1
|
Szabo PA, Levitin HM, Connors TJ, Chen D, Jin J, Thapa P, Guyer R, Caron DP, Gray JI, Matsumoto R, Kubota M, Brusko M, Brusko TM, Farber DL, Sims PA. Transcriptional control of T cell tissue adaptation and effector function in infants and adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636039. [PMID: 39974963 PMCID: PMC11838503 DOI: 10.1101/2025.02.01.636039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The first years of life are essential for the development of memory T cells, which rapidly populate the body's diverse tissue sites during infancy. However, the degree to which tissue memory T cell responses in early life reflect those during adulthood is unclear. Here, we use single cell RNA-sequencing of resting and ex vivo activated T cells from lymphoid and mucosal tissues of infant (aged 2-9 months) and adult (aged 40-65 years) human organ donors to dissect the transcriptional programming of memory T cells over age. Infant memory T cells demonstrate a unique stem-like transcriptional profile and tissue adaptation program, yet exhibit reduced activation capacity and effector function relative to adults. Using CRISPR-Cas9 knockdown, we define Helios (IKZF2) as a critical transcriptional regulator of the infant-specific tissue adaptation program and restricted effector state. Our findings reveal key transcriptional mechanisms that control tissue T cell fate and function in early life.
Collapse
Affiliation(s)
- Peter A. Szabo
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Hanna M. Levitin
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032
| | - Thomas J. Connors
- Department of Pediatrics, Columbia University Medical Center, New York, NY 10032
| | - David Chen
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032
| | - Jenny Jin
- Medical Scientist Training Program, Columbia University Medical Center, New York, NY 10032
| | - Puspa Thapa
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Rebecca Guyer
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Daniel P. Caron
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Joshua I. Gray
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
| | - Rei Matsumoto
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
- Department of Surgery, Columbia University Medical Center, New York, NY 10032
| | - Masaru Kubota
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
- Department of Surgery, Columbia University Medical Center, New York, NY 10032
| | - Maigan Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Todd M. Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611
| | - Donna L. Farber
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032
- Department of Surgery, Columbia University Medical Center, New York, NY 10032
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
2
|
Woods Acevedo MA, Lan J, Maya S, Jones JE, Williams JV, Freeman MC, Dermody TS. Immune cells promote paralytic disease in mice infected with enterovirus D68. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618341. [PMID: 39463956 PMCID: PMC11507732 DOI: 10.1101/2024.10.14.618341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Enterovirus D68 (EV-D68) is associated with acute flaccid myelitis (AFM), a poliomyelitis-like illness causing paralysis in young children. However, mechanisms of paralysis are unclear, and antiviral therapies are lacking. To better understand EV-D68 disease, we inoculated newborn mice intracranially to assess viral tropism, virulence, and immune responses. Wild-type (WT) mice inoculated intracranially with a neurovirulent strain of EV-D68 showed infection of spinal cord neurons and developed paralysis. Spinal tissue from infected mice revealed increased levels of chemokines, inflammatory monocytes, macrophages, and T cells relative to controls, suggesting that immune cell infiltration influences pathogenesis. To define the contribution of cytokine-mediated immune cell recruitment to disease, we inoculated mice lacking CCR2, a receptor for several EV-D68-upregulated cytokines, or RAG1, which is required for lymphocyte maturation. WT, Ccr2 -/- , and Rag1 -/- mice had comparable viral titers in spinal tissue. However, Ccr2 -/- and Rag1 -/- mice had significantly less paralysis relative to WT mice. Consistent with impaired T cell recruitment to sites of infection in Ccr2 -/- and Rag1 -/- mice, antibody-mediated depletion of CD4 + or CD8 + T cells from WT mice diminished paralysis. These results indicate that immune cell recruitment to the spinal cord promotes EV-D68-associated paralysis and illuminate new targets for therapeutic intervention.
Collapse
|
3
|
Yee Mon KJ, Kim S, Dai Z, West JD, Zhu H, Jain R, Grimson A, Rudd BD, Singh A. Functionalized nanowires for miRNA-mediated therapeutic programming of naïve T cells. NATURE NANOTECHNOLOGY 2024; 19:1190-1202. [PMID: 38684809 PMCID: PMC11330359 DOI: 10.1038/s41565-024-01649-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/13/2024] [Indexed: 05/02/2024]
Abstract
Cellular programming of naïve T cells can improve the efficacy of adoptive T-cell therapy. However, the current ex vivo engineering of T cells requires the pre-activation of T cells, which causes them to lose their naïve state. In this study, cationic-polymer-functionalized nanowires were used to pre-program the fate of primary naïve CD8+ T cells to achieve a therapeutic response in vivo. This was done by delivering single or multiple microRNAs to primary naïve mouse and human CD8+ T cells without pre-activation. The use of nanowires further allowed for the delivery of large, whole lentiviral particles with potential for long-term integration. The combination of deletion and overexpression of miR-29 and miR-130 impacted the ex vivo T-cell differentiation fate from the naïve state. The programming of CD8+ T cells using nanowire-delivered co-delivery of microRNAs resulted in the modulation of T-cell fitness by altering the T-cell proliferation, phenotypic and transcriptional regulation, and secretion of effector molecules. Moreover, the in vivo adoptive transfer of murine CD8+ T cells programmed through the nanowire-mediated dual delivery of microRNAs provided enhanced immune protection against different types of intracellular pathogen (influenza and Listeria monocytogenes). In vivo analyses demonstrated that the simultaneous alteration of miR-29 and miR-130 levels in naïve CD8+ T cells reduces the persistence of canonical memory T cells whereas increases the population of short-lived effector T cells. Nanowires could potentially be used to modulate CD8+ T-cell differentiation and achieve a therapeutic response in vivo without the need for pre-activation.
Collapse
Affiliation(s)
- Kristel J Yee Mon
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Sungwoong Kim
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Zhonghao Dai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jessica D West
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA
| | - Hongya Zhu
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA
| | - Ritika Jain
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Andrew Grimson
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA.
| | - Ankur Singh
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
4
|
Pirker AL, Vogl T. Development of systemic and mucosal immune responses against gut microbiota in early life and implications for the onset of allergies. FRONTIERS IN ALLERGY 2024; 5:1439303. [PMID: 39086886 PMCID: PMC11288972 DOI: 10.3389/falgy.2024.1439303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
The early microbial colonization of human mucosal surfaces is essential for the development of the host immune system. Already during pregnancy, the unborn child is prepared for the postnatal influx of commensals and pathogens via maternal antibodies, and after birth this protection is continued with antibodies in breast milk. During this critical window of time, which extends from pregnancy to the first year of life, each encounter with a microorganism can influence children's immune response and can have a lifelong impact on their life. For example, there are numerous links between the development of allergies and an altered gut microbiome. However, the exact mechanisms behind microbial influences, also extending to how viruses influence host-microbe interactions, are incompletely understood. In this review, we address the impact of infants' first microbial encounters, how the immune system develops to interact with gut microbiota, and summarize how an altered immune response could be implied in allergies.
