1
|
Nano spray dryer for vectorizing α-galactosylceramide in polymeric nanoparticles: A single step process to enhance invariant Natural Killer T lymphocyte responses. Int J Pharm 2019; 565:123-132. [DOI: 10.1016/j.ijpharm.2019.05.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/31/2022]
|
2
|
Finkelstein A, Kunis G, Seksenyan A, Ronen A, Berkutzki T, Azoulay D, Koronyo-Hamaoui M, Schwartz M. Abnormal changes in NKT cells, the IGF-1 axis, and liver pathology in an animal model of ALS. PLoS One 2011; 6:e22374. [PMID: 21829620 PMCID: PMC3149057 DOI: 10.1371/journal.pone.0022374] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 06/24/2011] [Indexed: 11/27/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressing fatal neurodegenerative disorder characterized by the selective death of motor neurons (MN) in the spinal cord, and is associated with local neuroinflammation. Circulating CD4+ T cells are required for controlling the local detrimental inflammation in neurodegenerative diseases, and for supporting neuronal survival, including that of MN. T-cell deficiency increases neuronal loss, while boosting T cell levels reduces it. Here, we show that in the mutant superoxide dismutase 1 G93A (mSOD1) mouse model of ALS, the levels of natural killer T (NKT) cells increased dramatically, and T-cell distribution was altered both in lymphoid organs and in the spinal cord relative to wild-type mice. The most significant elevation of NKT cells was observed in the liver, concomitant with organ atrophy. Hepatic expression levels of insulin-like growth factor (IGF)-1 decreased, while the expression of IGF binding protein (IGFBP)-1 was augmented by more than 20-fold in mSOD1 mice relative to wild-type animals. Moreover, hepatic lymphocytes of pre-symptomatic mSOD1 mice were found to secrete significantly higher levels of cytokines when stimulated with an NKT ligand, ex-vivo. Immunomodulation of NKT cells using an analogue of α-galactosyl ceramide (α-GalCer), in a specific regimen, diminished the number of these cells in the periphery, and induced recruitment of T cells into the affected spinal cord, leading to a modest but significant prolongation of life span of mSOD1 mice. These results identify NKT cells as potential players in ALS, and the liver as an additional site of major pathology in this disease, thereby emphasizing that ALS is not only a non-cell autonomous, but a non-tissue autonomous disease, as well. Moreover, the results suggest potential new therapeutic targets such as the liver for immunomodulatory intervention for modifying the disease, in addition to MN-based neuroprotection and systemic treatments aimed at reducing oxidative stress.
Collapse
Affiliation(s)
- Arseny Finkelstein
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | - Gilad Kunis
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | - Akop Seksenyan
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Ayal Ronen
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | - Tamara Berkutzki
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, Israel
| | - David Azoulay
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Michal Schwartz
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
3
|
Tsunoda I, Tanaka T, Taniguchi M, Fujinami RS. Contrasting roles for Valpha14+ natural killer T cells in a viral model for multiple sclerosis. J Neurovirol 2009; 15:90-98. [PMID: 19115130 PMCID: PMC2671644 DOI: 10.1080/13550280802400684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Most natural killer (NK) T cells express an invariant Valpha14 T-cell receptor. To explore the contribution of NKT cells in an animal model for multiple sclerosis, Theiler's murine encephalomyelitis virus (TMEV) infection, TMEV-infected mice were treated with Valpha14 antibody. Treatment during the early stage of infection delayed the onset of demyelinating disease with higher interleukin-4 production, whereas administration during the late stage or weekly resulted in more severe demyelination with enhanced virus persistence. The effect of in vivo depletion of NKT cells differed depending on the stage of infection, suggesting contrasting roles for NKT cells over the disease course.
Collapse
Affiliation(s)
- Ikuo Tsunoda
- Department of Pathology, Division of Cell Biology and Immunology, University of Utah School of Medicine, 30 North 1900 East, Salt Lake City, UT 84132, USA.
