1
|
Zhu L, Beichman A, Harris K. Population size interacts with reproductive longevity to shape the germline mutation rate. Proc Natl Acad Sci U S A 2025; 122:e2423311122. [PMID: 40392851 DOI: 10.1073/pnas.2423311122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/16/2025] [Indexed: 05/22/2025] Open
Abstract
Mutation rates vary across the tree of life by many orders of magnitude, with fewer mutations occurring each generation in species that reproduce quickly and maintain large effective population sizes. A compelling explanation is that large effective population sizes facilitate selection against weakly deleterious "mutator alleles" such as variants that modulate cell division or interfere with the molecular efficacy of DNA repair. However, while the fidelity of a single cell division largely determines microorganisms' mutation rates, the relationship of the mutation rate to the molecular determinants of DNA damage and repair is more complex in multicellular species with long generation times. Since long generations leave more time for mutations to accrue each generation, we posit that a long generation time likely amplifies the fitness consequences of any damage agent or DNA repair defect that creates extra mutations in the spermatogonia or oocytes. This leads to the counterintuitive prediction that the species with the highest germline mutation rates per generation are also the species with most effective mechanisms for avoiding and repairing mutations in their reproductive cells. Consistent with this, we show that mutation rates in the reproductive cells are inversely correlated with generation time; in contrast, the number of germline mutations that occur during prepuberty development trends weakly upward as generation time increases. Our results parallel recent findings that the longest-lived species have the lowest mutation rates in adult somatic tissues, potentially due to selection to keep the lifetime mutation load below a harmful threshold.
Collapse
Affiliation(s)
- Luke Zhu
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - Annabel Beichman
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | - Kelley Harris
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
- Computational Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| |
Collapse
|
2
|
Good BH, Bhatt AS, McDonald MJ. Unraveling the tempo and mode of horizontal gene transfer in bacteria. Trends Microbiol 2025:S0966-842X(25)00100-3. [PMID: 40274494 DOI: 10.1016/j.tim.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/26/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025]
Abstract
Research on horizontal gene transfer (HGT) has surged over the past two decades, revealing its critical role in accelerating evolutionary rates, facilitating adaptive innovations, and shaping pangenomes. Recent experimental and theoretical results have shown how HGT shapes the flow of genetic information within and between populations, expanding the range of possibilities for microbial evolution. These advances set the stage for a new wave of research seeking to predict how HGT shapes microbial evolution within natural communities, especially during rapid ecological shifts. In this article, we highlight these developments and outline promising research directions, emphasizing the necessity of quantifying the rates of HGT within diverse ecological contexts.
Collapse
Affiliation(s)
- Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| | - Ami S Bhatt
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford, CA, USA; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Michael J McDonald
- ARC Centre for the Mathematical Analysis of Cellular Systems, Melbourne, Victoria, Australia; School of Biological Sciences, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
3
|
Zhu L, Beichman A, Harris K. Population size interacts with reproductive longevity to shape the germline mutation rate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570457. [PMID: 39574678 PMCID: PMC11580940 DOI: 10.1101/2023.12.06.570457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Mutation rates vary across the tree of life by many orders of magnitude, with lower mutation rates in species that reproduce quickly and maintain large effective population sizes. A compelling explanation for this trend is that large effective population sizes facilitate selection against weakly deleterious "mutator alleles" such as variants that interfere with the molecular efficacy of DNA repair. However, in multicellular organisms, the relationship of the mutation rate to DNA repair efficacy is complicated by variation in reproductive age. Long generation times leave more time for mutations to accrue each generation, and late reproduction likely amplifies the fitness consequences of any DNA repair defect that creates extra mutations in the sperm or eggs. Here, we present theoretical and empirical evidence that a long generation time amplifies the strength of selection for low mutation rates in the spermatocytes and oocytes. This leads to the counterintuitive prediction that the species with the highest germline mutation rates per generation are also the species with most effective mechanisms for DNA proofreading and repair in their germ cells. In contrast, species with different generation times accumulate similar mutation loads during embryonic development. Our results parallel recent findings that the longest-lived species have the lowest mutation rates in adult somatic tissues, potentially due to selection to keep the lifetime mutation load below a harmful threshold.
Collapse
Affiliation(s)
- Luke Zhu
- Department of Bioengineering, University of Washington
| | | | - Kelley Harris
- Department of Genome Sciences, University of Washington
- Computational Biology Division, Fred Hutchinson Cancer Center
| |
Collapse
|
4
|
Ferrare JT, Good BH. Evolution of evolvability in rapidly adapting populations. Nat Ecol Evol 2024; 8:2085-2096. [PMID: 39261599 PMCID: PMC12049861 DOI: 10.1038/s41559-024-02527-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/29/2024] [Indexed: 09/13/2024]
Abstract
Mutations can alter the short-term fitness of an organism, as well as the rates and benefits of future mutations. While numerous examples of these evolvability modifiers have been observed in rapidly adapting microbial populations, existing theory struggles to predict when they will be favoured by natural selection. Here we develop a mathematical framework for predicting the fates of genetic variants that modify the rates and benefits of future mutations in linked genomic regions. We derive analytical expressions showing how the fixation probabilities of these variants depend on the size of the population and the diversity of competing mutations. We find that competition between linked mutations can dramatically enhance selection for modifiers that increase the benefits of future mutations, even when they impose a strong direct cost on fitness. However, we also find that modest direct benefits can be sufficient to drive evolutionary dead ends to fixation. Our results suggest that subtle differences in evolvability could play an important role in shaping the long-term success of genetic variants in rapidly evolving microbial populations.
Collapse
Affiliation(s)
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA, USA.
- Department of Biology, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Husain K, Sachdeva V, Ravasio R, Peruzzo M, Liu W, Good BH, Murugan A. Direct and indirect selection in a proofreading polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618309. [PMID: 39464107 PMCID: PMC11507774 DOI: 10.1101/2024.10.14.618309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The traits that affect evolvability are subject to indirect selection, as these traits affect the course of evolution over many generations rather than the direct replicative fitness of an individual. However, the evolution of evolvability-determining traits is often difficult to study because putative evolvability alleles often have confounding direct fitness effects of unknown origin and size. Here, we study theoretically and experimentally the evolution of mutation rates in proofreading polymerases with orthogonal control of direct and indirect selection. Mutagenic DNA polymerases enjoy a long-time fitness advantage by enhancing the rate of acquiring beneficial mutations. However, this is offset by a short-time fitness penalty, which we trace to a counterintuitive trade-off between mutation rates and activity in proofreading polymerases. Since these fitness effects act on different timescales, no one number characterizes the fitness of a mutator allele. We find unusual dynamic features in the resulting evolutionary dynamics, such as kinetic exclusion, selection by dynamic environments, and Rock-Paper-Scissors dynamics in the absence of ecology. Our work has implications for the evolution of mutation rates and more broadly, evolution in the context of an anti-correlation between mutation rates and short term fitness.
Collapse
Affiliation(s)
- Kabir Husain
- Department of Physics and Astronomy, University College London, United Kingdom
- Department of Physics, University of Chicago, Chicago, IL
| | | | | | | | - Wanqiang Liu
- Department of Physics, University of Chicago, Chicago, IL
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA
- Department of Biology, Stanford University, Stanford, CA
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA
| | - Arvind Murugan
- Department of Physics, University of Chicago, Chicago, IL
| |
Collapse
|
6
|
Laplane L, Maley CC. The evolutionary theory of cancer: challenges and potential solutions. Nat Rev Cancer 2024; 24:718-733. [PMID: 39256635 PMCID: PMC11627115 DOI: 10.1038/s41568-024-00734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/12/2024]
Abstract
The clonal evolution model of cancer was developed in the 1950s-1970s and became central to cancer biology in the twenty-first century, largely through studies of cancer genetics. Although it has proven its worth, its structure has been challenged by observations of phenotypic plasticity, non-genetic forms of inheritance, non-genetic determinants of clone fitness and non-tree-like transmission of genes. There is even confusion about the definition of a clone, which we aim to resolve. The performance and value of the clonal evolution model depends on the empirical extent to which evolutionary processes are involved in cancer, and on its theoretical ability to account for those evolutionary processes. Here, we identify limits in the theoretical performance of the clonal evolution model and provide solutions to overcome those limits. Although we do not claim that clonal evolution can explain everything about cancer, we show how many of the complexities that have been identified in the dynamics of cancer can be integrated into the model to improve our current understanding of cancer.
