1
|
Fotopulosova V, Tanieli G, Fusek K, Jansa P, Forejt J. A Minimal Hybrid Sterility Genome Assembled by Chromosome Swapping Between Mouse Subspecies (Mus musculus). Mol Biol Evol 2024; 41:msae211. [PMID: 39404090 PMCID: PMC11518865 DOI: 10.1093/molbev/msae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Hybrid sterility is a reproductive isolation barrier between diverging taxa securing the early steps of speciation. Hybrid sterility is ubiquitous in the animal and plant kingdoms, but its genetic control is poorly understood. In our previous studies, we have uncovered the sterility of hybrids between musculus and domesticus subspecies of the house mouse, which is controlled by the Prdm9 gene, the X-linked Hstx2 locus, and subspecific heterozygosity for genetic background. To further investigate this form of genic-driven chromosomal sterility, we constructed a simplified hybrid sterility model within the genome of the domesticus subspecies by swapping domesticus autosomes with their homologous partners from the musculus subspecies. We show that the "sterility" allelic combination of Prdm9 and Hstx2 can be activated by a musculus/domesticus heterozygosity of as few as two autosomes, Chromosome 17 (Chr 17) and Chr 18 and is further enhanced when another heterosubspecific autosomal pair is present, whereas it has no effect on meiotic progression in the pure domesticus genome. In addition, we identify a new X-linked hybrid sterility locus, Hstx3, at the centromeric end of Chr X, which modulates the incompatibility between Prdm9 and Hstx2. These results further support our concept of chromosomal hybrid sterility based on evolutionarily accumulated divergence between homologous sequences. Based on these and previous results, we believe that future studies should include more information on the mutual recognition of homologous chromosomes at or before the first meiotic prophase in interspecific hybrids, as this may serve as a general reproductive isolation checkpoint in mice and other species.
Collapse
Affiliation(s)
- Vladana Fotopulosova
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídenska 1083, 14220 Prague 4, Czech Republic
| | - Giordano Tanieli
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídenska 1083, 14220 Prague 4, Czech Republic
| | - Karel Fusek
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídenska 1083, 14220 Prague 4, Czech Republic
| | - Petr Jansa
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídenska 1083, 14220 Prague 4, Czech Republic
| | - Jiri Forejt
- Laboratory of Epigenetic Regulations, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídenska 1083, 14220 Prague 4, Czech Republic
| |
Collapse
|
2
|
Langdon QK, Groh JS, Aguillon SM, Powell DL, Gunn T, Payne C, Baczenas JJ, Donny A, Dodge TO, Du K, Schartl M, Ríos-Cárdenas O, Gutiérrez-Rodríguez C, Morris M, Schumer M. Swordtail fish hybrids reveal that genome evolution is surprisingly predictable after initial hybridization. PLoS Biol 2024; 22:e3002742. [PMID: 39186811 PMCID: PMC11379403 DOI: 10.1371/journal.pbio.3002742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 09/06/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024] Open
Abstract
Over the past 2 decades, biologists have come to appreciate that hybridization, or genetic exchange between distinct lineages, is remarkably common-not just in particular lineages but in taxonomic groups across the tree of life. As a result, the genomes of many modern species harbor regions inherited from related species. This observation has raised fundamental questions about the degree to which the genomic outcomes of hybridization are repeatable and the degree to which natural selection drives such repeatability. However, a lack of appropriate systems to answer these questions has limited empirical progress in this area. Here, we leverage independently formed hybrid populations between the swordtail fish Xiphophorus birchmanni and X. cortezi to address this fundamental question. We find that local ancestry in one hybrid population is remarkably predictive of local ancestry in another, demographically independent hybrid population. Applying newly developed methods, we can attribute much of this repeatability to strong selection in the earliest generations after initial hybridization. We complement these analyses with time-series data that demonstrates that ancestry at regions under selection has remained stable over the past approximately 40 generations of evolution. Finally, we compare our results to the well-studied X. birchmanni × X. malinche hybrid populations and conclude that deeper evolutionary divergence has resulted in stronger selection and higher repeatability in patterns of local ancestry in hybrids between X. birchmanni and X. cortezi.
Collapse
Affiliation(s)
- Quinn K. Langdon
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - Jeffrey S. Groh
- Center for Population Biology and Department of Evolution and Ecology, University of California, Davis, Davis, California, United States of America
| | - Stepfanie M. Aguillon
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States of America
| | - Daniel L. Powell
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Theresa Gunn
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - Cheyenne Payne
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - John J. Baczenas
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Alex Donny
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - Tristram O. Dodge
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
| | - Kang Du
- Xiphophorus Genetic Stock Center, Texas State University San Marcos, San Marcos, United States of America
| | - Manfred Schartl
- Xiphophorus Genetic Stock Center, Texas State University San Marcos, San Marcos, United States of America
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Oscar Ríos-Cárdenas
- Red de Biología Evolutiva, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
| | | | - Molly Morris
- Department of Biological Sciences, Ohio University, Athens, Ohio, United States of America
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California, United States of America
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C., Calnali, Hidalgo, Mexico
- Freeman Hrabowski Fellow, Howard Hughes Medical Institute, Stanford, California, United States of America
| |
Collapse
|
3
|
Schneemann H, De Sanctis B, Welch JJ. Fisher's Geometric Model as a Tool to Study Speciation. Cold Spring Harb Perspect Biol 2024; 16:a041442. [PMID: 38253415 PMCID: PMC11216183 DOI: 10.1101/cshperspect.a041442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Interactions between alleles and across environments play an important role in the fitness of hybrids and are at the heart of the speciation process. Fitness landscapes capture these interactions and can be used to model hybrid fitness, helping us to interpret empirical observations and clarify verbal models. Here, we review recent progress in understanding hybridization outcomes through Fisher's geometric model, an intuitive and analytically tractable fitness landscape that captures many fitness patterns observed across taxa. We use case studies to show how the model parameters can be estimated from different types of data and discuss how these estimates can be used to make inferences about the divergence history and genetic architecture. We also highlight some areas where the model's predictions differ from alternative incompatibility-based models, such as the snowball effect and outlier patterns in genome scans.
Collapse
Affiliation(s)
- Hilde Schneemann
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Bianca De Sanctis
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, United Kingdom
| | - John J Welch
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| |
Collapse
|
4
|
Langdon QK, Groh JS, Aguillon SM, Powell DL, Gunn T, Payne C, Baczenas JJ, Donny A, Dodge TO, Du K, Schartl M, Ríos-Cárdenas O, Gutierrez-Rodríguez C, Morris M, Schumer M. Genome evolution is surprisingly predictable after initial hybridization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572897. [PMID: 38187753 PMCID: PMC10769416 DOI: 10.1101/2023.12.21.572897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Over the past two decades, evolutionary biologists have come to appreciate that hybridization, or genetic exchange between distinct lineages, is remarkably common - not just in particular lineages but in taxonomic groups across the tree of life. As a result, the genomes of many modern species harbor regions inherited from related species. This observation has raised fundamental questions about the degree to which the genomic outcomes of hybridization are repeatable and the degree to which natural selection drives such repeatability. However, a lack of appropriate systems to answer these questions has limited empirical progress in this area. Here, we leverage independently formed hybrid populations between the swordtail fish Xiphophorus birchmanni and X. cortezi to address this fundamental question. We find that local ancestry in one hybrid population is remarkably predictive of local ancestry in another, demographically independent hybrid population. Applying newly developed methods, we can attribute much of this repeatability to strong selection in the earliest generations after initial hybridization. We complement these analyses with time-series data that demonstrates that ancestry at regions under selection has remained stable over the past ~40 generations of evolution. Finally, we compare our results to the well-studied X. birchmanni×X. malinche hybrid populations and conclude that deeper evolutionary divergence has resulted in stronger selection and higher repeatability in patterns of local ancestry in hybrids between X. birchmanni and X. cortezi.