| | | | | | | |
Collapse
|
4
|
Tsunoda I, Tanaka T, Fujinami RS. Regulatory role of CD1d in neurotropic virus infection. J Virol 2008; 82:10279-10289. [PMID: 18684818 PMCID: PMC2566251 DOI: 10.1128/jvi.00734-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 07/29/2008] [Indexed: 02/05/2023] Open
Abstract
The GDVII strain of Theiler's murine encephalomyelitis virus (TMEV) causes an acute fatal polioencephalomyelitis in mice. Infection of susceptible mice with the DA strain of TMEV results in an acute polioencephalomyelitis followed by chronic immune-mediated demyelination with virus persistence in the central nervous system (CNS); DA virus infection is used as an animal model for multiple sclerosis. CD1d-restricted natural killer T (NKT) cells can contribute to viral clearance and regulation of autoimmune responses. To investigate the role of CD1d in TMEV infection, we first infected CD1d-deficient mice (CD1(-/-)) and wild-type BALB/c mice with GDVII virus. Wild-type mice were more resistant to virus than CD1(-/-) mice (50% lethal dose titers: wild-type mice, 10 PFU; CD1(-/-) mice, 1.6 PFU). Wild-type mice had fewer viral antigen-positive cells with greater inflammation in the CNS than CD1(-/-) mice. Second, an analysis of DA virus infection in CD1(-/-) mice was conducted. Although both wild-type and CD1(-/-) mice had similar clinical signs during the first 2 weeks after infection, CD1(-/-) mice had an increase in neurological deficits over those observed in wild-type mice at 3 to 5 weeks after infection. Although wild-type mice had no demyelination, 20 and 60% of CD1(-/-) mice developed demyelination at 3 and 5 weeks after infection, respectively. TMEV-specific lymphoproliferative responses, interleukin-4 (IL-4) production, and IL-4/gamma interferon ratios were higher in CD1(-/-) mice than in wild-type mice. Thus, CD1d-restricted NKT cells may play a protective role in TMEV-induced neurological disease by alteration of the cytokine profile and virus-specific immune responses.
Collapse
Affiliation(s)
- Ikuo Tsunoda
- Department of Pathology, Division of Cell Biology & Immunology, University of Utah School of Medicine, 30 North 1900 East, MREB, Room 218, Salt Lake City, UT 84132, USA.
| | | | | |
Collapse
|
5
|
Zhang W, Zheng X, Xia C, Perali RS, Yao Q, Liu Y, Zheng P, Wang PG. Alpha-lactosylceramide as a novel "sugar-capped" CD1d ligand for natural killer T cells: biased cytokine profile and therapeutic activities. Chembiochem 2008; 9:1423-30. [PMID: 18478523 DOI: 10.1002/cbic.200700625] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The invariant natural killer T cells (iNKT) cells have emerged as an important regulator of immunity to infection, cancer, and autoimmune diseases. They can be activated by glycolipids that bind to CD1d. The most effective iNKT ligand reported to date is alpha-galactosylceramide (alpha-GalCer), which stimulates iNKT cells to secrete both Th-1 and Th-2 cytokines. Indiscriminate induction of both types of cytokines could limit the therapeutic potential of iNKT ligands, as Th-1 and Th-2 cytokines play different roles under physiological and pathological conditions. Therefore, a ligand with a biased cytokine-release profile would be highly desirable. Here, we report the synthesis and biological activity of alpha-lactosylceramide (alpha-LacCer). Our data demonstrate that alpha-LacCer can stimulate iNKT cells to proliferate and release cytokines, both in vitro and in vivo. Interestingly, while alpha-LacCer is approximately 1000-times less efficient than alpha-GalCer in inducing Th-1 cytokines, it is as potent as alpha-GalCer in the induction of Th-2 cytokines; therefore, alpha-LacCer is a novel compound that induces a biased cytokine release. Processing by beta-glycosidase was critical for alpha-LacCer activity. Moreover, in vivo experiments suggest that alpha-LacCer is at least as potent as alpha-GalCer in the treatment of tumors and experimental autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Wenpeng Zhang
- Department of Biochemistry, The Ohio State University, 876 Biological Sciences Building, 484 W12th Avenue, Columbus, OH, 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Chen W, Xia C, Wang J, Thapa P, Li Y, Talukdar A, Nadas J, Zhang W, Zhou D, Wang PG. Synthesis and structure-activity relationship study of isoglobotrihexosylceramide analogues. J Org Chem 2007; 72:9914-23. [PMID: 18020363 DOI: 10.1021/jo701539k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Invariant natural killer T (iNKT) cells are innate T lymphocytes that express T cell receptors binding to exogenous and endogenous glycosphingolpid antigens presented by a nonpolymorphic, non-MHC antigen presenting molecule, CD1d. The endogenous glycosphingolipid metabolite, isoglobotrihexosylceramide (iGb3), is the first known natural ligand for both human and mouse iNKT cells, whose activity has been confirmed in a variety of iNKT cell clones generated by different investigators, representing the majority of the iNKT cell population. The signaling pathway mediated by T cell receptor is largely influenced by the structural variation of glycosphingolpid antigens, leading to multiple and varied biological functions of iNKT cells. In order to investigate the structural requirements behind iGb3 triggered iNKT cell activation, the structure-activity relationship (SAR) of iGb3 needs to be characterized. In this study, iGb3 analogues containing 2' '', 3' '', 4' '' and 6' '' deoxy terminal galactose were synthesized for probing the SAR between iGb3 and TCR. The biological assays on the synthetic iGb3 analogues were performed with use of the murine iNKT cell hybridoma DN32.D3. The results showed that the 2' '' and 3' '' hydroxyl groups of terminal galactose play more important roles for the recognition of iGb3 by TCR; while 4' '' and 6' '' hydroxyl groups were not as crucial for this recognition. These studies might help to understand the general structural requirements for natural endogenous ligands recognized by iNKT cells.