Collapse
Affiliation(s)
- Lucie Laplane
- UMR 8590 Institut d'Histoire et Philosophie des Sciences et des Techniques, CNRS, University Paris I Pantheon-Sorbonne, Paris, France
- UMR 1287 Hematopoietic Tissue Aging, Gustave Roussy Cancer Campus, Villejuif, France
| | - Carlo C Maley
- Arizona Cancer Evolution Center, Arizona State University, Tempe, AZ, USA.
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Biocomputing, Security and Society, Arizona State University, Tempe, AZ, USA.
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
7
|
Vieira C, Brooks CM, Akita S, Kim MS, Saunders GW. Of sea, rivers and symbiosis: Diversity, systematics, biogeography and evolution of the deeply diverging florideophycean order Hildenbrandiales (Rhodophyta). Mol Phylogenet Evol 2024; 197:108106. [PMID: 38750675 DOI: 10.1016/j.ympev.2024.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/03/2024] [Accepted: 05/12/2024] [Indexed: 05/27/2024]
Abstract
The Hildenbrandiales, a typically saxicolous red algal order, is an early diverging florideophycean group with global significance in marine and freshwater ecosystems across diverse temperature zones. To comprehensively elucidate the diversity, phylogeny, biogeography, and evolution of this order, we conducted a thorough re-examination employing molecular data derived from nearly 700 specimens. Employing a species delimitation method, we identified Evolutionary Species Units (ESUs) within the Hildenbrandiales aiming to enhance our understanding of species diversity and generate the first time-calibrated tree and ancestral area reconstruction for this order. Mitochondrial cox1 and chloroplast rbcL markers were used to infer species boundaries, and subsequent phylogenetic reconstructions involved concatenated sequences of cox1, rbcL, and 18S rDNA. Time calibration of the resulting phylogenetic tree used a fossil record from a Triassic purportedly freshwater Hildenbrandia species and three secondary time points from the literature. Our species delimitation analysis revealed an astounding 97 distinct ESUs, quintupling the known diversity within this order. Our time-calibration analysis placed the origin of Hildenbrandiales (crown age) in the Ediacaran period, with freshwater species emerging as a monophyletic group during the later Permian to early Triassic. Phylogenetic reconstructions identified seven major clades, experiencing early diversification during the Silurian to Carboniferous period. Two major evolutionary events-colonization of freshwater habitats and obligate systemic symbiosis with a marine fungus-marked this order, leading to significant morphological alterations without a commensurate increase in species diversification. Despite the remarkable newly discovered diversity, the extant taxon diversity appears relatively constrained when viewed against an evolutionary timeline spanning over 800 million years. This limitation may stem from restricted geographic sampling or the prevalence of asexual reproduction. However, species richness estimation and rarefaction analyses suggest a substantially larger diversity yet to be uncovered-potentially four times greater. These findings drastically reshape our understanding of the deeply diverging florideophycean order Hildenbrandiales species diversity, and contribute valuable insights into this order's evolutionary history and ecological adaptations. Supported by phylogenetic, ecological and morphological evidence, we established the genus Riverina gen. nov. to accommodate freshwater species of Hildenbrandiales, which form a monophyletic clade in our analyses. This marks the first step toward refining the taxonomy of the Hildenbrandiales, an order demanding thorough revisions, notably with the creation of several genera to address the polyphyletic status of Hildenbrandia. However, the limited diagnostic features pose a challenge, necessitating a fresh approach to defining genera. A potential solution lies in embracing a molecular systematic perspective, which can offer precise delineations of taxonomic boundaries.
Collapse
Affiliation(s)
- Christophe Vieira
- Research Institute for Basic Sciences, Jeju National University, Jeju 63243, Korea.
| | - Cody M Brooks
- Bedford Institute of Oceanography, Department of Fisheries and Oceans, Dartmouth, NS, Canada
| | - Shingo Akita
- Faculty of Fisheries Sciences, Hokkaido University, Minato-cho 3-1-1, Hakodate, Hokkaido 041-8611, Japan
| | - Myung Sook Kim
- Research Institute for Basic Sciences, Jeju National University, Jeju 63243, Korea.
| | - Gary W Saunders
- Biology Department, Centre for Environmental and Molecular Algal Research, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
8
|
Bramwell G, DeGregori J, Thomas F, Ujvari B. Transmissible cancers, the genomes that do not melt down. Evolution 2024; 78:1205-1211. [PMID: 38656785 DOI: 10.1093/evolut/qpae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Evolutionary theory predicts that the accumulation of deleterious mutations in asexually reproducing organisms should lead to genomic decay. Clonally reproducing cell lines, i.e., transmissible cancers, when cells are transmitted as allografts/xenografts, break these rules and survive for centuries and millennia. The currently known 11 transmissible cancer lineages occur in dogs (canine venereal tumour disease), in Tasmanian devils (devil facial tumor diseases, DFT1 and DFT2), and in bivalves (bivalve transmissible neoplasia). Despite the mutation loads of these cell lines being much higher than observed in human cancers, they have not been eliminated in space and time. Here, we provide potential explanations for how these fascinating cell lines may have overcome the fitness decline due to the progressive accumulation of deleterious mutations and propose that the high mutation load may carry an indirect positive fitness outcome. We offer ideas on how these host-pathogen systems could be used to answer outstanding questions in evolutionary biology. The recent studies on the evolution of these clonal pathogens reveal key mechanistic insight into transmissible cancer genomes, information that is essential for future studies investigating how these contagious cancer cell lines can repeatedly evade immune recognition, evolve, and survive in the landscape of highly diverse hosts.
Collapse
Affiliation(s)
- Georgina Bramwell
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Frédéric Thomas
- CREEC, UMR IRD 224-CNRS 5290, Université de Montpellier, Montpellier, France
| | - Beata Ujvari
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
9
|
Bullinaria JA. Simulating the Effect of Environmental Change on Evolving Populations. ARTIFICIAL LIFE 2024; 30:147-170. [PMID: 38478879 DOI: 10.1162/artl_a_00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
This study uses evolutionary simulations to explore the strategies that emerge to enable populations to cope with random environmental changes in situations where lifetime learning approaches are not available to accommodate them. In particular, it investigates how the average magnitude of change per unit time and the persistence of the changes (and hence the resulting autocorrelation of the environmental time series) affect the change tolerances, population diversities, and extinction timescales that emerge. Although it is the change persistence (often discussed in terms of environmental noise color) that has received most attention in the recent literature, other factors, particularly the average change magnitude, interact with this and can be more important drivers of the adaptive strategies that emerge. Moreover, when running simulations, the choice of change representation and normalization can also affect the outcomes. Detailed simulations are presented that are designed to explore all these issues. They also reveal significant dependences on the associated mutation rates and the extent to which they can evolve, and they clarify how evolution often leads populations into strategies with higher risks of extinction. Overall, this study shows how modeling the effect of environmental change requires more care than may have previously been realized.
