1
|
Ost KJ, Arentshorst M, Moerschbacher BM, Dirks-Hofmeister ME, Ram AF. Comprehensive phenotypic analysis of multiple gene deletions of α-glucan synthase and Crh-transglycosylase gene families in Aspergillus niger highlighting the versatility of the fungal cell wall. Cell Surf 2025; 13:100141. [PMID: 39991742 PMCID: PMC11847290 DOI: 10.1016/j.tcsw.2025.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
Multiple paralogs are found in the fungal genomes for several genes that encode proteins involved in cell wall biosynthesis. The genome of A. niger contains five genes encoding putative α-1,3-glucan synthases (AgsA-E) and seven genes encoding putative glucan-chitin crosslinking enzymes (CrhA-G). Here, we systematically studied the effects of the deletion of single (agsA or agsE), double (agsA and agsE), or all five ags genes (agsA-E) present in A. niger. Morphological and biochemical analysis of ags mutants emphasizes the important role of agsE in cell wall integrity, while deletion of other ags genes had minimal impact. Loss of agsE compromised cell wall integrity and altered pellet morphology in liquid cultures. Previous studies have indicated that deletion of all crh genes in A. niger did not result in cell wall integrity-related phenotypes. To determine whether the ags and crh gene families have redundant functions, both gene families were deleted using iterative CRISPR/Cas9 mediated genome editing. The 12-fold deletion mutant was viable and did not exhibit growth defects under non-stressing growth conditions. A synergistic effect on cell wall integrity was observed in this 12-fold deletion mutant, particularly when exposed to cell wall-perturbing compounds. The cell wall composition, extractability of glucans by alkali, and scanning electron microscopy analysis showed no differences between the parental strain and mutants lacking ags genes, crh genes, or both. These observations underscore the ability of fungal cells to adapt and secure cell wall integrity, even when two entire cell wall protein-encoding gene families are missing.
Collapse
Affiliation(s)
- Katharina J. Ost
- Münster University, Institute for Biology and Biotechnology of Plants, Schlossplatz 8, 48143 Münster, Germany
- Osnabrück University of Applied Sciences, Faculty of Agricultural Sciences and Landscape Architecture, Laboratory for Food Biotechnology, Oldenburger Landstraße 62, 49090 Osnabrück, Germany
| | - Mark Arentshorst
- Leiden University, Institute of Biology Leiden, Fungal Genetics and Biotechnology, Sylviusweg 7, 2333, BE, Leiden, the Netherlands
| | - Bruno M. Moerschbacher
- Münster University, Institute for Biology and Biotechnology of Plants, Schlossplatz 8, 48143 Münster, Germany
| | - Mareike E. Dirks-Hofmeister
- Osnabrück University of Applied Sciences, Faculty of Agricultural Sciences and Landscape Architecture, Laboratory for Food Biotechnology, Oldenburger Landstraße 62, 49090 Osnabrück, Germany
| | - Arthur F.J. Ram
- Leiden University, Institute of Biology Leiden, Fungal Genetics and Biotechnology, Sylviusweg 7, 2333, BE, Leiden, the Netherlands
| |
Collapse
|
2
|
Kadooka C, Yakabe S, Hira D, Futagami T, Goto M, Oka T. Functional redundancy and divergence of UDP-glucose 4-epimerases in galactose metabolism and cell wall biosynthesis in Aspergillus nidulans. Fungal Genet Biol 2025; 177:103972. [PMID: 39988081 DOI: 10.1016/j.fgb.2025.103972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/20/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Galactose-containing polysaccharides in the cell walls of filamentous fungi are vital for hyphal formation, mycelial aggregation, and adhesion. Uridine diphosphate (UDP)-glucose 4-epimerase, an enzyme capable of reversibly converting UDP-glucose to UDP-galactose, plays a key role in galactose metabolism. This study investigates the functional specialization and overlapping roles of UDP-glucose 4-epimerases, UgeA and UgeB, in Aspergillus nidulans. Enzyme activity assays revealed that UgeA catalyzes the interconversion of UDP-glucose and UDP-galactose, while UgeB facilitates both UDP-glucose/UDP-galactose and UDP-N-acetylglucosamine/UDP-N-acetylgalactosamine interconversions. Both UgeA and UgeB successfully restored growth in a yeast gal10 disruptant, indicating their involvement in galactose metabolism in vivo. Additionally, the ugeB disruptant of A. nidulans exhibited growth retardation during galactose metabolism, a defect that was alleviated by complementation with ugeB or multiple-copy expression of ugeA. These findings elucidate the complex interplay between sugar metabolism and cell wall synthesis in filamentous fungi and offer insights for the development of novel antifungal therapies.
Collapse
Affiliation(s)
- Chihiro Kadooka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| | - Shun Yakabe
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| | - Daisuke Hira
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan
| | - Taiki Futagami
- Education and Research Center for Fermentation Studies, Faculty of Agriculture, Kagoshima University, Kagoshima 890-0065, Japan
| | - Masatoshi Goto
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
| | - Takuji Oka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Ikeda, Nishi-ku, Kumamoto, 860-0082, Japan.
| |
Collapse
|
3
|
Groß M, Dika B, Loos E, Aliyeva-Schnorr L, Deising HB. The galactose metabolism genes UGE1 and UGM1 are novel virulence factors of the maize anthracnose fungus Colletotrichum graminicola. Mol Microbiol 2024; 121:912-926. [PMID: 38400525 DOI: 10.1111/mmi.15242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Fungal cell walls represent the frontline contact with the host and play a prime role in pathogenesis. While the roles of the cell wall polymers like chitin and branched β-glucan are well understood in vegetative and pathogenic development, that of the most prominent galactose-containing polymers galactosaminogalactan and fungal-type galactomannan is unknown in plant pathogenic fungi. Mining the genome of the maize pathogen Colletotrichum graminicola identified the single-copy key galactose metabolism genes UGE1 and UGM1, encoding a UDP-glucose-4-epimerase and UDP-galactopyranose mutase, respectively. UGE1 is thought to be required for biosynthesis of both polymers, whereas UGM1 is specifically required for fungal-type galactomannan formation. Promoter:eGFP fusion strains revealed that both genes are expressed in vegetative and in pathogenic hyphae at all stages of pathogenesis. Targeted deletion of UGE1 and UGM1, and fluorescence-labeling of galactosaminogalactan and fungal-type galactomannan confirmed that Δuge1 mutants were unable to synthesize either of these polymers, and Δugm1 mutants did not exhibit fungal-type galactomannan. Appressoria of Δuge1, but not of Δugm1 mutants, were defective in adhesion, highlighting a function of galactosaminogalactan in the establishment of these infection cells on hydrophobic surfaces. Both Δuge1 and Δugm1 mutants showed cell wall defects in older vegetative hyphae and severely reduced appressorial penetration competence. On intact leaves of Zea mays, both mutants showed strongly reduced disease symptom severity, indicating that UGE1 and UGM1 represent novel virulence factors of C. graminicola.
Collapse
Affiliation(s)
- Maximilian Groß
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Beate Dika
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Elisabeth Loos
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Lala Aliyeva-Schnorr
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Holger B Deising
- Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
4
|
Cruz-Leite VRM, Moreira ALE, Silva LOS, Inácio MM, Parente-Rocha JA, Ruiz OH, Weber SS, Soares CMDA, Borges CL. Proteomics of Paracoccidioides lutzii: Overview of Changes Triggered by Nitrogen Catabolite Repression. J Fungi (Basel) 2023; 9:1102. [PMID: 37998907 PMCID: PMC10672198 DOI: 10.3390/jof9111102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Members of the Paracoccidioides complex are the causative agents of Paracoccidioidomycosis (PCM), a human systemic mycosis endemic in Latin America. Upon initial contact with the host, the pathogen needs to uptake micronutrients. Nitrogen is an essential source for biosynthetic pathways. Adaptation to nutritional stress is a key feature of fungi in host tissues. Fungi utilize nitrogen sources through Nitrogen Catabolite Repression (NCR). NCR ensures the scavenging, uptake and catabolism of alternative nitrogen sources, when preferential ones, such as glutamine or ammonium, are unavailable. The NanoUPLC-MSE proteomic approach was used to investigate the NCR response of Paracoccidioides lutzii after growth on proline or glutamine as a nitrogen source. A total of 338 differentially expressed proteins were identified. P. lutzii demonstrated that gluconeogenesis, β-oxidation, glyoxylate cycle, adhesin-like proteins, stress response and cell wall remodeling were triggered in NCR-proline conditions. In addition, within macrophages, yeast cells trained under NCR-proline conditions showed an increased ability to survive. In general, this study allows a comprehensive understanding of the NCR response employed by the fungus to overcome nutritional starvation, which in the human host is represented by nutritional immunity. In turn, the pathogen requires rapid adaptation to the changing microenvironment induced by macrophages to achieve successful infection.
Collapse
Affiliation(s)
- Vanessa Rafaela Milhomem Cruz-Leite
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - André Luís Elias Moreira
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Lana O’Hara Souza Silva
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Moises Morais Inácio
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
- Estácio de Goiás University Center—FESGO, Goiânia 74063-010, GO, Brazil
| | - Juliana Alves Parente-Rocha
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Orville Hernandez Ruiz
- MICROBA Research Group, Cellular and Molecular Biology Unit, Department of Microbiology, School of Microbiology, University of Antioquia, Medellín 050010, Colombia;
| | - Simone Schneider Weber
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79304-902, MS, Brazil;
| | - Célia Maria de Almeida Soares
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Clayton Luiz Borges
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| |
Collapse
|
5
|
Schaff H, Dey P, Heiss C, Keiser G, Moro TR, Azadi P, Patel P, Free SJ. Characterization of the need for galactofuranose during the Neurospora crassa life cycle. Fungal Genet Biol 2023; 168:103826. [PMID: 37541569 DOI: 10.1016/j.fgb.2023.103826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Galactofuranose is a constituent of the cell walls of filamentous fungi. The galactofuranose can be found as a component of N-linked oligosaccharides, in O-linked oligosaccharides, in GPI-anchored galactomannan, and in free galactomannan. The Neurospora genome contains a single UDP-galactose mutase gene (ugm-1/NCU01824) and two UDP-galactofuranose translocases used to import UDP-galactofuranose into the lumen of the Golgi apparatus (ugt-1/NCU01826 and ugt-2/NCU01456). Our results demonstrate that loss of galactofuranose synthesis or its translocation into the lumen of the secretory pathway affects the morphology and growth rate of the vegetative hyphae, the production of conidia (asexual spores), and dramatically affects the sexual stages of the life cycle. In mutants that are unable to make galactofuranose or transport it into the lumen of the Golgi apparatus, ascospore development is aborted soon after fertilization and perithecium maturation is aborted prior to the formation of the neck and ostiole. The Neurospora genome contains three genes encoding possible galactofuranosyltransferases from the GT31 family of glycosyltransferases (gfs-1/NCU05878, gfs-2/NCU07762, and gfs-3/NCU02213) which might be involved in generating galactofuranose-containing oligosaccharide structures. Analysis of triple KO mutants in GT31 glycosyltransferases shows that these mutants have normal morphology, suggesting that these genes do not encode vital galactofuranosyltransferases.