Collapse
Affiliation(s)
- Wenlan Chen
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Iizuka A, Ikarashi Y, Yoshida M, Heike Y, Takeda K, Quinn G, Wakasugi H, Kitagawa M, Takaue Y. Interleukin (IL)-4 promotes T helper type 2-biased natural killer T (NKT) cell expansion, which is regulated by NKT cell-derived interferon-gamma and IL-4. Immunology 2007; 123:100-7. [PMID: 18005033 DOI: 10.1111/j.1365-2567.2007.02732.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
CD1d-restricted natural killer T (NKT) cells can rapidly produce T helper type 1 (Th1) and Th2 cytokines and also play regulatory or pathological roles in immune responses. NKT cells are able to expand when cultured with alpha-galactosylceramide (alpha-GalCer) and interleukin (IL)-2 in a CD1d-restricted manner. However, the expansion ratio of human NKT cells is variable from sample to sample. In this study, we sought to determine what factor or factors are responsible for efficient in vitro expansion of NKT cells from various inbred mouse strains. Although the proportion of NKT cells in the spleen was nearly identical in each mouse strain, the growth rates of NKT cells cultured in vitro with alpha-GalCer and IL-2 were highly variable. NKT cells from the B6C3F1 and BDF1 mouse strains expanded more than 20-fold after 4 days in culture. In contrast, NKT cells from the strain C3H/HeN did not proliferate at all. We found that cell expansion efficiency correlated with the level of IL-4 detectable in the supernatant after culture. Furthermore, we found that exogenous IL-4 augmented NKT cell proliferation early in the culture period, whereas interferon (IFN)-gamma tended to inhibit NKT cell proliferation. Thus, the ratio of production of IL-4 and IFN-gamma was important for NKT cell expansion but the absolute levels of these cytokines did not affect expansion. This finding suggests that effective expansion of NKT cells requires Th2-biased culture conditions.
Collapse
Affiliation(s)
- Akira Iizuka
- Chemotherapy Division, National Cancer Center Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Xia C, Zhou D, Liu C, Lou Y, Yao Q, Zhang W, Wang PG. Thio-isoglobotrihexosylceramide, an agonist for activating invariant natural killer T cells. Org Lett 2007; 8:5493-6. [PMID: 17107055 DOI: 10.1021/ol062199b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thio-isoglobotrihexosylceramide (S-iGb3) might be resistant to alpha-galactosidases in antigen-presenting cells and have a longer retaining time in the lysosome before being loaded to CD1d. The biological assay showed that S-iGb3 demonstrates a much higher increase as a stimulatory ligand toward invariant natural killer T (iNKT) cells as compared to iGb3. [structure: see text].
Collapse
Affiliation(s)
- Chengfeng Xia
- Departments of Biochemistry and Chemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Pietropaolo M, Barinas-Mitchell E, Kuller LH. The heterogeneity of diabetes: unraveling a dispute: is systemic inflammation related to islet autoimmunity? Diabetes 2007; 56:1189-97. [PMID: 17322478 DOI: 10.2337/db06-0880] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diabetes is an emblematic example of a heterogeneous disease. Systemic inflammation has emerged as a prominent factor in the type 2 diabetes pathoetiology, but it remains ill-defined in type 1 diabetes. There is a wide spectrum of associations between inflammatory responses and diabetic syndromes. At one end of this spectrum, there is type 1 diabetes for which there is convincing evidence that chronic inflammation of pancreatic islets is a central aspect of disease pathogenesis. At the opposite end, is type 2 diabetes that is clearly associated with systemic inflammation, which could be either the cause or simply mark the underlying pathology. Accumulating evidence has substantiated that a subgroup of adult patients clinically diagnosed with type 2 diabetes exhibit autoantibody responses to islet autoantigens. The presence of these immunologic abnormalities is associated with a severe insulin secretory defect and the absence of signs of systemic inflammation as documented by plasma C-reactive protein and fibrinogen levels that are comparable with those of control populations. Islet autoantibody evaluation should be part of the diagnostic assessment for clinically diagnosed type 2 diabetes not only because it might predict the rate of progression to insulin requirement in adult populations but also to identify a pathogenically distinct disease phenotype characterized by the absence of systemic inflammation and its related disorders. A more appropriate characterization of this subgroup of clinically diagnosed type 2 diabetes, diabetes of autoimmune pathogenesis, will promote future research into the etiology, natural history, and treatment.