Collapse
|
10
|
Lynch M, Ali F, Lin T, Wang Y, Ni J, Long H. The divergence of mutation rates and spectra across the Tree of Life. EMBO Rep 2023; 24:e57561. [PMID: 37615267 PMCID: PMC10561183 DOI: 10.15252/embr.202357561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023] Open
Abstract
Owing to advances in genome sequencing, genome stability has become one of the most scrutinized cellular traits across the Tree of Life. Despite its centrality to all things biological, the mutation rate (per nucleotide site per generation) ranges over three orders of magnitude among species and several-fold within individual phylogenetic lineages. Within all major organismal groups, mutation rates scale negatively with the effective population size of a species and with the amount of functional DNA in the genome. This relationship is most parsimoniously explained by the drift-barrier hypothesis, which postulates that natural selection typically operates to reduce mutation rates until further improvement is thwarted by the power of random genetic drift. Despite this constraint, the molecular mechanisms underlying DNA replication fidelity and repair are free to wander, provided the performance of the entire system is maintained at the prevailing level. The evolutionary flexibility of the mutation rate bears on the resolution of several prior conundrums in phylogenetic and population-genetic analysis and raises challenges for future applications in these areas.
Collapse
Affiliation(s)
- Michael Lynch
- Biodesign Center for Mechanisms of EvolutionArizona State UniversityTempeAZUSA
| | - Farhan Ali
- Biodesign Center for Mechanisms of EvolutionArizona State UniversityTempeAZUSA
| | - Tongtong Lin
- Institute of Evolution and Marine Biodiversity, KLMMEOcean University of ChinaQingdaoChina
| | - Yaohai Wang
- Institute of Evolution and Marine Biodiversity, KLMMEOcean University of ChinaQingdaoChina
| | - Jiahao Ni
- Institute of Evolution and Marine Biodiversity, KLMMEOcean University of ChinaQingdaoChina
| | - Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMMEOcean University of ChinaQingdaoChina
| |
Collapse
|
11
|
Maddamsetti R, Grant NA. Discovery of positive and purifying selection in metagenomic time series of hypermutator microbial populations. PLoS Genet 2022; 18:e1010324. [PMID: 35981004 PMCID: PMC9426924 DOI: 10.1371/journal.pgen.1010324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/30/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
A general method to infer both positive and purifying selection during the real-time evolution of hypermutator pathogens would be broadly useful. To this end, we introduce a Simple Test to Infer Mode of Selection (STIMS) from metagenomic time series of evolving microbial populations. We test STIMS on metagenomic data generated by simulations of bacterial evolution, and on metagenomic data spanning 62,750 generations of Lenski's long-term evolution experiment with Escherichia coli (LTEE). This benchmarking shows that STIMS detects positive selection in both nonmutator and hypermutator populations, and purifying selection in hypermutator populations. Using STIMS, we find strong evidence of ongoing positive selection on key regulators of the E. coli gene regulatory network, even in some hypermutator populations. STIMS also detects positive selection on regulatory genes in hypermutator populations of Pseudomonas aeruginosa that adapted to subinhibitory concentrations of colistin-an antibiotic of last resort-for just twenty-six days of laboratory evolution. Our results show that the fine-tuning of gene regulatory networks is a general mechanism for rapid and ongoing adaptation. The simplicity of STIMS, together with its intuitive visual interpretation, make it a useful test for positive and purifying selection in metagenomic data sets that track microbial evolution in real-time.
Collapse
Affiliation(s)
- Rohan Maddamsetti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Nkrumah A. Grant
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| |
Collapse
|
12
|
Cairns J, Jousset A, Becks L, Hiltunen T. Effect of mutation supply on population dynamics and trait evolution in an experimental microbial community. Ecol Lett 2021; 25:355-365. [PMID: 34808691 DOI: 10.1111/ele.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022]
Abstract
Mutation supply can influence evolutionary and thereby ecological dynamics in important ways which have received little attention. Mutation supply influences features of population genetics, such as the pool of adaptive mutations, evolutionary pathways and importance of processes, such as clonal interference. The resultant trait evolutionary dynamics, in turn, can alter population size and species interactions. However, controlled experiments testing for the importance of mutation supply on rapid adaptation and thereby population and community dynamics have primarily been restricted to the first of these aspects. To close this knowledge gap, we performed a serial passage experiment with wild-type Pseudomonas fluorescens and a mutant with reduced mutation rate. Bacteria were grown at two resource levels in combination with the presence of a ciliate predator. A higher mutation supply enabled faster adaptation to the low-resource environment and anti-predatory defence. This was associated with higher population size at the ecological level and better access to high-recurrence mutational targets at the genomic level with higher mutation supply. In contrast, mutation rate did not affect growth under high-resource level. Our results demonstrate that intrinsic mutation rate influences population dynamics and trait evolution particularly when population size is constrained by extrinsic conditions.
Collapse
Affiliation(s)
- Johannes Cairns
- Organismal and Evolutionary Biology Research Programme (OEB), Department of Computer Science, University of Helsinki, Finland.,Department of Microbiology, University of Helsinki, Finland
| | - Alexandre Jousset
- Key Laboratory of Plant Immunity, Jiangsu Key Laboratory for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Nanjing Agricultural University, Nanjing, PR China
| | - Lutz Becks
- Max Planck Institute for Evolutionary Biology, Department of Evolutionary Ecology, Community Dynamics Group, Plön, Germany.,Limnological Institute University Konstanz, Aquatic Ecology and Evolution, Konstanz, Germany
| | - Teppo Hiltunen
- Department of Microbiology, University of Helsinki, Finland.,Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
13
|
Kumawat B, Bhat R. An interplay of resource availability, population size and mutation rate potentiates the evolution of metabolic signaling. BMC Ecol Evol 2021; 21:52. [PMID: 33827412 PMCID: PMC8028831 DOI: 10.1186/s12862-021-01782-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/29/2021] [Indexed: 11/14/2022] Open
Abstract
Background Asexually reproducing populations of single cells evolve through mutation, natural selection, and genetic drift. Environmental conditions in which the evolution takes place define the emergent fitness landscapes. In this work, we used Avida—a digital evolution framework—to uncover a hitherto unexplored interaction between mutation rates, population size, and the relative abundance of metabolizable resources, and its effect on evolutionary outcomes in small populations of digital organisms. Results Over each simulation, the population evolved to one of several states, each associated with a single dominant phenotype with its associated fitness and genotype. For a low mutation rate, acquisition of fitness by organisms was accompanied with, and dependent on, an increase in rate of genomic replication. At an increased mutation rate, phenotypes with high fitness values were similarly achieved through enhanced genome replication rates. In addition, we also observed the frequent emergence of suboptimal fitness phenotype, wherein neighboring organisms signaled to each other information relevant to performing metabolic tasks. This metabolic signaling was vital to fitness acquisition and was correlated with greater genotypic and phenotypic heterogeneity in the population. The frequency of appearance of signaling populations increased with population size and with resource abundance. Conclusions Our results reveal a minimal set of environment–genotype interactions that lead to the emergence of metabolic signaling within evolving populations. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01782-0.
Collapse
Affiliation(s)
- Bhaskar Kumawat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Ramray Bhat
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
14
|
Mutability of demographic noise in microbial range expansions. ISME JOURNAL 2021; 15:2643-2654. [PMID: 33746203 PMCID: PMC8397776 DOI: 10.1038/s41396-021-00951-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022]
Abstract
Demographic noise, the change in the composition of a population due to random birth and death events, is an important driving force in evolution because it reduces the efficacy of natural selection. Demographic noise is typically thought to be set by the population size and the environment, but recent experiments with microbial range expansions have revealed substantial strain-level differences in demographic noise under the same growth conditions. Many genetic and phenotypic differences exist between strains; to what extent do single mutations change the strength of demographic noise? To investigate this question, we developed a high-throughput method for measuring demographic noise in colonies without the need for genetic manipulation. By applying this method to 191 randomly-selected single gene deletion strains from the E. coli Keio collection, we find that a typical single gene deletion mutation decreases demographic noise by 8% (maximal decrease: 81%). We find that the strength of demographic noise is an emergent trait at the population level that can be predicted by colony-level traits but not cell-level traits. The observed differences in demographic noise from single gene deletions can increase the establishment probability of beneficial mutations by almost an order of magnitude (compared to in the wild type). Our results show that single mutations can substantially alter adaptation through their effects on demographic noise and suggest that demographic noise can be an evolvable trait of a population.
