproductive isolation. Both cis- and trans-acting regulatory divergence can be hastened by directional selection through adaptation, sexual selection, and inter-sexual conflict, in addition to cryptic evolution under stabilizing selection. Dysfunctional sex-biased gene expression, in particular, may provide an important source of sexually-dimorphic genetic incompatibilities. Here, we characterize and compare male and female/hermaphrodite transcriptome profiles for sibling nematode species Caenorhabditis briggsae and C. nigoni, along with allele-specific expression in their F1 hybrids, to deconvolve features of expression divergence and regulatory dysfunction. Despite evidence of widespread stabilizing selection on gene expression, misexpression of sex-biased genes pervades F1 hybrids of both sexes. This finding implicates greater fragility of male genetic networks to produce dysfunctional organismal phenotypes. Spermatogenesis genes are especially prone to high divergence in both expression and coding sequences, consistent with a "faster male" model for Haldane's rule and elevated sterility of hybrid males. Moreover, underdominant expression pervades male-biased genes compared to female-biased and sex-neutral genes and an excess of cis-trans compensatory regulatory divergence for X-linked genes underscores a "large-X effect" for hybrid male expression dysfunction. Extensive regulatory divergence in sex determination pathway genes likely contributes to demasculinization of XX hybrids. The evolution of genetic incompatibilities due to regulatory versus coding sequence divergence, however, are expected to arise in an uncorrelated fashion. This study identifies important differences between the sexes in how regulatory networks diverge to contribute to sex-biases in how genetic incompatibilities manifest during the speciation process.
Collapse
Affiliation(s)
- Santiago Sánchez-Ramírez
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- * E-mail: (SSR); (ADC)
| | - Jörg G. Weiss
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Cristel G. Thomas
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Asher D. Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
- * E-mail: (SSR); (ADC)
| |
Collapse
|
37
|
Swamy KBS, Schuyler SC, Leu JY. Protein Complexes Form a Basis for Complex Hybrid Incompatibility. Front Genet 2021; 12:609766. [PMID: 33633780 PMCID: PMC7900514 DOI: 10.3389/fgene.2021.609766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
Proteins are the workhorses of the cell and execute many of their functions by interacting with other proteins forming protein complexes. Multi-protein complexes are an admixture of subunits, change their interaction partners, and modulate their functions and cellular physiology in response to environmental changes. When two species mate, the hybrid offspring are usually inviable or sterile because of large-scale differences in the genetic makeup between the two parents causing incompatible genetic interactions. Such reciprocal-sign epistasis between inter-specific alleles is not limited to incompatible interactions between just one gene pair; and, usually involves multiple genes. Many of these multi-locus incompatibilities show visible defects, only in the presence of all the interactions, making it hard to characterize. Understanding the dynamics of protein-protein interactions (PPIs) leading to multi-protein complexes is better suited to characterize multi-locus incompatibilities, compared to studying them with traditional approaches of genetics and molecular biology. The advances in omics technologies, which includes genomics, transcriptomics, and proteomics can help achieve this end. This is especially relevant when studying non-model organisms. Here, we discuss the recent progress in the understanding of hybrid genetic incompatibility; omics technologies, and how together they have helped in characterizing protein complexes and in turn multi-locus incompatibilities. We also review advances in bioinformatic techniques suitable for this purpose and propose directions for leveraging the knowledge gained from model-organisms to identify genetic incompatibilities in non-model organisms.