Collapse
Affiliation(s)
- Quinn K. Langdon
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
- Gladstone Institute of Virology, Gladstone Institutes, San Francisco, California
| | - Jeffrey S. Groh
- Center for Population Biology and Department of Evolution and Ecology, University of California, Davis
| | - Stepfanie M. Aguillon
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles
| | - Daniel L. Powell
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Theresa Gunn
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Cheyenne Payne
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | | | - Alex Donny
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Tristram O. Dodge
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
| | - Kang Du
- Xiphophorus Genetic Stock Center, Texas State University San Marcos
| | - Manfred Schartl
- Xiphophorus Genetic Stock Center, Texas State University San Marcos
- Developmental Biochemistry, Biocenter, University of Würzburg
| | | | | | | | - Molly Schumer
- Department of Biology, Stanford University
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”, A.C
- Freeman Hrabowski Fellow, Howard Hughes Medical Institute
| |
Collapse
|
5
|
Unckless RL. Meiotic drive, postzygotic isolation, and the Snowball Effect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567107. [PMID: 38014228 PMCID: PMC10680770 DOI: 10.1101/2023.11.14.567107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
As populations diverge, they accumulate incompatibilities which reduce gene flow and facilitate the formation of new species. Simple models suggest that the genes that cause Dobzhansky-Muller incompatibilities should accumulate at least as fast as the square of the number of substitutions between taxa, the so-called snowball effect. We show, however, that in the special- but possibly common- case in which hybrid sterility is due primarily to cryptic meiotic (gametic) drive, the number of genes that cause postzygotic isolation may increase nearly linearly with the number of substitutions between species.
Collapse
Affiliation(s)
- Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| |
Collapse
|
6
|
Cutter AD. Speciation and development. Evol Dev 2023; 25:289-327. [PMID: 37545126 DOI: 10.1111/ede.12454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/13/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Understanding general principles about the origin of species remains one of the foundational challenges in evolutionary biology. The genomic divergence between groups of individuals can spawn hybrid inviability and hybrid sterility, which presents a tantalizing developmental problem. Divergent developmental programs may yield either conserved or divergent phenotypes relative to ancestral traits, both of which can be responsible for reproductive isolation during the speciation process. The genetic mechanisms of developmental evolution involve cis- and trans-acting gene regulatory change, protein-protein interactions, genetic network structures, dosage, and epigenetic regulation, all of which also have roots in population genetic and molecular evolutionary processes. Toward the goal of demystifying Darwin's "mystery of mysteries," this review integrates microevolutionary concepts of genetic change with principles of organismal development, establishing explicit links between population genetic process and developmental mechanisms in the production of macroevolutionary pattern. This integration aims to establish a more unified view of speciation that binds process and mechanism.
Collapse
Affiliation(s)
- Asher D Cutter
- Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Anderson SAS, López-Fernández H, Weir JT. Ecology and the origin of non-ephemeral species. Am Nat 2022; 201:619-638. [PMID: 37130236 DOI: 10.1086/723763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractResearch over the past three decades has shown that ecology-based extrinsic reproductive barriers can rapidly arise to generate incipient species-but such barriers can also rapidly dissolve when environments change, resulting in incipient species collapse. Understanding the evolution of unconditional, "intrinsic" reproductive barriers is therefore important for understanding the longer-term buildup of biodiversity. In this article, we consider ecology's role in the evolution of intrinsic reproductive isolation. We suggest that this topic has fallen into a gap between disciplines: while evolutionary ecologists have traditionally focused on the rapid evolution of extrinsic isolation between co-occurring ecotypes, speciation geneticists studying intrinsic isolation in other taxa have devoted little attention to the ecological context in which it evolves. We argue that for evolutionary ecology to close this gap, the field will have to expand its focus beyond rapid adaptation and its traditional model systems. Synthesizing data from several subfields, we present circumstantial evidence for and against different forms of ecological adaptation as promoters of intrinsic isolation and discuss alternative forces that may be significant. We conclude by outlining complementary approaches that can better address the role of ecology in the evolution of nonephemeral reproductive barriers and, by extension, less ephemeral species.
Collapse
|
8
|
Valiskova B, Gregorova S, Lustyk D, Šimeček P, Jansa P, Forejt J. Genic and Chromosomal Components of Prdm9-Driven Hybrid Male Sterility in Mice (Mus musculus). Genetics 2022; 222:6655690. [PMID: 35924978 PMCID: PMC9434306 DOI: 10.1093/genetics/iyac116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Abstract
Hybrid sterility contributes to speciation by preventing gene flow between related taxa. Prdm9, the first and only hybrid male sterility (HMS) gene known in vertebrates, predetermines the sites of recombination between homologous chromosomes and their synapsis in early meiotic prophase. The asymmetric binding of PRDM9 to heterosubspecific homologs of Mus m. musculus x Mus m. domesticus F1 hybrids and increase of PRDM9-independent DNA double-strand break (DSB) hotspots results in difficult to repair DSBs, incomplete synapsis of homologous chromosomes and meiotic arrest at the first meiotic prophase. Here we show that Prdm9 behaves as a major HMS gene in mice outside the Mus m. musculus x Mus m. domesticus F1 hybrids, in the genomes composed of Mus m. castaneus and Mus m. musculus chromosomes segregating on the Mus m. domesticus background. The Prdm9cst/dom2 (castaneus/domesticus) allelic combination secures meiotic synapsis, testes weight and sperm count within physiological limits, while the Prdm9msc1/dom2 (musculus/domesticus) males show a range of fertility impairment. Out of five quantitative trait loci contributing to the Prdm9msc1/dom2-related infertility, four control either meiotic synapsis or fertility phenotypes and one controls both, synapsis and fertility. Whole-genome genotyping of individual chromosomes showed preferential involvement of nonrecombinant musculus chromosomes in asynapsis in accordance with the chromosomal character of HMS. Moreover, we show that the overall asynapsis rate can be estimated solely from the genotype of individual males by scoring the effect of nonrecombinant musculus chromosomes. Prdm9-controlled HMS represents an example of genetic architecture of HMS consisting of genic and chromosomal components.
Collapse
Affiliation(s)
- Barbora Valiskova
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Sona Gregorova
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Diana Lustyk
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Petr Šimeček
- Central Laboratory of Bioinformatics, CEITEC—Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Petr Jansa
- Laboratory of Mouse Molecular Genetics, Institute of Molecular Genetics, Czech Academy of Sciences, Vestec 252 50, Czech Republic
| | - Jiří Forejt
- Corresponding author: Laboratory of Mouse Molecular Genetics, Division BIOCEV, Institute of Molecular Genetics, Czech Academy of Sciences, Průmyslová 595, Vestec 25250, Czech Republic.
| |
Collapse
|
9
|
Chhina AK, Thompson KA, Schluter D. Adaptive divergence and the evolution of hybrid trait mismatch in threespine stickleback. Evol Lett 2022; 6:34-45. [PMID: 35127136 PMCID: PMC8802241 DOI: 10.1002/evl3.264] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/31/2021] [Indexed: 12/31/2022] Open
Abstract
Selection against mismatched traits in hybrids is the phenotypic analogue of intrinsic hybrid incompatibilities. Mismatch occurs when hybrids resemble one parent population for some phenotypic traits and the other parent population for other traits, and is caused by dominance in opposing directions or from segregation of alleles in recombinant hybrids. In this study, we used threespine stickleback fish (Gasterosteus aculeatus L.) to test the theoretical prediction that trait mismatch in hybrids should increase with the magnitude of phenotypic divergence between parent populations. We measured morphological traits in parents and hybrids in crosses between a marine population representing the ancestral form and twelve freshwater populations that have diverged from this ancestral state to varying degrees according to their environments. We found that trait mismatch was greater in more divergent crosses for both F1 and F2 hybrids. In the F1, the divergence–mismatch relationship was caused by traits having dominance in different directions, whereas it was caused by increasing segregating phenotypic variation in the F2. Our results imply that extrinsic hybrid incompatibilities accumulate as phenotypic divergence proceeds.
