1
|
Uno Y, Kawabata I, Ushirozako G, Tsukiyama-Kohara K, Ishizuka M, Mizukawa H, Murayama N, Yamazaki H. Exploration of functional cytochrome P450 4F enzymes in liver, intestine, and kidney from dogs, cats, pigs, and tree shrews and comparison of their metabolic capacities with human P450 4F2 and 4F12. Biochem Pharmacol 2025; 236:116894. [PMID: 40154889 DOI: 10.1016/j.bcp.2025.116894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/28/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Pigs are often used in drug metabolism studies because of their evolutionary proximity to humans, including similarities in their cytochromes P450 (P450s or CYPs). In the current study, the following cDNAs of novel CYP4Fs were isolated and characterized: dog CYP4F22 and CYP4F140; cat CYP4F22 and CYP4F140; pig CYP4F22, CYP4F52, CYP4F53, CYP4F54, CYP4F56, and CYP4F176; and tree shrew CYP4F22. Previously identified pig CYP4F55 cDNA was also isolated. These CYP4F cDNAs contained open reading frames of 522-531 amino acids and shared high sequence identities (60-92 %) with human CYP4Fs. Dog CYP4F3a and CYP4F3b cDNAs were also identified but lacked the 3' end of the coding region. Phylogenetic analysis of amino acid sequences showed that these CYP4Fs were clustered in a species-dependent manner, except for CYP4F3, CYP4F22, and CYP4F140, which were clustered in an isoform-dependent manner. All CYP4F genes, containing 12 coding exons, formed a gene cluster at the corresponding location of the genome in each species. Among the tissue samples analyzed, dog and cat CYP4F140 mRNAs were more abundantly expressed in liver/testis and kidney, respectively. Preferential expression of pig CYP4F mRNAs were found in liver, small intestine, and/or kidney, where the most abundant were CYP4F56, CYP4F52, and CYP4F176 mRNAs, respectively. Enzyme assays using recombinant proteins revealed that all these CYP4Fs oxidized the human CYP4F substrate arachidonic acid at the ω-position, indicating that they are functional enzymes. These findings suggest that dog, cat, pig, and tree shrew CYP4Fs have similar functional characteristics to human CYP4Fs.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan.
| | - Izumi Kawabata
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Genki Ushirozako
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Mayumi Ishizuka
- Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Hazuki Mizukawa
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
2
|
HIFUMI T, TANAKA Y, TSUKIYAMA-KOHARA K, MIYOSHI N. Phyllodes tumor in the mammary gland of a northern tree shrew (Tupaia belangeri). J Vet Med Sci 2025; 87:384-388. [PMID: 39956611 PMCID: PMC11964854 DOI: 10.1292/jvms.24-0444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/04/2025] [Indexed: 02/18/2025] Open
Abstract
A rapidly growing mass was observed in the left third mammary gland of a 5-and-a-half-year-old intact female northern tree shrew (Tupaia belangeri). Histopathologically, the mass was composed of numerous irregularly dilated mammary ducts with a pericanalicular or intracanalicular pattern. These mammary ducts showed a leaf-like structure due to the proliferations of surrounding spindle-shaped neoplastic cells with moderate to severe nuclear atypia. We diagnosed this case as a phyllodes tumor in a mammary gland of a northern tree shrew (Tupaia belangeri), which closely resembled those occurring in the human breast histopathologically. To the best of our knowledge, this is the first report of a phyllodes tumor in the mammary gland of a northern tree shrew (Tupaia belangeri).