Collapse
|
15
|
Katz S, Avrani S, Yavneh M, Hilau S, Gross J, Hershberg R. Dynamics of Adaptation During Three Years of Evolution Under Long-Term Stationary Phase. Mol Biol Evol 2021; 38:2778-2790. [PMID: 33734381 PMCID: PMC8233507 DOI: 10.1093/molbev/msab067] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Many bacterial species that cannot sporulate, such as the model bacterium Escherichia coli, can nevertheless survive for years, following exhaustion of external resources, in a state termed long-term stationary phase (LTSP). Here we describe the dynamics of E. coli adaptation during the first three years spent under LTSP. We show that during this time, E. coli continuously adapts genetically through the accumulation of mutations. For nonmutator clones, the majority of mutations accumulated appear to be adaptive under LTSP, reflected in an extremely convergent pattern of mutation accumulation. Despite the rapid and convergent manner in which populations adapt under LTSP, they continue to harbor extensive genetic variation. The dynamics of evolution of mutation rates under LTSP are particularly interesting. The emergence of mutators affects overall mutation accumulation rates as well as the mutational spectra and the ultimate spectrum of adaptive alleles acquired under LTSP. With time, mutators can evolve even higher mutation rates through the acquisition of additional mutation rate-enhancing mutations. Different mutator and nonmutator clones within a single population and time point can display extreme variation in their mutation rates, resulting in differences in both the dynamics of adaptation and their associated deleterious burdens. Despite these differences, clones that vary greatly in their mutation rates tend to coexist within their populations for many years, under LTSP.
Collapse
Affiliation(s)
- Sophia Katz
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sarit Avrani
- Department of Evolutionary and Environmental Biology and the Institute of Evolution, University of Haifa, Haifa, Israel
| | - Meitar Yavneh
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sabrin Hilau
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Jonathan Gross
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
16
|
Johnson MS, Gopalakrishnan S, Goyal J, Dillingham ME, Bakerlee CW, Humphrey PT, Jagdish T, Jerison ER, Kosheleva K, Lawrence KR, Min J, Moulana A, Phillips AM, Piper JC, Purkanti R, Rego-Costa A, McDonald MJ, Nguyen Ba AN, Desai MM. Phenotypic and molecular evolution across 10,000 generations in laboratory budding yeast populations. eLife 2021; 10:e63910. [PMID: 33464204 PMCID: PMC7815316 DOI: 10.7554/elife.63910] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/12/2020] [Indexed: 01/25/2023] Open
Abstract
Laboratory experimental evolution provides a window into the details of the evolutionary process. To investigate the consequences of long-term adaptation, we evolved 205 Saccharomyces cerevisiae populations (124 haploid and 81 diploid) for ~10,000,000 generations in three environments. We measured the dynamics of fitness changes over time, finding repeatable patterns of declining adaptability. Sequencing revealed that this phenotypic adaptation is coupled with a steady accumulation of mutations, widespread genetic parallelism, and historical contingency. In contrast to long-term evolution in E. coli, we do not observe long-term coexistence or populations with highly elevated mutation rates. We find that evolution in diploid populations involves both fixation of heterozygous mutations and frequent loss-of-heterozygosity events. Together, these results help distinguish aspects of evolutionary dynamics that are likely to be general features of adaptation across many systems from those that are specific to individual organisms and environmental conditions.
Collapse
Affiliation(s)
- Milo S Johnson
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
| | - Shreyas Gopalakrishnan
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Juhee Goyal
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- John A Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
| | - Megan E Dillingham
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- Graduate Program in Systems, Synthetic, and Quantitative Biology, Harvard UniversityCambridgeUnited States
| | - Christopher W Bakerlee
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - Parris T Humphrey
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
| | - Tanush Jagdish
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Graduate Program in Systems, Synthetic, and Quantitative Biology, Harvard UniversityCambridgeUnited States
| | - Elizabeth R Jerison
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
- Department of Applied Physics, Stanford UniversityStanfordUnited States
| | - Katya Kosheleva
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
| | - Katherine R Lawrence
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Department of Physics, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Jiseon Min
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- John A Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
| | - Alief Moulana
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Angela M Phillips
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Julia C Piper
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- AeroLabs, Aeronaut Brewing CoSomervilleUnited States
| | - Ramya Purkanti
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- The Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Artur Rego-Costa
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Michael J McDonald
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- School of Biological Sciences, Monash UniversityVictoria, MonashAustralia
| | - Alex N Nguyen Ba
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
- Department of Cell and Systems Biology, University of TorontoTorontoCanada
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityCambridgeUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
| |
Collapse
|
17
|
Abstract
Through novel methodologies, including both basic and clinical research, progress has been made in the therapy of solid cancer. Recent innovations in anticancer therapies, including immune checkpoint inhibitor biologics, therapeutic vaccines, small drugs, and CAR-T cell injections, mark a new epoch in cancer research, already known for faster (epi-)genomics, transcriptomics, and proteomics. As the long-sought after personalization of cancer therapies comes to fruition, the need to evaluate all current therapeutic possibilities and select the best for each patient is of paramount importance. This is a novel task for medical care that deserves prominence in therapeutic considerations in the future. This is because cancer is a complex genetic disease. In its deadly form, metastatic cancer, it includes altered genes (and their regulators) that encode ten hallmarks of cancer-independent growth, dodging apoptosis, immortalization, multidrug resistance, neovascularization, invasiveness, genome instability, inflammation, deregulation of metabolism, and avoidance of destruction by the immune system. These factors have been known targets for many anticancer drugs and treatments, and their modulation is a therapeutic goal, with the hope of rendering solid cancer a chronic rather than deadly disease. In this article, the current therapeutic arsenal against cancers is reviewed with a focus on immunotherapies.
Collapse
Affiliation(s)
- Zlatko Dembic
- Molecular Genetics Laboratory, Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0316 Oslo, Norway
- Molecular Genetics Laboratory, Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
18
|
Gross J, Avrani S, Katz S, Hilau S, Hershberg R. Culture Volume Influences the Dynamics of Adaptation under Long-Term Stationary Phase. Genome Biol Evol 2020; 12:2292-2301. [PMID: 33283867 DOI: 10.1093/gbe/evaa210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli and many other bacterial species, which are incapable of sporulation, can nevertheless survive within resource exhausted media by entering a state termed long-term stationary phase (LTSP). We have previously shown that E. coli populations adapt genetically under LTSP in an extremely convergent manner. Here, we examine how the dynamics of LTSP genetic adaptation are influenced by varying a single parameter of the experiment-culture volume. We find that culture volume affects survival under LTSP, with viable counts decreasing as volumes increase. Across all volumes, mutations accumulate with time, and the majority of mutations accumulated demonstrate signals of being adaptive. However, positive selection appears to affect mutation accumulation more strongly at higher, compared with lower volumes. Finally, we find that several similar genes are likely involved in adaptation across volumes. However, the specific mutations within these genes that contribute to adaptation can vary in a consistent manner. Combined, our results demonstrate how varying a single parameter of an evolutionary experiment can substantially influence the dynamics of observed adaptation.