Collapse
Affiliation(s)
- Avneet K. Chhina
- Department of Zoology & Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Ken A. Thompson
- Department of Zoology & Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada
| | - Dolph Schluter
- Department of Zoology & Biodiversity Research Centre University of British Columbia Vancouver BC V6T 1Z4 Canada
| |
Collapse
|
10
|
Thompson KA, Peichel CL, Rennison DJ, McGee MD, Albert AYK, Vines TH, Greenwood AK, Wark AR, Brandvain Y, Schumer M, Schluter D. Analysis of ancestry heterozygosity suggests that hybrid incompatibilities in threespine stickleback are environment dependent. PLoS Biol 2022; 20:e3001469. [PMID: 35007278 PMCID: PMC8746713 DOI: 10.1371/journal.pbio.3001469] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022] Open
Abstract
Hybrid incompatibilities occur when interactions between opposite ancestry alleles at different loci reduce the fitness of hybrids. Most work on incompatibilities has focused on those that are "intrinsic," meaning they affect viability and sterility in the laboratory. Theory predicts that ecological selection can also underlie hybrid incompatibilities, but tests of this hypothesis using sequence data are scarce. In this article, we compiled genetic data for F2 hybrid crosses between divergent populations of threespine stickleback fish (Gasterosteus aculeatus L.) that were born and raised in either the field (seminatural experimental ponds) or the laboratory (aquaria). Because selection against incompatibilities results in elevated ancestry heterozygosity, we tested the prediction that ancestry heterozygosity will be higher in pond-raised fish compared to those raised in aquaria. We found that ancestry heterozygosity was elevated by approximately 3% in crosses raised in ponds compared to those raised in aquaria. Additional analyses support a phenotypic basis for incompatibility and suggest that environment-specific single-locus heterozygote advantage is not the cause of selection on ancestry heterozygosity. Our study provides evidence that, in stickleback, a coarse-albeit indirect-signal of environment-dependent hybrid incompatibility is reliably detectable and suggests that extrinsic incompatibilities can evolve before intrinsic incompatibilities.
Collapse
Affiliation(s)
- Ken A. Thompson
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Canada
| | - Catherine L. Peichel
- Division of Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Diana J. Rennison
- Division of Biological Sciences, University of California San Diego, San Diego, California, United States of America
| | - Matthew D. McGee
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | | | - Timothy H. Vines
- DataSeer Research Data Services, Vancouver, British Columbia, Canada
| | | | - Abigail R. Wark
- Harvard Medical School, Cambridge, Massachusetts, United States of America
| | - Yaniv Brandvain
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Molly Schumer
- Department of Biology, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Maryland, United States of America
| | - Dolph Schluter
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Canada
| |
Collapse
|
11
|
Moran BM, Payne C, Langdon Q, Powell DL, Brandvain Y, Schumer M. The genomic consequences of hybridization. eLife 2021; 10:e69016. [PMID: 34346866 PMCID: PMC8337078 DOI: 10.7554/elife.69016] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/09/2021] [Indexed: 12/29/2022] Open
Abstract
In the past decade, advances in genome sequencing have allowed researchers to uncover the history of hybridization in diverse groups of species, including our own. Although the field has made impressive progress in documenting the extent of natural hybridization, both historical and recent, there are still many unanswered questions about its genetic and evolutionary consequences. Recent work has suggested that the outcomes of hybridization in the genome may be in part predictable, but many open questions about the nature of selection on hybrids and the biological variables that shape such selection have hampered progress in this area. We synthesize what is known about the mechanisms that drive changes in ancestry in the genome after hybridization, highlight major unresolved questions, and discuss their implications for the predictability of genome evolution after hybridization.
Collapse
Affiliation(s)
- Benjamin M Moran
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Cheyenne Payne
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Quinn Langdon
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Daniel L Powell
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
| | - Yaniv Brandvain
- Department of Ecology, Evolution & Behavior and Plant and Microbial Biology, University of MinnesotaMinneapolisUnited States
| | - Molly Schumer
- Department of Biology, Stanford UniversityStanfordUnited States
- Centro de Investigaciones Científicas de las Huastecas “Aguazarca”HidalgoMexico
- Hanna H. Gray Fellow, Howard Hughes Medical InstituteStanfordUnited States
| |
Collapse
|
12
|
Blanckaert A, Payseur BA. Finding hybrid incompatibilities using genome sequences from hybrid populations. Mol Biol Evol 2021; 38:4616-4627. [PMID: 34097068 PMCID: PMC8476132 DOI: 10.1093/molbev/msab168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Natural hybrid zones offer a powerful framework for understanding the genetic basis of speciation in progress because ongoing hybridization continually creates unfavorable gene combinations. Evidence indicates that postzygotic reproductive isolation is often caused by epistatic interactions between mutations in different genes that evolved independently of one another (hybrid incompatibilities). We examined the potential to detect epistatic selection against incompatibilities from genome sequence data using the site frequency spectrum (SFS) of polymorphisms by conducting individual-based simulations in SLiM. We found that the genome-wide SFS in hybrid populations assumes a diagnostic shape, with the continual input of fixed differences between source populations via migration inducing a mass at intermediate allele frequency. Epistatic selection locally distorts the SFS as non-incompatibility alleles rise in frequency in a manner analogous to a selective sweep. Building on these results, we present a statistical method to identify genomic regions containing incompatibility loci that locates departures in the local SFS compared with the genome-wide SFS. Cross-validation studies demonstrate that our method detects recessive and codominant incompatibilities across a range of scenarios varying in the strength of epistatic selection, migration rate, and hybrid zone age. Our approach takes advantage of whole genome sequence data, does not require knowledge of demographic history, and can be applied to any pair of nascent species that forms a hybrid zone.
Collapse
Affiliation(s)
- Alexandre Blanckaert
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| |
Collapse
|
13
|
Matute DR, Cooper BS. Comparative studies on speciation: 30 years since Coyne and Orr. Evolution 2021; 75:764-778. [PMID: 33491225 PMCID: PMC8247902 DOI: 10.1111/evo.14181] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/28/2022]
Abstract
Understanding the processes of population divergence and speciation remains a core question in evolutionary biology. For nearly a hundred years evolutionary geneticists have characterized reproductive isolation (RI) mechanisms and specific barriers to gene flow required for species formation. The seminal work of Coyne and Orr provided the first comprehensive comparative analysis of speciation. By combining phylogenetic hypotheses and species range data with estimates of genetic divergence and multiple mechanisms of RI across Drosophila, Coyne and Orr's influential meta-analyses answered fundamental questions and motivated new analyses that continue to push the field forward today. Now 30 years later, we revisit the five questions addressed by Coyne and Orr, identifying results that remain well supported and others that seem less robust with new data. We then consider the future of speciation research, with emphasis on areas where novel methods and data motivate potential progress. While the literature remains biased towards Drosophila and other model systems, we are enthusiastic about the future of the field.
Collapse
Affiliation(s)
- Daniel R. Matute
- Biology DepartmentUniversity of North CarolinaChapel HillNorth Carolina27510
| | - Brandon S. Cooper
- Division of Biological SciencesUniversity of MontanaMissoulaMontana59812
| |
Collapse
|
14
|
Thompson KA, Urquhart-Cronish M, Whitney KD, Rieseberg LH, Schluter D. Patterns, Predictors, and Consequences of Dominance in Hybrids. Am Nat 2021; 197:E72-E88. [PMID: 33625966 DOI: 10.1086/712603] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractCompared to those of their parents, are the traits of first-generation (F1) hybrids typically intermediate, biased toward one parent, or mismatched for alternative parental phenotypes? To address this empirical gap, we compiled data from 233 crosses in which traits were measured in a common environment for two parent taxa and their F1 hybrids. We find that individual traits in F1s are halfway between the parental midpoint and one parental value. Considering pairs of traits together, a hybrid's bivariate phenotype tends to resemble one parent (parent bias) about 50% more than the other, while also exhibiting a similar magnitude of mismatch due to different traits having dominance in conflicting directions. Using data from an experimental field planting of recombinant hybrid sunflowers, we illustrate that parent bias improves fitness, whereas mismatch reduces fitness. Our study has three major conclusions. First, hybrids are not phenotypically intermediate but rather exhibit substantial mismatch. Second, dominance is likely determined by the idiosyncratic evolutionary trajectories of individual traits and populations. Finally, selection against hybrids likely results from selection against both intermediate and mismatched phenotypes.
