1
|
Roca M, Eren GG, Böger L, Didenko O, Lo WS, Scholz M, Lightfoot JW. Evolution of sensory systems underlies the emergence of predatory feeding behaviours in nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644997. [PMID: 40196577 PMCID: PMC11974876 DOI: 10.1101/2025.03.24.644997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Sensory systems are the primary interface between an organism and its environment with changes in selectivity or sensitivity representing key events in behavioural evolution. Here, we explored the molecular modifications influencing sensory perception across the nematode phyla. Pristionchus pacificus is a predatory species and has evolved contact-dependent sensing and teeth-like structures to attack prey. Using mutants defective for mechanosensory neuron function, we found an expanded role for this sensory modality in efficient predation alongside its canonical function in sensing aversive touch. To identify the precise mechanism involved in this tactile divergence we generated mutations in 26 canonical mechanosensory genes and tested their function using a combination of behavioural assays, automated behavioural tracking and machine learning. While mechanosensory defects were observed in several mutants, Ppa-mec-6 mutants specifically also induced predation deficiencies. Previously, a similar phenotype was observed in a chemosensory defective mutant and we found a synergistic influence on predation in mutants lacking both sensory inputs. Importantly, both chemosensory and mechanosensory receptor expression converge on the same environmentally exposed IL2 neurons revealing these as the primary mechanism for sensing prey. Thus, predation evolved through the co-option of both mechanosensory and chemosensory systems which act synergistically to shape the evolution of complex behavioural traits.
Collapse
Affiliation(s)
- Marianne Roca
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Güniz Göze Eren
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Leonard Böger
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior - caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Olena Didenko
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Wen-Sui Lo
- Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Monika Scholz
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior - caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - James W Lightfoot
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| |
Collapse
|
2
|
Quiobe SP, Kalirad A, Röseler W, Witte H, Wang Y, Rödelsperger C, Sommer RJ. EBAX-1/ZSWIM8 destabilizes miRNAs, resulting in transgenerational inheritance of a predatory trait. SCIENCE ADVANCES 2025; 11:eadu0875. [PMID: 40073139 PMCID: PMC11900880 DOI: 10.1126/sciadv.adu0875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
Environmental influences on traits and associated transgenerational epigenetic inheritance have widespread implications but remain controversial and underlying mechanisms poorly understood. We introduce long-term environmental induction experiments on alternative diets in Pristionchus pacificus, a nematode exhibiting mouth-form plasticity including predation, by propagating 110 isogenic lines for 101 generations with associated food-reversal experiments. We found dietary induction and subsequent transgenerational inheritance of the predatory morph and identified a role of ubiquitin ligase EBAX-1/ZSWIM8 in this process. Ppa-ebax-1 mutants are transgenerational inheritance defective, and Ppa-EBAX-1 destabilizes the clustered microRNA family miR-2235a/miR-35. Deletions of a cluster of 44 identical miR-2235a copies resulted in precocious and extended transgenerational inheritance of the predatory morph. These findings indicate that EBAX-1/ZSWIM8 destabilizes miRNAs, resulting in transgenerational inheritance, suggesting a role for target-directed miRNA degradation.
Collapse
Affiliation(s)
- Shiela Pearl Quiobe
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Ata Kalirad
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Yinan Wang
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Ralf J. Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| |
Collapse
|
3
|
Mackie M, Le VV, Carstensen HR, Kushnir NR, Castro DL, Dimov IM, Quach KT, Cook SJ, Hobert O, Chalasani SH, Hong RL. Evolution of lateralized gustation in nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.31.610597. [PMID: 39282255 PMCID: PMC11398344 DOI: 10.1101/2024.08.31.610597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Animals with small nervous systems have a limited number of sensory neurons that must encode information from a changing environment. This problem is particularly exacerbated in nematodes that populate a wide variety of distinct ecological niches but only have a few sensory neurons available to encode multiple modalities. How does sensory diversity prevail within this constraint in neuron number? To identify the genetic basis for patterning different nervous systems, we demonstrate that sensory neurons in Pristionchus pacificus respond to various salt sensory cues in a manner that is partially distinct from that of the distantly related nematode Caenorhabditis elegans. By visualizing neuronal activity patterns, we show that contrary to previous expectations based on its genome sequence, the salt responses of P. pacificus are encoded in a left/right asymmetric manner in the bilateral ASE neuron pair. Our study illustrates patterns of evolutionary stability and change in the gustatory system of nematodes.
Collapse
Affiliation(s)
- Marisa Mackie
- Department of Biology California State University, Northridge, CA, USA
| | - Vivian Vy Le
- Department of Biology California State University, Northridge, CA, USA
| | | | - Nicole R Kushnir
- Department of Biology California State University, Northridge, CA, USA
| | - Dylan L Castro
- Department of Biology California State University, Northridge, CA, USA
| | - Ivan M Dimov
- Department of Biology California State University, Northridge, CA, USA
| | - Kathleen T Quach
- Molecular Neurobiology Laboratory Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Steven J Cook
- Department of Biological Sciences Howard Hughes Medical Institute, Columbia University, New York, NY, USA
- Present address: Neural Coding Department Allen Institute for Brain Science, Seattle, WA, USA
| | - Oliver Hobert
- Department of Biological Sciences Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ray L Hong
- Department of Biology California State University, Northridge, CA, USA
| |
Collapse
|
4
|
Piskobulu V, Athanasouli M, Witte H, Feldhaus C, Streit A, Sommer RJ. High Nutritional Conditions Influence Feeding Plasticity in Pristionchus pacificus and Render Worms Non-Predatory. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025; 344:94-111. [PMID: 39822045 PMCID: PMC11788882 DOI: 10.1002/jez.b.23284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Developmental plasticity, the ability of a genotype to produce different phenotypes in response to environmental conditions, has been subject to intense studies in the last four decades. The self-fertilising nematode Pristionchus pacificus has been developed as a genetic model system for studying developmental plasticity due to its mouth-form polyphenism that results in alternative feeding strategies with a facultative predatory and non-predatory mouth form. Many studies linked molecular aspects of the regulation of mouth-form polyphenism with investigations of its evolutionary and ecological significance. Also, several environmental factors influencing P. pacificus feeding structure expression were identified including temperature, culture condition and population density. However, the nutritional plasticity of the mouth form has never been properly investigated although polyphenisms are known to be influenced by changes in nutritional conditions. For instance, studies in eusocial insects and scarab beetles have provided significant mechanistic insights into the nutritional regulation of polyphenisms but also other forms of plasticity. Here, we study the influence of nutrition on mouth-form polyphenism in P. pacificus through experiments with monosaccharide and fatty acid supplementation. We show that in particular glucose supplementation renders worms non-predatory. Subsequent transcriptomic and mutant analyses indicate that de novo fatty acid synthesis and peroxisomal beta-oxidation pathways play an important role in the mediation of this plastic response. Finally, the analysis of fitness consequences through fecundity counts suggests that non-predatory animals have an advantage over predatory animals grown in the glucose-supplemented condition.