Collapse
Affiliation(s)
| | - Thomas Vogl
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Watson NB, Patel RK, Kean C, Veazey J, Oyesola OO, Laniewski N, Grenier JK, Wang J, Tabilas C, Mon KJY, McNairn AJ, Peng SA, Wesnak SP, Nzingha K, Davenport MP, Wojno EDT, Scheible KM, Smith NL, Grimson A, Rudd BD. The gene regulatory basis of bystander activation in CD8 + T cells. Sci Immunol 2024; 9:eadf8776. [PMID: 38394230 PMCID: PMC11973513 DOI: 10.1126/sciimmunol.adf8776] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
CD8+ T cells are classically recognized as adaptive lymphocytes based on their ability to recognize specific foreign antigens and mount memory responses. However, recent studies indicate that some antigen-inexperienced CD8+ T cells can respond to innate cytokines alone in the absence of cognate T cell receptor stimulation, a phenomenon referred to as bystander activation. Here, we demonstrate that neonatal CD8+ T cells undergo a robust and diverse program of bystander activation, which corresponds to enhanced innate-like protection against unrelated pathogens. Using a multi-omics approach, we found that the ability of neonatal CD8+ T cells to respond to innate cytokines derives from their capacity to undergo rapid chromatin remodeling, resulting in the usage of a distinct set of enhancers and transcription factors typically found in innate-like T cells. We observed that the switch between innate and adaptive functions in the CD8+ T cell compartment is mediated by changes in the abundance of distinct subsets of cells. The innate CD8+ T cell subset that predominates in early life was also present in adult mice and humans. Our findings provide support for the layered immune hypothesis and indicate that the CD8+ T cell compartment is more functionally diverse than previously thought.
Collapse
Affiliation(s)
- Neva B. Watson
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Ravi K. Patel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Connor Kean
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Janelle Veazey
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Oyebola O. Oyesola
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Nathan Laniewski
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jennifer K. Grenier
- Genomics Innovation Hub and TREx Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Jocelyn Wang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Cybelle Tabilas
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Kristel J. Yee Mon
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Adrian J. McNairn
- Genomics Innovation Hub and TREx Facility, Institute of Biotechnology, Cornell University, Ithaca, NY 14853, USA
| | - Seth A. Peng
- Department of Clinical Science, Cornell University, Ithaca, NY 14853, USA
| | - Samantha P. Wesnak
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Kito Nzingha
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Miles P. Davenport
- Kirby Institute for Infection and Immunity, UNSW Australia, Sydney, NSW 2052, Australia
| | - Elia D. Tait Wojno
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | | | - Norah L. Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Brian D. Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
6
|
Falkowski L, Buddenkotte J, Datsi A. Epigenetics in T-cell driven inflammation and cancer. Semin Cell Dev Biol 2024; 154:250-260. [PMID: 36641367 DOI: 10.1016/j.semcdb.2023.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
For decades, scientists have been investigating how processes such as gene expression, stem cell plasticity, and cell differentiation can be modulated. The discovery of epigenetics helped unravel these processes and enabled the identification of major underlying mechanisms that, for example, are central for T cell maturation. T cells go through various stages in their development evolving from progenitor cells into double positive CD4/CD8 T cells that finally leave the thymus as naïve T cells. One major mechanism driving T cell maturation is the modulation of gene activity by temporally sequenced transcription of spatially exposed gene loci. DNA methylation, demethylation, and acetylation are key processes that enable a sequenced gene expression required for T cell differentiation. In vivo, differentiated T cells are subjected to enormous pressures originating from the microenvironment. Signals from this environment, particularly from an inflammatory or a tumor microenvironment, can push T cells to differentiate into specific effector and memory T cells, and even prompt T cells to adopt a state of dysfunctional exhaustion, en route of an epigenetically controlled mechanism. Fundamentals of these processes will be discussed in this review highlighting potential therapeutic interventions, in particular those beneficial to revive exhausted T cells.
Collapse
Affiliation(s)
- Lea Falkowski
- Institute for Transplantational Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Joerg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Angeliki Datsi
- Institute for Transplantational Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
7
|
Abstract
Historically, the immune system was believed to develop along a linear axis of maturity from fetal life to adulthood. Now, it is clear that distinct layers of immune cells are generated from unique waves of hematopoietic progenitors during different windows of development. This model, known as the layered immune model, has provided a useful framework for understanding why distinct lineages of B cells and γδ T cells arise in succession and display unique functions in adulthood. However, the layered immune model has not been applied to CD8+ T cells, which are still often viewed as a uniform population of cells belonging to the same lineage, with functional differences between cells arising from environmental factors encountered during infection. Recent studies have challenged this idea, demonstrating that not all CD8+ T cells are created equally and that the functions of individual CD8+ T cells in adults are linked to when they were created in the host. In this review, we discuss the accumulating evidence suggesting there are distinct ontogenetic subpopulations of CD8+ T cells and propose that the layered immune model be extended to the CD8+ T cell compartment.
Collapse
Affiliation(s)
- Cybelle Tabilas
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
- Co-first author
| | - Norah L. Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
- Co-first author
| | - Brian D. Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Hope JL, Zhao M, Stairiker CJ, Kiernan CH, Carey AJ, Mueller YM, van Meurs M, Brouwers-Haspels I, Otero DC, Bae EA, Faso HA, Maas A, de Looper H, Fortina PM, Rigoutsos I, Bradley LM, Erkeland SJ, Katsikis PD. MicroRNA-139 Expression Is Dispensable for the Generation of Influenza-Specific CD8 + T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:603-617. [PMID: 35022277 PMCID: PMC10118001 DOI: 10.4049/jimmunol.2000621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/15/2021] [Indexed: 01/09/2023]
Abstract
MicroRNAs (miRNAs/miRs) are small, endogenous noncoding RNAs that are important post-transcriptional regulators with clear roles in the development of the immune system and immune responses. Using miRNA microarray profiling, we characterized the expression profile of naive and in vivo generated murine effector antiviral CD8+ T cells. We observed that out of 362 measurable mature miRNAs, 120 were differentially expressed by at least 2-fold in influenza-specific effector CD8+ CTLs compared with naive CD8+ T cells. One miRNA found to be highly downregulated on both strands in effector CTLs was miR-139. Because previous studies have indicated a role for miR-139-mediated regulation of CTL effector responses, we hypothesized that deletion of miR-139 would enhance antiviral CTL responses during influenza virus infection. We generated miR-139-/- mice or overexpressed miR-139 in T cells to assess the functional contribution of miR-139 expression in CD8+ T cell responses. Our study demonstrates that the development of naive T cells and generation or differentiation of effector or memory CD8+ T cell responses to influenza virus infection are not impacted by miR-139 deficiency or overexpression; yet, miR-139-/- CD8+ T cells are outcompeted by wild-type CD8+ T cells in a competition setting and demonstrate reduced responses to Listeria monocytogenes Using an in vitro model of T cell exhaustion, we confirmed that miR-139 expression similarly does not impact the development of T cell exhaustion. We conclude that despite significant downregulation of miR-139 following in vivo and in vitro activation, miR-139 expression is dispensable for influenza-specific CTL responses.