Collapse
|
15
|
Bagagli E, Matute DR, Garces HG, Tenório BG, Garces AG, Alves LGDB, Yamauchi DH, Hrycyk MF, Barker BM, Teixeira MDM. Paracoccidioides brasiliensis Isolated from Nine-Banded Armadillos ( Dasypus novemcinctus) Reveal Population Structure and Admixture in the Amazon Basin. J Fungi (Basel) 2021; 7:54. [PMID: 33467393 PMCID: PMC7829815 DOI: 10.3390/jof7010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
Paracoccidioidomycosis is an endemic fungal disease to Latin America caused by at least five species-level genotypes of Paracoccidioides, named P. lutzii, P. brasiliensis (S1a and S1b populations), P. americana, P. restrepiensis, and P. venezuelensis. In this manuscript, we report on Paracoccidioides sp. sampling efforts in armadillos from two different areas in Brazil. We sequenced the genomes of seven Paracoccidioides isolates and used phylogenomics and populations genetics for genotyping. We found that P. brasiliensis and P. lutzii are both present in the Amazon region. Additionally, we identified two Paracoccidioides isolates that seem to be the result of admixture between divergent populations within P. brasiliensis sensu stricto. Both of these isolates were recovered from armadillos in a P. lutzii endemic area in Midwestern Brazil. Additionally, two isolates from human patients also show evidence of resulting from admixture. Our results suggest that the populations of P. brasiliensis sensu stricto exchange genes in nature. More generally, they suggest that population structure and admixture within species is an important source of variation for pathogenic fungi.
Collapse
Affiliation(s)
- Eduardo Bagagli
- Departamento de Microbiologia e Imunologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista/UNESP, Botucatu SP 18618-691, Brazil; (E.B.); (H.G.G.); (A.G.G.); (D.H.Y.)
| | | | - Hans Garcia Garces
- Departamento de Microbiologia e Imunologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista/UNESP, Botucatu SP 18618-691, Brazil; (E.B.); (H.G.G.); (A.G.G.); (D.H.Y.)
| | - Bernardo Guerra Tenório
- Faculdade de Medicina, Universidade de Brasília, Brasília DF 70910-900, Brazil; (B.G.T.); (L.G.d.B.A.)
| | - Adalberto Garcia Garces
- Departamento de Microbiologia e Imunologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista/UNESP, Botucatu SP 18618-691, Brazil; (E.B.); (H.G.G.); (A.G.G.); (D.H.Y.)
| | | | - Danielle Hamae Yamauchi
- Departamento de Microbiologia e Imunologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista/UNESP, Botucatu SP 18618-691, Brazil; (E.B.); (H.G.G.); (A.G.G.); (D.H.Y.)
| | - Marluce Francisca Hrycyk
- Faculdade de Ciências Biológicas e Agrárias, Universidade do Estado de Mato Grosso, Campus de Alta Floresta, Alta Floresta MT 78580-000, Brazil;
| | - Bridget Marie Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Marcus de Melo Teixeira
- Faculdade de Medicina, Universidade de Brasília, Brasília DF 70910-900, Brazil; (B.G.T.); (L.G.d.B.A.)
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
16
|
Mavengere H, Mattox K, Teixeira MM, Sepúlveda VE, Gomez OM, Hernandez O, McEwen J, Matute DR. Paracoccidioides Genomes Reflect High Levels of Species Divergence and Little Interspecific Gene Flow. mBio 2020; 11:e01999-20. [PMID: 33443110 PMCID: PMC8534288 DOI: 10.1128/mbio.01999-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022] Open
Abstract
The fungus Paracoccidioides is a prevalent human pathogen endemic to South America. The genus is composed of five species. In this report, we use 37 whole-genome sequences to study the allocation of genetic variation in Paracoccidioides We tested three genome-wide predictions of advanced speciation, namely, that all species should be reciprocally monophyletic, that species pairs should be highly differentiated along the whole genome, and that there should be low rates of interspecific gene exchange. We find support for these three hypotheses. Species pairs with older divergences show no evidence of gene exchange, while more recently diverged species pairs show evidence of modest rates of introgression. Our results indicate that as divergence progresses, species boundaries become less porous among Paracoccidioides species. Our results suggest that species in Paracoccidioides are at different stages along the divergence continuum.IMPORTANCEParacoccidioides is the causal agent of a systemic mycosis in Latin America. Most of the inference of the evolutionary history of Paracoccidioides has used only a few molecular markers. In this report, we evaluate the extent of genome divergence among Paracoccidioides species and study the possibility of interspecific gene exchange. We find that all species are highly differentiated. We also find that the amount of gene flow between species is low and in some cases is even completely absent in spite of geographic overlap. Our study constitutes a systematic effort to identify species boundaries in fungal pathogens and to determine the extent of gene exchange among fungal species.
Collapse
Affiliation(s)
- Heidi Mavengere
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kathleen Mattox
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Marcus M Teixeira
- Núcleo de Medicina Tropical, Faculdade de Medicina, University of Brasília, Brasília, Brazil
| | - Victoria E Sepúlveda
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Oscar M Gomez
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
| | - Orville Hernandez
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- MICROBA Research Group, School of Microbiology, Universidad de Antioquia, Medellín, Colombia
| | - Juan McEwen
- Cellular and Molecular Biology Unit, Corporación para Investigaciones Biológicas, Medellín, Colombia
- School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
17
|
Mukaj A, Piálek J, Fotopulosova V, Morgan AP, Odenthal-Hesse L, Parvanov ED, Forejt J. Prdm9 Intersubspecific Interactions in Hybrid Male Sterility of House Mouse. Mol Biol Evol 2020; 37:3423-3438. [PMID: 32642764 PMCID: PMC7743643 DOI: 10.1093/molbev/msaa167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/11/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
The classical definition posits hybrid sterility as a phenomenon when two parental taxa each of which is fertile produce a hybrid that is sterile. The first hybrid sterility gene in vertebrates, Prdm9, coding for a histone methyltransferase, was identified in crosses between two laboratory mouse strains derived from Mus mus musculus and M. m. domesticus subspecies. The unique function of PRDM9 protein in the initiation of meiotic recombination led to the discovery of the basic molecular mechanism of hybrid sterility in laboratory crosses. However, the role of this protein as a component of reproductive barrier outside the laboratory model remained unclear. Here, we show that the Prdm9 allelic incompatibilities represent the primary cause of reduced fertility in intersubspecific hybrids between M. m. musculus and M. m. domesticus including 16 musculus and domesticus wild-derived strains. Disruption of fertility phenotypes correlated with the rate of failure of synapsis between homologous chromosomes in meiosis I and with early meiotic arrest. All phenotypes were restored to normal when the domesticus Prdm9dom2 allele was substituted with the Prdm9dom2H humanized variant. To conclude, our data show for the first time the male infertility of wild-derived musculus and domesticus subspecies F1 hybrids controlled by Prdm9 as the major hybrid sterility gene. The impairment of fertility surrogates, testes weight and sperm count, correlated with increasing difficulties of meiotic synapsis of homologous chromosomes and with meiotic arrest, which we suppose reflect the increasing asymmetry of PRDM9-dependent DNA double-strand breaks.