Collapse
Affiliation(s)
- Veysi Piskobulu
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| | - Marina Athanasouli
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| | - Hanh Witte
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| | - Christian Feldhaus
- Max‐Planck Institute for Biology Tübingen, BioOptics FacilityTübingenGermany
| | - Adrian Streit
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| | - Ralf J. Sommer
- Department for Integrative Evolutionary BiologyMax‐Planck Institute for Biology TübingenTübingenGermany
| |
Collapse
|
5
|
Sommer RJ. Pristionchus - Beetle associations: Towards a new natural history. J Invertebr Pathol 2025; 209:108243. [PMID: 39644992 DOI: 10.1016/j.jip.2024.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
The free-living nematode Pristionchus pacificus has been established as a model system in integrative evolutionary biology by combining laboratory studies with field work and evolutionary biology. Multiple genetic, molecular and experimental tools and a collection of more than 2,500 P. pacificus strains and more than 50 Pristionchus species, which are available as living cultures or frozen stock collections, support research on various life history traits. Species of Pristionchus exhibit a number of complex traits unknown from Caenorhabditis elegans and most other free-living nematodes. First, P. pacificus can form two alternative mouth forms, an example of developmental plasticity that is increasingly studied to investigate the role of plasticity as a facilitator of evolutionary novelty. More than a decade of work has identified associated genetic and epigenetic mechanisms and revealed the evolutionary and ecological significance of feeding structure plasticity. Second, one of the two mouth morphs results in predatory behavior against other nematodes and is currently used to investigate the neurobiology of predation. Third, potential predation results in the risk of cannibalism among conspecifics. Strikingly, Pristionchus nematodes have developed a self-recognition system that allows the distinction of self (kin) and non-self. Given all these organismal features, this nematode has recently been considered a key example for research towards a new natural history (West-Eberhard, 2024). Here, I summarize recent work on Pristionchus with a focus on a 'new natural history'. In addition, I review some recent studies that indicate an interaction of Pristionchus with EPNs that was suggested based on various surveys in different ecological habitats.
Collapse
Affiliation(s)
- Ralf J Sommer
- Max Planck Institute for Biology Tübingen, Tübingen, Germany; Max Planck Ring 9, 72076 Tübingen, Germany.
| |
Collapse
|
6
|
Almeida AC, Rocha H, Raas MWD, Witte H, Sommer RJ, Snel B, Kops GJPL, Gassmann R, Maiato H. An evolutionary perspective on the relationship between kinetochore size and CENP-E dependence for chromosome alignment. J Cell Sci 2024; 137:jcs263466. [PMID: 39698944 PMCID: PMC11827601 DOI: 10.1242/jcs.263466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
Chromosome alignment during mitosis can occur as a consequence of bi-orientation or is assisted by the CENP-E (kinesin-7) motor at kinetochores. We previously found that Indian muntjac chromosomes with larger kinetochores bi-orient more efficiently and are biased to align in a CENP-E-independent manner, suggesting that CENP-E dependence for chromosome alignment negatively correlates with kinetochore size. Here, we used targeted phylogenetic profiling of CENP-E in monocentric (localized centromeres) and holocentric (centromeres spanning the entire chromosome length) clades to test this hypothesis at an evolutionary scale. We found that, despite being present in common ancestors, CENP-E was lost more frequently in taxa with holocentric chromosomes, such as Hemiptera and Nematoda. Functional experiments in two nematodes with holocentric chromosomes in which a CENP-E ortholog is absent (Caenorhabditis elegans) or present (Pristionchus pacificus) revealed that targeted expression of human CENP-E to C. elegans kinetochores partially rescued chromosome alignment defects associated with attenuated polar-ejection forces, whereas CENP-E inactivation in P. pacificus had no detrimental effects on mitosis and viability. These data showcase the dispensability of CENP-E for mitotic chromosome alignment in species with larger kinetochores.
Collapse
Affiliation(s)
- Ana C. Almeida
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 400-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 400-135 Porto, Portugal
| | - Helder Rocha
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 400-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 400-135 Porto, Portugal
- Escola Superior de Saúde, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 420-075 Porto, Portugal
| | - Maximilian W. D. Raas
- Oncode Institute, Hubrecht Institute – KNAW, and University Medical Center Utrecht, 3584 CT, Utrecht, Netherlands
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 384 CH Utrecht, the Netherlands
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Max-Planck-Ring 9, 776 Tuebingen, Germany
| | - Ralf J. Sommer
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Max-Planck-Ring 9, 776 Tuebingen, Germany
| | - Berend Snel
- Theoretical Biology and Bioinformatics, Department of Biology, Faculty of Science, Utrecht University, 384 CH Utrecht, the Netherlands
| | - Geert J. P. L. Kops
- Oncode Institute, Hubrecht Institute – KNAW, and University Medical Center Utrecht, 3584 CT, Utrecht, Netherlands
| | - Reto Gassmann
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 400-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 400-135 Porto, Portugal
| | - Helder Maiato
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 400-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen 208, 400-135 Porto, Portugal
- Cell Division Group, Department of Biomedicine, Faculdade de Medicina, Universidade do Porto, Alameda Prof. Hernâni Monteiro, 420-319 Porto, Portugal
| |
Collapse
|
7
|
Wighard S, Sommer RJ. The Role of Epigenetic Switches in Polyphenism Control: Implications from a Nematode Model for the Developmental Regulation of Alternative Phenotypes. BIOLOGY 2024; 13:922. [PMID: 39596877 PMCID: PMC11591871 DOI: 10.3390/biology13110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Polyphenisms, the capability of organisms to form two or more alternative phenotypes in response to environmental variation, are prevalent in nature. However, associated molecular mechanisms and potential general principles of polyphenisms among major organismal groups remain currently unknown. This review focuses on an emerging model system for developmental plasticity and polyphenism research, the nematode Pristionchus pacificus and explores mechanistic insight obtained through unbiased genetic, experimental and natural variation studies. Resulting findings identify a central role for epigenetic switches in the environmental control of alternative phenotypes and their micro-and macroevolution. Several features observed in P. pacificus are shared with insects and plants and might become general principles for the control of polyphenisms during development.
Collapse
Affiliation(s)
- Sara Wighard
- Max Planck Institute for Biology Tuebingen, Department for Integrative Evolutionary Biology, 72076 Tuebingen, Germany;
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Ralf J. Sommer
- Max Planck Institute for Biology Tuebingen, Department for Integrative Evolutionary Biology, 72076 Tuebingen, Germany;
| |
Collapse
|
8
|
Yoshida K, Witte H, Hatashima R, Sun S, Kikuchi T, Röseler W, Sommer RJ. Rapid chromosome evolution and acquisition of thermosensitive stochastic sex determination in nematode androdioecious hermaphrodites. Nat Commun 2024; 15:9649. [PMID: 39511185 PMCID: PMC11544036 DOI: 10.1038/s41467-024-53854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024] Open
Abstract
The factors contributing to evolution of androdioecy, the coexistence of hermaphrodites and males such as in Caenorhabditis elegans, remains poorly known. However, nematodes exhibit androdioecy in at last 13 genera with the predatory genus Pristionchus having seven independent transitions towards androdioecy. Nonetheless, associated genomic architecture and sex determination mechanisms are largely known from Caenorhabditis. Here, studying 47 Pristionchus species, we observed repeated chromosome evolution which abolished the ancestral XX/XO sex chromosome system. Two phylogenetically unrelated androdioecious Pristionchus species have no genomic differences between sexes and mating hermaphrodites with males resulted in hermaphroditic offspring only. We demonstrate that stochastic sex determination is influenced by temperature in P. mayeri and P. entomophagus, and CRISPR engineering indicated a conserved role of the transcription factor TRA-1 in P. mayeri. Chromosome-level genome assemblies and subsequent genomic analysis of related Pristionchus species revealed stochastic sex determination to be derived from XY sex chromosome systems through sex chromosome-autosome fusions. Thus, rapid karyotype evolution, sex chromosome evolution and evolvable sex determination mechanisms are general features of this genus, and represent a dynamic background against which androdioecy has evolved recurrently. Future studies might indicate that stochastic sex determination is more common than currently appreciated.
Collapse
Affiliation(s)
- Kohta Yoshida
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Japan.
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan.