Collapse
Affiliation(s)
- Krishna B. S. Swamy
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| | - Scott C. Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Head and Neck Surgery, Department of Otolaryngology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
38
|
Floc'hlay S, Wong ES, Zhao B, Viales RR, Thomas-Chollier M, Thieffry D, Garfield DA, Furlong EEM. Cis-acting variation is common across regulatory layers but is often buffered during embryonic development. Genome Res 2021; 31:211-224. [PMID: 33310749 PMCID: PMC7849415 DOI: 10.1101/gr.266338.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Precise patterns of gene expression are driven by interactions between transcription factors, regulatory DNA sequences, and chromatin. How DNA mutations affecting any one of these regulatory "layers" are buffered or propagated to gene expression remains unclear. To address this, we quantified allele-specific changes in chromatin accessibility, histone modifications, and gene expression in F1 embryos generated from eight Drosophila crosses at three embryonic stages, yielding a comprehensive data set of 240 samples spanning multiple regulatory layers. Genetic variation (allelic imbalance) impacts gene expression more frequently than chromatin features, with metabolic and environmental response genes being most often affected. Allelic imbalance in cis-regulatory elements (enhancers) is common and highly heritable, yet its functional impact does not generally propagate to gene expression. When it does, genetic variation impacts RNA levels through two alternative mechanisms involving either H3K4me3 or chromatin accessibility and H3K27ac. Changes in RNA are more predictive of variation in H3K4me3 than vice versa, suggesting a role for H3K4me3 downstream from transcription. The impact of a substantial proportion of genetic variation is consistent across embryonic stages, with 50% of allelic imbalanced features at one stage being also imbalanced at subsequent developmental stages. Crucially, buffering, as well as the magnitude and evolutionary impact of genetic variants, is influenced by regulatory complexity (i.e., number of enhancers regulating a gene), with transcription factors being most robust to cis-acting, but most influenced by trans-acting, variation.
Collapse
Affiliation(s)
- Swann Floc'hlay
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - Emily S Wong
- Molecular, Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, New South Wales 2052, Australia
| | - Bingqing Zhao
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Rebecca R Viales
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Morgane Thomas-Chollier
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Denis Thieffry
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France
| | - David A Garfield
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany
| |
Collapse
|
39
|
McGirr JA, Martin CH. Few Fixed Variants between Trophic Specialist Pupfish Species Reveal Candidate Cis-Regulatory Alleles Underlying Rapid Craniofacial Divergence. Mol Biol Evol 2021; 38:405-423. [PMID: 32877534 PMCID: PMC7826174 DOI: 10.1093/molbev/msaa218] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Investigating closely related species that rapidly evolved divergent feeding morphology is a powerful approach to identify genetic variation underlying variation in complex traits. This can also lead to the discovery of novel candidate genes influencing natural and clinical variation in human craniofacial phenotypes. We combined whole-genome resequencing of 258 individuals with 50 transcriptomes to identify candidate cis-acting genetic variation underlying rapidly evolving craniofacial phenotypes within an adaptive radiation of Cyprinodon pupfishes. This radiation consists of a dietary generalist species and two derived trophic niche specialists-a molluscivore and a scale-eating species. Despite extensive morphological divergence, these species only diverged 10 kya and produce fertile hybrids in the laboratory. Out of 9.3 million genome-wide SNPs and 80,012 structural variants, we found very few alleles fixed between species-only 157 SNPs and 87 deletions. Comparing gene expression across 38 purebred F1 offspring sampled at three early developmental stages, we identified 17 fixed variants within 10 kb of 12 genes that were highly differentially expressed between species. By measuring allele-specific expression in F1 hybrids from multiple crosses, we found that the majority of expression divergence between species was explained by trans-regulatory mechanisms. We also found strong evidence for two cis-regulatory alleles affecting expression divergence of two genes with putative effects on skeletal development (dync2li1 and pycr3). These results suggest that SNPs and structural variants contribute to the evolution of novel traits and highlight the utility of the San Salvador Island pupfish system as an evolutionary model for craniofacial development.
Collapse
Affiliation(s)
- Joseph A McGirr
- Environmental Toxicology Department, University of California, Davis, CA
| | - Christopher H Martin
- Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, CA
| |
Collapse
|
40
|
Go AC, Civetta A. Hybrid Incompatibilities and Transgressive Gene Expression Between Two Closely Related Subspecies of Drosophila. Front Genet 2020; 11:599292. [PMID: 33362859 PMCID: PMC7758320 DOI: 10.3389/fgene.2020.599292] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/12/2020] [Indexed: 11/13/2022] Open
Abstract
Genome-wide assays of expression between species and their hybrids have identified genes that become either over- or underexpressed relative to the parental species (i.e., transgressive). Transgressive expression in hybrids is of interest because it highlights possible changes in gene regulation linked to hybrid dysfunction. Previous studies in Drosophila that used long-diverged species pairs with complete or nearly complete isolation (i.e., full sterility and partial inviability of hybrids) and high-levels of genome misregulation have found correlations between expression and coding sequence divergence. The work highlighted the possible effects of directional selection driving sequence divergence and transgressive expression. Whether the same is true for taxa at early stages of divergence that have only achieved partial isolation remains untested. Here, we reanalyze previously published genome expression data and available genome sequence reads from a pair of partially isolated subspecies of Drosophila to compare expression and sequence divergence. We find a significant correlation in rates of expression and sequence evolution, but no support for directional selection driving transgressive expression in hybrids. We find that most transgressive genes in hybrids show no differential expression between parental subspecies and used SNP data to explore the role of stabilizing selection through compensatory mutations. We also examine possible misregulation through cascade effects that could be driven by interacting gene networks or co-option of off-target cis-regulatory elements.