Collapse
Affiliation(s)
- Jennifer L Hope
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands; .,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA.,Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Manzhi Zhao
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Christopher J Stairiker
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA
| | - Caoimhe H Kiernan
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alison J Carey
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA.,Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA
| | - Yvonne M Mueller
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands.,Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA
| | - Marjan van Meurs
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Inge Brouwers-Haspels
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dennis C Otero
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Eun-Ah Bae
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Hannah A Faso
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Alex Maas
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Hans de Looper
- Department of Hematology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Paolo M Fortina
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA; and
| | - Isidore Rigoutsos
- Computational Medicine Center, Thomas Jefferson University, Philadelphia, PA
| | - Linda M Bradley
- Aging, Cancer and Immuno-oncology Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA
| | - Stefan J Erkeland
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Peter D Katsikis
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands;
| |
Collapse
|
9
|
Bermick J, Schaller M. Epigenetic regulation of pediatric and neonatal immune responses. Pediatr Res 2022; 91:297-327. [PMID: 34239066 DOI: 10.1038/s41390-021-01630-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation of transcription is a collective term that refers to mechanisms known to regulate gene transcription without changing the underlying DNA sequence. These mechanisms include DNA methylation and histone tail modifications which influence chromatin accessibility, and microRNAs that act through post-transcriptional gene silencing. Epigenetics is known to regulate a variety of biological processes, and the role of epigtenetics in immunity and immune-mediated diseases is becoming increasingly recognized. While DNA methylation is the most widely studied, each of these systems play an important role in the development and maintenance of appropriate immune responses. There is clear evidence that epigenetic mechanisms contribute to developmental stage-specific immune responses in a cell-specific manner. There is also mounting evidence that prenatal exposures alter epigenetic profiles and subsequent immune function in exposed offspring. Early life exposures that are associated with poor long-term health outcomes also appear to impact immune specific epigenetic patterning. Finally, each of these epigenetic mechanisms contribute to the pathogenesis of a wide variety of diseases that manifest during childhood. This review will discuss each of these areas in detail. IMPACT: Epigenetics, including DNA methylation, histone tail modifications, and microRNA expression, dictate immune cell phenotypes. Epigenetics influence immune development and subsequent immune health. Prenatal, perinatal, and postnatal exposures alter immune cell epigenetic profiles and subsequent immune function. Numerous pediatric-onset diseases have an epigenetic component. Several successful strategies for childhood diseases target epigenetic mechanisms.
Collapse
Affiliation(s)
- Jennifer Bermick
- Department of Pediatrics, Division of Neonatology, University of Iowa, Iowa City, IA, USA. .,Iowa Inflammation Program, University of Iowa, Iowa City, IA, USA.
| | - Matthew Schaller
- Department of Pulmonary, Critical Care & Sleep Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Sakleshpur S, Steed AL. Influenza: Toward understanding the immune response in the young. Front Pediatr 2022; 10:953150. [PMID: 36061377 PMCID: PMC9437304 DOI: 10.3389/fped.2022.953150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/28/2022] [Indexed: 12/12/2022] Open
Abstract
Annually influenza causes a global epidemic resulting in 290,000 to 650,000 deaths and extracts a massive toll on healthcare and the economy. Infants and children are more susceptible to infection and have more severe symptoms than adults likely mitigated by differences in their innate and adaptive immune responses. While it is unclear the exact mechanisms with which the young combat influenza, it is increasingly understood that their immune responses differ from adults. Specifically, underproduction of IFN-γ and IL-12 by the innate immune system likely hampers viral clearance while upregulation of IL-6 may create excessive damaging inflammation. The infant's adaptive immune system preferentially utilizes the Th-2 response that has been tied to γδ T cells and their production of IL-17, which may be less advantageous than the adult Th-1 response for antiviral immunity. This differential immune response of the young is considered to serve as a unique evolutionary adaptation such that they preferentially respond to infection broadly rather than a pathogen-specific one generated by adults. This unique function of the young immune system is temporally, and possibly mechanistically, tied to the microbiota, as they both develop in coordination early in life. Additional research into the relationship between the developing microbiota and the immune system is needed to develop therapies effective at combating influenza in the youngest and most vulnerable of our population.
Collapse
Affiliation(s)
- Sonia Sakleshpur
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Ashley L Steed
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
11
|
Fatmi A, Chabni N, Cernada M, Vento M, González-López M, Aribi M, Pallardó FV, García-Giménez JL. Clinical and immunological aspects of microRNAs in neonatal sepsis. Biomed Pharmacother 2021; 145:112444. [PMID: 34808550 DOI: 10.1016/j.biopha.2021.112444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022] Open
Abstract
Neonatal sepsis constitutes a highly relevant public health challenge and is the most common cause of infant morbidity and mortality worldwide. Recent studies have demonstrated that during infection epigenetic changes may occur leading to reprogramming of gene expression. Post-transcriptional regulation by short non-coding RNAs (e.g., microRNAs) have recently acquired special relevance because of their role in the regulation of the pathophysiology of sepsis and their potential clinical use as biomarkers. ~22-nucleotide of microRNAs are not only involved in regulating multiple relevant cellular and molecular functions, such as immune cell function and inflammatory response, but have also been proposed as good candidates as biomarkers in sepsis. Nevertheless, establishing clinical practice guidelines based on microRNA patterns as biomarkers for diagnosis and prognosis in neonatal sepsis has yet to be achieved. Given their differential expression across tissues in neonates, the release of specific microRNAs to blood and their expression pattern can differ compared to sepsis in adult patients. Further in-depth research is necessary to fully understand the biological relevance of microRNAs and assess their potential use in clinical settings. This review provides a general overview of microRNAs, their structure, function and biogenesis before exploring their potential clinical interest as diagnostic and prognostic biomarkers of neonatal sepsis. An important part of the review is focused on immune and inflammatory aspects of selected microRNAs that may become biomarkers for clinical use and therapeutic intervention.