Collapse
Affiliation(s)
- Jonathan Gross
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Sarit Avrani
- The Department of Evolutionary and Environmental Biology and the Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Sophia Katz
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Sabrin Hilau
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Ruth Hershberg
- Rachel & Menachem Mendelovitch Evolutionary Processes of Mutation & Natural Selection Research Laboratory, Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
19
|
Freel KC, Fouteau S, Roche D, Farasin J, Huber A, Koechler S, Peres M, Chiboub O, Varet H, Proux C, Deschamps J, Briandet R, Torchet R, Cruveiller S, Lièvremont D, Coppée JY, Barbe V, Arsène-Ploetze F. Effect of arsenite and growth in biofilm conditions on the evolution of Thiomonas sp. CB2. Microb Genom 2020; 6:mgen000447. [PMID: 33034553 PMCID: PMC7660254 DOI: 10.1099/mgen.0.000447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/14/2020] [Indexed: 11/30/2022] Open
Abstract
Thiomonas bacteria are ubiquitous at acid mine drainage sites and play key roles in the remediation of water at these locations by oxidizing arsenite to arsenate, favouring the sorption of arsenic by iron oxides and their coprecipitation. Understanding the adaptive capacities of these bacteria is crucial to revealing how they persist and remain active in such extreme conditions. Interestingly, it was previously observed that after exposure to arsenite, when grown in a biofilm, some strains of Thiomonas bacteria develop variants that are more resistant to arsenic. Here, we identified the mechanisms involved in the emergence of such variants in biofilms. We found that the percentage of variants generated increased in the presence of high concentrations of arsenite (5.33 mM), especially in the detached cells after growth under biofilm-forming conditions. Analysis of gene expression in the parent strain CB2 revealed that genes involved in DNA repair were upregulated in the conditions where variants were observed. Finally, we assessed the phenotypes and genomes of the subsequent variants generated to evaluate the number of mutations compared to the parent strain. We determined that multiple point mutations accumulated after exposure to arsenite when cells were grown under biofilm conditions. Some of these mutations were found in what is referred to as ICE19, a genomic island (GI) carrying arsenic-resistance genes, also harbouring characteristics of an integrative and conjugative element (ICE). The mutations likely favoured the excision and duplication of this GI. This research aids in understanding how Thiomonas bacteria adapt to highly toxic environments, and, more generally, provides a window to bacterial genome evolution in extreme environments.
Collapse
Affiliation(s)
- Kelle C. Freel
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
- Present address: Hawaiʻi Institute of Marine Biology, University of Hawaiʻi at Mānoa, Kāneʻohe, HI, USA
| | - Stephanie Fouteau
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - David Roche
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Julien Farasin
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
| | - Aline Huber
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
| | - Sandrine Koechler
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
- Present address: Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Martina Peres
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
| | - Olfa Chiboub
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
| | - Hugo Varet
- Plateforme Transcriptome et Epigenome, BioMics, Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
- Hub Bioinformatique et Biostatistique, Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI, USR 3756, IP CNRS), Institut Pasteur, Paris, France
| | - Caroline Proux
- Plateforme Transcriptome et Epigenome, BioMics, Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Julien Deschamps
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rachel Torchet
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Stephane Cruveiller
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Didier Lièvremont
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
| | - Jean-Yves Coppée
- Plateforme Transcriptome et Epigenome, BioMics, Centre de Ressources et Recherches Technologiques, Institut Pasteur, Paris, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Florence Arsène-Ploetze
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Institut de Botanique, CNRS – Université de Strasbourg, Strasbourg, France
- Present address: Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
20
|
Escherichia coli with a Tunable Point Mutation Rate for Evolution Experiments. G3-GENES GENOMES GENETICS 2020; 10:2671-2681. [PMID: 32503807 PMCID: PMC7407472 DOI: 10.1534/g3.120.401124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mutation rate and mutations' effects on fitness are crucial to evolution. Mutation rates are under selection due to linkage between mutation rate modifiers and mutations' effects on fitness. The linkage between a higher mutation rate and more beneficial mutations selects for higher mutation rates, while the linkage between a higher mutation rate and more deleterious mutations selects for lower mutation rates. The net direction of selection on mutations rates depends on the fitness landscape, and a great deal of work has elucidated the fitness landscapes of mutations. However, tests of the effect of varying a mutation rate on evolution in a single organism in a single environment have been difficult. This has been studied using strains of antimutators and mutators, but these strains may differ in additional ways and typically do not allow for continuous variation of the mutation rate. To help investigate the effects of the mutation rate on evolution, we have genetically engineered a strain of Escherichia coli with a point mutation rate that can be smoothly varied over two orders of magnitude. We did this by engineering a strain with inducible control of the mismatch repair proteins MutH and MutL. We used this strain in an approximately 350 generation evolution experiment with controlled variation of the mutation rate. We confirmed the construct and the mutation rate were stable over this time. Sequencing evolved strains revealed a higher number of single nucleotide polymorphisms at higher mutations rates, likely due to either the beneficial effects of these mutations or their linkage to beneficial mutations.
Collapse
|
21
|
Garaeva AY, Sidorova AE, Levashova NT, Tverdislov VA. A Percolation Lattice of Natural Selection as a Switch of Deterministic and Random Processes in the Mutation Flow. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920030069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
22
|
Bachar A, Itzhaki E, Gleizer S, Shamshoom M, Milo R, Antonovsky N. Point mutations in topoisomerase I alter the mutation spectrum in E. coli and impact the emergence of drug resistance genotypes. Nucleic Acids Res 2020; 48:761-769. [PMID: 31777935 PMCID: PMC6954433 DOI: 10.1093/nar/gkz1100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/27/2019] [Accepted: 11/21/2019] [Indexed: 11/14/2022] Open
Abstract
Identifying the molecular mechanisms that give rise to genetic variation is essential for the understanding of evolutionary processes. Previously, we have used adaptive laboratory evolution to enable biomass synthesis from CO2 in Escherichia coli. Genetic analysis of adapted clones from two independently evolving populations revealed distinct enrichment for insertion and deletion mutational events. Here, we follow these observations to show that mutations in the gene encoding for DNA topoisomerase I (topA) give rise to mutator phenotypes with characteristic mutational spectra. Using genetic assays and mutation accumulation lines, we find that point mutations in topA increase the rate of sequence deletion and duplication events. Interestingly, we observe that a single residue substitution (R168C) results in a high rate of head-to-tail (tandem) short sequence duplications, which are independent of existing sequence repeats. Finally, we show that the unique mutation spectrum of topA mutants enhances the emergence of antibiotic resistance in comparison to mismatch-repair (mutS) mutators, and leads to new resistance genotypes. Our findings highlight a potential link between the catalytic activity of topoisomerases and the fundamental question regarding the emergence of de novo tandem repeats, which are known modulators of bacterial evolution.
Collapse
Affiliation(s)
- Amit Bachar
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Elad Itzhaki
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shmuel Gleizer
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Melina Shamshoom
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ron Milo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Niv Antonovsky
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.,Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
23
|
Sidorova A, Levashova N, Garaeva A, Tverdislov V. A percolation model of natural selection. Biosystems 2020; 193-194:104120. [PMID: 32092352 DOI: 10.1016/j.biosystems.2020.104120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/29/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022]
Abstract
A new approach has been proposed and developed: the selection of optimal variants in the evolutionary mutation flow is considered as an analogue of a percolation filter. Interaction of mutations in a series of generations and random processes of drift determine the collective behavior of nodes (individuals - carriers and converters of mutations) and bonds (mutations) in the space of percolation lattice. It is shown that the choice of the development trajectory at the population level depends on the spectrum of supporting and prohibiting mutations under the influence of conjugate deterministic and random factors. From the point of view of the fluctuation-bifurcation process, new concepts of the lower and upper thresholds of the percolation selection grid are defined in the hierarchical structure of speciation. The upper threshold determines the state of self-organized criticality, which, when overcome, leads to irreversible self-organization processes in the population caused by the accumulation of mutations.