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Ryo Hatashima
- School of Life Science and Technology, Institute of Science Tokyo, Meguro-ku, Tokyo, Japan
| | - Simo Sun
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Taisei Kikuchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
9
|
Ramadan YH, Hobert O. Visualization of gene expression in Pristionchus pacificus with smFISH and in situ HCR. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001274. [PMID: 39132051 PMCID: PMC11316217 DOI: 10.17912/micropub.biology.001274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
Single molecule fluorescence in situ hybridization (smFISH) and in situ hybridization chain reaction (HCR) have become powerful tools to visualize gene expression in many different animal species. We show here that smFISH and in situ HCR can be put to effective use in the satellite nematode model organism Pristionchus pacificus . Examining the expression of a homeobox gene ( Ppa-unc-30) , we found that HCR is more sensitive than smFISH. We confirmed the robustness of HCR by visualization of the expression of several genes involved in neurotransmitter synthesis or transport ( Ppa-unc-25 /GAD, Ppa-unc-17/VAChT, Ppa-eat-4 /VGLUT). Combined with its relative cost-effectiveness compared to smFISH analysis, in situ HCR constitutes a useful addition to the toolbox for P. pacificus research .
Collapse
Affiliation(s)
| | - Oliver Hobert
- Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, United States
| |
Collapse
|
10
|
Theska T, Renahan T, Sommer RJ. Starvation resistance in the nematode Pristionchus pacificus requires a conserved supplementary nuclear receptor. ZOOLOGICAL LETTERS 2024; 10:7. [PMID: 38481284 PMCID: PMC10938818 DOI: 10.1186/s40851-024-00227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/18/2024] [Indexed: 03/17/2024]
Abstract
Nuclear hormone receptors (NHRs) are a deeply-conserved superfamily of metazoan transcription factors, which fine-tune the expression of their regulatory target genes in response to a plethora of sensory inputs. In nematodes, NHRs underwent an explosive expansion and many species have hundreds of nhr genes, most of which remain functionally uncharacterized. However, recent studies have reported that two sister receptors, Ppa-NHR-1 and Ppa-NHR-40, are crucial regulators of feeding-structure morphogenesis in the diplogastrid model nematode Pristionchus pacificus. In the present study, we functionally characterize Ppa-NHR-10, the sister paralog of Ppa-NHR-1 and Ppa-NHR-40, aiming to reveal whether it too regulates aspects of feeding-structure development. We used CRISPR/CAS9-mediated mutagenesis to create small frameshift mutations of this nuclear receptor gene and applied a combination of geometric morphometrics and unsupervised clustering to characterize potential mutant phenotypes. However, we found that Ppa-nhr-10 mutants do not show aberrant feeding-structure morphologies. Instead, multiple RNA-seq experiments revealed that many of the target genes of this receptor are involved in lipid catabolic processes. We hypothesized that their mis-regulation could affect the survival of mutant worms during starvation, where lipid catabolism is often essential. Indeed, using novel survival assays, we found that mutant worms show drastically decreased starvation resistance, both as young adults and as dauer larvae. We also characterized genome-wide changes to the transcriptional landscape in P. pacificus when exposed to 24 h of acute starvation, and found that Ppa-NHR-10 partially regulates some of these responses. Taken together, these results demonstrate that Ppa-NHR-10 is broadly required for starvation resistance and regulates different biological processes than its closest paralogs Ppa-NHR-1 and Ppa-NHR-40.
Collapse
Affiliation(s)
- Tobias Theska
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Tess Renahan
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Max-Planck-Ring 9, 72076, Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Max-Planck-Ring 9, 72076, Tübingen, Germany.
| |
Collapse
|
11
|
Röseler W, Sommer RJ, Rödelsperger C. Nematode genome announcement: A chromosome-scale genome assembly for the Pristionchus pacificus reference mapping strain PS1843. J Nematol 2024; 56:20240063. [PMID: 39290648 PMCID: PMC11406906 DOI: 10.2478/jofnem-2024-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Indexed: 09/19/2024] Open
Abstract
Pristionchus pacificus is a free-living nematode that shares many features with Caenorhabditis elegans, such as its short generation time and hermaphroditism, but also exhibits novel traits, i.e., a mouth-form dimorphism that enables predation. The availability of various genetic tools and genomic resources make it a powerful model organism for comparative studies. Here, we present an updated genome of the P. pacificus strain PS1843 (Washington) that is most widely used for genetic analysis. Assembly of PacBio reads together with reference-guided scaffolding resulted in a chromosome-scale genome spanning 171Mb for the PS1843 strain. Whole genome alignments between the P. pacificus PS1843 genome and the genome of the P. pacificus reference strain PS312 (California) revealed megabase-sized regions on chromosomes III, IV, and X that explain the majority of genome size difference between both strains. The improved PS1843 genome will be useful for future forward genetic studies and evolutionary genomic comparisons at the intra-species level.
Collapse
Affiliation(s)
- Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Max-Planck-Ring 9, 72076Tübingen, Germany
| | - Ralf J. Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Max-Planck-Ring 9, 72076Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Max-Planck-Ring 9, 72076Tübingen, Germany
| |
Collapse
|
12
|
Levis NA, Ragsdale EJ. A histone demethylase links the loss of plasticity to nongenetic inheritance and morphological change. Nat Commun 2023; 14:8439. [PMID: 38114491 PMCID: PMC10730525 DOI: 10.1038/s41467-023-44306-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023] Open
Abstract
Plasticity is a widespread feature of development, enabling phenotypic change based on the environment. Although the evolutionary loss of plasticity has been linked both theoretically and empirically to increased rates of phenotypic diversification, molecular insights into how this process might unfold are generally lacking. Here, we show that a regulator of nongenetic inheritance links evolutionary loss of plasticity in nature to changes in plasticity and morphology as selected in the laboratory. Across nematodes of Diplogastridae, which ancestrally had a polyphenism, or discrete plasticity, in their feeding morphology, we use molecular evolutionary analyses to screen for change associated with independent losses of plasticity. Having inferred a set of ancestrally polyphenism-biased genes from phylogenetically informed gene-knockouts and gene-expression comparisons, selection signatures associated with plasticity's loss identify the histone H3K4 di/monodemethylase gene spr-5/LSD1/KDM1A. Manipulations of this gene affect both sensitivity and variation in plastic morphologies, and artificial selection of manipulated lines drive multigenerational shifts in these phenotypes. Our findings thus give mechanistic insight into how traits are modified as they traverse the continuum of greater to lesser environmental sensitivity.
Collapse
Affiliation(s)
- Nicholas A Levis
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| | - Erik J Ragsdale
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
13
|
Ishita Y, Onodera A, Ekino T, Chihara T, Okumura M. Co-option of an Astacin Metalloprotease Is Associated with an Evolutionarily Novel Feeding Morphology in a Predatory Nematode. Mol Biol Evol 2023; 40:msad266. [PMID: 38105444 PMCID: PMC10753534 DOI: 10.1093/molbev/msad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/14/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Animals consume a wide variety of food sources to adapt to different environments. However, the genetic mechanisms underlying the acquisition of evolutionarily novel feeding morphology remain largely unknown. While the nematode Caenorhabditis elegans feeds on bacteria, the satellite species Pristionchus pacificus exhibits predatory feeding behavior toward other nematodes, which is an evolutionarily novel feeding habit. Here, we found that the astacin metalloprotease Ppa-NAS-6 is required for the predatory killing by P. pacificus. Ppa-nas-6 mutants were defective in predation-associated characteristics, specifically the tooth morphogenesis and tooth movement during predation. Comparison of expression patterns and rescue experiments of nas-6 in P. pacificus and C. elegans suggested that alteration of the spatial expression patterns of NAS-6 may be vital for acquiring predation-related traits. Reporter analysis of the Ppa-nas-6 promoter in C. elegans revealed that the alteration in expression patterns was caused by evolutionary changes in cis- and trans-regulatory elements. This study suggests that the co-option of a metalloprotease is involved in an evolutionarily novel feeding morphology.