Collapse
Affiliation(s)
- Alwyn C Go
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | - Alberto Civetta
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| |
Collapse
|
41
|
Mugal CF, Wang M, Backström N, Wheatcroft D, Ålund M, Sémon M, McFarlane SE, Dutoit L, Qvarnström A, Ellegren H. Tissue-specific patterns of regulatory changes underlying gene expression differences among Ficedula flycatchers and their naturally occurring F 1 hybrids. Genome Res 2020; 30:1727-1739. [PMID: 33144405 PMCID: PMC7706733 DOI: 10.1101/gr.254508.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
Changes in interacting cis- and trans-regulatory elements are important candidates for Dobzhansky-Muller hybrid incompatibilities and may contribute to hybrid dysfunction by giving rise to misexpression in hybrids. To gain insight into the molecular mechanisms and determinants of gene expression evolution in natural populations, we analyzed the transcriptome from multiple tissues of two recently diverged Ficedula flycatcher species and their naturally occurring F1 hybrids. Differential gene expression analysis revealed that the extent of differentiation between species and the set of differentially expressed genes varied across tissues. Common to all tissues, a higher proportion of Z-linked genes than autosomal genes showed differential expression, providing evidence for a fast-Z effect. We further found clear signatures of hybrid misexpression in brain, heart, kidney, and liver. However, while testis showed the highest divergence of gene expression among tissues, it showed no clear signature of misexpression in F1 hybrids, even though these hybrids were found to be sterile. It is therefore unlikely that incompatibilities between cis-trans regulatory changes explain the observed sterility. Instead, we found evidence that cis-regulatory changes play a significant role in the evolution of gene expression in testis, which illustrates the tissue-specific nature of cis-regulatory evolution bypassing constraints associated with pleiotropic effects of genes.
Collapse
Affiliation(s)
- Carina F Mugal
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Mi Wang
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Niclas Backström
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - David Wheatcroft
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Murielle Ålund
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Marie Sémon
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,ENS de Lyon, Laboratory of Biology and Modelling of the Cell, Lyon University, 69364 Lyon Cedex 07, France
| | - S Eryn McFarlane
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Ludovic Dutoit
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Department of Zoology, University of Otago, Dunedin 9016, New Zealand
| | - Anna Qvarnström
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Hans Ellegren
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
42
|
Cartwright EL, Lott SE. Evolved Differences in cis and trans Regulation Between the Maternal and Zygotic mRNA Complements in the Drosophila Embryo. Genetics 2020; 216:805-821. [PMID: 32928902 PMCID: PMC7648588 DOI: 10.1534/genetics.120.303626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 08/26/2020] [Indexed: 11/18/2022] Open
Abstract
How gene expression can evolve depends on the mechanisms driving gene expression. Gene expression is controlled in different ways in different developmental stages; here we ask whether different developmental stages show different patterns of regulatory evolution. To explore the mode of regulatory evolution, we used the early stages of embryonic development controlled by two different genomes, that of the mother and that of the zygote. During embryogenesis in all animals, initial developmental processes are driven entirely by maternally provided gene products deposited into the oocyte. The zygotic genome is activated later, when developmental control is handed off from maternal gene products to the zygote during the maternal-to-zygotic transition. Using hybrid crosses between sister species of Drosophila (Dsimulans, D. sechellia, and D. mauritiana) and transcriptomics, we find that the regulation of maternal transcript deposition and zygotic transcription evolve through different mechanisms. We find that patterns of transcript level inheritance in hybrids, relative to parental species, differ between maternal and zygotic transcripts, and maternal transcript levels are more likely to be conserved. Changes in transcript levels occur predominantly through differences in trans regulation for maternal genes, while changes in zygotic transcription occur through a combination of both cis and trans regulatory changes. Differences in the underlying regulatory landscape in the mother and the zygote are likely the primary determinants for how maternal and zygotic transcripts evolve.