Collapse
Affiliation(s)
- Massimo Pietropaolo
- Laboratory of Immunogenetics, The Brehm Center for Type 1 Diabetes and Analysis, Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
10
|
Korshunov VA, Nikonenko TA, Tkachuk VA, Brooks A, Berk BC. Interleukin-18 and macrophage migration inhibitory factor are associated with increased carotid intima-media thickening. Arterioscler Thromb Vasc Biol 2005; 26:295-300. [PMID: 16293799 DOI: 10.1161/01.atv.0000196544.73761.82] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Carotid intima-media thickening (IMT) is a form of vascular remodeling that has a strong genetic component. Recently, we discovered that in response to decreased carotid blood flow SJL mice developed the largest intima among 5 inbred strains. Because the SJL strain is prone to autoimmune diseases, we hypothesized that inflammation contributed to IMT in SJL mice. METHODS AND RESULTS We compared vascular remodeling (induced by 2 weeks of low flow) in 2 strains with small IMT (C3H/HeJ and C3HeB/FeJ) versus 2 strains with large IMT (FVB/NJ and SJL/J). Quantitative immunohistochemistry showed a dramatic increase in inflammatory cells per intima area in SJL compared with other strains. Microarray profiling of inflammatory gene mRNAs from carotids showed significant increases in interleukin (IL)-18 and Mif gene expression in SJL compared with C3HeB/FeJ mice. Increased expression of these genes was confirmed by quantitative reverse-transcription polymerase chain reaction and immunohistochemistry. Furthermore, greater cell proliferation in the intima of SJL accounted for increased intima-media thickening, whereas a higher level of apoptosis and a lower level of proliferation were observed in C3HeB/FeJ mice. CONCLUSIONS The present study indicates that increased expression of Mif and IL-18 cytokines is associated with intima-media thickening in SJL mice, likely by stimulating inflammation and proliferation.
Collapse
Affiliation(s)
- Vyacheslav A Korshunov
- Cardiovascular Research Institute, Department of Medicine, University of Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
11
|
Fujita K, Kobayashi M, Brutkiewicz RR, Hanafusa T, Herndon DN, Suzuki F. Role for IL-4 nonproducing NKT cells in CC-chemokine ligand 2-induced Th2 cell generation. Immunol Cell Biol 2005; 84:44-50. [PMID: 16277637 DOI: 10.1111/j.1440-1711.2005.01400.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
NKT cells from C57Bl/6 mice are known to be the initial cellular source of IL-4 that acts as a trigger for Th2 cell differentiation. CC-chemokine ligand 2 (CCL2) has been described as an initial stimulator of IL-4 production by these cells; however, IL-4 was not produced by NKT cells from BALB/c mice even when Th2 cell responses were established in these mice. In this study, we found a new pathway for CCL2-associated Th2 cell generation in BALB/c mice. Splenic T cells from BALB/c mice produced IL-4 in response to CCL2 stimulation. However, IL-4 production was not seen in cultures of splenic T cells from CD1-/- mice (BALB/c origin), whereas, in the presence of CCL2, splenic T cells from CD1-/- mice produced IL-4 when NKT cells from wild-type mice were added. CCL2 induced IL-4 in cultures of NKT cells cocultured with naive T cells, but IL-4 was not produced by these cells cultured separately with CCL2. Interestingly, IL-4 was produced by naive T cells cocultured with NKT cells that were previously treated with CCL2 (CCL2-NKT cells). In addition, IL-4 was produced by naive T cells supplemented with a culture supernatant of CCL2-NKT cells. These results indicate that, through the production of a soluble factor(s) other than IL-4, NKT cells play a role in the CCL2-associated generation of Th2 cells.
Collapse
Affiliation(s)
- Kazuhiko Fujita
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | | | | | | | | | | |
Collapse
|