Collapse
Affiliation(s)
- Ahlam Fatmi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, W0414100, 13000 Tlemcen, Algeria
| | - Nafissa Chabni
- Faculty of Medicine, Tlemcen Medical Centre University, 13000 Tlemcen, Algeria
| | - María Cernada
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain; Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Máximo Vento
- Division of Neonatology, University and Polytechnic Hospital La Fe, Valencia, Spain; Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - María González-López
- Department of Pediatrics. Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, University of Tlemcen, W0414100, 13000 Tlemcen, Algeria; Biotechnology Center of Constantine (CRBt), 25000 Constantine, Algeria
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain; INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, Valencia, Spain; Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Valencia, Spain.
| |
Collapse
|
12
|
Yee Mon KJ, Zhu H, Daly CWP, Vu LT, Smith NL, Patel R, Topham DJ, Scheible K, Jambo K, Le MTN, Rudd BD, Grimson A. MicroRNA-29 specifies age-related differences in the CD8+ T cell immune response. Cell Rep 2021; 37:109969. [PMID: 34758312 DOI: 10.1016/j.celrep.2021.109969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/09/2021] [Accepted: 10/19/2021] [Indexed: 11/27/2022] Open
Abstract
MicroRNAs (miRNAs) have emerged as critical regulators of cell fate in the CD8+ T cell response to infection. Although there are several examples of miRNAs acting on effector CD8+ T cells after infection, it is unclear whether differential expression of one or more miRNAs in the naive state is consequential in altering their long-term trajectory. To answer this question, we examine the role of miR-29 in neonatal and adult CD8+ T cells, which express different amounts of miR-29 only prior to infection and adopt profoundly different fates after immune challenge. We find that manipulation of miR-29 expression in the naive state is sufficient for age-adjusting the phenotype and function of CD8+ T cells, including their regulatory landscapes and long-term differentiation trajectories after infection. Thus, miR-29 acts as a developmental switch by controlling the balance between a rapid effector response in neonates and the generation of long-lived memory in adults.
Collapse
Affiliation(s)
- Kristel J Yee Mon
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Hongya Zhu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ciarán W P Daly
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Luyen T Vu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA; Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Norah L Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Ravi Patel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - David J Topham
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Kristin Scheible
- Department of Pediatrics, Division of Neonatology, University of Rochester, Rochester, NY 14642, USA
| | - Kondwani Jambo
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK; Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Minh T N Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA.
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
13
|
Dong M, Mallet Gauthier È, Fournier M, Melichar HJ. Developing the right tools for the job: Lin28 regulation of early life T-cell development and function. FEBS J 2021; 289:4416-4429. [PMID: 34077615 DOI: 10.1111/febs.16045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/29/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022]
Abstract
T cells comprise a functionally heterogeneous cell population that has important roles in the immune system. While T cells are broadly considered to be a component of the antigen-specific adaptive immune response, certain T-cell subsets display innate-like effector characteristics whereas others perform immunosuppressive functions. These functionally diverse T-cell populations preferentially arise at different stages of ontogeny and are tailored to the immunological priorities of the organism over time. Many differences in early life versus adult T-cell phenotypes can be attributed to the cell-intrinsic properties of the distinct progenitors that seed the thymus throughout development. It is becoming clear that Lin28, an evolutionarily conserved, heterochronic RNA-binding protein that is differentially expressed among early life and adult hematopoietic progenitor cells, plays a substantial role in influencing early T-cell development and function. Here, we discuss the mechanisms by which Lin28 shapes the T-cell landscape to protect the developing fetus and newborn. Manipulation of the Lin28 gene regulatory network is being considered as one means of improving hematopoietic stem cell transplant outcomes; as such, understanding the impact of Lin28 on T-cell function is of clinical relevance.
Collapse
Affiliation(s)
- Mengqi Dong
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Ève Mallet Gauthier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Marilaine Fournier
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada
| | - Heather J Melichar
- Immunology-Oncology Unit, Maisonneuve-Rosemont Hospital Research Center, Montréal, QC, Canada.,Département de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
14
|
Beijnen EMS, van Haren SD. Vaccine-Induced CD8 + T Cell Responses in Children: A Review of Age-Specific Molecular Determinants Contributing to Antigen Cross-Presentation. Front Immunol 2020; 11:607977. [PMID: 33424857 PMCID: PMC7786054 DOI: 10.3389/fimmu.2020.607977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Infections are most common and most severe at the extremes of age, the young and the elderly. Vaccination can be a key approach to enhance immunogenicity and protection against pathogens in these vulnerable populations, who have a functionally distinct immune system compared to other age groups. More than 50% of the vaccine market is for pediatric use, yet to date vaccine development is often empiric and not tailored to molecular distinctions in innate and adaptive immune activation in early life. With modern vaccine development shifting from whole-cell based vaccines to subunit vaccines also comes the need for formulations that can elicit a CD8+ T cell response when needed, for example, by promoting antigen cross-presentation. While our group and others have identified many cellular and molecular determinants of successful activation of antigen-presenting cells, B cells and CD4+ T cells in early life, much less is known about the ontogeny of CD8+ T cell induction. In this review, we summarize the literature pertaining to the frequency and phenotype of newborn and infant CD8+ T cells, and any evidence of induction of CD8+ T cells by currently licensed pediatric vaccine formulations. In addition, we review the molecular determinants of antigen cross-presentation on MHC I and successful CD8+ T cell induction and discuss potential distinctions that can be made in children. Finally, we discuss recent advances in development of novel adjuvants and provide future directions for basic and translational research in this area.
Collapse
Affiliation(s)
- Elisabeth M. S. Beijnen
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Jain N. The early life education of the immune system: Moms, microbes and (missed) opportunities. Gut Microbes 2020; 12:1824564. [PMID: 33043833 PMCID: PMC7781677 DOI: 10.1080/19490976.2020.1824564] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/29/2020] [Accepted: 09/08/2020] [Indexed: 02/03/2023] Open
Abstract
The early life immune system is characterized by unique developmental milestones. Functionally diverse immune cells arise from distinct waves of hematopoietic stem cells, a phenomenon referred to as 'layered' immunity. This stratified development of immune cells extends to lineages of both innate and adaptive cells. The defined time window for the development of these immune cells lends itself to the influence of specific exposures typical of the early life period. The perinatal immune system develops in a relatively sterile fetal environment but emerges into one filled with a multitude of antigenic encounters. A major burden of this comes in the form of the microbiota that is being newly established at mucosal surfaces of the newborn. Accumulating evidence suggests that early life microbial exposures, including those arising in utero, can imprint long-lasting changes in the offspring's immune system and determine disease risk throughout life. In this review, I highlight unique features of early life immunity and explore the role of intestinal bacteria in educating the developing immune system.
Collapse
Affiliation(s)
- Nitya Jain
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Charlestown, MA, USA
| |
Collapse
|
16
|
Fatmi A, Rebiahi SA, Chabni N, Zerrouki H, Azzaoui H, Elhabiri Y, Benmansour S, Ibáñez-Cabellos JS, Smahi MCE, Aribi M, García-Giménez JL, Pallardó FV. miRNA-23b as a biomarker of culture-positive neonatal sepsis. Mol Med 2020; 26:94. [PMID: 33032520 PMCID: PMC7542968 DOI: 10.1186/s10020-020-00217-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neonatal sepsis remains an important cause of morbidity and mortality. The ability to quickly and accurately diagnose neonatal sepsis based on clinical assessments and laboratory blood tests remains difficult, where haemoculture is the gold standard for detecting bacterial sepsis in blood culture. It is also very difficult to study because neonatal samples are lacking. METHODS Forty-eight newborns suspected of sepsis admitted to the Neonatology Department of the Mother-Child Specialized Hospital of Tlemcen. From each newborn, a minimum of 1-2 ml of blood was drawn by standard sterile procedures for blood culture. The miRNA-23b level in haemoculture was evaluated by RT-qPCR. RESULTS miR-23b levels increased in premature and full-term newborns in early onset sepsis (p < 0.001 and p < 0.005 respectively), but lowered in late onset sepsis in full-term neonates (p < 0.05) compared to the respective negative controls. miR-23b levels also increased in late sepsis in the negative versus early sepsis negative controls (p < 0.05). miR-23b levels significantly lowered in the newborns who died from both sepsis types (p < 0.0001 and p < 0.05 respectively). In early sepsis, miR-23b and death strongly and negatively correlated (correlation coefficient = - 0.96, p = 0.0019). In late sepsis, miRNA-23b and number of survivors (correlation coefficient = 0.70, p = 0.506) positively correlated. CONCLUSIONS Lowering miR-23b levels is an important factor that favours sepsis development, which would confirm their vital protective role, and strongly suggest that they act as a good marker in molecular diagnosis and patient monitoring.