Collapse
Affiliation(s)
- Emily L Cartwright
- Department of Evolution and Ecology, University of California, Davis, California 95616
| | - Susan E Lott
- Department of Evolution and Ecology, University of California, Davis, California 95616
| |
Collapse
|
43
|
Abstract
New species arise as the genomes of populations diverge. The developmental 'alarm clock' of speciation sounds off when sufficient divergence in genetic control of development leads hybrid individuals to infertility or inviability, the world awoken to the dawn of new species with intrinsic post-zygotic reproductive isolation. Some developmental stages will be more prone to hybrid dysfunction due to how molecular evolution interacts with the ontogenetic timing of gene expression. Considering the ontogeny of hybrid incompatibilities provides a profitable connection between 'evo-devo' and speciation genetics to better link macroevolutionary pattern, microevolutionary process, and molecular mechanisms. Here, we explore speciation alongside development, emphasizing their mutual dependence on genetic network features, fitness landscapes, and developmental system drift. We assess models for how ontogenetic timing of reproductive isolation can be predictable. Experiments and theory within this synthetic perspective can help identify new rules of speciation as well as rules in the molecular evolution of development.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of TorontoTorontoCanada
| | - Joanna D Bundus
- Department of Integrative Biology, University of Wisconsin – MadisonMadisonUnited States
| |
Collapse
|
44
|
Satokangas I, Martin SH, Helanterä H, Saramäki J, Kulmuni J. Multi-locus interactions and the build-up of reproductive isolation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190543. [PMID: 32654649 PMCID: PMC7423273 DOI: 10.1098/rstb.2019.0543] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2020] [Indexed: 12/15/2022] Open
Abstract
All genes interact with other genes, and their additive effects and epistatic interactions affect an organism's phenotype and fitness. Recent theoretical and empirical work has advanced our understanding of the role of multi-locus interactions in speciation. However, relating different models to one another and to empirical observations is challenging. This review focuses on multi-locus interactions that lead to reproductive isolation (RI) through reduced hybrid fitness. We first review theoretical approaches and show how recent work incorporating a mechanistic understanding of multi-locus interactions recapitulates earlier models, but also makes novel predictions concerning the build-up of RI. These include high variance in the build-up rate of RI among taxa, the emergence of strong incompatibilities producing localized barriers to introgression, and an effect of population size on the build-up of RI. We then review recent experimental approaches to detect multi-locus interactions underlying RI using genomic data. We argue that future studies would benefit from overlapping methods like ancestry disequilibrium scans, genome scans of differentiation and analyses of hybrid gene expression. Finally, we highlight a need for further overlap between theoretical and empirical work, and approaches that predict what kind of patterns multi-locus interactions resulting in incompatibilities will leave in genome-wide polymorphism data. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- I. Satokangas
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1, PO Box 65, 00014 Helsinki, Finland
| | - S. H. Martin
- Institute of Evolutionary Biology, University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3FL, UK
| | - H. Helanterä
- Ecology and Genetics research unit, University of Oulu, PO Box 3000, 90014 Oulu, Finland
| | - J. Saramäki
- Department of Computer Science, Aalto University, PO Box 11000, 00076 Aalto, Espoo, Finland
| | - J. Kulmuni
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, Viikinkaari 1, PO Box 65, 00014 Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, J. A. Palménin tie 260, 10900 Hanko, Finland
| |
Collapse
|
45
|
Mattioli K, Oliveros W, Gerhardinger C, Andergassen D, Maass PG, Rinn JL, Melé M. Cis and trans effects differentially contribute to the evolution of promoters and enhancers. Genome Biol 2020; 21:210. [PMID: 32819422 PMCID: PMC7439725 DOI: 10.1186/s13059-020-02110-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Gene expression differences between species are driven by both cis and trans effects. Whereas cis effects are caused by genetic variants located on the same DNA molecule as the target gene, trans effects are due to genetic variants that affect diffusible elements. Previous studies have mostly assessed the impact of cis and trans effects at the gene level. However, how cis and trans effects differentially impact regulatory elements such as enhancers and promoters remains poorly understood. Here, we use massively parallel reporter assays to directly measure the transcriptional outputs of thousands of individual regulatory elements in embryonic stem cells and measure cis and trans effects between human and mouse. RESULTS Our approach reveals that cis effects are widespread across transcribed regulatory elements, and the strongest cis effects are associated with the disruption of motifs recognized by strong transcriptional activators. Conversely, we find that trans effects are rare but stronger in enhancers than promoters and are associated with a subset of transcription factors that are differentially expressed between human and mouse. While we find that cis-trans compensation is common within promoters, we do not see evidence of widespread cis-trans compensation at enhancers. Cis-trans compensation is inversely correlated with enhancer redundancy, suggesting that such compensation may often occur across multiple enhancers. CONCLUSIONS Our results highlight differences in the mode of evolution between promoters and enhancers in complex mammalian genomes and indicate that studying the evolution of individual regulatory elements is pivotal to understand the tempo and mode of gene expression evolution.