Collapse
Affiliation(s)
- Hayden Schaff
- Dept. of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States
| | - Protyusha Dey
- Dept. of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States
| | - Christian Heiss
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Griffin Keiser
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Tatiana Rojo Moro
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, United States
| | - Pavan Patel
- Dept. of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States
| | - Stephen J Free
- Dept. of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States.
| |
Collapse
|
6
|
Singh R, Kashif M, Srivastava P, Manna PP. Recent Advances in Chemotherapeutics for Leishmaniasis: Importance of the Cellular Biochemistry of the Parasite and Its Molecular Interaction with the Host. Pathogens 2023; 12:pathogens12050706. [PMID: 37242374 DOI: 10.3390/pathogens12050706] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Leishmaniasis, a category 1 neglected protozoan disease caused by a kinetoplastid pathogen called Leishmania, is transmitted through dipteran insect vectors (phlebotomine, sand flies) in three main clinical forms: fatal visceral leishmaniasis, self-healing cutaneous leishmaniasis, and mucocutaneous leishmaniasis. Generic pentavalent antimonials have long been the drug of choice against leishmaniasis; however, their success is plagued with limitations such as drug resistance and severe side effects, which makes them redundant as frontline therapy for endemic visceral leishmaniasis. Alternative therapeutic regimens based on amphotericin B, miltefosine, and paromomycin have also been approved. Due to the unavailability of human vaccines, first-line chemotherapies such as pentavalent antimonials, pentamidine, and amphotericin B are the only options to treat infected individuals. The higher toxicity, adverse effects, and perceived cost of these pharmaceutics, coupled with the emergence of parasite resistance and disease relapse, makes it urgent to identify new, rationalized drug targets for the improvement in disease management and palliative care for patients. This has become an emergent need and more relevant due to the lack of information on validated molecular resistance markers for the monitoring and surveillance of changes in drug sensitivity and resistance. The present study reviewed the recent advances in chemotherapeutic regimens by targeting novel drugs using several strategies including bioinformatics to gain new insight into leishmaniasis. Leishmania has unique enzymes and biochemical pathways that are distinct from those of its mammalian hosts. In light of the limited number of available antileishmanial drugs, the identification of novel drug targets and studying the molecular and cellular aspects of these drugs in the parasite and its host is critical to design specific inhibitors targeting and controlling the parasite. The biochemical characterization of unique Leishmania-specific enzymes can be used as tools to read through possible drug targets. In this review, we discuss relevant metabolic pathways and novel drugs that are unique, essential, and linked to the survival of the parasite based on bioinformatics and cellular and biochemical analyses.
Collapse
Affiliation(s)
- Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mohammad Kashif
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
7
|
Gene complementation strategies for filamentous fungi biotechnology. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
8
|
UDP-Galactopyranose Mutase Mediates Cell Wall Integrity, Polarity Growth, and Virulence in Fusarium graminearum. Appl Environ Microbiol 2023; 89:e0123522. [PMID: 36656025 PMCID: PMC9972967 DOI: 10.1128/aem.01235-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
CHY1 is a zinc finger protein unique to microorganisms that was found to regulate polarized tip growth in Fusarium graminearum, an important pathogen of wheat and barley. To further characterize its functions, in this study we identified CHY1-interacting proteins by affinity purification and selected UDP-galactofuranose (Galf) mutase (UGMA) for detailed characterization, because UGMA and UDP-Galf are unique to fungi and bacteria and absent in plants and animals. The interaction between CHY1 and UGMA was confirmed by yeast two-hybrid assays. Deletion of UGMA in F. graminearum resulted in significant defects in vegetative growth, reproduction, cell wall integrity, and pathogenicity. Infection with the ΔugmA mutant was restricted to the inoculated floret, and no vomitoxin was detected in kernels inoculated with the ΔugmA strain. Compared to the wild type, the ΔugmA mutant produced wide, highly branched hyphae with thick walls, as visualized by transmission electron microscopy. UGMA tagged with green fluorescent protein (GFP) mainly localized to the cytoplasm, consistent with the synthesis of Galf in the cytoplasm. The Δchy1 mutant was more sensitive, while the ΔugmA mutant was more tolerant, to cell wall-degrading enzymes. The growth of the ΔugmA mutant nearly ceased upon caspofungin treatment. More interestingly, nocodazole treatment of the ΔugmA strain attenuated its highly branched morphology, while caspofungin inhibited the degree of the twisted Δchy1 mycelia, indicating that CHY1 and UGMA probably have opposite effects on cell wall architecture. In conclusion, UGMA is an important pathogenic factor that is specific to fungi and bacteria and required for cell wall architecture, radial growth, and caspofungin tolerance, and it appears to be a promising target for antifungal agent development. IMPORTANCE The long-term use of chemical pesticides has had increasingly negative impacts on the ecological environment and human health. Low-toxicity, high-efficiency and environmentally friendly alternative pesticides are of great significance for maintaining the sustainable development of agriculture and human and environmental health. Using fungus- or microbe-specific genes as candidate targets provides a good foundation for the development of low-toxicity, environmentally friendly pesticides. In this study, we characterized a fungus- and bacterium-specific UDP-galactopyranose mutase gene, ugmA, that contributes to the synthesis of the cell wall component Galf and is required for vegetative growth, cell wall integrity, deoxynivalenol (DON) production, and pathogenicity in F. graminearum. The ugmA deletion mutant exhibited increased sensitivity to caspofungin. These results demonstrate the functional importance of UGMA in F. graminearum, and its absence from mammals and higher plants constitutes a considerable advantage as a low-toxicity target for the development of new anti-Fusarium agents.
Collapse
|
9
|
Kadooka C, Tanaka Y, Hira D, Maruyama JI, Goto M, Oka T. Identification of galactofuranose antigens such as galactomannoproteins and fungal-type galactomannan from the yellow koji fungus ( Aspergillus oryzae). Front Microbiol 2023; 14:1110996. [PMID: 36814571 PMCID: PMC9939772 DOI: 10.3389/fmicb.2023.1110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/16/2023] [Indexed: 02/08/2023] Open
Abstract
Filamentous fungi belonging to the genus Aspergillus are known to possess galactomannan in their cell walls. Galactomannan is highly antigenic to humans and has been reported to be involved in the pathogenicity of pathogenic filamentous fungi, such as A. fumigatus, and in immune responses. In this study, we aimed to confirm the presence of D-galactofuranose-containing glycans and to clarify the biosynthesis of D-galactofuranose-containing glycans in Aspergillus oryzae, a yellow koji fungus. We found that the galactofuranose antigen is also present in A. oryzae. Deletion of ugmA, which encodes UDP-galactopyranose mutase in A. oryzae, suppressed mycelial elongation, suggesting that D-galactofuranose-containing glycans play an important role in cell wall integrity in A. oryzae. Proton nuclear magnetic resonance spectrometry revealed that the galactofuranose-containing sugar chain was deficient and that core mannan backbone structures were present in ΔugmA A. oryzae, indicating the presence of fungal-type galactomannan in the cell wall fraction of A. oryzae. The findings of this study provide new insights into the cell wall structure of A. oryzae, which is essential for the production of fermented foods in Japan.
Collapse
Affiliation(s)
- Chihiro Kadooka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | - Yutaka Tanaka
- Division of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Daisuke Hira
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan
| | - Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Tokyo, Japan,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Masatoshi Goto
- Department of Applied Biochemistry and Food Science, Faculty of Agriculture, Saga University, Saga, Japan
| | - Takuji Oka
- Department of Biotechnology and Life Sciences, Faculty of Biotechnology and Life Sciences, Sojo University, Kumamoto, Japan,*Correspondence: Takuji Oka,
| |
Collapse
|
10
|
Arentshorst M, Reijngoud J, van Tol DJC, Reid ID, Arendsen Y, Pel HJ, van Peij NNME, Visser J, Punt PJ, Tsang A, Ram AFJ. Utilization of ferulic acid in Aspergillus niger requires the transcription factor FarA and a newly identified Far-like protein (FarD) that lacks the canonical Zn(II) 2Cys 6 domain. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:978845. [PMID: 37746181 PMCID: PMC10512302 DOI: 10.3389/ffunb.2022.978845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/17/2022] [Indexed: 09/26/2023]
Abstract
The feruloyl esterase B gene (faeB) is specifically induced by hydroxycinnamic acids (e.g. ferulic acid, caffeic acid and coumaric acid) but the transcriptional regulation network involved in faeB induction and ferulic acid metabolism has only been partially addressed. To identify transcription factors involved in ferulic acid metabolism we constructed and screened a transcription factor knockout library of 239 Aspergillus niger strains for mutants unable to utilize ferulic acid as a carbon source. The ΔfarA transcription factor mutant, already known to be involved in fatty acid metabolism, could not utilize ferulic acid and other hydroxycinnamic acids. In addition to screening the transcription factor mutant collection, a forward genetic screen was performed to isolate mutants unable to express faeB. For this screen a PfaeB-amdS and PfaeB-lux613 dual reporter strain was engineered. The rationale of the screen is that in this reporter strain ferulic acid induces amdS (acetamidase) expression via the faeB promoter resulting in lethality on fluoro-acetamide. Conidia of this reporter strain were UV-mutagenized and plated on fluoro-acetamide medium in the presence of ferulic acid. Mutants unable to induce faeB are expected to be fluoro-acetamide resistant and can be positively selected for. Using this screen, six fluoro-acetamide resistant mutants were obtained and phenotypically characterized. Three mutants had a phenotype identical to the farA mutant and sequencing the farA gene in these mutants indeed showed mutations in FarA which resulted in inability to growth on ferulic acid as well as on short and long chain fatty acids. The growth phenotype of the other three mutants was similar to the farA mutants in terms of the inability to grow on ferulic acid, but these mutants grew normally on short and long chain fatty acids. The genomes of these three mutants were sequenced and allelic mutations in one particular gene (NRRL3_09145) were found. The protein encoded by NRRL3_09145 shows similarity to the FarA and FarB transcription factors. However, whereas FarA and FarB contain both the Zn(II)2Cys6 domain and a fungal-specific transcription factor domain, the protein encoded by NRRL3_09145 (FarD) lacks the canonical Zn(II)2Cys6 domain and possesses only the fungal specific transcription factor domain.
Collapse
Affiliation(s)
- Mark Arentshorst
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Jos Reijngoud
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Daan J. C. van Tol
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Ian D. Reid
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Yvonne Arendsen
- DSM Biosciences and Process Innovation, Center for Biotech Innovation, Delft, Netherlands
| | - Herman J. Pel
- DSM Biosciences and Process Innovation, Center for Biotech Innovation, Delft, Netherlands
| | | | - Jaap Visser
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
- Fungal Genetics and Technology Consultancy, Wageningen, AJ, Netherlands
| | - Peter J. Punt
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - Arthur F. J. Ram
- Microbial Sciences, Institute of Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
11
|
Poosapati S, Ravulapalli PD, Viswanathaswamy DK, Kannan M. Proteomics of Two Thermotolerant Isolates of Trichoderma under High-Temperature Stress. J Fungi (Basel) 2021; 7:1002. [PMID: 34946985 PMCID: PMC8704589 DOI: 10.3390/jof7121002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022] Open
Abstract
Several species of the soil borne fungus of the genus Trichoderma are known to be versatile, opportunistic plant symbionts and are the most successful biocontrol agents used in today's agriculture. To be successful in field conditions, the fungus must endure varying climatic conditions. Studies have indicated that a high atmospheric temperature coupled with low humidity is a major factor in the inconsistent performance of Trichoderma under field conditions. Understanding the molecular modulations associated with Trichoderma that persist and deliver under abiotic stress conditions will aid in exploiting the value of these organisms for such uses. In this study, a comparative proteomic analysis, using two-dimensional gel electrophoresis (2DE) and matrix-assisted laser desorption/time-of-flight (MALDI-TOF-TOF) mass spectrometry, was used to identify proteins associated with thermotolerance in two thermotolerant isolates of Trichoderma: T. longibrachiatum 673, TaDOR673 and T. asperellum 7316, TaDOR7316; with 32 differentially expressed proteins being identified. Sequence homology and conserved domains were used to identify these proteins and to assign a probable function to them. The thermotolerant isolate, TaDOR673, seemed to employ the stress signaling MAPK pathways and heat shock response pathways to combat the stress condition, whereas the moderately tolerant isolate, TaDOR7316, seemed to adapt to high-temperature conditions by reducing the accumulation of misfolded proteins through an unfolded protein response pathway and autophagy. In addition, there were unique, as well as common, proteins that were differentially expressed in the two isolates studied.