Collapse
Affiliation(s)
- Yuuki Ishita
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Ageha Onodera
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Taisuke Ekino
- School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
14
|
Fu Y, Liang F, Li C, Warren A, Shin MK, Li L. Codon Usage Bias Analysis in Macronuclear Genomes of Ciliated Protozoa. Microorganisms 2023; 11:1833. [PMID: 37513005 PMCID: PMC10384029 DOI: 10.3390/microorganisms11071833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Ciliated protozoa (ciliates) are unicellular eukaryotes, several of which are important model organisms for molecular biology research. Analyses of codon usage bias (CUB) of the macronuclear (MAC) genome of ciliates can promote a better understanding of the genetic mode and evolutionary history of these organisms and help optimize codons to improve gene editing efficiency in model ciliates. In this study, the following indices were calculated: the guanine-cytosine (GC) content, the frequency of the nucleotides at the third position of codons (T3, C3, A3, G3), the effective number of codons (ENc), GC content at the 3rd position of synonymous codons (GC3s), and the relative synonymous codon usage (RSCU). Parity rule 2 plot analysis, Neutrality plot analysis, ENc plot analysis, and correlation analysis were employed to explore the main influencing factors of CUB. The results showed that the GC content in the MAC genomes of each of 21 ciliate species, the genomes of which were relatively complete, was lower than 50%, and the base compositions of GC and GC3s were markedly distinct. Synonymous codon analysis revealed that the codons in most of the 21 ciliates ended with A or T and four codons were the general putative optimal codons. Collectively, our results indicated that most of the ciliates investigated preferred using the codons with anof AT-ending and that codon usage bias was affected by gene mutation and natural selection.
Collapse
Affiliation(s)
- Yu Fu
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Fasheng Liang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Congjun Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| | - Alan Warren
- Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - Mann Kyoon Shin
- Department of Biology, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Lifang Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai 264209, China
| |
Collapse
|
15
|
Yoshida K, Rödelsperger C, Röseler W, Riebesell M, Sun S, Kikuchi T, Sommer RJ. Chromosome fusions repatterned recombination rate and facilitated reproductive isolation during Pristionchus nematode speciation. Nat Ecol Evol 2023; 7:424-439. [PMID: 36717742 PMCID: PMC9998273 DOI: 10.1038/s41559-022-01980-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 12/29/2022] [Indexed: 02/01/2023]
Abstract
Large-scale genome-structural evolution is common in various organisms. Recent developments in speciation genomics revealed the importance of inversions, whereas the role of other genome-structural rearrangements, including chromosome fusions, have not been well characterized. We study genomic divergence and reproductive isolation of closely related nematodes: the androdioecious (hermaphroditic) model Pristionchus pacificus and its dioecious sister species Pristionchus exspectatus. A chromosome-level genome assembly of P. exspectatus using single-molecule and Hi-C sequencing revealed a chromosome-wide rearrangement relative to P. pacificus. Strikingly, genomic characterization and cytogenetic studies including outgroup species Pristionchus occultus indicated two independent fusions involving the same chromosome, ChrIR, between these related species. Genetic linkage analysis indicated that these fusions altered the chromosome-wide pattern of recombination, resulting in large low-recombination regions that probably facilitated the coevolution between some of the ~14.8% of genes across the entire genomes. Quantitative trait locus analyses for hybrid sterility in all three sexes revealed that major quantitative trait loci mapped to the fused chromosome ChrIR. While abnormal chromosome segregations of the fused chromosome partially explain hybrid female sterility, hybrid-specific recombination that breaks linkage of genes in the low-recombination region was associated with hybrid male sterility. Thus, recent chromosome fusions repatterned recombination rate and drove reproductive isolation during Pristionchus speciation.
Collapse
Affiliation(s)
- Kohta Yoshida
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany.
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Metta Riebesell
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Simo Sun
- Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Taisei Kikuchi
- Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tübingen, Germany.
| |
Collapse
|
16
|
Lenuzzi M, Witte H, Riebesell M, Rödelsperger C, Hong RL, Sommer RJ. Influence of environmental temperature on mouth-form plasticity in Pristionchus pacificus acts through daf-11-dependent cGMP signaling. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:214-224. [PMID: 34379868 DOI: 10.1002/jez.b.23094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022]
Abstract
Mouth-form plasticity in the nematode Pristionchus pacificus has become a powerful system to identify the genetic and molecular mechanisms associated with developmental (phenotypic) plasticity. In particular, the identification of developmental switch genes that can sense environmental stimuli and reprogram developmental processes has confirmed long-standing evolutionary theory. However, how these genes are involved in the direct sensing of the environment, or if the switch genes act downstream of another, primary environmental sensing mechanism, remains currently unknown. Here, we study the influence of environmental temperature on mouth-form plasticity. We find that environmental temperature does influence mouth-form plasticity in most of the 10 wild isolates of P. pacificus tested in this study. We used one of these strains, P. pacificus RSA635, for detailed molecular analysis. Using forward and reverse genetic technology including CRISPR/Cas9, we show that mutations in the guanylyl cyclase Ppa-daf-11, the Ppa-daf-25/AnkMy2, and the cyclic nucleotide-gated channel Ppa-tax-2 eliminate the response to elevated temperatures. Together, our study indicates that DAF-11, DAF-25, and TAX-2 have been co-opted for environmental sensing during mouth-form plasticity regulation in P. pacificus.
Collapse
Affiliation(s)
- Maša Lenuzzi
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Metta Riebesell
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ray L Hong
- Department of Biology, California State University, Northridge, California, USA
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
17
|
Chitin contributes to the formation of a feeding structure in a predatory nematode. Curr Biol 2023; 33:15-27.e6. [PMID: 36460010 DOI: 10.1016/j.cub.2022.11.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/20/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022]
Abstract
Some nematode predators and parasites form teeth-like denticles that are histologically different from vertebrate teeth, but their biochemical composition remains elusive. Here, we show a role of chitin in the formation of teeth-like denticles in Pristionchus pacificus, a model system for studying predation and feeding structure plasticity. Pristionchus forms two alternative mouth morphs with one tooth or two teeth, respectively. The P. pacificus genome encodes two chitin synthases, with the highly conserved chs-2 gene being composed of 60 exons forming at least four isoforms. Generating CRISPR-Cas9-based gene knockouts, we found that Ppa-chs-2 mutations that eliminate the chitin-synthase domain are lethal. However, mutations in the C terminus result in viable but teethless worms, with severe malformation of the mouth. Similarly, treatment with the chitin-synthase inhibitor Nikkomycin Z also results in teethless animals. Teethless worms can feed on various bacterial food sources but are incapable of predation. High-resolution transcriptomics revealed that Ppa-chs-2 expression is controlled by the sulfatase-encoding developmental switch Ppa-eud-1. This study indicates a key role of chitin in the formation of teeth-like denticles and the complex feeding apparatus in nematodes.