Collapse
Affiliation(s)
- Amisa Mukaj
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| | - Jaroslav Piálek
- Research Facility Studenec, Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Vladana Fotopulosova
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| | | | - Linda Odenthal-Hesse
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Ploen, Germany
| | - Emil D Parvanov
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| | - Jiri Forejt
- Department of Mouse Molecular Genetics, Institute of Molecular Genetics of the Czech Academy of Science, Vestec, Czech Republic
| |
Collapse
|
18
|
Coughlan JM, Matute DR. The importance of intrinsic postzygotic barriers throughout the speciation process. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190533. [PMID: 32654642 DOI: 10.1098/rstb.2019.0533] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intrinsic postzygotic barriers can play an important and multifaceted role in speciation, but their contribution is often thought to be reserved to the final stages of the speciation process. Here, we review how intrinsic postzygotic barriers can contribute to speciation, and how this role may change through time. We outline three major contributions of intrinsic postzygotic barriers to speciation. (i) reduction of gene flow: intrinsic postzygotic barriers can effectively reduce gene exchange between sympatric species pairs. We discuss the factors that influence how effective incompatibilities are in limiting gene flow. (ii) early onset of species boundaries via rapid evolution: intrinsic postzygotic barriers can evolve between recently diverged populations or incipient species, thereby influencing speciation relatively early in the process. We discuss why the early origination of incompatibilities is expected under some biological models, and detail how other (and often less obvious) incompatibilities may also serve as important barriers early on in speciation. (iii) reinforcement: intrinsic postzygotic barriers can promote the evolution of subsequent reproductive isolation through processes such as reinforcement, even between relatively recently diverged species pairs. We incorporate classic and recent empirical and theoretical work to explore these three facets of intrinsic postzygotic barriers, and provide our thoughts on recent challenges and areas in the field in which progress can be made. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.
Collapse
Affiliation(s)
- Jenn M Coughlan
- Department of Biology, University of North Carolina, 120 South Road, Coker Hall, Chapel Hill, NC 27599, USA
| | - Daniel R Matute
- Department of Biology, University of North Carolina, 120 South Road, Coker Hall, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
White NJ, Snook RR, Eyres I. The Past and Future of Experimental Speciation. Trends Ecol Evol 2019; 35:10-21. [PMID: 31522756 DOI: 10.1016/j.tree.2019.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/08/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022]
Abstract
Speciation is the result of evolutionary processes that generate barriers to gene flow between populations, facilitating reproductive isolation. Speciation is typically studied via theoretical models and snapshot tests in natural populations. Experimental speciation enables real-time direct tests of speciation theory and has been long touted as a critical complement to other approaches. We argue that, despite its promise to elucidate the evolution of reproductive isolation, experimental speciation has been underutilised and lags behind other contributions to speciation research. We review recent experiments and outline a framework for how experimental speciation can be implemented to address current outstanding questions that are otherwise challenging to answer. Greater uptake of this approach is necessary to rapidly advance understanding of speciation.
Collapse
Affiliation(s)
- Nathan J White
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm 106-91, Sweden
| | - Isobel Eyres
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
20
|
Fungal species boundaries in the genomics era. Fungal Genet Biol 2019; 131:103249. [PMID: 31279976 DOI: 10.1016/j.fgb.2019.103249] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/21/2019] [Accepted: 06/28/2019] [Indexed: 12/30/2022]
Abstract
Genomic data has opened new possibilities to understand how organisms change over time, and could enable the discovery of previously undescribed species. Although taxonomy used to be based on phenotypes, molecular data has frequently revealed that morphological traits are insufficient to describe biodiversity. Genomics holds the promise of revealing even more genetic discontinuities, but the parameters on how to describe species from genomic data remain unclear. Fungi have been a successful case in which the use of molecular markers has uncovered the existence of genetic boundaries where no crosses are possible. In this minireview, we highlight recent advances, propose a set of standards to use genomic sequences to uncover species boundaries, point out potential pitfalls, and present possible future research directions.
Collapse
|
21
|
Thompson KA, Osmond MM, Schluter D. Parallel genetic evolution and speciation from standing variation. Evol Lett 2019; 3:129-141. [PMID: 31289688 PMCID: PMC6591551 DOI: 10.1002/evl3.106] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/14/2019] [Indexed: 12/27/2022] Open
Abstract
Adaptation often proceeds from standing variation, and natural selection acting on pairs of populations is a quantitative continuum ranging from parallel to divergent. Yet, it is unclear how the extent of parallel genetic evolution during adaptation from standing variation is affected by the difference in the direction of selection between populations. Nor is it clear whether the availability of standing variation for adaptation affects progress toward speciation in a manner that depends on the difference in the direction of selection. We conducted a theoretical study investigating these questions and have two primary findings. First, the extent of parallel genetic evolution between two populations rapidly declines as selection changes from fully parallel toward divergent, and this decline is steeper in organisms with more traits (i.e., greater dimensionality). This rapid decline happens because small differences in the direction of selection greatly reduce the fraction of alleles that are beneficial in both populations. For example, populations adapting to optima separated by an angle of 33° might have only 50% of potentially beneficial alleles in common. Second, relative to when adaptation is from only new mutation, adaptation from standing variation improves hybrid fitness under parallel selection and reduces hybrid fitness under divergent selection. Under parallel selection, genetic parallelism from standing variation reduces the phenotypic segregation variance in hybrids, thereby increasing mean fitness in the parental environment. Under divergent selection, larger pleiotropic effects of alleles fixed from standing variation cause maladaptive transgressive phenotypes when combined in hybrids. Adaptation from standing genetic variation therefore slows progress toward speciation under parallel selection and facilitates progress toward speciation under divergent selection.
Collapse
Affiliation(s)
- Ken A Thompson
- Biodiversity Research Centre and Department of Zoology University of British Columbia Vancouver Canada
| | - Matthew M Osmond
- Center for Population Biology University of California Davis California
| | - Dolph Schluter
- Biodiversity Research Centre and Department of Zoology University of British Columbia Vancouver Canada
| |
Collapse
|
22
|
Maxwell CS, Mattox K, Turissini DA, Teixeira MM, Barker BM, Matute DR. Gene exchange between two divergent species of the fungal human pathogen, Coccidioides. Evolution 2019; 73:42-58. [PMID: 30414183 PMCID: PMC6430640 DOI: 10.1111/evo.13643] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022]
Abstract
The fungal genus Coccidioides is composed of two species, Coccidioides immitis and Coccidioides posadasii. These two species are the causal agents of coccidioidomycosis, a pulmonary disease also known as valley fever. The two species are thought to have shared genetic material due to gene exchange in spite of their long divergence. To quantify the magnitude of shared ancestry between them, we analyzed the genomes of a population sample from each species. Next, we inferred what is the expected size of shared haplotypes that might be inherited from the last common ancestor of the two species and find a cutoff to find what haplotypes have conclusively been exchanged between species. Finally, we precisely identified the breakpoints of the haplotypes that have crossed the species boundary and measure the allele frequency of each introgression in this sample. We find that introgressions are not uniformly distributed across the genome. Most, but not all, of the introgressions segregate at low frequency. Our results show that divergent species can share alleles, that species boundaries can be porous, and highlight the need for a systematic exploration of gene exchange in fungal species.
Collapse
Affiliation(s)
- Colin S Maxwell
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Kathleen Mattox
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - David A Turissini
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| | - Marcus M Teixeira
- Núcleo de Medicina Tropical, Faculdade de Medicina, University of Brasília, Brasília, Brazil
| | - Bridget M Barker
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
23
|
Schwahn DJ, Wang RJ, White MA, Payseur BA. Genetic Dissection of Hybrid Male Sterility Across Stages of Spermatogenesis. Genetics 2018; 210:1453-1465. [PMID: 30333190 PMCID: PMC6283182 DOI: 10.1534/genetics.118.301658] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
Hybrid sterility is a common form of reproductive isolation between nascent species. Although hybrid sterility is routinely documented and genetically dissected in speciation studies, its developmental basis is rarely examined, especially in generations beyond the F1 generation. To identify phenotypic and genetic determinants of hybrid male sterility from a developmental perspective, we characterized testis histology in 312 F2 hybrids generated by intercrossing inbred strains of Mus musculus domesticus and M. m. musculus, two subspecies of house mice. Hybrids display a range of histologic abnormalities that indicate defective spermatogenesis. Among these abnormalities, we quantified decreased testis size, reductions in spermatocyte and spermatid number, increased apoptosis of meiosis I spermatocytes, and more multinucleated syncytia. Collectively, our phenotypic data point to defects in meiosis I as a primary barrier to reproduction. We identified seven quantitative trait loci (QTL) controlling five histologic traits. A region of chromosome 17 that contains Prdm9, a gene known to confer F1 hybrid male sterility, affects multinucleated syncytia and round spermatids, potentially extending the phenotypic outcomes of this incompatibility. The X chromosome also plays a key role, with loci affecting multinucleated syncytia, apoptosis of round spermatids, and round spermatid numbers. We detected an epistatic interaction between QTL on chromosomes 17 and X for multinucleated syncytia. Our results refine the developmental basis of a key reproductive barrier in a classic model system for speciation genetics.