Collapse
Affiliation(s)
- Sowmya Poosapati
- Department of Plant Pathology, ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad 500030, India;
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Prasad Durga Ravulapalli
- Department of Plant Pathology, ICAR-Indian Institute of Oilseeds Research, Rajendranagar, Hyderabad 500030, India;
| | | | - Monica Kannan
- Proteomics Facility, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India;
| |
Collapse
|
12
|
van Leeuwe TM, Arentshorst M, Punt PJ, Ram AF. Interrogation of the cell wall integrity pathway in Aspergillus niger identifies a putative negative regulator of transcription involved in chitin deposition. Gene 2021; 763S:100028. [PMID: 32550555 PMCID: PMC7285910 DOI: 10.1016/j.gene.2020.100028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/18/2019] [Accepted: 01/23/2020] [Indexed: 01/26/2023]
Abstract
Post-fermentation fungal biomass waste provides a viable source for chitin. Cell wall chitin of filamentous fungi, and in particular its de-N-acetylated derivative chitosan, has a wide range of commercial applications. Although the cell wall of filamentous fungi comprises 10–30% chitin, these yields are too low for cost-effective production. Therefore, we aimed to identify the genes involved in increased chitin deposition by screening a collection of UV-derived cell wall mutants in Aspergillus niger. This screen revealed a mutant strain (RD15.4#55) that showed a 30–40% increase in cell wall chitin compared to the wild type. In addition to the cell wall chitin phenotype, this strain also exhibited sensitivity to SDS and produces an unknown yellow pigment. Genome sequencing combined with classical genetic linkage analysis identified two mutated genes on chromosome VII that were linked with the mutant phenotype. Single gene knockouts and subsequent complementation analysis revealed that an 8 bp deletion in NRRL3_09595 is solely responsible for the associated phenotypes of RD15.4#55. The mutated gene, which was named cwcA (cell wall chitin A), encodes an orthologue of Saccharomyces cerevisiae Bypass of ESS1 (BYE1), a negative regulator of transcription elongation. We propose that this conserved fungal protein is involved in preventing cell wall integrity signaling under non-inducing conditions, where loss of function results in constitutive activation of the cell wall stress response pathway, and consequently leads to increased chitin content in the mutant cell wall. An Aspergillus niger UV-mutant with increased cell wall chitin was characterized. Causative mutation was identified in a single gene, named cell wall chitin A (cwcA). CwcA is orthologous to yeast Bye1p and exists as a single copy gene. Three relevant domains are found in both CwcA and Bye1p: PHD, TFIIS and SPOC. CwcA acts as negative regulator of CWI signaling.
Collapse
Affiliation(s)
- Tim M. van Leeuwe
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Mark Arentshorst
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Peter J. Punt
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
- Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Arthur F.J. Ram
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
- Corresponding author at: Leiden University, Institute of Biology, Department Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands.
| |
Collapse
|
13
|
Zhou H, Xu Y, Ebel F, Jin C. Galactofuranose (Galf)-containing sugar chain contributes to the hyphal growth, conidiation and virulence of F. oxysporum f.sp. cucumerinum. PLoS One 2021; 16:e0250064. [PMID: 34329342 PMCID: PMC8323920 DOI: 10.1371/journal.pone.0250064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/31/2021] [Indexed: 01/14/2023] Open
Abstract
The ascomycete fungus Fusarium oxysporum f.sp. cucumerinum causes vascular wilt diseases in cucumber. However, few genes related to morphogenesis and pathogenicity of this fungal pathogen have been functionally characterized. BLASTp searches of the Aspergillus fumigatus UgmA and galatofuranosyltransferases (Galf-transferases) sequences in the F. oxysporum genome identified two genes encoding putative UDP-galactopyranose mutase (UGM), ugmA and ugmB, and six genes encoding putative Galf-transferase homologs. In this study, the single and double mutants of the ugmA, ugmB and gfsB were obtained. The roles of UGMs and GfsB were investigated by analyzing the phenotypes of the mutants. Our results showed that deletion of the ugmA gene led to a reduced production of galactofuranose-containing sugar chains, reduced growth and impaired conidiation of F. oxysporum f.sp. cucumerinum. Most importantly, the ugmA deletion mutant lost the pathogenicity in cucumber plantlets. Although deletion of the ugmB gene did not cause any visible phenotype, deletion of both ugmA and ugmB genes caused more severe phenotypes as compared with the ΔugmA, suggesting that UgmA and UgmB are redundant and they can both contribute to synthesis of UDP-Galf. Furthermore, the ΔgfsB exhibited an attenuated virulence although no other phenotype was observed. Our results demonstrate that the galactofuranose (Galf) synthesis contributes to the cell wall integrity, germination, hyphal growth, conidiation and virulence in Fusarium oxysporum f.sp. cucumerinum and an ideal target for the development of new anti-Fusarium agents.
Collapse
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yueqiang Xu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Frank Ebel
- Institute for Infectious Diseases and Zoonoses, LMU, Munich, Germany
| | - Cheng Jin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- National Engineering Research Center for Non-food Bio-refinery, Guangxi Academy of Sciences, Nanning, China
- * E-mail:
| |
Collapse
|
14
|
Reijngoud J, Arentshorst M, Ruijmbeek C, Reid I, Alazi ED, Punt PJ, Tsang A, Ram AFJ. Loss of function of the carbon catabolite repressor CreA leads to low but inducer-independent expression from the feruloyl esterase B promoter in Aspergillus niger. Biotechnol Lett 2021; 43:1323-1336. [PMID: 33738610 PMCID: PMC8197723 DOI: 10.1007/s10529-021-03104-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/08/2021] [Indexed: 11/26/2022]
Abstract
Objective
With the aim to decipher the mechanisms involved in the transcriptional regulation of feruloyl esterase encoded by faeB, a genetic screen was performed to isolate A. niger mutants displaying inducer-independent expression from the faeB promoter.
Result PfaeB-amdS and PfaeB-lux dual reporter strains were constructed and used to isolate trans-acting mutants in which the expression of both reporters was increased, based on the ability to grow on acetamide plates and higher luciferase activity, respectively. The genetic screen on the non-inducing carbon source D-fructose yielded in total 111 trans-acting mutants. The genome of one of the mutants was sequenced and revealed several SNPs, including a point mutation in the creA gene encoding a transcription factor known to be involved in carbon catabolite repression. Subsequently, all mutants were analyzed for defects in carbon catabolite repression by determining sensitivity towards allyl alcohol. All except four of the 111 mutants were sensitive to allyl alcohol, indicating that the vast majority of the mutants are defective in carbon catabolite repression. The creA gene of 32 allyl alcohol sensitive mutants was sequenced and 27 of them indeed contained a mutation in the creA gene. Targeted deletion of creA in the reporter strain confirmed that the loss of CreA results in constitutive expression from the faeB promoter. Conclusion
Loss of function of CreA leads to low but inducer-independent expression from the faeB promoter in A. niger. Supplementary Information The online version contains supplementary material available at 10.1007/s10529-021-03104-2.
Collapse
Affiliation(s)
- Jos Reijngoud
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Bioscienz, Goeseelsstraat 10, 4817 MV, Breda, The Netherlands
| | - Mark Arentshorst
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Claudine Ruijmbeek
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Ian Reid
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Ebru Demirci Alazi
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Peter J Punt
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Arthur F J Ram
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
15
|
Abstract
The fungal zinc finger transcription factor NsdC is named after, and is best known for, its essential role in sexual reproduction (never in sexual development). In previous studies with Aspergillus nidulans, it was also shown to have roles in promotion of vegetative growth and suppression of asexual conidiation. In this study, the function of the nsdC homologue in the opportunistic human pathogen A. fumigatus was investigated. NsdC was again found to be essential for sexual development, with deletion of the nsdC gene in both MAT1-1 and MAT1-2 mating partners of a cross leading to complete loss of fertility. However, a functional copy of nsdC in one mating partner was sufficient to allow sexual reproduction. Deletion of nsdC also led to decreased vegetative growth and allowed conidiation in liquid cultures, again consistent with previous findings. However, NsdC in A. fumigatus was shown to have additional biological functions including response to calcium stress, correct organization of cell wall structure, and response to the cell wall stressors. Furthermore, virulence and host immune recognition were affected. Gene expression studies involving chromatin immunoprecipitation (ChIP) of RNA polymerase II (PolII) coupled to next-generation sequencing (Seq) revealed that deletion of nsdC resulted in changes in expression of over 620 genes under basal growth conditions. This demonstrated that this transcription factor mediates the activity of a wide variety of signaling and metabolic pathways and indicates that despite the naming of the gene, the promotion of sexual reproduction is just one among multiple roles of NsdC.IMPORTANCE Aspergillus fumigatus is an opportunistic human fungal pathogen and the main causal agent of invasive aspergillosis, a life-threatening infection especially in immunocompromised patients. A. fumigatus can undergo both asexual and sexual reproductive cycles, and the regulation of both cycles involves several genes and pathways. Here, we have characterized one of these genetic determinants, the NsdC transcription factor, which was initially identified in a screen of transcription factor null mutants showing sensitivity when exposed to high concentrations of calcium. In addition to its known essential roles in sexual reproduction and control of growth rate and asexual reproduction, we have shown in the present study that A. fumigatus NsdC transcription factor has additional previously unrecognized biological functions including calcium tolerance, cell wall stress response, and correct cell wall organization and functions in virulence and host immune recognition. Our results indicate that NsdC can play novel additional biological functions not directly related to its role played during sexual and asexual processes.
Collapse
|
16
|
van Leeuwe TM, Arentshorst M, Forn-Cuní G, Geoffrion N, Tsang A, Delvigne F, Meijer AH, Ram AFJ, Punt PJ. Deletion of the Aspergillus niger Pro-Protein Processing Protease Gene kexB Results in a pH-Dependent Morphological Transition during Submerged Cultivations and Increases Cell Wall Chitin Content. Microorganisms 2020; 8:E1918. [PMID: 33276589 PMCID: PMC7761569 DOI: 10.3390/microorganisms8121918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 11/23/2022] Open
Abstract
There is a growing interest in the use of post-fermentation mycelial waste to obtain cell wall chitin as an added-value product. In the pursuit to identify suitable production strains that can be used for post-fermentation cell wall harvesting, we turned to an Aspergillus niger strain in which the kexB gene was deleted. Previous work has shown that the deletion of kexB causes hyper-branching and thicker cell walls, traits that may be beneficial for the reduction in fermentation viscosity and lysis. Hyper-branching of ∆kexB was previously found to be pH-dependent on solid medium at pH 6.0, but was absent at pH 5.0. This phenotype was reported to be less pronounced during submerged growth. Here, we show a series of controlled batch cultivations at a pH range of 5, 5.5, and 6 to examine the pellet phenotype of ΔkexB in liquid medium. Morphological analysis showed that ΔkexB formed wild type-like pellets at pH 5.0, whereas the hyper-branching ΔkexB phenotype was found at pH 6.0. The transition of phenotypic plasticity was found in cultivations at pH 5.5, seen as an intermediate phenotype. Analyzing the cell walls of ΔkexB from these controlled pH-conditions showed an increase in chitin content compared to the wild type across all three pH values. Surprisingly, the increase in chitin content was found to be irrespective of the hyper-branching morphology. Evidence for alterations in cell wall make-up are corroborated by transcriptional analysis that showed a significant cell wall stress response in addition to the upregulation of genes encoding other unrelated cell wall biosynthetic genes.
Collapse
Affiliation(s)
- Tim M. van Leeuwe
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
| | - Mark Arentshorst
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
| | - Gabriel Forn-Cuní
- Institute of Biology Leiden, Animal Sciences, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (G.F.-C.); (A.H.M.)
| | - Nicholas Geoffrion
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC H4B1R6, Canada; (N.G.); (A.T.)
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC H4B1R6, Canada; (N.G.); (A.T.)
| | - Frank Delvigne
- TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté, 2B, 5030 Gembloux, Belgium;
| | - Annemarie H. Meijer
- Institute of Biology Leiden, Animal Sciences, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands; (G.F.-C.); (A.H.M.)
| | - Arthur F. J. Ram
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
| | - Peter J. Punt
- Institute of Biology Leiden, Microbial Sciences, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands; (T.M.v.L.); (M.A.); (P.J.P.)
- Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
17
|
van Leeuwe TM, Wattjes J, Niehues A, Forn-Cuní G, Geoffrion N, Mélida H, Arentshorst M, Molina A, Tsang A, Meijer AH, Moerschbacher BM, Punt PJ, Ram AF. A seven-membered cell wall related transglycosylase gene family in Aspergillus niger is relevant for cell wall integrity in cell wall mutants with reduced α-glucan or galactomannan. Cell Surf 2020; 6:100039. [PMID: 32743151 PMCID: PMC7389268 DOI: 10.1016/j.tcsw.2020.100039] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/12/2020] [Accepted: 03/17/2020] [Indexed: 11/05/2022] Open
Abstract
Chitin is an important fungal cell wall component that is cross-linked to β-glucan for structural integrity. Acquisition of chitin to glucan cross-links has previously been shown to be performed by transglycosylation enzymes in Saccharomyces cerevisiae, called Congo Red hypersensitive (Crh) enzymes. Here, we characterized the impact of deleting all seven members of the crh gene family (crhA-G) in Aspergillus niger on cell wall integrity, cell wall composition and genome-wide gene expression. In this study, we show that the seven-fold crh knockout strain shows slightly compact growth on plates, but no increased sensitivity to cell wall perturbing compounds. Additionally, we found that the cell wall composition of this knockout strain was virtually identical to that of the wild type. In congruence with these data, genome-wide expression analysis revealed very limited changes in gene expression and no signs of activation of the cell wall integrity response pathway. However, deleting the entire crh gene family in cell wall mutants that are deficient in either galactofuranose or α-glucan, mainly α-1,3-glucan, resulted in a synthetic growth defect and an increased sensitivity towards Congo Red compared to the parental strains, respectively. Altogether, these results indicate that loss of the crh gene family in A. niger does not trigger the cell wall integrity response, but does play an important role in ensuring cell wall integrity in mutant strains with reduced galactofuranose or α-glucan.
Collapse
Affiliation(s)
- Tim M. van Leeuwe
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Jasper Wattjes
- Institute for Biology and Biotechnology of Plants, University of Muenster, Schlossplatz 8, 48143 Münster, Germany
| | - Anna Niehues
- Institute for Biology and Biotechnology of Plants, University of Muenster, Schlossplatz 8, 48143 Münster, Germany
| | - Gabriel Forn-Cuní
- Leiden University, Institute of Biology Leiden, Animal Science and Health, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Nicholas Geoffrion
- Centre for Structural and Functional Genomics, Concordia University, Quebec H4B1R6, Canada
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
| | - Mark Arentshorst
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo-UPM, 28223 Pozuelo de Alarcón (Madrid), Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Quebec H4B1R6, Canada
| | - Annemarie H. Meijer
- Leiden University, Institute of Biology Leiden, Animal Science and Health, Einsteinweg 55, 2333CC Leiden, the Netherlands
| | - Bruno M. Moerschbacher
- Institute for Biology and Biotechnology of Plants, University of Muenster, Schlossplatz 8, 48143 Münster, Germany
| | - Peter J. Punt
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
- Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Arthur F.J. Ram
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| |
Collapse
|
18
|
Galactomannan Produced by Aspergillus fumigatus: An Update on the Structure, Biosynthesis and Biological Functions of an Emblematic Fungal Biomarker. J Fungi (Basel) 2020; 6:jof6040283. [PMID: 33198419 PMCID: PMC7712326 DOI: 10.3390/jof6040283] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
The galactomannan (GM) that is produced by the human fungal pathogen Aspergillus fumigatus is an emblematic biomarker in medical mycology. The GM is composed of two monosaccharides: mannose and galactofuranose. The furanic configuration of galactose residues, absent in mammals, is responsible for the antigenicity of the GM and has favoured the development of ELISA tests to diagnose aspergillosis in immunocompromised patients. The GM that is produced by A. fumigatus is a unique fungal polysaccharide containing a tetramannoside repeat unit and having three different forms: (i) membrane bound through a glycosylphosphatidylinositol (GPI)-anchor, (ii) covalently linked to β-1,3-glucans in the cell wall, or (iii) released in the culture medium as a free polymer. Recent studies have revealed the crucial role of the GM during vegetative and polarized fungal growth. This review highlights these recent data on its biosynthetic pathway and its biological functions during the saprophytic and pathogenic life of this opportunistic human fungal pathogen.
Collapse
|
19
|
Matsunaga E, Tanaka Y, Toyota S, Yamada H, Oka T, Higuchi Y, Takegawa K. Identification and characterization of β-d-galactofuranosidases from Aspergillus nidulans and Aspergillus fumigatus. J Biosci Bioeng 2020; 131:1-7. [PMID: 33011078 DOI: 10.1016/j.jbiosc.2020.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/29/2022]
Abstract
Although β-d-galactofuranosidases (Galf-ases) that hydrolyze β-d-galactofuranose (Galf)-containing oligosaccharides have been characterized in various organisms, to date no Galf-specific Galf-ase-encoding genes have been reported in Aspergillus fungi. Based on the amino acid sequences of previously identified bacterial Galf-ases, here we found two candidate Galf-specific Galf-ase genes AN2395 (gfgA) and AN3200 (gfgB) in the genome of Aspergillus nidulans. Indeed, recombinant GfgA and GfgB proteins exhibited Galf-specific Galf-ase activity, but no detectable α-l-arabinofuranosidase (Araf-ase) activity. Phylogenetic analysis of GfgA and GfgB orthologs indicated that there are two types of Aspergillus species: those containing one ortholog each for GfgA and GfgB; and those containing only one ortholog in total, among which Aspergillus fumigatus there is a representative with a single ortholog Galf-ase Afu2g14520. Unlike GfgA and GfgB, the recombinant Afu2g14520 protein showed higher Araf-ase activity than Galf-ase activity. An assay of substrate specificity revealed that although GfgA and GfgB are both exo-type Galf-ases and hydrolyze β-(1,5) and β-(1,6) linkages, GfgA hydrolyzes β-(1,6)-linked Galf-oligosaccharide more effectively as compared with GfgB. Collectively, our findings indicate that Galf-ases in Aspergillus species may have a role in cooperatively degrading Galf-containing oligosaccharides depending on environmental conditions.
Collapse
Affiliation(s)
- Emiko Matsunaga
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yutaka Tanaka
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Saki Toyota
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hisae Yamada
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takuji Oka
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Kumamoto 860-0082, Japan
| | - Yujiro Higuchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
20
|
Upton DJ, McQueen-Mason SJ, Wood AJ. In silico evolution of Aspergillus niger organic acid production suggests strategies for switching acid output. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:27. [PMID: 32123544 PMCID: PMC7038614 DOI: 10.1186/s13068-020-01678-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/06/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND The fungus Aspergillus niger is an important industrial organism for citric acid fermentation; one of the most efficient biotechnological processes. Previously we introduced a dynamic model that captures this process in the industrially relevant batch fermentation setting, providing a more accurate predictive platform to guide targeted engineering. In this article we exploit this dynamic modelling framework, coupled with a robust genetic algorithm for the in silico evolution of A. niger organic acid production, to provide solutions to complex evolutionary goals involving a multiplicity of targets and beyond the reach of simple Boolean gene deletions. We base this work on the latest metabolic models of the parent citric acid producing strain ATCC1015 dedicated to organic acid production with the required exhaustive genomic coverage needed to perform exploratory in silico evolution. RESULTS With the use of our informed evolutionary framework, we demonstrate targeted changes that induce a complete switch of acid output from citric to numerous different commercially valuable target organic acids including succinic acid. We highlight the key changes in flux patterns that occur in each case, suggesting potentially valuable targets for engineering. We also show that optimum acid productivity is achieved through a balance of organic acid and biomass production, requiring finely tuned flux constraints that give a growth rate optimal for productivity. CONCLUSIONS This study shows how a genome-scale metabolic model can be integrated with dynamic modelling and metaheuristic algorithms to provide solutions to complex metabolic engineering goals of industrial importance. This framework for in silico guided engineering, based on the dynamic batch growth relevant to industrial processes, offers considerable potential for future endeavours focused on the engineering of organisms to produce valuable products.
Collapse
Affiliation(s)
- Daniel J. Upton
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
| | | | - A. Jamie Wood
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
- Department of Mathematics, University of York, Heslington, York, YO10 5DD UK
| |
Collapse
|
21
|
van Leeuwe TM, Gerritsen A, Arentshorst M, Punt PJ, Ram AFJ. Rab GDP-dissociation inhibitor gdiA is an essential gene required for cell wall chitin deposition in Aspergillus niger. Fungal Genet Biol 2019; 136:103319. [PMID: 31884054 DOI: 10.1016/j.fgb.2019.103319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 01/19/2023]
Abstract
The cell wall is a distinctive feature of filamentous fungi, providing them with structural integrity and protection from both biotic and abiotic factors. Unlike plant cell walls, fungi rely on structurally strong hydrophobic chitin core for mechanical strength together with alpha- and beta-glucans, galactomannans and glycoproteins. Cell wall stress conditions are known to alter the cell wall through the signaling cascade of the cell wall integrity (CWI) pathway and can result in increased cell wall chitin deposition. A previously isolated set of Aspergillus niger cell wall mutants was screened for increased cell wall chitin deposition. UV-mutant RD15.8#16 was found to contain approximately 60% more cell wall chitin than the wild type. In addition to the chitin phenotype, RD15.8#16 exhibits a compact colony morphology and increased sensitivity towards SDS. RD15.8#16 was subjected to classical genetic approach for identification of the underlying causative mutation, using co-segregation analysis and SNP genotyping. Genome sequencing of RD15.8#16 revealed eight SNPs in open reading frames (ORF) which were individually checked for co-segregation with the associated phenotypes, and showed the potential relevance of two genes located on chromosome IV. In situ re-creation of these ORF-located SNPs in a wild type background, using CRISPR/Cas9 genome editing, showed the importance Rab GTPase dissociation inhibitor A (gdiA) for the phenotypes of RD15.8#16. An alteration in the 5' donor splice site of gdiA reduced pre-mRNA splicing efficiency, causing aberrant cell wall assembly and increased chitin levels, whereas gene disruption attempts showed that a full gene deletion of gdiA is lethal.
Collapse
Affiliation(s)
- Tim M van Leeuwe
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Anne Gerritsen
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Mark Arentshorst
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Peter J Punt
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands; Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Arthur F J Ram
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE Leiden, the Netherlands.
| |
Collapse
|
22
|
van Leeuwe TM, Arentshorst M, Ernst T, Alazi E, Punt PJ, Ram AFJ. Efficient marker free CRISPR/Cas9 genome editing for functional analysis of gene families in filamentous fungi. Fungal Biol Biotechnol 2019; 6:13. [PMID: 31559019 PMCID: PMC6754632 DOI: 10.1186/s40694-019-0076-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND CRISPR/Cas9 mediated genome editing has expedited the way of constructing multiple gene alterations in filamentous fungi, whereas traditional methods are time-consuming and can be of mutagenic nature. These developments allow the study of large gene families that contain putatively redundant genes, such as the seven-membered family of crh-genes encoding putative glucan-chitin crosslinking enzymes involved in cell wall biosynthesis. RESULTS Here, we present a CRISPR/Cas9 system for Aspergillus niger using a non-integrative plasmid, containing a selection marker, a Cas9 and a sgRNA expression cassette. Combined with selection marker free knockout repair DNA fragments, a set of the seven single knockout strains was obtained through homology directed repair (HDR) with an average efficiency of 90%. Cas9-sgRNA plasmids could effectively be cured by removing selection pressure, allowing the use of the same selection marker in successive transformations. Moreover, we show that either two or even three separate Cas9-sgRNA plasmids combined with marker-free knockout repair DNA fragments can be used in a single transformation to obtain double or triple knockouts with 89% and 38% efficiency, respectively. By employing this technique, a seven-membered crh-gene family knockout strain was acquired in a few rounds of transformation; three times faster than integrative selection marker (pyrG) recycling transformations. An additional advantage of the use of marker-free gene editing is that negative effects of selection marker gene expression are evaded, as we observed in the case of disrupting virtually silent crh family members. CONCLUSIONS Our findings advocate the use of CRISPR/Cas9 to create multiple gene deletions in both a fast and reliable way, while simultaneously omitting possible locus-dependent-side-effects of poor auxotrophic marker expression.