Collapse
|
18
|
Lo WS, Roca M, Dardiry M, Mackie M, Eberhardt G, Witte H, Hong R, Sommer RJ, Lightfoot JW. Evolution and Diversity of TGF-β Pathways are Linked with Novel Developmental and Behavioral Traits. Mol Biol Evol 2022; 39:msac252. [PMID: 36469861 PMCID: PMC9733428 DOI: 10.1093/molbev/msac252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor-β (TGF-β) signaling is essential for numerous biologic functions. It is a highly conserved pathway found in all metazoans including the nematode Caenorhabditis elegans, which has also been pivotal in identifying many components. Utilizing a comparative evolutionary approach, we explored TGF-β signaling in nine nematode species and revealed striking variability in TGF-β gene frequency across the lineage. Of the species analyzed, gene duplications in the DAF-7 pathway appear common with the greatest disparity observed in Pristionchus pacificus. Specifically, multiple paralogues of daf-3, daf-4 and daf-7 were detected. To investigate this additional diversity, we induced mutations in 22 TGF-β components and generated corresponding double, triple, and quadruple mutants revealing both conservation and diversification in function. Although the DBL-1 pathway regulating body morphology appears highly conserved, the DAF-7 pathway exhibits functional divergence, notably in some aspects of dauer formation. Furthermore, the formation of the phenotypically plastic mouth in P. pacificus is partially influenced through TGF-β with the strongest effect in Ppa-tag-68. This appears important for numerous processes in P. pacificus but has no known function in C. elegans. Finally, we observe behavioral differences in TGF-β mutants including in chemosensation and the establishment of the P. pacificus kin-recognition signal. Thus, TGF-β signaling in nematodes represents a stochastic genetic network capable of generating novel functions through the duplication and deletion of associated genes.
Collapse
Affiliation(s)
- Wen-Sui Lo
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Marianne Roca
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior—Caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Mohannad Dardiry
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Marisa Mackie
- Department of Biology, California State University, Northridge, CA
| | - Gabi Eberhardt
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Ray Hong
- Department of Biology, California State University, Northridge, CA
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology Tübingen, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - James W Lightfoot
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior—Caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| |
Collapse
|
19
|
Wighard SS, Athanasouli M, Witte H, Rödelsperger C, Sommer RJ. A New Hope: A Hermaphroditic Nematode Enables Analysis of a Recent Whole Genome Duplication Event. Genome Biol Evol 2022; 14:6868937. [PMID: 36461901 PMCID: PMC9763058 DOI: 10.1093/gbe/evac169] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Whole genome duplication (WGD) is often considered a major driver of evolution that leads to phenotypic novelties. However, the importance of WGD for evolution is still controversial because most documented WGD events occurred anciently and few experimental systems amenable to genetic analysis are available. Here, we report a recent WGD event in the hermaphroditic nematode Allodiplogaster sudhausi and present a comparison with a gonochoristic (male/female) sister species that did not undergo WGD. Self-fertilizing reproduction of A. sudhausi makes it amenable to functional analysis and an ideal system to study WGD events. We document WGD in A. sudhausi through karyotype analysis and whole genome sequencing, the latter of which allowed us to 1) identify functional bias in retention of protein domains and metabolic pathways, 2) show most duplicate genes are under evolutionary constraint, 3) show a link between sequence and expression divergence, and 4) characterize differentially expressed duplicates. We additionally show WGD is associated with increased body size and an abundance of repeat elements (36% of the genome), including a recent expansion of the DNA-hAT/Ac transposon family. Finally, we demonstrate the use of CRISPR/Cas9 to generate mutant knockouts, whereby two WGD-derived duplicate genes display functional redundancy in that they both need to be knocked out to generate a phenotype. Together, we present a novel experimental system that is convenient for examining and characterizing WGD-derived genes both computationally and functionally.
Collapse
Affiliation(s)
- Sara S Wighard
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max Planck Ring 9, 72076 Tübingen, Germany
| | - Marina Athanasouli
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max Planck Ring 9, 72076 Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max Planck Ring 9, 72076 Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max Planck Ring 9, 72076 Tübingen, Germany
| | | |
Collapse
|
20
|
Igreja C, Loschko T, Schäfer A, Sharma R, Quiobe SP, Aloshy E, Witte H, Sommer RJ. Application of ALFA-Tagging in the Nematode Model Organisms Caenorhabditis elegans and Pristionchus pacificus. Cells 2022; 11:3875. [PMID: 36497133 PMCID: PMC9740511 DOI: 10.3390/cells11233875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The detection, manipulation and purification of proteins is key in modern life sciences studies. To achieve this goal, a plethora of epitope tags have been employed in model organisms from bacteria to humans. Recently, the introduction of the rationally designed ALFA-tag resulted in a highly versatile tool with a very broad spectrum of potential applications. ALFA-tagged proteins can be detected by nanobodies, the single-domain antibodies of camelids, allowing for super-resolution microscopy and immunoprecipitation in biochemical applications. Here, we introduce ALFA-tagging into the two nematode model organisms Caenorhabditis elegans and Pristionchus pacificus. We show that the introduction of the DNA sequence, corresponding to the 13 amino acid sequence of the ALFA-tag, can easily be accommodated by CRISPR engineering. We provide examples of high-resolution protein expression in both nematodes. Finally, we use the GW182 ortholog Ppa-ain-1 to show successful pulldowns in P. pacificus. Thus, the ALFA-tag represents a novel epitope tag for nematode research with a broad spectrum of applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ralf J. Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max Planck Ring 9, 72076 Tübingen, Germany
| |
Collapse
|
21
|
Eren GG, Roca M, Han Z, Lightfoot JW. Genomic integration of transgenes using UV irradiation in Pristionchus pacificus. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000576. [PMID: 35693893 PMCID: PMC9187223 DOI: 10.17912/micropub.biology.000576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022]
Abstract
Transgenes are widely used throughout molecular biology for numerous applications. In Caenorhabditis elegans, stable transgenes are usually generated by microinjection into the germline establishing extrachromosomal arrays. Furthermore, numerous technologies exist to integrate transgenes into the C. elegans genome. In the nematode Pristionchus pacificus, transgenes are possible, however, their establishment is less efficient and dependent on the formation of complex arrays containing the transgene of interest and host carrier DNA. Additionally, genomic integration has only been reported via biolistic methods. Here we describe a simple technique using UV irradiation to facilitate the integration of transgenes into the P. pacificus genome.
Collapse
Affiliation(s)
- Güniz Göze Eren
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior – caesar, Bonn, Germany
| | - Marianne Roca
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior – caesar, Bonn, Germany
| | - Ziduan Han
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, Tuebingen, Germany
| | - James W Lightfoot
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior – caesar, Bonn, Germany.
,
Correspondence to: James W Lightfoot (
)
| |
Collapse
|
22
|
Quach KT, Chalasani SH. Flexible reprogramming of Pristionchus pacificus motivation for attacking Caenorhabditis elegans in predator-prey competition. Curr Biol 2022; 32:1675-1688.e7. [PMID: 35259340 PMCID: PMC9050875 DOI: 10.1016/j.cub.2022.02.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/18/2021] [Accepted: 02/09/2022] [Indexed: 12/16/2022]
Abstract
Animals with diverse diets must adapt their food priorities to a wide variety of environmental conditions. This diet optimization problem is especially complex for predators that compete with prey for food. Although predator-prey competition is widespread and ecologically critical, it remains difficult to disentangle predatory and competitive motivations for attacking competing prey. Here, we dissect the foraging decisions of the omnivorous nematode Pristionchus pacificus to reveal that its seemingly failed predatory attempts against Caenorhabditis elegans are actually motivated acts of efficacious territorial aggression. While P. pacificus easily kills and eats larval C. elegans with a single bite, adult C. elegans typically survives and escapes bites. However, non-fatal biting can provide competitive benefits by reducing access of adult C. elegans and its progeny to bacterial food that P. pacificus also eats. We show that the costs and benefits of both predatory and territorial outcomes influence how P. pacificus decides which food goal, prey or bacteria, should guide its motivation for biting. These predatory and territorial motivations impose different sets of rules for adjusting willingness to bite in response to changes in bacterial abundance. In addition to biting, predatory and territorial motivations also influence which search tactic P. pacificus uses to increase encounters with C. elegans. When treated with an octopamine receptor antagonist, P. pacificus switches from territorial to predatory motivation for both biting and search. Overall, we demonstrate that P. pacificus assesses alternate outcomes of attacking C. elegans and flexibly reprograms its foraging strategy to prioritize either prey or bacterial food.