Collapse
Affiliation(s)
- Denise J Schwahn
- Research Animal Resources Center, University of Wisconsin-Madison, Wisconsin 53726
| | - Richard J Wang
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| | - Michael A White
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
- Department of Genetics, University of Georgia, Athens, Georgia 30602
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin-Madison, Wisconsin 53706
| |
Collapse
|
24
|
Simon A, Bierne N, Welch JJ. Coadapted genomes and selection on hybrids: Fisher's geometric model explains a variety of empirical patterns. Evol Lett 2018; 2:472-498. [PMID: 30283696 PMCID: PMC6145440 DOI: 10.1002/evl3.66] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 12/27/2022] Open
Abstract
Natural selection plays a variety of roles in hybridization, speciation, and admixture. Most research has focused on two extreme cases: crosses between closely related inbred lines, where hybrids are fitter than their parents, or crosses between effectively isolated species, where hybrids suffer severe breakdown. But many natural populations must fall into intermediate regimes, with multiple types of gene interaction, and these are more difficult to study. Here, we develop a simple fitness landscape model, and show that it naturally interpolates between previous modeling approaches, which were designed for the extreme cases, and invoke either mildly deleterious recessives, or discrete hybrid incompatibilities. Our model yields several new predictions, which we test with genomic data from Mytilus mussels, and published data from plants (Zea, Populus, and Senecio) and animals (Mus, Teleogryllus, and Drosophila). The predictions are generally supported, and the model explains a number of surprising empirical patterns. Our approach enables novel and complementary uses of genome-wide datasets, which do not depend on identifying outlier loci, or "speciation genes" with anomalous effects. Given its simplicity and flexibility, and its predictive successes with a wide range of data, the approach should be readily extendable to other outstanding questions in the study of hybridization.
Collapse
Affiliation(s)
- Alexis Simon
- Institut des Sciences de l'Évolution UMR5554, Université de MontpellierCNRS‐IRD‐EPHE‐UMFrance
- Department of GeneticsUniversity of CambridgeDowning St. CambridgeCB23EHUnited Kingdom
| | - Nicolas Bierne
- Institut des Sciences de l'Évolution UMR5554, Université de MontpellierCNRS‐IRD‐EPHE‐UMFrance
- Department of GeneticsUniversity of CambridgeDowning St. CambridgeCB23EHUnited Kingdom
| | - John J. Welch
- Department of GeneticsUniversity of CambridgeDowning St. CambridgeCB23EHUnited Kingdom
| |
Collapse
|
25
|
Genetic divergence and the number of hybridizing species affect the path to homoploid hybrid speciation. Proc Natl Acad Sci U S A 2018; 115:9761-9766. [PMID: 30209213 PMCID: PMC6166845 DOI: 10.1073/pnas.1809685115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hybridization can promote speciation, and examples of putative hybrid species have now been identified across the tree of life. However, we still know little about the conditions that are most conducive to hybrid speciation. We have used experimental evolution in fruit flies (Drosophila) to show that both the genetic difference between hybridizing species and the number of hybridizing species affect the probability that hybrids evolve reproductive isolation from their parental species. Our results provide a systematic test of factors that affect homoploid hybrid speciation. Biologists will now be able to test the predictions that our experiments outline in naturally hybridizing species. These types of data hold the potential to greatly increase our understanding of hybridization’s role in generating biodiversity. Hybridization is often maladaptive and in some instances has led to the loss of biodiversity. However, hybridization can also promote speciation, such as during homoploid hybrid speciation, thereby generating biodiversity. Despite examples of homoploid hybrid species, the importance of hybridization as a speciation mechanism is still widely debated, and we lack a general understanding of the conditions most likely to generate homoploid hybrid species. Here we show that the level of genetic divergence between hybridizing species has a large effect on the probability that their hybrids evolve reproductive isolation. We find that populations of hybrids formed by parental species with intermediate levels of divergence were more likely to mate assortatively, and discriminate against their parental species, than those generated from weakly or strongly diverged parental species. Reproductive isolation was also found between hybrid populations, suggesting differential sorting of parental traits across populations. Finally, hybrid populations derived from three species were more likely to evolve reproductive isolation than those derived from two species, supporting arguments that hybridization-supplied genetic diversity can lead to the evolution of novel “adaptive systems” and promote speciation. Our results illustrate when we expect hybridization and admixture to promote hybrid speciation. Whether homoploid hybrid speciation is a common speciation mechanism in general remains an outstanding empirical question.
Collapse
|
26
|
Cooper BS, Sedghifar A, Nash WT, Comeault AA, Matute DR. A Maladaptive Combination of Traits Contributes to the Maintenance of a Drosophila Hybrid Zone. Curr Biol 2018; 28:2940-2947.e6. [PMID: 30174184 DOI: 10.1016/j.cub.2018.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/24/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022]
Abstract
Drosophila teissieri and D. yakuba diverged approximately 3 mya and are thought to share a large, ancestral, African range [1-3]. These species now co-occur in parts of continental Africa and in west Africa on the island of Bioko [1, 4]. While D. yakuba is a human commensal, D. teissieri seems to be associated with Parinari fruits, restricting its range to forests [4-6]. Genome data indicate introgression, despite no evidence of contemporary hybridization. Here we report the discovery of D. yakuba-D. teissieri hybrids at the interface of secondary forests and disturbed, open habitats on Bioko. We demonstrate that hybrids are the F1 progeny of D. yakuba females and D. teissieri males. At high temperatures like those found on Bioko, D. teissieri females are generally less receptive to mating, and in combination with temperature effects on egg lay and egg-to-adult viability, this decreases the potential for gene flow between female D. teissieri and male D. yakuba relative to the reciprocal cross. Field and laboratory experiments demonstrate that F1 hybrids have a maladaptive combination of D. yakuba behavior and D. teissieri physiology, generating additional barriers to gene flow. Nevertheless, analysis of introgressed and non-introgressed regions of the genome indicate that, while rare, gene flow is relatively recent. Our observations identify precise intrinsic and extrinsic factors that, along with hybrid male sterility, limit gene flow and maintain these species. These data contribute to a growing body of literature that suggests the Gulf of Guinea may be a hotspot for hybridization.
Collapse
Affiliation(s)
- Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Alisa Sedghifar
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - W Thurston Nash
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - Aaron A Comeault
- Biology Department, University of North Carolina, Chapel Hill, NC, USA
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
27
|
Wang RJ, Hahn MW. Speciation genes are more likely to have discordant gene trees. Evol Lett 2018; 2:281-296. [PMID: 30283682 PMCID: PMC6121824 DOI: 10.1002/evl3.77] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/15/2018] [Accepted: 07/06/2018] [Indexed: 12/27/2022] Open
Abstract
Speciation genes are responsible for reproductive isolation between species. By directly participating in the process of speciation, the genealogies of isolating loci have been thought to more faithfully represent species trees. The unique properties of speciation genes may provide valuable evolutionary insights and help determine the true history of species divergence. Here, we formally analyze whether genealogies from loci participating in Dobzhansky-Muller (DM) incompatibilities are more likely to be concordant with the species tree under incomplete lineage sorting (ILS). Individual loci differ stochastically from the true history of divergence with a predictable frequency due to ILS, and these expectations-combined with the DM model of intrinsic reproductive isolation from epistatic interactions-can be used to examine the probability of concordance at isolating loci. Contrary to existing verbal models, we find that reproductively isolating loci that follow the DM model are often more likely to have discordant gene trees. These results are dependent on the pattern of isolation observed between three species, the time between speciation events, and the time since the last speciation event. Results supporting a higher probability of discordance are found for both derived-derived and derived-ancestral DM pairs, and regardless of whether incompatibilities are allowed or prohibited from segregating in the same population. Our overall results suggest that DM loci are unlikely to be especially useful for reconstructing species relationships, even in the presence of gene flow between incipient species, and may in fact be positively misleading.