Collapse
Affiliation(s)
- Tim M. van Leeuwe
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Mark Arentshorst
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Tim Ernst
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Ebru Alazi
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Present Address: Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Peter J. Punt
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
- Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Arthur F. J. Ram
- Department Molecular Microbiology and Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
23
|
Koch BEV, Hajdamowicz NH, Lagendijk E, Ram AFJ, Meijer AH. Aspergillus fumigatus establishes infection in zebrafish by germination of phagocytized conidia, while Aspergillus niger relies on extracellular germination. Sci Rep 2019; 9:12791. [PMID: 31488879 PMCID: PMC6728357 DOI: 10.1038/s41598-019-49284-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/22/2019] [Indexed: 11/14/2022] Open
Abstract
Among opportunistically pathogenic filamentous fungi of the Aspergillus genus, Aspergillus fumigatus stands out as a drastically more prevalent cause of infection than others. Utilizing the zebrafish embryo model, we applied a combination of non-invasive real-time imaging and genetic approaches to compare the infectious development of A. fumigatus with that of the less pathogenic A. niger. We found that both species evoke similar immune cell migratory responses, but A. fumigatus is more efficiently phagocytized than A. niger. Though efficiently phagocytized, A. fumigatus conidia retains the ability to germinate and form hyphae from inside macrophages leading to serious infection even at relatively low infectious burdens. By contrast, A. niger appears to rely on extracellular germination, and rapid hyphal growth to establish infection. Despite these differences in the mechanism of infection between the species, galactofuranose mutant strains of both A. fumigatus and A. niger display attenuated pathogenesis. However, deficiency in this cell wall component has a stronger impact on A. niger, which is dependent on rapid extracellular hyphal growth. In conclusion, we uncover differences in the interaction of the two fungal species with innate immune cells, noticeable from very early stages of infection, which drive a divergence in their route to establishing infections.
Collapse
Affiliation(s)
- Bjørn E V Koch
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | - Ellen Lagendijk
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Arthur F J Ram
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.
| | - Annemarie H Meijer
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
24
|
Arentshorst M, de Lange D, Park J, Lagendijk EL, Alazi E, van den Hondel CAMJJ, Ram AFJ. Functional analysis of three putative galactofuranosyltransferases with redundant functions in galactofuranosylation in Aspergillus niger. Arch Microbiol 2019; 202:197-203. [PMID: 31372664 PMCID: PMC6949202 DOI: 10.1007/s00203-019-01709-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Accepted: 07/20/2019] [Indexed: 10/27/2022]
Abstract
Galactofuranose (Galf)-containing glycostructures are important to secure the integrity of the fungal cell wall. Golgi-localized Galf-transferases (Gfs) have been identified in Aspergillus nidulans and Aspergillus fumigatus. BLASTp searches identified three putative Galf-transferases in Aspergillus niger. Phylogenetic analysis showed that they group in three distinct groups. Characterization of the three Galf-transferases in A. niger by constructing single, double, and triple mutants revealed that gfsA is most important for Galf biosynthesis. The growth phenotypes of the ΔgfsA mutant are less severe than that of the ΔgfsAC mutant, indicating that GfsA and GfsC have redundant functions. Deletion of gfsB did not result in any growth defect and combining ΔgfsB with other deletion mutants did not exacerbate the growth phenotype. RT-qPCR experiments showed that induction of the agsA gene was higher in the ΔgfsAC and ΔgfsABC compared to the single mutants, indicating a severe cell wall stress response after multiple gfs gene deletions.
Collapse
Affiliation(s)
- Mark Arentshorst
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Davina de Lange
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Joohae Park
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Ellen L Lagendijk
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.,Koppert Biological Systems, Veilingweg 14, 2651 BE, Berkel en Rodenrijs, The Netherlands
| | - Ebru Alazi
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.,Dutch DNA Biotech, Hugo R Kruytgebouw 4-Noord, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Cees A M J J van den Hondel
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Arthur F J Ram
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
25
|
Bakir G, Girouard BE, Johns RW, Findlay CRJ, Bechtel HA, Eisele M, Kaminskyj SGW, Dahms TES, Gough KM. Ultrastructural and SINS analysis of the cell wall integrity response of Aspergillus nidulans to the absence of galactofuranose. Analyst 2019; 144:928-934. [PMID: 30412213 DOI: 10.1039/c8an01591k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
With lethal opportunistic fungal infections on the rise, it is imperative to explore new methods to examine virulence mechanisms. The fungal cell wall is crucial for both the virulence and viability of Aspergillus nidulans. One wall component, Galf, has been shown to contribute to important fungal processes, integrity of the cell wall and pathogenesis. Here, we explore gene deletion strains lacking the penultimate enzyme in Galf biosynthesis (ugmAΔ) and the protein that transports Galf for incorporation into the cell wall (ugtAΔ). In applying gene deletion technology to the problem of cell wall integrity, we have employed multiple micro- and nano-scale imaging tools, including confocal fluorescence microscopy, electron microscopy, X-Ray fluorescence and atomic force microscopy. Atomic force microscopy allows quantification of ultrastructural cell wall architecture while near-field infrared spectroscopy provides spatially resolved chemical signatures, both at the nanoscale. Here, for the first time, we demonstrate correlative data collection with these two emerging modalities for the multiplexed in situ study of the nanoscale architecture and chemical composition of fungal cell walls.
Collapse
Affiliation(s)
- Görkem Bakir
- Department of Chemistry, University of Manitoba, R3 T 2N2, Winnipeg, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mutations in AraR leading to constitutive expression of arabinolytic genes in Aspergillus niger under derepressing conditions [corrected]. Appl Microbiol Biotechnol 2019; 103:4125-4136. [PMID: 30963207 PMCID: PMC6486530 DOI: 10.1007/s00253-019-09777-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
Abstract
The AraR transcription factor of Aspergillus niger encodes a Zn(II)2Cys6 transcription factor required for the induction of genes encoding arabinolytic enzymes. One of the target genes of AraR is abfA, encoding an arabinofuranosidase. The expression of abfA as well as other L-arabinose-induced genes in A. niger requires the presence of L-arabinose or its derivative L-arabitol as an inducer to activate AraR-dependant gene expression. In this study, mutants were isolated that express L-arabinose-induced genes independently of the presence of an inducer under derepressing conditions. To obtain these mutants, a reporter strain was constructed in a ΔcreA background containing the L-arabinose-responsive promoter (PabfA) fused to the acetamidase (amdS) gene. Spores of the ΔcreA PabfA-amdS reporter strain were UV-mutagenized and mutants were obtained by their ability to grow on acetamide without the presence of inducer. From a total of 164 mutants, 15 mutants were identified to contain transacting mutations resulting in high arabinofuranosidase activity in the medium after growth under non-inducing conditions. Sequencing of the araR gene of the 15 constitutive mutants revealed that 14 mutants carried a mutation in AraR. Some mutations were found more than once and in total nine different point mutations were identified in AraR. The AraRN806I point mutation was reintroduced into a parental strain and confirmed that this point mutation leads to inducer-independent expression of AraR target genes. The inducer independent of L-arabinose-induced genes in the AraRN806I mutant was found to be sensitive to carbon catabolite repression, indicating that the CreA-mediated carbon catabolite repression is dominant over the AraRN806I mutant allele. These mutations in AraR provide new opportunities to improve arabinase production in industrial fungal strains.
Collapse
|
27
|
The Aspergillus flavus rtfA Gene Regulates Plant and Animal Pathogenesis and Secondary Metabolism. Appl Environ Microbiol 2019; 85:AEM.02446-18. [PMID: 30635379 DOI: 10.1128/aem.02446-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/31/2018] [Indexed: 02/04/2023] Open
Abstract
Aspergillus flavus is an opportunistic fungal plant and human pathogen and a producer of mycotoxins, including aflatoxin B1 (AFB1). As part of our ongoing studies to elucidate the biological functions of the A. flavus rtfA gene, we examined its role in the pathogenicity of both plant and animal model systems. rtfA encodes a putative RNA polymerase II (Pol II) transcription elongation factor previously characterized in Saccharomyces cerevisiae, Aspergillus nidulans, and Aspergillus fumigatus, where it was shown to regulate several important cellular processes, including morphogenesis and secondary metabolism. In addition, an initial study in A. flavus indicated that rtfA also influences development and production of AFB1; however, its effect on virulence is unknown. The current study reveals that the rtfA gene is indispensable for normal pathogenicity in plants when using peanut seed as an infection model, as well as in animals, as shown in the Galleria mellonella infection model. Interestingly, rtfA positively regulates several processes known to be necessary for successful fungal invasion and colonization of host tissue, such as adhesion to surfaces, protease and lipase activity, cell wall composition and integrity, and tolerance to oxidative stress. In addition, metabolomic analysis revealed that A. flavus rtfA affects the production of several secondary metabolites, including AFB1, aflatrem, leporins, aspirochlorine, ditryptophenaline, and aflavinines, supporting a role of rtfA as a global regulator of secondary metabolism. Heterologous complementation of an A. flavus rtfA deletion strain with rtfA homologs from A. nidulans or S. cerevisiae fully rescued the wild-type phenotype, indicating that these rtfA homologs are functionally conserved among these three species.IMPORTANCE In this study, the epigenetic global regulator rtfA, which encodes a putative RNA-Pol II transcription elongation factor-like protein, was characterized in the mycotoxigenic and opportunistic pathogen A. flavus Specifically, its involvement in A. flavus pathogenesis in plant and animal models was studied. Here, we show that rtfA positively regulates A. flavus virulence in both models. Furthermore, rtfA-dependent effects on factors necessary for successful invasion and colonization of host tissue by A. flavus were also assessed. Our study indicates that rtfA plays a role in A. flavus adherence to surfaces, hydrolytic activity, normal cell wall formation, and response to oxidative stress. This study also revealed a profound effect of rtfA on the metabolome of A. flavus, including the production of potent mycotoxins.
Collapse
|
28
|
Oka T. Biosynthesis of galactomannans found in filamentous fungi belonging to Pezizomycotina. Biosci Biotechnol Biochem 2018; 82:183-191. [PMID: 29334321 DOI: 10.1080/09168451.2017.1422383] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The galactomannans (GMs) that are produced by filamentous fungi belonging to Pezizomycotina, many of which are pathogenic for animals and plants, are polysaccharides consisting of α-(1→2)-/α-(1→6)-mannosyl and β-(1→5)-/β-(1→6)-galactofuranosyl residues. GMs are located at the outermost layer of the cell wall. When a pathogenic fungus infects a host, its cell surface must be in contact with the host. The GMs on the cell surface may be involved in the infection mechanism of a pathogenic fungus or the defense mechanism of a host. There are two types of GMs in filamentous fungi, fungal-type galactomannans and O-mannose type galactomannans. Recent biochemical and genetic advances have facilitated a better understanding of the biosynthesis of both types. This review summarizes our current information on their biosynthesis.
Collapse
Affiliation(s)
- Takuji Oka
- a Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science , Sojo University , Kumamoto , Japan
| |
Collapse
|
29
|
Xue X, Zheng RB, Koizumi A, Han L, Klassen JS, Lowary TL. Synthetic polyprenol-pyrophosphate linked oligosaccharides are efficient substrates for mycobacterial galactan biosynthetic enzymes. Org Biomol Chem 2018; 16:1939-1957. [DOI: 10.1039/c8ob00316e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Synthetic glycosyl polyprenol phosphates are substrates for enzymes required for cell wall assembly in mycobacteria, including the organism that causes tuberculosis.