Collapse
Affiliation(s)
- Kathleen T. Quach
- Neurosciences Graduate Program, University of California San Diego, Gilman Drive, La Jolla, CA 92037, USA.,Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sreekanth H. Chalasani
- Neurosciences Graduate Program, University of California San Diego, Gilman Drive, La Jolla, CA 92037, USA.,Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, North Torrey Pines Road, La Jolla, CA 92037, USA.,Lead Contact,Correspondence: , Twitter: @shreklab
| |
Collapse
|
23
|
Synergistic interaction of gut microbiota enhances the growth of nematode through neuroendocrine signaling. Curr Biol 2022; 32:2037-2050.e4. [PMID: 35397201 DOI: 10.1016/j.cub.2022.03.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/23/2022] [Accepted: 03/18/2022] [Indexed: 01/21/2023]
Abstract
Animals are associated with a diverse bacterial community that impacts host physiology. It is well known that nutrients and enzymes synthesized by bacteria largely expand host metabolic capacity. Bacteria also impact a wide range of animal physiology that solely depends on host genetics through direct interaction. However, studying the synergistic effects of the bacterial community remains challenging due to its complexity. The omnivorous nematode Pristionchus pacificus has limited digestive efficiency on bacteria. Therefore, we established a bacterial collection that represents the natural gut microbiota that are resistant to digestion. Using this collection, we show that the bacterium Lysinibacillus xylanilyticus by itself provides limited nutritional value, but in combination with Escherichia coli, it significantly promotes life-history traits of P. pacificus by regulating the neuroendocrine peptide in sensory neurons. This gut-to-brain communication depends on undigested L. xylanilyticus providing Pristionchus nematodes a specific fitness advantage to compete with nematodes that rupture bacteria efficiently. Using RNA-seq and CRISPR-induced mutants, we show that 1-h exposure to L. xylanilyticus is sufficient to stimulate the expression of daf-7-type TGF-β signaling ligands, which induce a global transcriptome change. In addition, several effects of L. xylanilyticus depend on TGF-β signaling, including olfaction, body size regulation, and a switch of energy allocation from lipid storage to reproduction. Our results reveal the beneficial effects of a gut bacterium to modify life-history traits and maximize nematode survival in natural habitats.
Collapse
|
24
|
Woronik A, Kiontke K, Jallad RS, Herrera RA, Fitch DHA. Laser Microdissection for Species-Agnostic Single-Tissue Applications. J Vis Exp 2022:10.3791/63666. [PMID: 35435919 PMCID: PMC9976942 DOI: 10.3791/63666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Single-cell methodologies have revolutionized the analysis of the transcriptomes of specific cell types. However, they often require species-specific genetic "toolkits," such as promoters driving tissue-specific expression of fluorescent proteins. Further, protocols that disrupt tissues to isolate individual cells remove cells from their native environment (e.g., signaling from neighbors) and may result in stress responses or other differences from native gene expression states. In the present protocol, laser microdissection (LMD) is optimized to isolate individual nematode tail tips for the study of gene expression during male tail tip morphogenesis. LMD allows the isolation of a portion of the animal without the need for cellular disruption or species-specific toolkits and is thus applicable to any species. Subsequently, single-cell RNA-seq library preparation protocols such as CEL-Seq2 can be applied to LMD-isolated single tissues and analyzed using standard pipelines, given that a well-annotated genome or transcriptome is available for the species. Such data can be used to establish how conserved or different the transcriptomes are that underlie the development of that tissue in different species. Limitations include the ability to cut out the tissue of interest and the sample size. A power analysis shows that as few as 70 tail tips per condition are required for 80% power. Tight synchronization of development is needed to obtain this number of animals at the same developmental stage. Thus, a method to synchronize animals at 1 h intervals is also described.
Collapse
Affiliation(s)
- Alyssa Woronik
- Center for Developmental Genetics, New York University,Sacred Heart University
| | - Karin Kiontke
- Center for Developmental Genetics, New York University
| | | | | | | |
Collapse
|
25
|
Abstract
The round worms or nematodes are the largest phylum of animals with an estimated species number of more than one million. Nematodes have invaded all ecosystems and are known from all continents including Antarctica. Parasitic species infest plants, animals and humans often with high host-specificity. Free-living species are known from marine, fresh water and soil systems, the latter of which contain many culturable species. This includes Caenorhabditis elegans, a species that was developed as one of the most prominent model systems in modern biology since the 1960ies. Pristionchus pacificus is a second nematode model organism that can easily be cultured in the laboratory. This species shows a number of complex traits including omnivorous feeding and the capability of predation on other nematodes. Predation depends on the formation of teeth-like denticles in the mouth of P. pacificus, structures unknown from C. elegans and most other nematodes. Here, we review the current knowledge about the role of vitamin B12 for the predatory behavior in P. pacificus and correlate its role with that on the physiology and development in C. elegans.
Collapse
Affiliation(s)
- Wen-Sui Lo
- Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Ralf J Sommer
- Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
26
|
Igreja C, Sommer RJ. The Role of Sulfation in Nematode Development and Phenotypic Plasticity. Front Mol Biosci 2022; 9:838148. [PMID: 35223994 PMCID: PMC8869759 DOI: 10.3389/fmolb.2022.838148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/25/2022] Open
Abstract
Sulfation is poorly understood in most invertebrates and a potential role of sulfation in the regulation of developmental and physiological processes of these organisms remains unclear. Also, animal model system approaches did not identify many sulfation-associated mechanisms, whereas phosphorylation and ubiquitination are regularly found in unbiased genetic and pharmacological studies. However, recent work in the two nematodes Caenorhabditis elegans and Pristionchus pacificus found a role of sulfatases and sulfotransferases in the regulation of development and phenotypic plasticity. Here, we summarize the current knowledge about the role of sulfation in nematodes and highlight future research opportunities made possible by the advanced experimental toolkit available in these organisms.
Collapse
Affiliation(s)
- Catia Igreja
- *Correspondence: Catia Igreja, ; Ralf J. Sommer,
| | | |
Collapse
|
27
|
Han Z, Sieriebriennikov B, Susoy V, Lo WS, Igreja C, Dong C, Berasategui A, Witte H, Sommer RJ. Horizontally Acquired Cellulases Assist the Expansion of Dietary Range in Pristionchus Nematodes. Mol Biol Evol 2022; 39:msab370. [PMID: 34978575 PMCID: PMC8826503 DOI: 10.1093/molbev/msab370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Horizontal gene transfer (HGT) enables the acquisition of novel traits via non-Mendelian inheritance of genetic material. HGT plays a prominent role in the evolution of prokaryotes, whereas in animals, HGT is rare and its functional significance is often uncertain. Here, we investigate horizontally acquired cellulase genes in the free-living nematode model organism Pristionchus pacificus. We show that these cellulase genes 1) are likely of eukaryotic origin, 2) are expressed, 3) have protein products that are secreted and functional, and 4) result in endo-cellulase activity. Using CRISPR/Cas9, we generated an octuple cellulase mutant, which lacks all eight cellulase genes and cellulase activity altogether. Nonetheless, this cellulase-null mutant is viable and therefore allows a detailed analysis of a gene family that was horizontally acquired. We show that the octuple cellulase mutant has associated fitness costs with reduced fecundity and slower developmental speed. Furthermore, by using various Escherichia coli K-12 strains as a model for cellulosic biofilms, we demonstrate that cellulases facilitate the procurement of nutrients from bacterial biofilms. Together, our analysis of cellulases in Pristionchus provides comprehensive evidence from biochemistry, genetics, and phylogeny, which supports the integration of horizontally acquired genes into the complex life history strategy of this soil nematode.