Collapse
Affiliation(s)
| | - Matthew W. Hahn
- Department of BiologyIndiana UniversityBloomingtonIndiana
- Department of Computer ScienceIndiana UniversityBloomingtonIndiana
| |
Collapse
|
28
|
Fuller ZL, Leonard CJ, Young RE, Schaeffer SW, Phadnis N. Ancestral polymorphisms explain the role of chromosomal inversions in speciation. PLoS Genet 2018; 14:e1007526. [PMID: 30059505 PMCID: PMC6085072 DOI: 10.1371/journal.pgen.1007526] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/09/2018] [Accepted: 06/29/2018] [Indexed: 01/28/2023] Open
Abstract
Understanding the role of chromosomal inversions in speciation is a fundamental problem in evolutionary genetics. Here, we perform a comprehensive reconstruction of the evolutionary histories of the chromosomal inversions in Drosophila persimilis and D. pseudoobscura. We provide a solution to the puzzling origins of the selfish Sex-Ratio arrangement in D. persimilis and uncover surprising patterns of phylogenetic discordance on this chromosome. These patterns show that, contrary to widely held views, all fixed chromosomal inversions between D. persimilis and D. pseudoobscura were already present in their ancestral population long before the species split. Our results suggest that patterns of higher genomic divergence and an association of reproductive isolation genes with chromosomal inversions may be a direct consequence of incomplete lineage sorting of ancestral polymorphisms. These findings force a reconsideration of the role of chromosomal inversions in speciation, not as protectors of existing hybrid incompatibilities, but as fertile grounds for their formation.
Collapse
Affiliation(s)
- Zachary L. Fuller
- Department of Biology, Erwin W. Mueller Laboratories, The Pennsylvania State University, University Park, PA, United States of America
| | | | - Randee E. Young
- Department of Biology, University of Utah, Salt Lake City, UT, United States of America
| | - Stephen W. Schaeffer
- Department of Biology, Erwin W. Mueller Laboratories, The Pennsylvania State University, University Park, PA, United States of America
| | - Nitin Phadnis
- Department of Biology, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
29
|
Serrato-Capuchina A, Matute DR. The Role of Transposable Elements in Speciation. Genes (Basel) 2018; 9:E254. [PMID: 29762547 PMCID: PMC5977194 DOI: 10.3390/genes9050254] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 01/20/2023] Open
Abstract
Understanding the phenotypic and molecular mechanisms that contribute to genetic diversity between and within species is fundamental in studying the evolution of species. In particular, identifying the interspecific differences that lead to the reduction or even cessation of gene flow between nascent species is one of the main goals of speciation genetic research. Transposable elements (TEs) are DNA sequences with the ability to move within genomes. TEs are ubiquitous throughout eukaryotic genomes and have been shown to alter regulatory networks, gene expression, and to rearrange genomes as a result of their transposition. However, no systematic effort has evaluated the role of TEs in speciation. We compiled the evidence for TEs as potential causes of reproductive isolation across a diversity of taxa. We find that TEs are often associated with hybrid defects that might preclude the fusion between species, but that the involvement of TEs in other barriers to gene flow different from postzygotic isolation is still relatively unknown. Finally, we list a series of guides and research avenues to disentangle the effects of TEs on the origin of new species.
Collapse
Affiliation(s)
- Antonio Serrato-Capuchina
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| | - Daniel R Matute
- Biology Department, Genome Sciences Building, University of North Carolina, Chapel Hill, NC 27514, USA.
| |
Collapse
|
30
|
Male Infertility Is Responsible for Nearly Half of the Extinction Observed in the Mouse Collaborative Cross. Genetics 2017; 206:557-572. [PMID: 28592496 DOI: 10.1534/genetics.116.199596] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/09/2017] [Indexed: 11/18/2022] Open
Abstract
The goal of the Collaborative Cross (CC) project was to generate and distribute over 1000 independent mouse recombinant inbred strains derived from eight inbred founders. With inbreeding nearly complete, we estimated the extinction rate among CC lines at a remarkable 95%, which is substantially higher than in the derivation of other mouse recombinant inbred populations. Here, we report genome-wide allele frequencies in 347 extinct CC lines. Contrary to expectations, autosomes had equal allelic contributions from the eight founders, but chromosome X had significantly lower allelic contributions from the two inbred founders with underrepresented subspecific origins (PWK/PhJ and CAST/EiJ). By comparing extinct CC lines to living CC strains, we conclude that a complex genetic architecture is driving extinction, and selection pressures are different on the autosomes and chromosome X Male infertility played a large role in extinction as 47% of extinct lines had males that were infertile. Males from extinct lines had high variability in reproductive organ size, low sperm counts, low sperm motility, and a high rate of vacuolization of seminiferous tubules. We performed QTL mapping and identified nine genomic regions associated with male fertility and reproductive phenotypes. Many of the allelic effects in the QTL were driven by the two founders with underrepresented subspecific origins, including a QTL on chromosome X for infertility that was driven by the PWK/PhJ haplotype. We also performed the first example of cross validation using complementary CC resources to verify the effect of sperm curvilinear velocity from the PWK/PhJ haplotype on chromosome 2 in an independent population across multiple generations. While selection typically constrains the examination of reproductive traits toward the more fertile alleles, the CC extinct lines provided a unique opportunity to study the genetic architecture of fertility in a widely genetically variable population. We hypothesize that incompatibilities between alleles with different subspecific origins is a key driver of infertility. These results help clarify the factors that drove strain extinction in the CC, reveal the genetic regions associated with poor fertility in the CC, and serve as a resource to further study mammalian infertility.
Collapse
|
31
|
Miller CJJ, Matute DR. The Effect of Temperature on Drosophila Hybrid Fitness. G3 (BETHESDA, MD.) 2017; 7:377-385. [PMID: 27913636 PMCID: PMC5295587 DOI: 10.1534/g3.116.034926] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/09/2016] [Indexed: 01/05/2023]
Abstract
Mechanisms of reproductive isolation inhibit gene flow between species and can be broadly sorted into two categories: prezygotic and postzygotic. While comparative studies suggest that prezygotic barriers tend to evolve first, postzygotic barriers are crucial for maintaining species boundaries and impeding gene flow that might otherwise cause incipient species to merge. Most, but not all, postzygotic barriers result from genetic incompatibilities between two or more loci from different species, and occur due to divergent evolution in allopatry. Hybrid defects result from improper allelic interactions between these loci. While some postzygotic barriers are environmentally-independent, the magnitude of others has been shown to vary in penetrance depending on environmental factors. We crossed Drosophila melanogaster mutants to two other species, D. simulans and D. santomea, and collected fitness data of the hybrids at two different temperatures. Our goal was to examine the effect of temperature on recessive incompatibility alleles in their genomes. We found that temperature has a stronger effect on the penetrance of recessive incompatibility alleles in the D. simulans genome than on those in the D. santomea genome. These results suggest that the penetrance of hybrid incompatibilities can be strongly affected by environmental context, and that the magnitude of such gene-by-environment interactions can be contingent on the genotype of the hybrid.