Collapse
Affiliation(s)
- Alla Sidorova
- Department of Biophysics, Faculty of Physics, M.V.Lomonosov Moscow State University. Moscow, 119991, Russia.
| | - Natalia Levashova
- Department of Mathematics, Faculty of Physics, M.V.Lomonosov Moscow State University. Moscow, 119991, Russia.
| | - Anastasia Garaeva
- Department of Biophysics, Faculty of Physics, M.V.Lomonosov Moscow State University. Moscow, 119991, Russia.
| | - Vsevolod Tverdislov
- Department of Biophysics, Faculty of Physics, M.V.Lomonosov Moscow State University. Moscow, 119991, Russia.
| |
Collapse
|
24
|
Raynes Y, Weinreich D. Selection on mutators is not frequency-dependent. eLife 2019; 8:51177. [PMID: 31697233 PMCID: PMC6867826 DOI: 10.7554/elife.51177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 11/05/2019] [Indexed: 11/29/2022] Open
Abstract
The evolutionary fate of mutator mutations – genetic variants that raise the genome-wide mutation rate – in asexual populations is often described as being frequency (or number) dependent. Mutators can invade a population by hitchhiking with a sweeping beneficial mutation, but motivated by earlier experiments results, it has been repeatedly suggested that mutators must be sufficiently frequent to produce such a driver mutation before non-mutators do. Here, we use stochastic, agent-based simulations to show that neither the strength nor the sign of selection on mutators depend on their initial frequency, and while the overall probability of hitchhiking increases predictably with frequency, the per-capita probability of fixation remains unchanged.
Collapse
Affiliation(s)
- Yevgeniy Raynes
- Department of Ecology and Evolutionary Biology, Center for Computational Molecular Biology, Brown University, Providence, United States
| | - Daniel Weinreich
- Department of Ecology and Evolutionary Biology, Center for Computational Molecular Biology, Brown University, Providence, United States
| |
Collapse
|
25
|
Natali F, Rancati G. The Mutator Phenotype: Adapting Microbial Evolution to Cancer Biology. Front Genet 2019; 10:713. [PMID: 31447882 PMCID: PMC6691094 DOI: 10.3389/fgene.2019.00713] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 07/05/2019] [Indexed: 01/07/2023] Open
Abstract
The mutator phenotype hypothesis was postulated almost 40 years ago to reconcile the observation that while cancer cells display widespread mutational burden, acquisition of mutations in non-transformed cells is a rare event. Moreover, it also suggested that cancer evolution could be fostered by increased genome instability. Given the evolutionary conservation throughout the tree of life and the genetic tractability of model organisms, yeast and bacterial species pioneered studies to dissect the functions of genes required for genome maintenance (caretaker genes) or for cell growth control (gatekeeper genes). In this review, we first provide an overview of what we learned from model organisms about the roles of these genes and the genome instability that arises as a consequence of their dysregulation. We then discuss our current understanding of how mutator phenotypes shape the evolution of bacteria and yeast species. We end by bringing clinical evidence that lessons learned from single-cell organisms can be applied to tumor evolution.
Collapse
Affiliation(s)
- Federica Natali
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Giulia Rancati
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
26
|
Mutation bias and GC content shape antimutator invasions. Nat Commun 2019; 10:3114. [PMID: 31308380 PMCID: PMC6629674 DOI: 10.1038/s41467-019-11217-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/28/2019] [Indexed: 02/02/2023] Open
Abstract
Mutators represent a successful strategy in rapidly adapting asexual populations, but theory predicts their eventual extinction due to their unsustainably large deleterious load. While antimutator invasions have been documented experimentally, important discrepancies among studies remain currently unexplained. Here we show that a largely neglected factor, the mutational idiosyncrasy displayed by different mutators, can play a major role in this process. Analysing phylogenetically diverse bacteria, we find marked and systematic differences in the protein-disruptive effects of mutations caused by different mutators in species with different GC compositions. Computer simulations show that these differences can account for order-of-magnitude changes in antimutator fitness for a realistic range of parameters. Overall, our results suggest that antimutator dynamics may be highly dependent on the specific genetic, ecological and evolutionary history of a given population. This context-dependency further complicates our understanding of mutators in clinical settings, as well as their role in shaping bacterial genome size and composition.
Collapse
|
27
|
Liao KH, Hon WK, Tang CY, Hsieh WP. MetaSMC: a coalescent-based shotgun sequence simulator for evolving microbial populations. Bioinformatics 2019; 35:1677-1685. [PMID: 30321266 DOI: 10.1093/bioinformatics/bty840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/09/2018] [Accepted: 10/11/2018] [Indexed: 01/26/2023] Open
Abstract
MOTIVATION High-throughput sequencing technology has revolutionized the study of metagenomics and cancer evolution. In a relatively simple environment, a metagenomics sequencing data is dominated by a few species. By analyzing the alignment of reads from microbial species, single nucleotide polymorphisms can be discovered and the evolutionary history of the populations can be reconstructed. The ever-increasing read length will allow more detailed analysis about the evolutionary history of microbial or tumor cell population. A simulator of shotgun sequences from such populations will be helpful in the development or evaluation of analysis algorithms. RESULTS Here, we described an efficient algorithm, MetaSMC, which simulates reads from evolving microbial populations. Based on the coalescent theory, our simulator supports all evolutionary scenarios supported by other coalescent simulators. In addition, the simulator supports various substitution models, including Jukes-Cantor, HKY85 and generalized time-reversible models. The simulator also supports mutator phenotypes by allowing different mutation rates and substitution models in different subpopulations. Our algorithm ignores unnecessary chromosomal segments and thus is more efficient than standard coalescent when recombination is frequent. We showed that the process behind our algorithm is equivalent to Sequentially Markov Coalescent with an incomplete sample. The accuracy of our algorithm was evaluated by summary statistics and likelihood curves derived from Monte Carlo integration over large number of random genealogies. AVAILABILITY AND IMPLEMENTATION MetaSMC is written in C. The source code is available at https://github.com/tarjxvf/metasmc. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ki-Hok Liao
- Department of Computer Science, National Tsing-Hua University, Hsinchu, Taiwan
| | - Wing-Kai Hon
- Department of Computer Science, National Tsing-Hua University, Hsinchu, Taiwan
| | - Chuan-Yi Tang
- Department of Computer Science, National Tsing-Hua University, Hsinchu, Taiwan.,Department of Computer Science and Information Engineering, Providence University, Taichung, Taiwan
| | - Wen-Ping Hsieh
- Institute of Statistics, National Tsing-Hua University, Hsinchu, Taiwan
| |
Collapse
|
28
|
Kayser J, Schreck CF, Yu Q, Gralka M, Hallatschek O. Emergence of evolutionary driving forces in pattern-forming microbial populations. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0106. [PMID: 29632260 DOI: 10.1098/rstb.2017.0106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2018] [Indexed: 12/12/2022] Open
Abstract
Evolutionary dynamics are controlled by a number of driving forces, such as natural selection, random genetic drift and dispersal. In this perspective article, we aim to emphasize that these forces act at the population level, and that it is a challenge to understand how they emerge from the stochastic and deterministic behaviour of individual cells. Even the most basic steric interactions between neighbouring cells can couple evolutionary outcomes of otherwise unrelated individuals, thereby weakening natural selection and enhancing random genetic drift. Using microbial examples of varying degrees of complexity, we demonstrate how strongly cell-cell interactions influence evolutionary dynamics, especially in pattern-forming systems. As pattern formation itself is subject to evolution, we propose to study the feedback between pattern formation and evolutionary dynamics, which could be key to predicting and potentially steering evolutionary processes. Such an effort requires extending the systems biology approach from the cellular to the population scale.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Jona Kayser
- Department of Physics, University of California, Berkeley, CA 94720, USA.,Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Carl F Schreck
- Department of Physics, University of California, Berkeley, CA 94720, USA.,Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - QinQin Yu
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Matti Gralka
- Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Oskar Hallatschek
- Department of Physics, University of California, Berkeley, CA 94720, USA .,Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
29
|
Raynes Y, Sniegowski PD, Weinreich DM. Migration promotes mutator alleles in subdivided populations. Evolution 2019; 73:600-608. [PMID: 30632605 PMCID: PMC6680344 DOI: 10.1111/evo.13681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/18/2018] [Accepted: 01/01/2019] [Indexed: 11/29/2022]
Abstract
Mutator alleles that elevate the genomic mutation rate may invade nonrecombining populations by hitchhiking with beneficial mutations. Mutators have been repeatedly observed to take over adapting laboratory populations and have been found at high frequencies in both microbial pathogen and cancer populations in nature. Recently, we have shown that mutators are only favored by selection in sufficiently large populations and transition to being disfavored as population size decreases. This population size-dependent sign inversion in selective effect suggests that population structure may also be an important determinant of mutation rate evolution. Although large populations may favor mutators, subdividing such populations into sufficiently small subpopulations (demes) might effectively inhibit them. On the other hand, migration between small demes that otherwise inhibit hitchhiking may promote mutator fixation in the whole metapopulation. Here, we use stochastic, agent-based simulations and evolution experiments with the yeast Saccharomyces cerevisiae to show that mutators can, indeed, be favored by selection in subdivided metapopulations composed of small demes connected by sufficient migration. In fact, we show that population structure plays a previously unsuspected role in promoting mutator success in subdivided metapopulations when migration is rare.