Collapse
Affiliation(s)
- Xiaochao Xue
- Alberta Glycomics Centre and Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Ruixiang Blake Zheng
- Alberta Glycomics Centre and Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Akihiko Koizumi
- Alberta Glycomics Centre and Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Ling Han
- Alberta Glycomics Centre and Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - John S. Klassen
- Alberta Glycomics Centre and Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Todd L. Lowary
- Alberta Glycomics Centre and Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
30
|
UDP-4-Keto-6-Deoxyglucose, a Transient Antifungal Metabolite, Weakens the Fungal Cell Wall Partly by Inhibition of UDP-Galactopyranose Mutase. mBio 2017; 8:mBio.01559-17. [PMID: 29162710 PMCID: PMC5698552 DOI: 10.1128/mbio.01559-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Can accumulation of a normally transient metabolite affect fungal biology? UDP-4-keto-6-deoxyglucose (UDP-KDG) represents an intermediate stage in conversion of UDP-glucose to UDP-rhamnose. Normally, UDP-KDG is not detected in living cells, because it is quickly converted to UDP-rhamnose by the enzyme UDP-4-keto-6-deoxyglucose-3,5-epimerase/-4-reductase (ER). We previously found that deletion of the er gene in Botrytis cinerea resulted in accumulation of UDP-KDG to levels that were toxic to the fungus due to destabilization of the cell wall. Here we show that these negative effects are at least partly due to inhibition by UDP-KDG of the enzyme UDP-galactopyranose mutase (UGM), which reversibly converts UDP-galactopyranose (UDP-Galp) to UDP-galactofuranose (UDP-Galf). An enzymatic activity assay showed that UDP-KDG inhibits the B. cinerea UGM enzyme with a Ki of 221.9 µM. Deletion of the ugm gene resulted in strains with weakened cell walls and phenotypes that were similar to those of the er deletion strain, which accumulates UDP-KDG. Galf residue levels were completely abolished in the Δugm strain and reduced in the Δer strain, while overexpression of the ugm gene in the background of a Δer strain restored Galf levels and alleviated the phenotypes. Collectively, our results show that the antifungal activity of UDP-KDG is due to inhibition of UGM and possibly other nucleotide sugar-modifying enzymes and that the rhamnose metabolic pathway serves as a shunt that prevents accumulation of UDP-KDG to toxic levels. These findings, together with the fact that there is no Galf in mammals, support the possibility of developing UDP-KDG or its derivatives as antifungal drugs.IMPORTANCE Nucleotide sugars are donors for the sugars in fungal wall polymers. We showed that production of the minor sugar rhamnose is used primarily to neutralize the toxic intermediate compound UDP-KDG. This surprising finding highlights a completely new role for minor sugars and other secondary metabolites with undetermined function. Furthermore, the toxic potential of predicted transition metabolites that never accumulate in cells under natural conditions are highlighted. We demonstrate that UDP-KDG inhibits the UDP-galactopyranose mutase enzyme, thereby affecting production of Galf, which is one of the components of cell wall glycans. Given the structural similarity, UDP-KDG likely inhibits additional nucleotide sugar-utilizing enzymes, a hypothesis that is also supported by our findings. Our results suggest that UDP-KDG could serve as a template to develop antifungal drugs.
Collapse
|
31
|
Kashif M, Tabrez S, Husein A, Arish M, Kalaiarasan P, Manna PP, Subbarao N, Akhter Y, Rub A. Identification of novel inhibitors against UDP‐galactopyranose mutase to combat leishmaniasis. J Cell Biochem 2017; 119:2653-2665. [DOI: 10.1002/jcb.26433] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/18/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Mohammad Kashif
- Infection and Immunity Lab, Department of BiotechnologyJamia Millia Islamia (A Central University)New DelhiIndia
- Immunobiology Laboratory, Department of ZoologyInstitute of Science, Banaras Hindu UniversityVaranasiIndia
| | - Shams Tabrez
- Infection and Immunity Lab, Department of BiotechnologyJamia Millia Islamia (A Central University)New DelhiIndia
| | - Atahar Husein
- Infection and Immunity Lab, Department of BiotechnologyJamia Millia Islamia (A Central University)New DelhiIndia
| | - Mohd Arish
- Infection and Immunity Lab, Department of BiotechnologyJamia Millia Islamia (A Central University)New DelhiIndia
| | - Ponnusamy Kalaiarasan
- School of Computational and Integrative SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Partha P. Manna
- Immunobiology Laboratory, Department of ZoologyInstitute of Science, Banaras Hindu UniversityVaranasiIndia
| | - Naidu Subbarao
- School of Computational and Integrative SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Yusuf Akhter
- School of Life Sciences, Central University of Himachal PradeshTemporary Academic BlockShahpurKangra (H.P.)India
| | - Abdur Rub
- Infection and Immunity Lab, Department of BiotechnologyJamia Millia Islamia (A Central University)New DelhiIndia
- Department of Medical Laboratory Sciences, College of Applied Medical ScienceMajmaah UniversityAl MajmaahKSA
| |
Collapse
|
32
|
Matsunaga E, Higuchi Y, Mori K, Yairo N, Toyota S, Oka T, Tashiro K, Takegawa K. Characterization of a PA14 domain-containing galactofuranose-specific β-d-galactofuranosidase from Streptomyces sp. Biosci Biotechnol Biochem 2017; 81:1314-1319. [DOI: 10.1080/09168451.2017.1300518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
As a constituent of polysaccharides and glycoconjugates, β-d-galactofuranose (Galf) exists in several pathogenic microorganisms. Although we recently identified a β-d-galactofuranosidase (Galf-ase) gene, ORF1110, in the Streptomyces strain JHA19, very little is known about the Galf-ase gene. Here, we characterized a strain, named JHA26, in the culture supernatant of which exhibited Galf-ase activity for 4-nitrophenyl β-d-galactofuranoside (pNP-β-d-Galf) as a substrate. Draft genome sequencing of the JHA26 strain revealed a putative gene, termed ORF0643, that encodes Galf-ase containing a PA14 domain, which is thought to function in substrate recognition. The recombinant protein expressed in Escherichia coli showed the Galf-specific Galf-ase activity and also released galactose residue of the polysaccharide galactomannan prepared from Aspergillus fumigatus, suggesting that this enzyme is an exo-type Galf-ase. BLAST searches using the amino acid sequences of ORF0643 and ORF1110 Galf-ases revealed two types of Galf-ases in Actinobacteria, suggesting that Galf-specific Galf-ases may exhibit discrete substrate specificities.
Collapse
Affiliation(s)
- Emiko Matsunaga
- Faculty of Agriculture, Department of Bioscience and Biotechnology, Kyushu University, Fukuoka, Japan
| | - Yujiro Higuchi
- Faculty of Agriculture, Department of Bioscience and Biotechnology, Kyushu University, Fukuoka, Japan
| | - Kazuki Mori
- Faculty of Agriculture, Department of Bioscience and Biotechnology, Kyushu University, Fukuoka, Japan
| | - Nao Yairo
- Faculty of Agriculture, Department of Bioscience and Biotechnology, Kyushu University, Fukuoka, Japan
| | - Saki Toyota
- Faculty of Agriculture, Department of Bioscience and Biotechnology, Kyushu University, Fukuoka, Japan
| | - Takuji Oka
- Faculty of Biotechnology and Life Science, Department of Applied Microbial Technology, Sojo University, Kumamoto, Japan
| | - Kosuke Tashiro
- Faculty of Agriculture, Department of Bioscience and Biotechnology, Kyushu University, Fukuoka, Japan
| | - Kaoru Takegawa
- Faculty of Agriculture, Department of Bioscience and Biotechnology, Kyushu University, Fukuoka, Japan
| |
Collapse
|
33
|
Katafuchi Y, Li Q, Tanaka Y, Shinozuka S, Kawamitsu Y, Izumi M, Ekino K, Mizuki K, Takegawa K, Shibata N, Goto M, Nomura Y, Ohta K, Oka T. GfsA is a β1,5-galactofuranosyltransferase involved in the biosynthesis of the galactofuran side chain of fungal-type galactomannan in Aspergillus fumigatus. Glycobiology 2017; 27:568-581. [DOI: 10.1093/glycob/cwx028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/24/2017] [Indexed: 01/01/2023] Open
Affiliation(s)
- Yukako Katafuchi
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Qiushi Li
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Yutaka Tanaka
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Sendai 981-8558, Japan
| | - Saki Shinozuka
- Graduate School of Environmental and Life Science, Okayama University, Tsushimanaka 1-1-1, Okayama 700-8530, Japan
| | - Yohei Kawamitsu
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Minoru Izumi
- Graduate School of Environmental and Life Science, Okayama University, Tsushimanaka 1-1-1, Okayama 700-8530, Japan
| | - Keisuke Ekino
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Keiji Mizuki
- Department of Nanoscience, Faculty of Engineering, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Kaoru Takegawa
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Fukuoka 812-8581, Japan
| | - Nobuyuki Shibata
- Department of Infection and Host Defense, Tohoku Medical and Pharmaceutical University, Komatsushima 4-4-1, Sendai 981-8558, Japan
| | - Masatoshi Goto
- Department of Applied Biochemistry and Food Science, Saga University, Honjo-machi 1, Saga 840-8502, Japan
| | - Yoshiyuki Nomura
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Kazuyoshi Ohta
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| | - Takuji Oka
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan
| |
Collapse
|
34
|
Martínez-Cruz J, Romero D, de Vicente A, Pérez-García A. Transformation of the cucurbit powdery mildew pathogen Podosphaera xanthii by Agrobacterium tumefaciens. THE NEW PHYTOLOGIST 2017; 213:1961-1973. [PMID: 27864969 DOI: 10.1111/nph.14297] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The obligate biotrophic fungal pathogen Podosphaera xanthii is the main causal agent of powdery mildew in cucurbit crops all over the world. A major limitation of molecular studies of powdery mildew fungi (Erysiphales) is their genetic intractability. In this work, we describe a robust method based on the promiscuous transformation ability of Agrobacterium tumefaciens for reliable transformation of P. xanthii. The A. tumefaciens-mediated transformation (ATMT) system yielded transformants of P. xanthii with diverse transferred DNA (T-DNA) constructs. Analysis of the resultant transformants showed the random integration of T-DNA into the P. xanthii genome. The integrations were maintained in successive generations in the presence of selection pressure. Transformation was found to be transient, because in the absence of selection agent, the introduced genetic markers were lost due to excision of T-DNA from the genome. The ATMT system represents a potent tool for genetic manipulation of P. xanthii and will likely be useful for studying other biotrophic fungi. We hope that this method will contribute to the development of detailed molecular studies of the intimate interaction established between powdery mildew fungi and their host plants.
Collapse
Affiliation(s)
- Jesús Martínez-Cruz
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| | - Diego Romero
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| | - Alejandro Pérez-García
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora' - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, 29071, Spain
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga. Bulevar Louis Pasteur 31, Málaga, 29071, Spain
| |
Collapse
|
35
|
An Evolutionarily Conserved Transcriptional Activator-Repressor Module Controls Expression of Genes for D-Galacturonic Acid Utilization in Aspergillus niger. Genetics 2016; 205:169-183. [PMID: 28049705 DOI: 10.1534/genetics.116.194050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 11/05/2016] [Indexed: 01/26/2023] Open
Abstract
The expression of genes encoding extracellular polymer-degrading enzymes and the metabolic pathways required for carbon utilization in fungi are tightly controlled. The control is mediated by transcription factors that are activated by the presence of specific inducers, which are often monomers or monomeric derivatives of the polymers. A D-galacturonic acid-specific transcription factor named GaaR was recently identified and shown to be an activator for the expression of genes involved in galacturonic acid utilization in Botrytis cinerea and Aspergillus niger Using a forward genetic screen, we isolated A. niger mutants that constitutively express GaaR-controlled genes. Reasoning that mutations in the gaaR gene would lead to a constitutively activated transcription factor, the gaaR gene in 11 of the constitutive mutants was sequenced, but no mutations in gaaR were found. Full genome sequencing of five constitutive mutants revealed allelic mutations in one particular gene encoding a previously uncharacterized protein (NRRL3_08194). The protein encoded by NRRL3_08194 shows homology to the repressor of the quinate utilization pathway identified previously in Neurospora crassa (qa-1S) and Aspergillus nidulans (QutR). Deletion of NRRL3_08194 in combination with RNA-seq analysis showed that the NRRL3_08194 deletion mutant constitutively expresses genes involved in galacturonic acid utilization. Interestingly, NRRL3_08194 is located next to gaaR (NRRL3_08195) in the genome. The homology to the quinate repressor, the chromosomal clustering, and the constitutive phenotype of the isolated mutants suggest that NRRL3_08194 is likely to encode a repressor, which we name GaaX. The GaaR-GaaX module and its chromosomal organization is conserved among ascomycetes filamentous fungi, resembling the quinate utilization activator-repressor module in amino acid sequence and chromosomal organization.