Collapse
Affiliation(s)
- Ahlam Fatmi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, Tlemcen, Algeria
| | - Sid Ahmed Rebiahi
- Laboratory of Microbiology Applied in Food, Biomedical and Environment, Tlemcen, Algeria
| | - Nafissa Chabni
- Faculty of Medicine, Tlemcen Medical Centre University, 13000, Tlemcen, Algeria
| | - Hanane Zerrouki
- Laboratory of Microbiology Applied in Food, Biomedical and Environment, Tlemcen, Algeria
| | - Hafsa Azzaoui
- Laboratory of Applied Molecular Biology and Immunology, W0414100, Tlemcen, Algeria
| | - Yamina Elhabiri
- Laboratory of Microbiology Applied in Food, Biomedical and Environment, Tlemcen, Algeria
| | - Souheila Benmansour
- Laboratory of Applied Molecular Biology and Immunology, W0414100, Tlemcen, Algeria.,Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - José Santiago Ibáñez-Cabellos
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Avenida Blasco Ibañez 15, 46010, Valencia, Spain
| | - Mohammed Chems-Eddine Smahi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, Tlemcen, Algeria.,Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, Tlemcen, Algeria
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Avenida Blasco Ibañez 15, 46010, Valencia, Spain
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain. .,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain. .,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Avenida Blasco Ibañez 15, 46010, Valencia, Spain.
| |
Collapse
|
17
|
Patel RK, West JD, Jiang Y, Fogarty EA, Grimson A. Robust partitioning of microRNA targets from downstream regulatory changes. Nucleic Acids Res 2020; 48:9724-9746. [PMID: 32821933 PMCID: PMC7515711 DOI: 10.1093/nar/gkaa687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/19/2020] [Accepted: 08/08/2020] [Indexed: 11/14/2022] Open
Abstract
The biological impact of microRNAs (miRNAs) is determined by their targets, and robustly identifying direct miRNA targets remains challenging. Existing methods suffer from high false-positive rates and are unable to effectively differentiate direct miRNA targets from downstream regulatory changes. Here, we present an experimental and computational framework to deconvolute post-transcriptional and transcriptional changes using a combination of RNA-seq and PRO-seq. This novel approach allows us to systematically profile the regulatory impact of a miRNA. We refer to this approach as CARP: Combined Analysis of RNA-seq and PRO-seq. We apply CARP to multiple miRNAs and show that it robustly distinguishes direct targets from downstream changes, while greatly reducing false positives. We validate our approach using Argonaute eCLIP-seq and ribosome profiling, demonstrating that CARP defines a comprehensive repertoire of targets. Using this approach, we identify miRNA-specific activity of target sites within the open reading frame. Additionally, we show that CARP facilitates the dissection of complex changes in gene regulatory networks triggered by miRNAs and identification of transcription factors that mediate downstream regulatory changes. Given the robustness of the approach, CARP would be particularly suitable for dissecting miRNA regulatory networks in vivo.
Collapse
Affiliation(s)
- Ravi K Patel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Genetics, Genomics, and Development, Cornell University, Ithaca, New York 14853, USA
| | - Jessica D West
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | - Ya Jiang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
- Graduate Field of Genetics, Genomics, and Development, Cornell University, Ithaca, New York 14853, USA
| | - Elizabeth A Fogarty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Andrew Grimson
- To whom correspondence should be addressed. Tel: +1 607 254 1307; Fax: +1 607 254 1307;
| |
Collapse
|
18
|
Wells AC, Pobezinskaya EL, Pobezinsky LA. Non-coding RNAs in CD8 T cell biology. Mol Immunol 2020; 120:67-73. [PMID: 32085976 PMCID: PMC7093237 DOI: 10.1016/j.molimm.2020.01.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/17/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
CD8 T cells are among the most vigorous soldiers of the immune system that fight viral infections and cancer. CD8 T cell development, maintenance, activation and differentiation are under the tight control of multiple transcriptional and post-transcriptional networks. Over the last two decades it has become clear that non-coding RNAs (ncRNAs), which consist of microRNAs (miRNAs) and long ncRNAs (lncRNAs), have emerged as global biological regulators. While our understanding of the function of specific miRNAs has increased since the discovery of RNA interference, it is still very limited, and the field of lncRNAs is just starting to blossom. Here we will summarize our knowledge on the role of ncRNAs in CD8 T cell biology, including differentiation into memory and exhausted cells.
Collapse
Affiliation(s)
- Alexandria C Wells
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20814, United States.
| | - Elena L Pobezinskaya
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, United States.
| | - Leonid A Pobezinsky
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, United States.
| |
Collapse
|
19
|
Abstract
Neonatal CD4+ and CD8+ T cells have historically been characterized as immature or defective. However, recent studies prompt a reinterpretation of the functions of neonatal T cells. Rather than a population of cells always falling short of expectations set by their adult counterparts, neonatal T cells are gaining recognition as a distinct population of lymphocytes well suited for the rapidly changing environment in early life. In this review, I will highlight new evidence indicating that neonatal T cells are not inert or less potent versions of adult T cells but instead are a broadly reactive layer of T cells poised to quickly develop into regulatory or effector cells, depending on the needs of the host. In this way, neonatal T cells are well adapted to provide fast-acting immune protection against foreign pathogens, while also sustaining tolerance to self-antigens.
Collapse
Affiliation(s)
- Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, USA;
| |
Collapse
|
20
|
Tabilas C, Wang J, Liu X, Locasale JW, Smith NL, Rudd BD. Cutting Edge: Elevated Glycolytic Metabolism Limits the Formation of Memory CD8 + T Cells in Early Life. THE JOURNAL OF IMMUNOLOGY 2019; 203:2571-2576. [PMID: 31597706 DOI: 10.4049/jimmunol.1900426] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/20/2019] [Indexed: 12/13/2022]
Abstract
Neonates often develop poor immunity against intracellular pathogens. Because CD8+ T cells are essential for eliminating infectious agents, it is crucial to understand why they behave differently in early life. Previous studies in mice have demonstrated that neonatal CD8+ T cells fail to form memory because of an intrinsic propensity to differentiate into short-lived effectors. However, the underlying mechanisms remain undefined. We now show that neonatal CD8+ T cells exhibit higher glycolytic activity than adult CD8+ T cells postinfection, which may be due to age-related differences in Lin28b expression. Importantly, when glycolysis is pharmacologically inhibited, the impaired formation of neonatal memory CD8+ T cells can be restored. Collectively, these data suggest that neonatal CD8+ T cells are inherently biased toward undergoing glycolytic metabolism postinfection, which compromises their ability to develop into memory CD8+ T cells in early life.