Collapse
Affiliation(s)
- Kaia Mattioli
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA
| | - Winona Oliveros
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain
| | - Chiara Gerhardinger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Daniel Andergassen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Philipp G Maass
- Genetics and Genome Biology Program, SickKids Research Institute, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - John L Rinn
- Department of Biochemistry, University of Colorado, BioFrontiers Institute, Boulder, CO, 80301, USA
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, 08034, Barcelona, Catalonia, Spain.
| |
Collapse
|
46
|
Abstract
It has long been acknowledged that changes in the regulation of gene expression may account for major organismal differences. However, we still do not fully understand how changes in gene expression evolve and how do such changes influence organisms' differences. We are even less aware of the impact such changes might have in restricting gene flow between species. Here, we focus on studies of gene expression and speciation in the Drosophila model. We review studies that have identified gene interactions in post-mating reproductive isolation and speciation, particularly those that modulate male gene expression. We also address studies that have experimentally manipulated changes in gene expression to test their effect in post-mating reproductive isolation. We highlight the need for a more in-depth analysis of the role of selection causing disrupted gene expression of such candidate genes in sterile/inviable hybrids. Moreover, we discuss the relevance to incorporate more routinely assays that simultaneously evaluate the potential effects of environmental factors and genetic background in modulating plastic responses in male genes and their potential role in speciation.
Collapse
Affiliation(s)
- Bahar Patlar
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada.,Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| |
Collapse
|
47
|
McGirr JA, Martin CH. Ecological divergence in sympatry causes gene misexpression in hybrids. Mol Ecol 2020; 29:2707-2721. [PMID: 32557903 PMCID: PMC8209238 DOI: 10.1111/mec.15512] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022]
Abstract
Ecological speciation occurs when reproductive isolation evolves as a byproduct of adaptive divergence between populations. Selection favouring gene regulatory divergence between species could result in transgressive levels of gene expression in F1 hybrids that may lower hybrid fitness. We combined 58 resequenced genomes with 124 transcriptomes to identify patterns of hybrid gene misexpression that may be driven by adaptive regulatory divergence within a young radiation of Cyprinodon pupfishes, which consists of a dietary generalist and two trophic specialists-a molluscivore and a scale-eater. We found more differential gene expression between closely related sympatric specialists than between allopatric generalist populations separated by 1,000 km. Intriguingly, 9.6% of genes that were differentially expressed between sympatric species were also misexpressed in F1 hybrids. A subset of these genes were in highly differentiated genomic regions and enriched for functions important for trophic specialization, including head, muscle and brain development. These regions also included genes that showed evidence of hard selective sweeps and were significantly associated with oral jaw length-the most rapidly diversifying skeletal trait in this radiation. Our results indicate that divergent ecological selection in sympatry can contribute to hybrid gene misexpression which may act as a reproductive barrier between nascent species.