Collapse
Affiliation(s)
- Ziduan Han
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Bogdan Sieriebriennikov
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Vladislav Susoy
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Wen-Sui Lo
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Catia Igreja
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Chuanfu Dong
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | | | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max-Planck Institute for Biology, Tuebingen, Germany
| |
Collapse
|
28
|
Sun S, Theska T, Witte H, Ragsdale EJ, Sommer RJ. The oscillating Mucin-type protein DPY-6 has a conserved role in nematode mouth and cuticle formation. Genetics 2021; 220:6481560. [PMID: 35088845 PMCID: PMC9208649 DOI: 10.1093/genetics/iyab233] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/13/2021] [Indexed: 01/09/2023] Open
Abstract
Nematodes show an extraordinary diversity of mouth structures and strikingly different feeding strategies, which has enabled an invasion of all ecosystems. However, nearly nothing is known about the structural and molecular architecture of the nematode mouth (stoma). Pristionchus pacificus is an intensively studied nematode that exhibits unique life history traits, including predation, teeth-like denticle formation, and mouth-form plasticity. Here, we used a large-scale genetic screen to identify genes involved in mouth formation. We identified Ppa-dpy-6 to encode a Mucin-type hydrogel-forming protein that is macroscopically involved in the specification of the cheilostom, the anterior part of the mouth. We used a recently developed protocol for geometric morphometrics of miniature animals to characterize these defects further and found additional defects that affect mouth form, shape, and size resulting in an overall malformation of the mouth. Additionally, Ppa-dpy-6 is shorter than wild-type with a typical Dumpy phenotype, indicating a role in the formation of the external cuticle. This concomitant phenotype of the cheilostom and cuticle provides the first molecular support for the continuity of these structures and for the separation of the cheilostom from the rest of the stoma. In Caenorhabditis elegans, dpy-6 was an early mapping mutant but its molecular identity was only determined during genome-wide RNAi screens and not further investigated. Strikingly, geometric morphometric analysis revealed previously unrecognized cheilostom and gymnostom defects in Cel-dpy-6 mutants. Thus, the Mucin-type protein DPY-6 represents to the best of our knowledge, the first protein involved in nematode mouth formation with a conserved role in cuticle deposition. This study opens new research avenues to characterize the molecular composition of the nematode mouth, which is associated with extreme ecological diversification.
Collapse
Affiliation(s)
- Shuai Sun
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Tobias Theska
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
| | - Erik J Ragsdale
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany,Corresponding author: Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen 72076, Germany.
| |
Collapse
|
29
|
Hiraga H, Ishita Y, Chihara T, Okumura M. Efficient visual screening of CRISPR/Cas9 genome editing in the nematode Pristionchus pacificus. Dev Growth Differ 2021; 63:488-500. [PMID: 34813661 DOI: 10.1111/dgd.12761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/17/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022]
Abstract
CRISPR/Cas9 genome editing has been applied to a wide variety of organisms, including nematodes such as Caenorhabditis elegans and Pristionchus pacificus. In these nematodes, genome editing is achieved by microinjection of Cas9 protein and guide RNA into the hermaphrodite gonads. However, P. pacificus is less efficient in CRISPR/Cas9 genome editing and exogenous gene expression. Therefore, it takes considerable time and effort to screen for target mutants if there are no visual markers that indicate successful injection. To overcome this problem, co-injection markers (gRNA for Ppa-prl-1, which induces the roller phenotype, and Ppa-egl-20p::turboRFP, a plasmid expressing a fluorescent protein) have been developed in P. pacificus. By selecting worms with the roller phenotype or turboRFP expression, screening efficiency is substantially increased to obtain worms with desired mutations. Here, we describe a step-by-step protocol for the visual screening system for CRISPR/Cas9 genome editing in P. pacificus. We also describe technical tips for microinjection, which is difficult for beginners. This protocol will facilitate genome editing in P. pacificus and may be applied to other nematode species.
Collapse
Affiliation(s)
- Hirokuni Hiraga
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yuuki Ishita
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
30
|
Castelletto ML, Hallem EA. Generating Transgenics and Knockouts in Strongyloides Species by Microinjection. J Vis Exp 2021:10.3791/63023. [PMID: 34694289 PMCID: PMC9109651 DOI: 10.3791/63023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The genus Strongyloides consists of multiple species of skin-penetrating nematodes with different host ranges, including Strongyloides stercoralis and Strongyloides ratti. S. stercoralis is a human-parasitic, skin-penetrating nematode that infects approximately 610 million people, while the rat parasite S. ratti is closely related to S. stercoralis and is often used as a laboratory model for S. stercoralis. Both S. stercoralis and S. ratti are easily amenable to the generation of transgenics and knockouts through the exogenous nucleic acid delivery technique of intragonadal microinjection, and as such, have emerged as model systems for other parasitic helminths that are not yet amenable to this technique. Parasitic Strongyloides adults inhabit the small intestine of their host and release progeny into the environment via the feces. Once in the environment, the larvae develop into free-living adults, which live in feces and produce progeny that must find and invade a new host. This environmental generation is unique to the Strongyloides species and similar enough in morphology to the model free-living nematode Caenorhabditis elegans that techniques developed for C. elegans can be adapted for use with these parasitic nematodes, including intragonadal microinjection. Using intragonadal microinjection, a wide variety of transgenes can be introduced into Strongyloides. CRISPR/Cas9 components can also be microinjected to create mutant Strongyloides larvae. Here, the technique of intragonadal microinjection into Strongyloides, including the preparation of free-living adults, the injection procedure, and the selection of transgenic progeny, is described. Images of transgenic Strongyloides larvae created using CRISPR/Cas9 mutagenesis are included. The aim of this paper is to enable other researchers to use microinjection to create transgenic and mutant Strongyloides.
Collapse
Affiliation(s)
- Michelle L Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles; Molecular Biology Institute, University of California, Los Angeles;
| |
Collapse
|
31
|
Sieriebriennikov B, Reinberg D, Desplan C. A molecular toolkit for superorganisms. Trends Genet 2021; 37:846-859. [PMID: 34116864 PMCID: PMC8355152 DOI: 10.1016/j.tig.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
Social insects, such as ants, bees, wasps, and termites, draw biologists' attention due to their distinctive lifestyles. As experimental systems, they provide unique opportunities to study organismal differentiation, division of labor, longevity, and the evolution of development. Ants are particularly attractive because several ant species can be propagated in the laboratory. However, the same lifestyle that makes social insects interesting also hampers the use of molecular genetic techniques. Here, we summarize the efforts of the ant research community to surmount these hurdles and obtain novel mechanistic insight into the biology of social insects. We review current approaches and propose novel ones involving genomics, transcriptomics, chromatin and DNA methylation profiling, RNA interference (RNAi), and genome editing in ants and discuss future experimental strategies.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA; Howard Hughes Medical Institute, NYU Grossman School of Medicine, New York, NY, USA.
| | - Claude Desplan
- Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
32
|
Lightfoot JW, Dardiry M, Kalirad A, Giaimo S, Eberhardt G, Witte H, Wilecki M, Rödelsperger C, Traulsen A, Sommer RJ. Sex or cannibalism: Polyphenism and kin recognition control social action strategies in nematodes. SCIENCE ADVANCES 2021; 7:7/35/eabg8042. [PMID: 34433565 PMCID: PMC8386922 DOI: 10.1126/sciadv.abg8042] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/01/2021] [Indexed: 05/10/2023]
Abstract
Resource polyphenisms, where single genotypes produce alternative feeding strategies in response to changing environments, are thought to be facilitators of evolutionary novelty. However, understanding the interplay between environment, morphology, and behavior and its significance is complex. We explore a radiation of Pristionchus nematodes with discrete polyphenic mouth forms and associated microbivorous versus cannibalistic traits. Notably, comparing 29 Pristionchus species reveals that reproductive mode strongly correlates with mouth-form plasticity. Male-female species exhibit the microbivorous morph and avoid parent-offspring conflict as indicated by genetic hybrids. In contrast, hermaphroditic species display cannibalistic morphs encouraging competition. Testing predation between 36 co-occurring strains of the hermaphrodite P. pacificus showed that killing inversely correlates with genomic relatedness. These empirical data together with theory reveal that polyphenism (plasticity), kin recognition, and relatedness are three major factors that shape cannibalistic behaviors. Thus, developmental plasticity influences cooperative versus competitive social action strategies in diverse animals.