Collapse
Affiliation(s)
- Cybelle Tabilas
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Jocelyn Wang
- Department of Pediatrics, Indiana University, Indianapolis, IN 46202
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695; and
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710
| | - Norah L Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853;
| |
Collapse
|
21
|
Deng Q, Luo Y, Chang C, Wu H, Ding Y, Xiao R. The Emerging Epigenetic Role of CD8+T Cells in Autoimmune Diseases: A Systematic Review. Front Immunol 2019; 10:856. [PMID: 31057561 PMCID: PMC6482221 DOI: 10.3389/fimmu.2019.00856] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/02/2019] [Indexed: 12/19/2022] Open
Abstract
Autoimmune diseases are usually complex and multifactorial, characterized by aberrant production of autoreactive immune cells and/or autoantibodies against healthy cells and tissues. However, the pathogenesis of autoimmune diseases has not been clearly elucidated. The activation, differentiation, and development of CD8+ T cells can be affected by numerous inflammatory cytokines, transcription factors, and chemokines. In recent years, epigenetic modifications have been shown to play an important role in the fate of CD8+ T cells. The discovery of these modifications that contribute to the activation or suppression of CD8+ cells has been concurrent with the increasing evidence that CD8+ T cells play a role in autoimmunity. These relationships have been studied in various autoimmune diseases, including multiple sclerosis (MS), systemic sclerosis (SSc), type 1 diabetes (T1D), Grave's disease (GD), systemic lupus erythematosus (SLE), aplastic anemia (AA), and vitiligo. In each of these diseases, genes that play a role in the proliferation or activation of CD8+ T cells have been found to be affected by epigenetic modifications. Various cytokines, transcription factors, and other regulatory molecules have been found to be differentially methylated in CD8+ T cells in autoimmune diseases. These genes are involved in T cell regulation, including interferons, interleukin (IL),tumor necrosis factor (TNF), as well as linker for activation of T cells (LAT), cytotoxic T-lymphocyte–associated antigen 4 (CTLA4), and adapter proteins. MiRNAs also play a role in the pathogenesis of these diseases and several known miRNAs that are involved in these diseases have also been shown to play a role in CD8+ regulation.
Collapse
Affiliation(s)
- Qiancheng Deng
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yangyang Luo
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Dermatology, Hunan Children's Hospital, Changsha, China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Haijing Wu
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Ding
- Department of Dermatology, Hainan Provincial Dermatology Disease Hospital, Haikou, China
| | - Rong Xiao
- Hunan Key Laboratory of Medical Epigenetics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Gustafson CE, Cavanagh MM, Jin J, Weyand CM, Goronzy JJ. Functional pathways regulated by microRNA networks in CD8 T-cell aging. Aging Cell 2019; 18:e12879. [PMID: 30488559 PMCID: PMC6351841 DOI: 10.1111/acel.12879] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/26/2018] [Accepted: 10/21/2018] [Indexed: 12/13/2022] Open
Abstract
One of the most prominent immunological changes during human aging is the alteration in CD8 T-cell subset distribution, predominated by a loss of naïve CD8 T cells. The molecular mechanisms that contribute to the loss of naïve CD8 T-cells during aging remain unclear. Considering that many CD8 T-cell functions are influenced by microRNAs (miRNAs), we explored miRNA expression profiling to identify novel dysfunctions that contribute to naïve CD8 T-cell loss during aging. Here, we describe age-dependent miRNA expression changes in naïve, central memory, and effector memory CD8 T-cell subsets. Changes in old naïve CD8 T-cells partially resembled those driven by an underlying shift in cellular differentiation toward a young central memory phenotype. Pathways enriched for targets of age-dependent miRNAs included FOXO1, NF-κB, and PI3K-AKT signaling. Transcriptome analysis of old naïve CD8 T-cells yielded corresponding patterns that correlated to those seen with reduced FOXO1 or altered NF-κB activities. Of particular interest, IL-7R expression, controlled by FOXO1 signaling, declines on naïve CD8 T cells with age and directly correlates with the frequencies of naïve CD8 T cells. Thus, age-associated changes in miRNA networks may ultimately contribute to the failure in CD8 T-cell homeostasis exemplified by the loss in naïve cells.
Collapse
Affiliation(s)
- Claire E Gustafson
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California
| | - Mary M Cavanagh
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California
| | - Jun Jin
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
- Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, California
| |
Collapse
|
23
|
Roles of microRNA in the immature immune system of neonates. Cancer Lett 2018; 433:99-106. [DOI: 10.1016/j.canlet.2018.06.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/24/2018] [Accepted: 06/06/2018] [Indexed: 01/09/2023]
|
24
|
Smith NL, Patel RK, Reynaldi A, Grenier JK, Wang J, Watson NB, Nzingha K, Yee Mon KJ, Peng SA, Grimson A, Davenport MP, Rudd BD. Developmental Origin Governs CD8 + T Cell Fate Decisions during Infection. Cell 2018; 174:117-130.e14. [PMID: 29909981 DOI: 10.1016/j.cell.2018.05.029] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/03/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022]
Abstract
Heterogeneity is a hallmark feature of the adaptive immune system in vertebrates. Following infection, naive T cells differentiate into various subsets of effector and memory T cells, which help to eliminate pathogens and maintain long-term immunity. The current model suggests there is a single lineage of naive T cells that give rise to different populations of effector and memory T cells depending on the type and amounts of stimulation they encounter during infection. Here, we have discovered that multiple sub-populations of cells exist in the naive CD8+ T cell pool that are distinguished by their developmental origin, unique transcriptional profiles, distinct chromatin landscapes, and different kinetics and phenotypes after microbial challenge. These data demonstrate that the naive CD8+ T cell pool is not as homogeneous as previously thought and offers a new framework for explaining the remarkable heterogeneity in the effector and memory T cell subsets that arise after infection.