Collapse
Affiliation(s)
- Yevgeniy Raynes
- Department of Ecology and Evolutionary Biology, Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, 02906
| | - Paul D Sniegowski
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, 19104
| | - Daniel M Weinreich
- Department of Ecology and Evolutionary Biology, Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, 02906
| |
Collapse
|
30
|
Li S, Giardina DM, Siegal ML. Control of nongenetic heterogeneity in growth rate and stress tolerance of Saccharomyces cerevisiae by cyclic AMP-regulated transcription factors. PLoS Genet 2018; 14:e1007744. [PMID: 30388117 PMCID: PMC6241136 DOI: 10.1371/journal.pgen.1007744] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 11/14/2018] [Accepted: 10/05/2018] [Indexed: 01/01/2023] Open
Abstract
Genetically identical cells exhibit extensive phenotypic variation even under constant and benign conditions. This so-called nongenetic heterogeneity has important clinical implications: within tumors and microbial infections, cells show nongenetic heterogeneity in growth rate and in susceptibility to drugs or stress. The budding yeast, Saccharomyces cerevisiae, shows a similar form of nongenetic heterogeneity in which growth rate correlates positively with susceptibility to acute heat stress at the single-cell level. Using genetic and chemical perturbations, combined with high-throughput single-cell assays of yeast growth and gene expression, we show here that heterogeneity in intracellular cyclic AMP (cAMP) levels acting through the conserved Ras/cAMP/protein kinase A (PKA) pathway and its target transcription factors, Msn2 and Msn4, underlies this nongenetic heterogeneity. Lower levels of cAMP correspond to slower growth, as shown by direct comparison of cAMP concentration in subpopulations enriched for slower vs. faster growing cells. Concordantly, an endogenous reporter of this pathway’s activity correlates with growth in individual cells. The paralogs Msn2 and Msn4 differ in their roles in nongenetic heterogeneity in a way that demonstrates slow growth and stress tolerance are not inevitably linked. Heterogeneity in growth rate requires each, whereas only Msn2 is required for heterogeneity in expression of Tsl1, a subunit of trehalose synthase that contributes to acute-stress tolerance. Perturbing nongenetic heterogeneity by mutating genes in this pathway, or by culturing wild-type cells with the cell-permeable cAMP analog 8-bromo-cAMP or the PKA inhibitor H89, significantly impacts survival of acute heat stress. Perturbations that increase intracellular cAMP levels reduce the slower-growing subpopulation and increase susceptibility to acute heat stress, whereas PKA inhibition slows growth and decreases susceptibility to acute heat stress. Loss of Msn2 reduces, but does not completely eliminate, the correlation in individual cells between growth rate and acute-stress survival, suggesting a major role for the Msn2 pathway in nongenetic heterogeneity but also a residual benefit of slow growth. Our results shed light on the genetic control of nongenetic heterogeneity and suggest a possible means of defeating bet-hedging pathogens or tumor cells by making them more uniformly susceptible to treatment. Nongenetic heterogeneity exists when a trait differs among individuals that have identical genotypes and environments. A clonal population can maximize its long-term success in an uncertain environment by diversifying its phenotypes via nongenetic heterogeneity: the currently unfavored ones may become the favored ones when conditions change. Nongenetic heterogeneity has clinical relevance. For example, populations of tumor cells or infectious microbes show cell-to-cell differences in growth and in drug or stress tolerance. This heterogeneity hampers efficient treatment and can potentiate harmful evolution of a tumor or pathogen. We show that in budding yeast, heterogeneity in intracellular cyclic AMP levels acting through the conserved Ras/cAMP/protein kinase A (PKA) pathway and its target transcription factors, Msn2 and Msn4, underlies the nongenetic heterogeneity of both single-cell growth rate and acute heat-stress tolerance. Perturbations of this pathway significantly affect population survival upon acute heat stress. These results illuminate a mechanism of nongenetic heterogeneity and suggest the potential value of antitumor or antifungal treatment strategies that target nongenetic heterogeneity to render the tumor or pathogen population more uniformly susceptible to a second drug that aims to kill.
Collapse
Affiliation(s)
- Shuang Li
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Daniella M. Giardina
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Mark L. Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
31
|
Good BH, Hallatschek O. Effective models and the search for quantitative principles in microbial evolution. Curr Opin Microbiol 2018; 45:203-212. [PMID: 30530175 PMCID: PMC6599682 DOI: 10.1016/j.mib.2018.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/17/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Abstract
Microbes evolve rapidly. Yet they do so in idiosyncratic ways, which depend on the specific mutations that are beneficial or deleterious in a given situation. At the same time, some population-level patterns of adaptation are strikingly similar across different microbial systems, suggesting that there may also be simple, quantitative principles that unite these diverse scenarios. We review the search for simple principles in microbial evolution, ranging from the biophysical level to emergent evolutionary dynamics. A key theme has been the use of effective models, which coarse-grain over molecular and cellular details to obtain a simpler description in terms of a few effective parameters. Collectively, these theoretical approaches provide a set of quantitative principles that facilitate understanding, prediction, and potentially control of evolutionary phenomena, though formidable challenges remain due to the ecological complexity of natural populations.
Collapse
Affiliation(s)
- Benjamin H Good
- Department of Physics, University of California, Berkeley, United States; Department of Bioengineering, University of California, Berkeley, United States.
| | - Oskar Hallatschek
- Department of Physics, University of California, Berkeley, United States; Department of Integrative Biology, University of California, Berkeley, United States
| |
Collapse
|
32
|
Cvijović I, Nguyen Ba AN, Desai MM. Experimental Studies of Evolutionary Dynamics in Microbes. Trends Genet 2018; 34:693-703. [PMID: 30025666 PMCID: PMC6467257 DOI: 10.1016/j.tig.2018.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 11/16/2022]
Abstract
Evolutionary dynamics in laboratory microbial evolution experiments can be surprisingly complex. In the past two decades, observations of these dynamics have challenged simple models of adaptation and have shown that clonal interference, hitchhiking, ecological diversification, and contingency are widespread. In recent years, advances in high-throughput strain maintenance and phenotypic assays, the dramatically reduced cost of genome sequencing, and emerging methods for lineage barcoding have made it possible to observe evolutionary dynamics at unprecedented resolution. These new methods can now begin to provide detailed measurements of key aspects of fitness landscapes and of evolutionary outcomes across a range of systems. These measurements can highlight challenges to existing theoretical models and guide new theoretical work towards the complications that are most widely important.