Collapse
Affiliation(s)
- James W Lightfoot
- Max Planck Institute for Developmental Biology, Max-Planck Ring 9, 72076 Tübingen, Germany
- Max Planck Research Group Self-Recognition and Cannibalism, Center of Advanced European Studies and Research (CAESAR), Ludwig-Erhard-Allee 2, Bonn 53175, Germany
| | - Mohannad Dardiry
- Max Planck Institute for Developmental Biology, Max-Planck Ring 9, 72076 Tübingen, Germany
- Department of Genetics, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Ata Kalirad
- Max Planck Institute for Developmental Biology, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Stefano Giaimo
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Gabi Eberhardt
- Max Planck Institute for Developmental Biology, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Hanh Witte
- Max Planck Institute for Developmental Biology, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Martin Wilecki
- Max Planck Institute for Developmental Biology, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Christian Rödelsperger
- Max Planck Institute for Developmental Biology, Max-Planck Ring 9, 72076 Tübingen, Germany
| | - Arne Traulsen
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306 Plön, Germany
| | - Ralf J Sommer
- Max Planck Institute for Developmental Biology, Max-Planck Ring 9, 72076 Tübingen, Germany.
| |
Collapse
|
33
|
Sun S, Roedelsperger C, Sommer RJ. Single worm transcriptomics identifies a developmental core network of oscillating genes with deep conservation across nematodes. Genome Res 2021; 31:1590-1601. [PMID: 34301622 PMCID: PMC8415380 DOI: 10.1101/gr.275303.121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/14/2021] [Indexed: 12/05/2022]
Abstract
High-resolution spatial and temporal maps of gene expression have facilitated a comprehensive understanding of animal development and evolution. In nematodes, the small body size represented a major challenge for such studies, but recent advancements have helped overcome this limitation. Here, we have implemented single worm transcriptomics (SWT) in the nematode model organism Pristionchus pacificus to provide a high-resolution map of the developmental transcriptome. We selected 38 time points from hatching of the J2 larvae to young adults to perform transcriptome analysis over 60 h of postembryonic development. A mean sequencing depth of 4.5 million read pairs allowed the detection of more than 23,135 (80%) of all genes. Nearly 3000 (10%) genes showed oscillatory expression with discrete expression levels, phases, and amplitudes. Gene age analysis revealed an overrepresentation of ancient gene classes among oscillating genes, and around one-third of them have 1:1 orthologs in C. elegans. One important gene family overrepresented among oscillating genes is collagens. Several of these collagen genes are regulated by the developmental switch gene eud-1, indicating a potential function in the regulation of mouth-form plasticity, a key developmental process in this facultative predatory nematode. Together, our analysis provides (1) an updated protocol for SWT in nematodes that is applicable to many microscopic species, (2) a 1- to 2-h high-resolution catalog of P. pacificus gene expression throughout postembryonic development, and (3) a comparative analysis of oscillatory gene expression between the two model organisms P. pacificus and C. elegans and associated evolutionary dynamics.
Collapse
Affiliation(s)
- Shuai Sun
- Max Planck Institute for Developmental Biology
| | | | | |
Collapse
|
34
|
Carstensen HR, Villalon RM, Banerjee N, Hallem EA, Hong RL. Steroid hormone pathways coordinate developmental diapause and olfactory remodeling in Pristionchus pacificus. Genetics 2021; 218:6272519. [PMID: 33963848 DOI: 10.1093/genetics/iyab071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Developmental and behavioral plasticity allow animals to prioritize alternative genetic programs during fluctuating environments. Behavioral remodeling may be acute in animals that interact with host organisms, since reproductive adults and the developmentally arrested larvae often have different ethological needs for chemical stimuli. To understand the genes that coordinate the development and host-seeking behavior, we used the entomophilic nematode Pristionchus pacificus to characterize dauer-constitutive mutants (Daf-c) that inappropriately enter developmental diapause to become dauer larvae. We found two Daf-c loci with dauer-constitutive and cuticle exsheathment phenotypes that can be rescued by the feeding of Δ7-dafachronic acid, and that are dependent on the conserved canonical steroid hormone receptor Ppa-DAF-12. Specifically at one locus, deletions in the sole hydroxysteroid dehydrogenase (HSD) in P. pacificus resulted in Daf-c phenotypes. Ppa-hsd-2 is expressed in the canal-associated neurons (CANs) and excretory cells whose homologous cells in Caenorhabditis elegans are not known to be involved in the dauer decision. While in wildtype only dauer larvae are attracted to host odors, hsd-2 mutant adults show enhanced attraction to the host beetle pheromone, along with ectopic activation of a marker for putative olfactory neurons, Ppa-odr-3. Surprisingly, this enhanced odor attraction acts independently of the Δ7-DA/DAF-12 module, suggesting that Ppa-HSD-2 may be responsible for several steroid hormone products involved in coordinating the dauer decision and host-seeking behavior in P. pacificus.
Collapse
Affiliation(s)
- Heather R Carstensen
- Department of Biology, California State University, Northridge, Northridge, CA 91330-8303, USA
| | - Reinard M Villalon
- Department of Biology, California State University, Northridge, Northridge, CA 91330-8303, USA
| | - Navonil Banerjee
- Department of Microbiology, Immunology & Molecular Genetics and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology & Molecular Genetics and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ray L Hong
- Department of Biology, California State University, Northridge, Northridge, CA 91330-8303, USA
| |
Collapse
|
35
|
Bryant AS, Hallem EA. The Wild Worm Codon Adapter: a web tool for automated codon adaptation of transgenes for expression in non-Caenorhabditis nematodes. G3 (BETHESDA, MD.) 2021; 11:6259089. [PMID: 33914084 PMCID: PMC8496300 DOI: 10.1093/g3journal/jkab146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 01/22/2023]
Abstract
Advances in genomics techniques are expanding the range of nematode species that are amenable to transgenesis. Due to divergent codon usage biases across species, codon optimization is often a critical step for the successful expression of exogenous transgenes in nematodes. Platforms for generating DNA sequences codon-optimized for the free-living model nematode Caenorhabditis elegans are broadly available. However, until now such tools did not exist for non-Caenorhabditis nematodes. We therefore developed the Wild Worm Codon Adapter, a tool for rapid transgene codon optimization for expression in non-Caenorhabditis nematodes. The app includes built-in optimization for parasitic nematodes in the Strongyloides, Nippostrongylus, and Brugia genera as well as the predatory nematode Pristionchus pacificus. The app also supports custom optimization for any species using user-provided optimization rules. In addition, the app supports automated insertion of synthetic or native introns, as well as the analysis of codon bias in transgene and native sequences. Here, we describe this web-based tool and demonstrate how it may be used to analyze genome-wide codon bias in Strongyloides species.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author: University of California, Los Angeles, MIMG, 237 BSRB, 615 Charles E. Young Dr. S., Los Angeles, CA 90095, USA.
| |
Collapse
|
36
|
Kanzaki N. New insight into the tripartite relationship of microbes, nematodes and insects. Environ Microbiol 2021; 23:4856-4858. [PMID: 33684259 DOI: 10.1111/1462-2920.15456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Natsumi Kanzaki
- Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto, Japan
| |
Collapse
|
37
|
|