Collapse
Affiliation(s)
- Norah L Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Ravi K Patel
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Arnold Reynaldi
- Kirby Institute for Infection and Immunity, UNSW Australia, Sydney, NSW 2052, Australia
| | - Jennifer K Grenier
- RNA Sequencing Core, Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jocelyn Wang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Neva B Watson
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Kito Nzingha
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Kristel J Yee Mon
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Seth A Peng
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Miles P Davenport
- Kirby Institute for Infection and Immunity, UNSW Australia, Sydney, NSW 2052, Australia
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
25
|
Kwan STC, King JH, Grenier JK, Yan J, Jiang X, Roberson MS, Caudill MA. Maternal Choline Supplementation during Normal Murine Pregnancy Alters the Placental Epigenome: Results of an Exploratory Study. Nutrients 2018; 10:nu10040417. [PMID: 29597262 PMCID: PMC5946202 DOI: 10.3390/nu10040417] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
The placental epigenome regulates processes that affect placental and fetal development, and could be mediating some of the reported effects of maternal choline supplementation (MCS) on placental vascular development and nutrient delivery. As an extension of work previously conducted in pregnant mice, the current study sought to explore the effects of MCS on various epigenetic markers in the placenta. RNA and DNA were extracted from placentas collected on embryonic day 15.5 from pregnant mice fed a 1X or 4X choline diet, and were subjected to genome-wide sequencing procedures or mass-spectrometry-based assays to examine placental imprinted gene expression, DNA methylation patterns, and microRNA (miRNA) abundance. MCS yielded a higher (fold change = 1.63-2.25) expression of four imprinted genes (Ampd3, Tfpi2, Gatm and Aqp1) in the female placentas and a lower (fold change = 0.46-0.62) expression of three imprinted genes (Dcn, Qpct and Tnfrsf23) in the male placentas (false discovery rate (FDR) ≤ 0.05 for both sexes). Methylation in the promoter regions of these genes and global placental DNA methylation were also affected (p ≤ 0.05). Additionally, a lower (fold change = 0.3; Punadjusted = 2.05 × 10-4; FDR = 0.13) abundance of miR-2137 and a higher (fold change = 1.25-3.92; p < 0.05) expression of its target genes were detected in the 4X choline placentas. These data demonstrate that the placental epigenome is responsive to maternal choline intake during murine pregnancy and likely mediates some of the previously described choline-induced effects on placental and fetal outcomes.
Collapse
Affiliation(s)
| | - Julia H King
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
| | - Jennifer K Grenier
- RNA Sequencing Core, Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Jian Yan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
| | - Xinyin Jiang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
- Department of Health and Nutrition Sciences, Brooklyn College, Brooklyn, NY 11210, USA.
| | - Mark S Roberson
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
26
|
Fonseca W, Lukacs NW, Ptaschinski C. Factors Affecting the Immunity to Respiratory Syncytial Virus: From Epigenetics to Microbiome. Front Immunol 2018. [PMID: 29515570 PMCID: PMC5825926 DOI: 10.3389/fimmu.2018.00226] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a common pathogen that infects virtually all children by 2 years of age and is the leading cause of hospitalization of infants worldwide. While most children experience mild symptoms, some children progress to severe lower respiratory tract infection. Those children with severe disease have a much higher risk of developing childhood wheezing later in life. Many risk factors are known to result in exacerbated disease, including premature birth and early age of RSV infection, when the immune system is relatively immature. The development of the immune system before and after birth may be altered by several extrinsic and intrinsic factors that could lead to severe disease predisposition in children who do not exhibit any currently known risk factors. Recently, the role of the microbiome and the resulting metabolite profile has been an area of intense study in the development of lung disease, including viral infection and asthma. This review explores both known risk factors that can lead to severe RSV-induced disease as well as emerging topics in the development of immunity to RSV and the long-term consequences of severe infection.
Collapse
Affiliation(s)
- Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States.,University of Michigan, Mary H. Weiser Food Allergy Center, Ann Arbor, MI, United States
| | - Catherine Ptaschinski
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States.,University of Michigan, Mary H. Weiser Food Allergy Center, Ann Arbor, MI, United States
| |
Collapse
|
27
|
Dong M, Artusa P, Kelly SA, Fournier M, Baldwin TA, Mandl JN, Melichar HJ. Alterations in the Thymic Selection Threshold Skew the Self-Reactivity of the TCR Repertoire in Neonates. THE JOURNAL OF IMMUNOLOGY 2017; 199:965-973. [PMID: 28659353 DOI: 10.4049/jimmunol.1602137] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/02/2017] [Indexed: 12/19/2022]
Abstract
Neonatal and adult T cells differ in their effector functions. Although it is known that cell-intrinsic differences in mature T cells contribute to this phenomenon, the factors involved remain unclear. Given emerging evidence that the binding strength of a TCR for self-peptide presented by MHC (self-pMHC) impacts T cell function, we sought to determine whether altered thymic selection influences the self-reactivity of the TCR repertoire during ontogeny. We found that conventional and regulatory T cell subsets in the thymus of neonates and young mice expressed higher levels of cell surface CD5, a surrogate marker for TCR avidity for self-pMHC, as compared with their adult counterparts, and this difference in self-reactivity was independent of the germline bias of the neonatal TCR repertoire. The increased binding strength of the TCR repertoire for self-pMHC in neonates was not solely due to reported defects in clonal deletion. Rather, our data suggest that thymic selection is altered in young mice such that thymocytes bearing TCRs with low affinity for self-peptide are not efficiently selected into the neonatal repertoire, and stronger TCR signals accompany both conventional and regulatory T cell selection. Importantly, the distinct levels of T cell self-reactivity reflect physiologically relevant differences based on the preferential expansion of T cells from young mice to fill a lymphopenic environment. Therefore, differences in thymic selection in young versus adult mice skew the TCR repertoire, and the relatively higher self-reactivity of the T cell pool may contribute to the distinct immune responses observed in neonates.
Collapse
Affiliation(s)
- Mengqi Dong
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada.,Department of Microbiology, Infectious Diseases, and Immunology, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Patricio Artusa
- Department of Physiology and McGill Research Centre for Complex Traits, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Stephanie A Kelly
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; and
| | - Marilaine Fournier
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada
| | - Troy A Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; and
| | - Judith N Mandl
- Department of Physiology and McGill Research Centre for Complex Traits, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Heather J Melichar
- Maisonneuve-Rosemont Hospital Research Center, Montreal, Quebec H1T 2M4, Canada; .,Department of Medicine, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| |
Collapse
|
28
|
Zhao S, Gordon W, Du S, Zhang C, He W, Xi L, Mathur S, Agostino M, Paradis T, von Schack D, Vincent M, Zhang B. QuickMIRSeq: a pipeline for quick and accurate quantification of both known miRNAs and isomiRs by jointly processing multiple samples from microRNA sequencing. BMC Bioinformatics 2017; 18:180. [PMID: 28320324 PMCID: PMC5359966 DOI: 10.1186/s12859-017-1601-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/14/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Genome-wide miRNA expression data can be used to study miRNA dysregulation comprehensively. Although many open-source tools for microRNA (miRNA)-seq data analyses are available, challenges remain in accurate miRNA quantification from large-scale miRNA-seq dataset. We implemented a pipeline called QuickMIRSeq for accurate quantification of known miRNAs and miRNA isoforms (isomiRs) from multiple samples simultaneously. RESULTS QuickMIRSeq considers the unique nature of miRNAs and combines many important features into its implementation. First, it takes advantage of high redundancy of miRNA reads and introduces joint mapping of multiple samples to reduce computational time. Second, it incorporates the strand information in the alignment step for more accurate quantification. Third, reads potentially arising from background noise are filtered out to improve the reliability of miRNA detection. Fourth, sequences aligned to miRNAs with mismatches are remapped to a reference genome to further reduce false positives. Finally, QuickMIRSeq generates a rich set of QC metrics and publication-ready plots. CONCLUSIONS The rich visualization features implemented allow end users to interactively explore the results and gain more insights into miRNA-seq data analyses. The high degree of automation and interactivity in QuickMIRSeq leads to a substantial reduction in the time and effort required for miRNA-seq data analysis.