Collapse
Affiliation(s)
- Joseph A. McGirr
- Department of Biology, University of North Carolina, Chapel
Hill, NC 27514
| | - Christopher H. Martin
- Department of Biology, University of North Carolina, Chapel
Hill, NC 27514
- Department of Integrative Biology and Museum of Vertebrate
Zoology, University of California, Berkeley, CA 94720
| |
Collapse
|
48
|
Krieger G, Lupo O, Levy AA, Barkai N. Independent evolution of transcript abundance and gene regulatory dynamics. Genome Res 2020; 30:1000-1011. [PMID: 32699020 PMCID: PMC7397873 DOI: 10.1101/gr.261537.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
Changes in gene expression drive novel phenotypes, raising interest in how gene expression evolves. In contrast to the static genome, cells modulate gene expression in response to changing environments. Previous comparative studies focused on specific conditions, describing interspecies variation in expression levels, but providing limited information about variation across different conditions. To close this gap, we profiled mRNA levels of two related yeast species in hundreds of conditions and used coexpression analysis to distinguish variation in the dynamic pattern of gene expression from variation in expression levels. The majority of genes whose expression varied between the species maintained a conserved dynamic pattern. Cases of diverged dynamic pattern correspond to genes that were induced under distinct subsets of conditions in the two species. Profiling the interspecific hybrid allowed us to distinguish between genes with predominantly cis- or trans-regulatory variation. We find that trans-varying alleles are dominantly inherited, and that cis-variations are often complemented by variations in trans Based on these results, we suggest that gene expression diverges primarily through changes in expression levels, but does not alter the pattern by which these levels are dynamically regulated.
Collapse
Affiliation(s)
- Gat Krieger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Offir Lupo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Avraham A Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
49
|
Yan SM, McCoy RC. Archaic hominin genomics provides a window into gene expression evolution. Curr Opin Genet Dev 2020; 62:44-49. [PMID: 32615344 PMCID: PMC7483639 DOI: 10.1016/j.gde.2020.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 02/08/2023]
Abstract
Differences in gene expression are thought to account for most phenotypic differences within and between species. Consequently, gene expression is a powerful lens through which to study divergence between modern humans and our closest evolutionary relatives, the Neanderthals and Denisovans. Such insights complement biological knowledge gleaned from the fossil record, while also revealing general features of the mode and tempo of regulatory evolution. Because of the degradation of ancient RNA, gene expression profiles of archaic hominins must be studied by indirect means. As such, conclusions drawn from these studies are often laden with assumptions about the genetic architecture of gene expression, the complexity of which is increasingly apparent. Despite these challenges, rapid technical and conceptual advances in the fields of ancient genomics, functional genomics, statistical genomics, and genome engineering are revolutionizing understanding of hominin gene expression evolution.
Collapse
Affiliation(s)
- Stephanie M Yan
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Rajiv C McCoy
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
50
|
Wang Q, Jia Y, Wang Y, Jiang Z, Zhou X, Zhang Z, Nie C, Li J, Yang N, Qu L. Evolution of cis- and trans-regulatory divergence in the chicken genome between two contrasting breeds analyzed using three tissue types at one-day-old. BMC Genomics 2019; 20:933. [PMID: 31805870 PMCID: PMC6896592 DOI: 10.1186/s12864-019-6342-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/27/2019] [Indexed: 11/10/2022] Open
Abstract
Background Gene expression variation is a key underlying factor influencing phenotypic variation, and can occur via cis- or trans-regulation. To understand the role of cis- and trans-regulatory variation on population divergence in chicken, we developed reciprocal crosses of two chicken breeds, White Leghorn and Cornish Game, which exhibit major differences in body size and reproductive traits, and used them to determine the degree of cis versus trans variation in the brain, liver, and muscle tissue of male and female 1-day-old specimens. Results We provided an overview of how transcriptomes are regulated in hybrid progenies of two contrasting breeds based on allele specific expression analysis. Compared with cis-regulatory divergence, trans-acting genes were more extensive in the chicken genome. In addition, considerable compensatory cis- and trans-regulatory changes exist in the chicken genome. Most importantly, stronger purifying selection was observed on genes regulated by trans-variations than in genes regulated by the cis elements. Conclusions We present a pipeline to explore allele-specific expression in hybrid progenies of inbred lines without a specific reference genome. Our research is the first study to describe the regulatory divergence between two contrasting breeds. The results suggest that artificial selection associated with domestication in chicken could have acted more on trans-regulatory divergence than on cis-regulatory divergence.
Collapse
Affiliation(s)
- Qiong Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yaxiong Jia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Wang
- Department of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Zhihua Jiang
- Department of Animal Sciences, Center for Reproductive Biology, Veterinary and Biomedical Research Building, Washington State University, Pullman, USA
| | - Xiang Zhou
- College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zebin Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Changsheng Nie
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junying Li
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lujiang Qu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|