Collapse
|
36
|
Poulin MB, Lowary TL. Chemical Insight into the Mechanism and Specificity of GlfT2, a Bifunctional Galactofuranosyltransferase from Mycobacteria. J Org Chem 2016; 81:8123-30. [PMID: 27557056 DOI: 10.1021/acs.joc.6b01501] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacteria, including the human pathogen Mycobacterium tuberculosis, produce a complex cell wall structure that is essential to survival. A key component of this structure is a glycoconjugate, the mycolyl-arabinogalactan-peptidoglycan complex, which has at its core a galactan domain composed of galactofuranose (Galf) residues linked to peptidoglycan. Because galactan biosynthesis is essential for mycobacterial viability, compounds that interfere with this process are potential therapeutic agents for treating mycobacterial diseases, including tuberculosis. Galactan biosynthesis in mycobacteria involves two glycosyltransferases, GlfT1 and GlfT2, which have been the subject of increasing interest in recent years. This Synopsis summarizes efforts to characterize the mechanism and specificity of GlfT2, which is responsible for introducing the majority of the Galf residues into mycobacterial galactan.
Collapse
Affiliation(s)
- Myles B Poulin
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta , 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Todd L Lowary
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta , 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
37
|
Park J, Hulsman M, Arentshorst M, Breeman M, Alazi E, Lagendijk EL, Rocha MC, Malavazi I, Nitsche BM, van den Hondel CAMJJ, Meyer V, Ram AFJ. Transcriptomic and molecular genetic analysis of the cell wall salvage response of Aspergillus niger to the absence of galactofuranose synthesis. Cell Microbiol 2016; 18:1268-84. [PMID: 27264789 PMCID: PMC5129474 DOI: 10.1111/cmi.12624] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/16/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022]
Abstract
The biosynthesis of cell surface-located galactofuranose (Galf)-containing glycostructures such as galactomannan, N-glycans and O-glycans in filamentous fungi is important to secure the integrity of the cell wall. UgmA encodes an UDP-galactopyranose mutase, which is essential for the formation of Galf. Consequently, the ΔugmA mutant lacks Galf-containing molecules. Our previous work in Aspergillus niger work suggested that loss of function of ugmA results in activation of the cell wall integrity (CWI) pathway which is characterized by increased expression of the agsA gene, encoding an α-glucan synthase. In this study, the transcriptional response of the ΔugmA mutant was further linked to the CWI pathway by showing the induced and constitutive phosphorylation of the CWI-MAP kinase in the ΔugmA mutant. To identify genes involved in cell wall remodelling in response to the absence of galactofuranose biosynthesis, a genome-wide expression analysis was performed using RNAseq. Over 400 genes were higher expressed in the ΔugmA mutant compared to the wild-type. These include genes that encode enzymes involved in chitin (gfaB, gnsA, chsA) and α-glucan synthesis (agsA), and in β-glucan remodelling (bgxA, gelF and dfgC), and also include several glycosylphosphatidylinositol (GPI)-anchored cell wall protein-encoding genes. In silico analysis of the 1-kb promoter regions of the up-regulated genes in the ΔugmA mutant indicated overrepresentation of genes with RlmA, MsnA, PacC and SteA-binding sites. The importance of these transcription factors for survival of the ΔugmA mutant was analysed by constructing the respective double mutants. The ΔugmA/ΔrlmA and ΔugmA/ΔmsnA double mutants showed strong synthetic growth defects, indicating the importance of these transcription factors to maintain cell wall integrity in the absence of Galf biosynthesis.
Collapse
Affiliation(s)
- Joohae Park
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Mark Hulsman
- Delft Bioinformatics Lab, Department of Intelligent Systems, Faculty Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands
| | - Mark Arentshorst
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Matthijs Breeman
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Ebru Alazi
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Ellen L Lagendijk
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Marina C Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Paulo, Brazil
| | - Benjamin M Nitsche
- Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Cees A M J J van den Hondel
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Vera Meyer
- Applied and Molecular Microbiology, Institute of Biotechnology, Berlin University of Technology, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Arthur F J Ram
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| |
Collapse
|
38
|
Niu J, Arentshorst M, Seelinger F, Ram AFJ, Ouedraogo JP. A set of isogenic auxotrophic strains for constructing multiple gene deletion mutants and parasexual crossings in Aspergillus niger. Arch Microbiol 2016; 198:861-8. [PMID: 27251039 PMCID: PMC5040738 DOI: 10.1007/s00203-016-1240-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 04/27/2016] [Accepted: 05/05/2016] [Indexed: 11/08/2022]
Abstract
To construct a set of isogenic auxotrophic strains in Aspergillus niger suited for creating multiple gene deletion mutants and executing parasexual crossings, we have combined mutations in genes involved in colour pigmentation (fwnA and olvA) with well-selectable auxotrophic markers (pyrG, nicB, argB, and adeA). All markers, except for the pyrG marker, were introduced by targeted deletion, omitting UV mutagenesis of the strains. Aspergillus oryzae orthologous genes of the argB, nicB, and adeA markers were used as heterologous selection markers, and all markers were shown to complement to respective auxotrophic A. niger mutants. A quadruple auxotrophic marker was further constructed suitable for multiple gene deletions. Genome sequencing of two auxotrophic colour mutants JN3.2 (olvA::pyrG, argB::hygB) and JN6.2 (olvA::pyrG, nicB::hygB) revealed four SNPs between them in non-coding regions, indicating a high level of isogenicity between both strains. The availability of near-isogenic complementary auxotrophic colour mutants facilitates the selection of diploids and the isolation of haploid segregants from the diploid using the parasexual cycle.
Collapse
Affiliation(s)
- Jing Niu
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Mark Arentshorst
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Felix Seelinger
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Arthur F J Ram
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| | - Jean Paul Ouedraogo
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.,Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke St. W., Montreal, QC, H4B 1R6, Canada
| |
Collapse
|
39
|
Oka T, Goto M. Biosynthesis of Galactofuranose-containing Glycans in Filamentous Fungi. TRENDS GLYCOSCI GLYC 2016. [DOI: 10.4052/tigg.1428.1j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Takuji Oka
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo, University
| | - Masatoshi Goto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| |
Collapse
|
40
|
Oka T, Goto M. Biosynthesis of Galactofuranose-containing Glycans in Filamentous Fungi. TRENDS GLYCOSCI GLYC 2016. [DOI: 10.4052/tigg.1428.1e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Takuji Oka
- Department of Applied Microbial Technology, Faculty of Biotechnology and Life Science, Sojo, University
| | - Masatoshi Goto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| |
Collapse
|
41
|
Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites. G3-GENES GENOMES GENETICS 2015; 6:193-204. [PMID: 26566947 PMCID: PMC4704718 DOI: 10.1534/g3.115.024067] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. niger has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a ΔlaeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. Finally, we show that our systems genetics approach is a powerful tool to identify trait mutations.
Collapse
|
42
|
Park J, Tefsen B, Heemskerk MJ, Lagendijk EL, van den Hondel CAMJJ, van Die I, Ram AFJ. Identification and functional analysis of two Golgi-localized UDP-galactofuranose transporters with overlapping functions in Aspergillus niger. BMC Microbiol 2015; 15:253. [PMID: 26526354 PMCID: PMC4630932 DOI: 10.1186/s12866-015-0541-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 09/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Galactofuranose (Galf)-containing glycoconjugates are present in numerous microbes, including filamentous fungi where they are important for morphology, virulence and maintaining cell wall integrity. The incorporation of Galf-residues into galactomannan, galactomannoproteins and glycolipids is carried out by Golgi-localized Galf transferases. The nucleotide sugar donor used by these transferases (UDP-Galf) is produced in the cytoplasm and has to be transported to the lumen of the Golgi by a dedicated nucleotide sugar transporter. METHODS Based on homology with recently identified UDP-Galf-transporters in A. fumigatus and A. nidulans, two putative UDP-Galf-transporters in A. niger were found. Their function and localization was determined by gene deletions and GFP-tagging studies, respectively. RESULTS The two putative UDP-Galf-transporters in A. niger are homologous to each other and are predicted to contain eleven transmembrane domains (UgtA) or ten transmembrane domains (UgtB) due to a reduced length of the C-terminal part of the UgtB protein. The presence of two putative UDP-Galf-transporters in the genome was not unique for A. niger. From the twenty Aspergillus species analysed, nine species contained two additional putative UDP-Galf-transporters. Three of the nine species were outside the Aspergillus section nigri, indication an early duplication of UDP-Galf-transporters and subsequent loss of the UgtB copy in several aspergilli. Deletion analysis of the single and double mutants in A. niger indicated that the two putative UDP-Galf-transporters (named UgtA and UgtB) have a redundant function in UDP-Galf-transport as only the double mutant displayed a Galf-negative phenotype. The Galf-negative phenotype of the double mutant could be complemented by expressing either CFP-UgtA or CFP-UgtB fusion proteins from their endogenous promoters, indicating that both CFP-tagged proteins are functional. Both Ugt proteins co-localize with each other as well as with the GDP-mannose nucleotide transporter, as was demonstrated by fluorescence microscopy, thereby confirming their predicted localization in the Golgi. CONCLUSION A. niger contains two genes encoding UDP-Galf-transporters. Deletion and localization studies indicate that UgtA and UgtB have redundant functions in the biosynthesis of Galf-containing glycoconjugates.
Collapse
Affiliation(s)
- Joohae Park
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| | - Boris Tefsen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van den Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands. .,Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, 111 Ren Ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China.
| | - Marc J Heemskerk
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| | - Ellen L Lagendijk
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| | - Cees A M J J van den Hondel
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van den Boechorststraat 7, 1081 BT, Amsterdam, The Netherlands.
| | - Arthur F J Ram
- Leiden University, Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
43
|
Identification and Characterization of a Novel Galactofuranose-Specific β-D-Galactofuranosidase from Streptomyces Species. PLoS One 2015; 10:e0137230. [PMID: 26340350 PMCID: PMC4560423 DOI: 10.1371/journal.pone.0137230] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/14/2015] [Indexed: 12/02/2022] Open
Abstract
β-D-galactofuranose (Galf) is a component of polysaccharides and glycoconjugates and its transferase has been well analyzed. However, no β-D-galactofuranosidase (Galf-ase) gene has been identified in any organism. To search for a Galf-ase gene we screened soil samples and discovered a strain, identified as a Streptomyces species by the 16S ribosomal RNA gene analysis, that exhibits Galf-ase activity for 4-nitrophenyl β-D-galactofuranoside (pNP-β-D-Galf) in culture supernatants. By draft genome sequencing of the strain, named JHA19, we found four candidate genes encoding Galf-ases. Using recombinant proteins expressed in Escherichia coli, we found that three out of four candidates displayed the activity of not only Galf-ase but also α-L-arabinofuranosidase (Araf-ase), whereas the other one showed only the Galf-ase activity. This novel Galf-specific hydrolase is encoded by ORF1110 and has an optimum pH of 5.5 and a Km of 4.4 mM for the substrate pNP-β-D-Galf. In addition, this enzyme was able to release galactose residue from galactomannan prepared from the filamentous fungus Aspergillus fumigatus, suggesting that natural polysaccharides could be also substrates. By the BLAST search using the amino acid sequence of ORF1110 Galf-ase, we found that there are homolog genes in both prokaryotes and eukaryotes, indicating that Galf-specific Galf-ases widely exist in microorganisms.
Collapse
|
44
|
The interaction of induction and repression mechanisms in the regulation of galacturonic acid-induced genes in Aspergillus niger. Fungal Genet Biol 2015; 82:32-42. [DOI: 10.1016/j.fgb.2015.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 02/05/2023]
|
45
|
Eppe G, El Bkassiny S, Vincent SP. Galactofuranose Biosynthesis: Discovery, Mechanisms and Therapeutic Relevance. CARBOHYDRATES IN DRUG DESIGN AND DISCOVERY 2015. [DOI: 10.1039/9781849739993-00209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Galactofuranose, the atypical and thermodynamically disfavored form of d-galactose, has in reality a very old history in chemistry and biochemistry. The purpose of this book chapter is to give an overview on the fundamental aspects of the galactofuranose biosynthesis, from the biological occurrence to the search of inhibitors.