Collapse
Affiliation(s)
- Shanrong Zhao
- Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA.
| | - William Gordon
- Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Sarah Du
- Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Chi Zhang
- Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Wen He
- Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Li Xi
- Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Sachin Mathur
- Business Technology, Pfizer Worldwide Research and Development, Andover, MA, 01810, USA
| | - Michael Agostino
- Business Technology, Pfizer Worldwide Research and Development, Andover, MA, 01810, USA
| | - Theresa Paradis
- Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - David von Schack
- Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Michael Vincent
- I&I Research Unit, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA
| | - Baohong Zhang
- Early Clinical Development, Pfizer Worldwide Research and Development, Cambridge, MA, 02139, USA.
| |
Collapse
|
29
|
Gonzalez-Perez G, Lamousé-Smith ESN. Gastrointestinal Microbiome Dysbiosis in Infant Mice Alters Peripheral CD8 + T Cell Receptor Signaling. Front Immunol 2017; 8:265. [PMID: 28337207 PMCID: PMC5340779 DOI: 10.3389/fimmu.2017.00265] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 02/23/2017] [Indexed: 01/08/2023] Open
Abstract
We recently reported that maternal antibiotic treatment (MAT) of mice in the last days of pregnancy and during lactation dramatically alters the density and composition of the gastrointestinal microbiota of their infants. MAT infants also exhibited enhanced susceptibility to a systemic viral infection and altered adaptive immune cell activation phenotype and function. CD8+ effector T cells from MAT infants consistently demonstrate an inability to sustain interferon gamma (IFN-γ) production in vivo following vaccinia virus infection and in vitro upon T cell receptor (TCR) stimulation. We hypothesize that T cells developing in infant mice with gastrointestinal microbiota dysbiosis and insufficient toll-like receptor (TLR) exposure alters immune responsiveness associated with intrinsic T cell defects in the TCR signaling pathway and compromised T cell effector function. To evaluate this, splenic T cells from day of life 15 MAT infant mice were stimulated in vitro with anti-CD3 and anti-CD28 antibodies prior to examining the expression of ZAP-70, phosphorylated ZAP-70, phospho-Erk-1/2, c-Rel, total protein tyrosine phosphorylation, and IFN-γ production. We determine that MAT infant CD8+ T cells fail to sustain total protein tyrosine phosphorylation and Erk1/2 activation. Lipopolysaccharide treatment in vitro and in vivo, partially restored IFN-γ production in MAT effector CD8+ T cells and reduced mortality typically observed in MAT mice following systemic viral infection. Our results demonstrate a surprising dependence on the gastrointestinal microbiome and TLR ligand stimulation toward shaping optimal CD8+ T cell function during infancy.
Collapse
Affiliation(s)
- Gabriela Gonzalez-Perez
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Columbia University Medical Center , New York, NY , USA
| | - Esi S N Lamousé-Smith
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Columbia University Medical Center , New York, NY , USA
| |
Collapse
|
30
|
Hilz S, Fogarty EA, Modzelewski AJ, Cohen PE, Grimson A. Transcriptome profiling of the developing male germ line identifies the miR-29 family as a global regulator during meiosis. RNA Biol 2016; 14:219-235. [PMID: 27981880 DOI: 10.1080/15476286.2016.1270002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are essential for spermatogenesis. However, the stage-specific requirements for particular miRNAs in the male mammalian germ line remain largely uncharacterized. The miR-34 family is, to date, the only miRNA proven to be necessary for the production of sperm in mammals, though its germline roles are poorly understood. Here, we generate and analyze paired small RNA and mRNA profiles across different stages of germline development in male mice, focusing on time points shortly before and during meiotic prophase I. We show that in addition to miR-34, miR-29 also mediates widespread repression of mRNA targets during meiotic prophase I in the male mouse germline. Furthermore, we demonstrate that predicted miR-29 target mRNAs in meiotic cells are largely distinct from those of miR-34, indicating that miR-29 performs a regulatory function independent of miR-34. Prior to this work, no germline role has been attributed to miR-29. To begin to understand roles for miR-29 in the germ line, we identify targets of miR-29 undergoing post transcriptional downregulation during meiotic prophase I, which likely correspond to the direct targets of miR-29. Interestingly, candidate direct targets of miR-29 are enriched in transcripts encoding extracellular matrix components. Our results implicate the miR-29 family as an important regulatory factor during male meiosis.
Collapse
Affiliation(s)
- Stephanie Hilz
- a Department of Molecular Biology and Genetics , Cornell University , Ithaca , NY , USA.,b Department of Neurological Surgery , University of California San Francisco , San Francisco , CA , USA
| | - Elizabeth A Fogarty
- a Department of Molecular Biology and Genetics , Cornell University , Ithaca , NY , USA
| | - Andrew J Modzelewski
- c Department of Biomedical Sciences , Cornell University , Ithaca , NY , USA.,d Department of Molecular and Cell Biology , University of California Berkeley , Berkeley , CA , USA
| | - Paula E Cohen
- c Department of Biomedical Sciences , Cornell University , Ithaca , NY , USA
| | - Andrew Grimson
- a Department of Molecular Biology and Genetics , Cornell University , Ithaca , NY , USA
| |
Collapse
|
31
|
Fetal and adult progenitors give rise to unique populations of CD8+ T cells. Blood 2016; 128:3073-3082. [PMID: 28034872 DOI: 10.1182/blood-2016-06-725366] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/09/2016] [Indexed: 12/16/2022] Open
Abstract
During the ontogeny of the mammalian immune system, distinct lineages of cells arise from fetal and adult hematopoietic stem cells (HSCs) during specific stages of development. However, in some cases, the same immune cell type is produced by both HSC populations, resulting in the generation of phenotypically similar cells with distinct origins and divergent functional properties. In this report, we demonstrate that neonatal CD8+ T cells preferentially become short-lived effectors and adult CD8+ T cells selectively form long-lived memory cells after infection because they are derived from distinct progenitor cells. Notably, we find that naïve neonatal CD8+ T cells originate from a progenitor cell that is distinguished by expression of Lin28b. Remarkably, ectopic expression of Lin28b enables adult progenitors to give rise to CD8+ T cells that are phenotypically and functionally analogous to those found in neonates. These findings suggest that neonatal and adult CD8+ T cells belong to separate lineages of CD8+ T cells, and potentially explain why it is challenging to elicit memory CD8+ T cells in early life.
Collapse
|