Collapse
Affiliation(s)
- Charles J J Miller
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27510
| | - Daniel R Matute
- Biology Department, University of North Carolina, Chapel Hill, North Carolina 27510
| |
Collapse
|
32
|
Hua X, Bromham L. Darwinism for the Genomic Age: Connecting Mutation to Diversification. Front Genet 2017; 8:12. [PMID: 28224003 PMCID: PMC5293951 DOI: 10.3389/fgene.2017.00012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/19/2017] [Indexed: 12/30/2022] Open
Abstract
A growing body of evidence suggests that rates of diversification of biological lineages are correlated with differences in genome-wide mutation rate. Given that most research into differential patterns of diversification rate have focused on species traits or ecological parameters, a connection to the biochemical processes of genome change is an unexpected observation. While the empirical evidence for a significant association between mutation rate and diversification rate is mounting, there has been less effort in explaining the factors that mediate this connection between genetic change and species richness. Here we draw together empirical studies and theoretical concepts that may help to build links in the explanatory chain that connects mutation to diversification. First we consider the way that mutation rates vary between species. We then explore how differences in mutation rates have flow-through effects to the rate at which populations acquire substitutions, which in turn influences the speed at which populations become reproductively isolated from each other due to the acquisition of genomic incompatibilities. Since diversification rate is commonly measured from phylogenetic analyses, we propose a conceptual approach for relating events of reproductive isolation to bifurcations on molecular phylogenies. As we examine each of these relationships, we consider theoretical models that might shine a light on the observed association between rate of molecular evolution and diversification rate, and critically evaluate the empirical evidence for these links, focusing on phylogenetic comparative studies. Finally, we ask whether we are getting closer to a real understanding of the way that the processes of molecular evolution connect to the observable patterns of diversification.
Collapse
Affiliation(s)
- Xia Hua
- Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra ACT, Australia
| | - Lindell Bromham
- Centre for Macroevolution and Macroecology, Research School of Biology, Australian National University, Canberra ACT, Australia
| |
Collapse
|
33
|
Spiraling Complexity: A Test of the Snowball Effect in a Computational Model of RNA Folding. Genetics 2016; 206:377-388. [PMID: 28007889 DOI: 10.1534/genetics.116.196030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/03/2017] [Indexed: 01/07/2023] Open
Abstract
Genetic incompatibilities can emerge as a byproduct of genetic divergence. According to Dobzhansky and Muller, an allele that fixes in one population may be incompatible with an allele at a different locus in another population when the two alleles are brought together in hybrids. Orr showed that the number of Dobzhansky-Muller incompatibilities (DMIs) should accumulate faster than linearly-i.e., snowball-as two lineages diverge. Several studies have attempted to test the snowball effect using data from natural populations. One limitation of these studies is that they have focused on predictions of the Orr model, but not on its underlying assumptions. Here, we use a computational model of RNA folding to test both predictions and assumptions of the Orr model. Two populations are allowed to evolve in allopatry on a holey fitness landscape. We find that the number of inviable introgressions (an indicator for the number of DMIs) snowballs, but does so more slowly than expected. We show that this pattern is explained, in part, by the fact that DMIs can disappear after they have arisen, contrary to the assumptions of the Orr model. This occurs because DMIs become progressively more complex (i.e., involve alleles at more loci) as a result of later substitutions. We also find that most DMIs involve >2 loci, i.e., they are complex. Reproductive isolation does not snowball because DMIs do not act independently of each other. We conclude that the RNA model supports the central prediction of the Orr model that the number of DMIs snowballs, but challenges other predictions, as well as some of its underlying assumptions.
Collapse
|
34
|
Juric I, Aeschbacher S, Coop G. The Strength of Selection against Neanderthal Introgression. PLoS Genet 2016; 12:e1006340. [PMID: 27824859 PMCID: PMC5100956 DOI: 10.1371/journal.pgen.1006340] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 09/06/2016] [Indexed: 11/19/2022] Open
Abstract
Hybridization between humans and Neanderthals has resulted in a low level of Neanderthal ancestry scattered across the genomes of many modern-day humans. After hybridization, on average, selection appears to have removed Neanderthal alleles from the human population. Quantifying the strength and causes of this selection against Neanderthal ancestry is key to understanding our relationship to Neanderthals and, more broadly, how populations remain distinct after secondary contact. Here, we develop a novel method for estimating the genome-wide average strength of selection and the density of selected sites using estimates of Neanderthal allele frequency along the genomes of modern-day humans. We confirm that East Asians had somewhat higher initial levels of Neanderthal ancestry than Europeans even after accounting for selection. We find that the bulk of purifying selection against Neanderthal ancestry is best understood as acting on many weakly deleterious alleles. We propose that the majority of these alleles were effectively neutral—and segregating at high frequency—in Neanderthals, but became selected against after entering human populations of much larger effective size. While individually of small effect, these alleles potentially imposed a heavy genetic load on the early-generation human–Neanderthal hybrids. This work suggests that differences in effective population size may play a far more important role in shaping levels of introgression than previously thought. A small percentage of Neanderthal DNA is present in the genomes of many contemporary human populations due to hybridization tens of thousands of years ago. Much of this Neanderthal DNA appears to be deleterious in humans, and natural selection is acting to remove it. One hypothesis is that the underlying alleles were not deleterious in Neanderthals, but rather represent genetic incompatibilities that became deleterious only once they were introduced to the human population. If so, reproductive barriers must have evolved rapidly between Neanderthals and humans after their split. Here, we show that observed patterns of Neanderthal ancestry in modern humans can be explained simply as a consequence of the difference in effective population size between Neanderthals and humans. Specifically, we find that on average, selection against individual Neanderthal alleles is very weak. This is consistent with the idea that Neanderthals over time accumulated many weakly deleterious alleles that in their small population were effectively neutral. However, after introgressing into larger human populations, those alleles became exposed to purifying selection. Thus, rather than being the result of hybrid incompatibilities, differences between human and Neanderthal effective population sizes appear to have played a key role in shaping our present-day shared ancestry.
Collapse
Affiliation(s)
- Ivan Juric
- Center for Population Biology, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
- * E-mail:
| | - Simon Aeschbacher
- Center for Population Biology, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Graham Coop
- Center for Population Biology, University of California, Davis, California, United States of America
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| |
Collapse
|
35
|
Rougemont Q, Roux C, Neuenschwander S, Goudet J, Launey S, Evanno G. Reconstructing the demographic history of divergence between European river and brook lampreys using approximate Bayesian computations. PeerJ 2016; 4:e1910. [PMID: 27077007 PMCID: PMC4830234 DOI: 10.7717/peerj.1910] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/17/2016] [Indexed: 12/19/2022] Open
Abstract
Inferring the history of isolation and gene flow during species divergence is a central question in evolutionary biology. The European river lamprey (Lampetra fluviatilis) and brook lamprey (L. planeri) show a low reproductive isolation but have highly distinct life histories, the former being parasitic-anadromous and the latter non-parasitic and freshwater resident. Here we used microsatellite data from six replicated population pairs to reconstruct their history of divergence using an approximate Bayesian computation framework combined with a random forest model. In most population pairs, scenarios of divergence with recent isolation were outcompeted by scenarios proposing ongoing gene flow, namely the Secondary Contact (SC) and Isolation with Migration (IM) models. The estimation of demographic parameters under the SC model indicated a time of secondary contact close to the time of speciation, explaining why SC and IM models could not be discriminated. In case of an ancient secondary contact, the historical signal of divergence is lost and neutral markers converge to the same equilibrium as under the less parameterized model allowing ongoing gene flow. Our results imply that models of secondary contacts should be systematically compared to models of divergence with gene flow; given the difficulty to discriminate among these models, we suggest that genome-wide data are needed to adequately reconstruct divergence history.
Collapse
Affiliation(s)
- Quentin Rougemont
- UMR 985 Ecologie et Santé des Ecosystèmes, Institut National de la Recherche Agronomique, Rennes, France
- UMR 985 Ecologie et Santé des Ecosystèmes, Agrocampus Ouest, Rennes, France
| | - Camille Roux
- Department of Ecology and Evolution, Université de Lausanne, Lausanne, Switzerland
| | - Samuel Neuenschwander
- Department of Ecology and Evolution, Université de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Vital-IT, Lausanne, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, Université de Lausanne, Lausanne, Switzerland
| | - Sophie Launey
- UMR 985 Ecologie et Santé des Ecosystèmes, Institut National de la Recherche Agronomique, Rennes, France
- UMR 985 Ecologie et Santé des Ecosystèmes, Agrocampus Ouest, Rennes, France
| | - Guillaume Evanno
- UMR 985 Ecologie et Santé des Ecosystèmes, Institut National de la Recherche Agronomique, Rennes, France
- UMR 985 Ecologie et Santé des Ecosystèmes, Agrocampus Ouest, Rennes, France
| |
Collapse
|