Collapse
Affiliation(s)
- Guillaume Eppe
- University of Namur, Département de Chimie, Laboratoire de Chimie Bio-Organique rue de Bruxelles 61 B-5000 Namur Belgium
| | - Sandy El Bkassiny
- University of Namur, Département de Chimie, Laboratoire de Chimie Bio-Organique rue de Bruxelles 61 B-5000 Namur Belgium
| | - Stéphane P. Vincent
- University of Namur, Département de Chimie, Laboratoire de Chimie Bio-Organique rue de Bruxelles 61 B-5000 Namur Belgium
| |
Collapse
|
46
|
Da Fonseca I, Qureshi IA, Mehra-Chaudhary R, Kizjakina K, Tanner JJ, Sobrado P. Contributions of unique active site residues of eukaryotic UDP-galactopyranose mutases to substrate recognition and active site dynamics. Biochemistry 2014; 53:7794-804. [PMID: 25412209 PMCID: PMC4270374 DOI: 10.1021/bi501008z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
UDP-galactopyranose mutase (UGM)
catalyzes the interconversion
between UDP-galactopyranose and UDP-galactofuranose. Absent in humans,
galactofuranose is found in bacterial and fungal cell walls and is
a cell surface virulence factor in protozoan parasites. For these
reasons, UGMs are targets for drug discovery. Here, we report a mutagenesis
and structural study of the UGMs from Aspergillus fumigatus and Trypanosoma cruzi focused on
active site residues that are conserved in eukaryotic UGMs but are
absent or different in bacterial UGMs. Kinetic analysis of the variants
F66A, Y104A, Q107A, N207A, and Y317A (A. fumigatus numbering) show decreases in kcat/KM values of 200–1000-fold for the mutase
reaction. In contrast, none of the mutations significantly affect
the kinetics of enzyme activation by NADPH. These results indicate
that the targeted residues are important for promoting the transition
state conformation for UDP-galactofuranose formation. Crystal structures
of the A. fumigatus mutant enzymes
were determined in the presence and absence of UDP to understand the
structural consequences of the mutations. The structures suggest important
roles for Asn207 in stabilizing the closed active site, and Tyr317
in positioning of the uridine ring. Phe66 and the corresponding residue
in Mycobacterium tuberculosis UGM (His68)
play a role as the backstop, stabilizing the galactopyranose group
for nucleophilic attack. Together, these results provide insight into
the essentiality of the targeted residues for realizing maximal catalytic
activity and a proposal for how conformational changes that close
the active site are temporally related and coupled together.
Collapse
Affiliation(s)
- Isabel Da Fonseca
- Department of Biochemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| | | | | | | | | | | |
Collapse
|
47
|
Park J, Tefsen B, Arentshorst M, Lagendijk E, van den Hondel CA, van Die I, Ram AF. Identification of the UDP-glucose-4-epimerase required for galactofuranose biosynthesis and galactose metabolism in A. niger. Fungal Biol Biotechnol 2014; 1:6. [PMID: 28955448 PMCID: PMC5598270 DOI: 10.1186/s40694-014-0006-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/01/2014] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Galactofuranose (Galf)-containing glycoconjugates are important to secure the integrity of the cell wall of filamentous fungi. Mutations that prevent the biosynthesis of Galf-containing molecules compromise cell wall integrity. In response to cell wall weakening, the cell wall integrity (CWI)-pathway is activated to reinforce the strength of the cell wall. Activation of CWI-pathway in Aspergillus niger is characterized by the specific induction of the agsA gene, which encodes a cell wall α-glucan synthase. RESULTS In this study, we screened a collection of cell wall mutants with an induced expression of agsA for defects in Galf biosynthesis using a with anti-Galf antibody (L10). From this collection of mutants, we previously identified mutants in the UDP-galactopyranose mutase encoding gene (ugmA). Here, we have identified six additional UDP-galactopyranose mutase (ugmA) mutants and one mutant (named mutant #41) in an additional complementation group that displayed strongly reduced Galf-levels in the cell wall. By using a whole genome sequencing approach, 21 SNPs in coding regions were identified between mutant #41 and its parental strain which changed the amino acid sequence of the encoded proteins. One of these mutations was in gene An14g03820, which codes for a putative UDP-glucose-4-epimerase (UgeA). The A to G mutation in this gene causes an amino acid change of Asn to Asp at position 191 in the UgeA protein. Targeted deletion of ugeA resulted in an even more severe reduction of Galf in N-linked glucans, indicating that the UgeA protein in mutant #41 is partially active. The ugeA gene is also required for growth on galactose despite the presence of two UgeA homologs in the A. niger genome. CONCLUSION By using a classical mutant screen and whole genome sequencing of a new Galf-deficient mutant, the UDP-glucose-4-epimerase gene (ugeA) has been identified. UgeA is required for the biosynthesis of Galf as well as for galactose metabolism in Aspergillus niger.
Collapse
Affiliation(s)
- Joohae Park
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, Leiden, 2333 BE The Netherlands
| | - Boris Tefsen
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van den Boechorststraat 7, Amsterdam, 1081 BT The Netherlands.,Present Address: Department of Biological Sciences, Xi'an Jiaotong Liverpool University, 111 Ren Ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, 215123 Jiangsu, China
| | - Mark Arentshorst
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, Leiden, 2333 BE The Netherlands
| | - Ellen Lagendijk
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, Leiden, 2333 BE The Netherlands
| | - Cees Amjj van den Hondel
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, Leiden, 2333 BE The Netherlands
| | - Irma van Die
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, van den Boechorststraat 7, Amsterdam, 1081 BT The Netherlands
| | - Arthur Fj Ram
- Institute of Biology Leiden, Molecular Microbiology and Biotechnology, Leiden University, Sylviusweg 72, Leiden, 2333 BE The Netherlands
| |
Collapse
|
48
|
Pierdominici-Sottile G, Cossio Pérez R, Galindo JF, Palma J. QM/MM molecular dynamics study of the galactopyranose → galactofuranose reaction catalysed by Trypanosoma cruzi UDP-galactopyranose mutase. PLoS One 2014; 9:e109559. [PMID: 25299056 PMCID: PMC4192007 DOI: 10.1371/journal.pone.0109559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/25/2014] [Indexed: 12/18/2022] Open
Abstract
The enzyme UDP-Galactopyranose Mutase (UGM) catalyses the conversion of galactopyranose into galactofuranose. It is known to be critical for the survival and proliferation of several pathogenic agents, both prokaryotic and eukaryotic. Among them is Trypanosoma cruzi, the parasite responsible for Chagas' disease. Since the enzyme is not present in mammals, it appears as a promising target for the design of drugs to treat this illness. A precise knowledge of the mechanism of the catalysed reaction would be crucial to assist in such design. In this article we present a detailed study of all the putative steps of the mechanism. The study is based on QM/MM free energy calculations along properly selected reaction coordinates, and on the analysis of the main structural changes and interactions taking place at every step. The results are discussed in connection with the experimental evidence and previous theoretical studies.
Collapse
Affiliation(s)
| | - Rodrigo Cossio Pérez
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Johan F. Galindo
- Quantum and Computational Chemistry Group, Departamento de Química, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juliana Palma
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| |
Collapse
|
49
|
Wang JH, Singh R, Benoit M, Keyhan M, Sylvester M, Hsieh M, Thathireddy A, Hsieh YJ, Matin AC. Sigma S-dependent antioxidant defense protects stationary-phase Escherichia coli against the bactericidal antibiotic gentamicin. Antimicrob Agents Chemother 2014; 58:5964-5975. [PMID: 25070093 PMCID: PMC4187989 DOI: 10.1128/aac.03683-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/19/2014] [Indexed: 12/15/2022] Open
Abstract
Stationary-phase bacteria are important in disease. The σ(s)-regulated general stress response helps them become resistant to disinfectants, but the role of σ(s) in bacterial antibiotic resistance has not been elucidated. Loss of σ(s) rendered stationary-phase Escherichia coli more sensitive to the bactericidal antibiotic gentamicin (Gm), and proteomic analysis suggested involvement of a weakened antioxidant defense. Use of the psfiA genetic reporter, 3'-(p-hydroxyphenyl) fluorescein (HPF) dye, and Amplex Red showed that Gm generated more reactive oxygen species (ROS) in the mutant. HPF measurements can be distorted by cell elongation, but Gm did not affect stationary-phase cell dimensions. Coadministration of the antioxidant N-acetyl cysteine (NAC) decreased drug lethality particularly in the mutant, as did Gm treatment under anaerobic conditions that prevent ROS formation. Greater oxidative stress, due to insufficient quenching of endogenous ROS and/or respiration-linked electron leakage, therefore contributed to the greater sensitivity of the mutant; infection by a uropathogenic strain in mice showed this to be the case also in vivo. Disruption of antioxidant defense by eliminating the quencher proteins, SodA/SodB and KatE/SodA, or the pentose phosphate pathway proteins, Zwf/Gnd and TalA, which provide NADPH for ROS decomposition, also generated greater oxidative stress and killing by Gm. Thus, besides its established mode of action, Gm also kills stationary-phase bacteria by generating oxidative stress, and targeting the antioxidant defense of E. coli can enhance its efficacy. Relevant aspects of the current controversy on the role of ROS in killing by bactericidal drugs of exponential-phase bacteria, which represent a different physiological state, are discussed.
Collapse
Affiliation(s)
- Jing-Hung Wang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Rachna Singh
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Benoit
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Mimi Keyhan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Matthew Sylvester
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Michael Hsieh
- Department of Urology, Stanford University School of Medicine, Stanford, California, USA
| | - Anuradha Thathireddy
- Department of Urology, Stanford University School of Medicine, Stanford, California, USA
| | - Yi-Ju Hsieh
- Department of Urology, Stanford University School of Medicine, Stanford, California, USA
| | - A C Matin
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
50
|
Chiodo F, Marradi M, Park J, Ram AFJ, Penadés S, van Die I, Tefsen B. Galactofuranose-coated gold nanoparticles elicit a pro-inflammatory response in human monocyte-derived dendritic cells and are recognized by DC-SIGN. ACS Chem Biol 2014; 9:383-9. [PMID: 24304188 DOI: 10.1021/cb4008265] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Galactofuranose (Galf) is the five-membered ring form of galactose exclusively found in nonmammalian species, among which several are pathogens. To determine the putative role of this carbohydrate in host-pathogen interactions, we synthesized multivalent gold nanoparticles carrying Galf (Galf-GNPs) and show that they are recognized by the EB-A2 antibody, which is widely used to detect Galf-containing galactomannan in the serum of Aspergillosis patients. We demonstrated that human monocyte-derived dendritic cells bound Galf-GNPs via interaction with the lectin DC-SIGN. Moreover, interaction of dendritic cells with Galf-GNPs resulted in increased expression of several maturation markers on these cells and induced secretion of the pro-inflammatory cytokines IL-6 and TNF-α. These data indicate that Galf is able to modulate the innate immune response via dendritic cells. In conclusion, Galf-GNPs are a versatile tool that can be applied in multiple functional studies to gain a better understanding of the role of Galf in host-pathogen interaction.
Collapse
Affiliation(s)
- Fabrizio Chiodo
- Laboratory of
GlycoNanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, Paseo Miramón 182, 20009, San Sebastián, Spain
| | - Marco Marradi
- Laboratory of
GlycoNanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, Paseo Miramón 182, 20009, San Sebastián, Spain
- Networking Research
Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo Miramón 182, 20009, San Sebastián, Spain
| | - Joohae Park
- Leiden University, Institute of Biology Leiden,
Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333
BE Leiden, The Netherlands
| | - Arthur F. J. Ram
- Leiden University, Institute of Biology Leiden,
Molecular Microbiology and Biotechnology, Sylviusweg 72, 2333
BE Leiden, The Netherlands
- Kluyver
Centre
for Genomics of Industrial Fermentation, P.O. Box 5057, 2600 GA Delft, The Netherlands
| | - Soledad Penadés
- Laboratory of
GlycoNanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, Paseo Miramón 182, 20009, San Sebastián, Spain
- Networking Research
Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo Miramón 182, 20009, San Sebastián, Spain
| | - Irma van Die
- Department
of Molecular Cell Biology and Immunology, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | - Boris Tefsen
- Department
of Molecular Cell Biology and Immunology, VU University Medical Center, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| |
Collapse
|