Collapse
Affiliation(s)
- Ivana Cvijović
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alex N Nguyen Ba
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
33
|
Sprouffske K, Aguilar-Rodríguez J, Sniegowski P, Wagner A. High mutation rates limit evolutionary adaptation in Escherichia coli. PLoS Genet 2018; 14:e1007324. [PMID: 29702649 PMCID: PMC5942850 DOI: 10.1371/journal.pgen.1007324] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 05/09/2018] [Accepted: 03/21/2018] [Indexed: 11/19/2022] Open
Abstract
Mutation is fundamental to evolution, because it generates the genetic variation on which selection can act. In nature, genetic changes often increase the mutation rate in systems that range from viruses and bacteria to human tumors. Such an increase promotes the accumulation of frequent deleterious or neutral alleles, but it can also increase the chances that a population acquires rare beneficial alleles. Here, we study how up to 100-fold increases in Escherichia coli's genomic mutation rate affect adaptive evolution. To do so, we evolved multiple replicate populations of asexual E. coli strains engineered to have four different mutation rates for 3000 generations in the laboratory. We measured the ability of evolved populations to grow in their original environment and in more than 90 novel chemical environments. In addition, we subjected the populations to whole genome population sequencing. Although populations with higher mutation rates accumulated greater genetic diversity, this diversity conveyed benefits only for modestly increased mutation rates, where populations adapted faster and also thrived better than their ancestors in some novel environments. In contrast, some populations at the highest mutation rates showed reduced adaptation during evolution, and failed to thrive in all of the 90 alternative environments. In addition, they experienced a dramatic decrease in mutation rate. Our work demonstrates that the mutation rate changes the global balance between deleterious and beneficial mutational effects on fitness. In contrast to most theoretical models, our experiments suggest that this tipping point already occurs at the modest mutation rates that are found in the wild.
Collapse
Affiliation(s)
- Kathleen Sprouffske
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- The Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - José Aguilar-Rodríguez
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- The Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Paul Sniegowski
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andreas Wagner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- The Swiss Institute of Bioinformatics, Lausanne, Switzerland
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
34
|
Raynes Y, Wylie CS, Sniegowski PD, Weinreich DM. Sign of selection on mutation rate modifiers depends on population size. Proc Natl Acad Sci U S A 2018; 115:3422-3427. [PMID: 29531067 PMCID: PMC5879664 DOI: 10.1073/pnas.1715996115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The influence of population size (N) on natural selection acting on alleles that affect fitness has been understood for almost a century. As N declines, genetic drift overwhelms selection and alleles with direct fitness effects are rendered neutral. Often, however, alleles experience so-called indirect selection, meaning they affect not the fitness of an individual but the fitness distribution of its offspring. Some of the best-studied examples of indirect selection include alleles that modify aspects of the genetic system such as recombination and mutation rates. Here, we use analytics, simulations, and experimental populations of Saccharomyces cerevisiae to examine the influence of N on indirect selection acting on alleles that increase the genomic mutation rate (mutators). Mutators experience indirect selection via genomic associations with beneficial and deleterious mutations they generate. We show that, as N declines, indirect selection driven by linked beneficial mutations is overpowered by drift before drift can neutralize the cost of the deleterious load. As a result, mutators transition from being favored by indirect selection in large populations to being disfavored as N declines. This surprising phenomenon of sign inversion in selective effect demonstrates that indirect selection on mutators exhibits a profound and qualitatively distinct dependence on N.
Collapse
Affiliation(s)
- Yevgeniy Raynes
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912;
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912
| | - C Scott Wylie
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912
| | - Paul D Sniegowski
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel M Weinreich
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912
| |
Collapse
|
35
|
Jain K, James A. Fixation probability of a nonmutator in a large population of asexual mutators. J Theor Biol 2017; 433:85-93. [PMID: 28870620 DOI: 10.1016/j.jtbi.2017.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 10/18/2022]
Abstract
In an adapted population of mutators in which most mutations are deleterious, a nonmutator that lowers the mutation rate is under indirect selection and can sweep to fixation. Using a multitype branching process, we calculate the fixation probability of a rare nonmutator in a large population of asexual mutators. We show that when beneficial mutations are absent, the fixation probability is a nonmonotonic function of the mutation rate of the mutator: it first increases sublinearly and then decreases exponentially. We also find that beneficial mutations can enhance the fixation probability of a nonmutator. Our analysis is relevant to an understanding of recent experiments in which a reduction in the mutation rates has been observed.
Collapse
Affiliation(s)
- Kavita Jain
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| | - Ananthu James
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
36
|
Graves CJ, Weinreich DM. Variability in fitness effects can preclude selection of the fittest. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017; 48:399-417. [PMID: 31572069 DOI: 10.1146/annurev-ecolsys-110316-022722] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evolutionary biologists often predict the outcome of natural selection on an allele by measuring its effects on lifetime survival and reproduction of individual carriers. However, alleles affecting traits like sex, evolvability, and cooperation can cause fitness effects that depend heavily on differences in the environmental, social, and genetic context of individuals carrying the allele. This variability makes it difficult to summarize the evolutionary fate of an allele based solely on its effects on any one individual. Attempts to average over this variability can sometimes salvage the concept of fitness. In other cases evolutionary outcomes can only be predicted by considering the entire genealogy of an allele, thus limiting the utility of individual fitness altogether. We describe a number of intriguing new evolutionary phenomena that have emerged in studies that explicitly model long-term lineage dynamics and discuss implications for the evolution of infectious diseases.
Collapse
Affiliation(s)
- Christopher J Graves
- Brown University, Department of Ecology and Evolutionary Biology and Center for Computational and Molecular Biology. Providence, RI, USA
| | - Daniel M Weinreich
- Brown University, Department of Ecology and Evolutionary Biology and Center for Computational and Molecular Biology. Providence, RI, USA
| |
Collapse
|
37
|
Ilmjärv T, Naanuri E, Kivisaar M. Contribution of increased mutagenesis to the evolution of pollutants-degrading indigenous bacteria. PLoS One 2017; 12:e0182484. [PMID: 28777807 PMCID: PMC5544203 DOI: 10.1371/journal.pone.0182484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 07/19/2017] [Indexed: 12/20/2022] Open
Abstract
Bacteria can rapidly evolve mechanisms allowing them to use toxic environmental pollutants as a carbon source. In the current study we examined whether the survival and evolution of indigenous bacteria with the capacity to degrade organic pollutants could be connected with increased mutation frequency. The presence of constitutive and transient mutators was monitored among 53 pollutants-degrading indigenous bacterial strains. Only two strains expressed a moderate mutator phenotype and six were hypomutators, which implies that constitutively increased mutability has not been prevalent in the evolution of pollutants degrading bacteria. At the same time, a large proportion of the studied indigenous strains exhibited UV-irradiation-induced mutagenesis, indicating that these strains possess error-prone DNA polymerases which could elevate mutation frequency transiently under the conditions of DNA damage. A closer inspection of two Pseudomonas fluorescens strains PC20 and PC24 revealed that they harbour genes for ImuC (DnaE2) and more than one copy of genes for Pol V. Our results also revealed that availability of other nutrients in addition to aromatic pollutants in the growth environment of bacteria affects mutagenic effects of aromatic compounds. These results also implied that mutagenicity might be affected by a factor of how long bacteria have evolved to use a particular pollutant as a carbon source.
Collapse
Affiliation(s)
- Tanel Ilmjärv
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Eve Naanuri
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maia Kivisaar
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|
38
|
Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations. ISME JOURNAL 2017; 11:2181-2194. [PMID: 28509909 DOI: 10.1038/ismej.2017.69] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/02/2017] [Accepted: 03/10/2017] [Indexed: 01/01/2023]
Abstract
Evolution is an on-going process, and it can be studied experimentally in organisms with rapid generations. My team has maintained 12 populations of Escherichia coli in a simple laboratory environment for >25 years and 60 000 generations. We have quantified the dynamics of adaptation by natural selection, seen some of the populations diverge into stably coexisting ecotypes, described changes in the bacteria's mutation rate, observed the new ability to exploit a previously untapped carbon source, characterized the dynamics of genome evolution and used parallel evolution to identify the genetic targets of selection. I discuss what the future might hold for this particular experiment, briefly highlight some other microbial evolution experiments and suggest how the fields of experimental evolution and microbial ecology might intersect going forward.
Collapse
|