Collapse
Affiliation(s)
- Tatsuro HIFUMI
- Laboratory of Veterinary Histopathology, Joint Faculty of
Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Yuki TANAKA
- Laboratory of Veterinary Histopathology, Joint Faculty of
Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Kyoko TSUKIYAMA-KOHARA
- Transboundary Animal Diseases Center, Joint Faculty of
Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Noriaki MIYOSHI
- Laboratory of Veterinary Histopathology, Joint Faculty of
Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
3
|
Rashid MHO, Kayesh MEH, Hashem MA, Hifumi T, Ogawa S, Miyoshi N, Tanaka Y, Kohara M, Tsukiyama-Kohara K. Adeno-associated virus 2 CRISPR/Cas9-mediated targeting of hepatitis B virus in tree shrews. Virus Res 2025; 354:199550. [PMID: 39988206 PMCID: PMC11909760 DOI: 10.1016/j.virusres.2025.199550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/09/2025] [Accepted: 02/21/2025] [Indexed: 02/25/2025]
Abstract
Chronic hepatitis B virus (HBV) infection is a global health issue with limited therapeutic options given the persistence of viral episomal DNA (cccDNA). Previously, we investigated the effects of adeno-associated virus 2 (AAV2) vector-mediated delivery of three guide (g)RNAs/Cas9 selected from 16 gRNAs. AAV2/WJ11-Cas9 effectively suppressed HBV replication in vitro and in humanized chimeric mouse livers. In the present study, we examined the effect of AAV2/WJ11-Cas9 on the acute phase of HBV genotype F infection in an immunocompetent northern tree shrew (Tupaia belangeri; hereafter, "tupaia") model. AAV2/WJ11-Cas9 treatment significantly reduced the HBV viral load in serum at 1, 7, 10, and 14 days post-infection (dpi). HBV-F infection caused enlargement of hepatocytes and mild lymphocytic infiltration in the interlobular connective tissue. Thus, the virus damages hepatocytes and drives infection progression and HBV core antigen (HBcAg) accumulation, which were not observed in AAV2/WJ11-Cas9 treated and normal liver tissues. AAV2/WJ11-Cas9 treatment reduced HBV DNA and cccDNA in liver tissues, as well as serum levels of HBV surface antigen and HBV core-related antigen (HBcrAg), including HBcAg and HBeAg at 14 dpi. Anti-HBc, anti-HBs, and anti-AAV Abs production was also detected. AAV2/WJ11-Cas9 treatment suppressed inflammatory cytokines and TLR1, TLR2, TLR3, TLR4, TLR6, TLR7, and TLR9 mRNA levels. Thus, WJ11/Cas9 delivered by AAV2 vectors may provide a new therapeutic approach for inhibiting HBV infection in immunocompetent animal models, which could be developed for use in humans through further translational research.
Collapse
Affiliation(s)
- Md Haroon Or Rashid
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Mohammad Enamul Hoque Kayesh
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Department of Microbiology and Public Health, Patuakhali Science and Technology University, Bangladesh
| | - Md Abul Hashem
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tatsuro Hifumi
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Shintaro Ogawa
- Faculty of Life Sciences, Kumamoto University 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Noriaki Miyoshi
- Department of Veterinary Histopathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Yasuhito Tanaka
- Faculty of Life Sciences, Kumamoto University 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Japan
| | - Kyoko Tsukiyama-Kohara
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
4
|
Uno Y, Minami Y, Tsukiyama-Kohara K, Murayama N, Yamazaki H. Identification of cytochrome P450 2C18 and 2C76 in tree shrews: P450 2C18 effectively oxidizes typical human P450 2C9/2C19 chiral substrates warfarin and omeprazole with less stereoselectivity. Biochem Pharmacol 2024; 228:115990. [PMID: 38110158 DOI: 10.1016/j.bcp.2023.115990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/20/2023]
Abstract
Cytochromes P450 (P450s or CYPs), especially the CYP2C family, are important drug-metabolizing enzymes that play major roles in drug metabolism. Tree shrews, a non-rodent primate-like species, are used in various fields of biomedical research, notably hepatitis virus infection; however, its drug-metabolizing enzymes have not been fully investigated. In this study, tree shrew CYP2C18, CYP2C76a, CYP2C76b, and CYP2C76c cDNAs were identified and contained open reading frames of 489 or 490 amino acids with high sequence identities (70-78 %) to human CYP2Cs. Tree shrew CYP2C76a, CYP2C76b, and CYP2C76c showed higher sequence identities (79-80 %) to cynomolgus CYP2C76 and were not orthologous to any human CYP2C. Phylogenetic analysis revealed that tree shrew CYP2C18 and CYP2C76s were closely related to rat CYP2Cs and cynomolgus CYP2C76, respectively. Tree shrew CYP2C genes formed a gene cluster similar to human CYP2C genes. All four tree shrew CYP2C mRNAs showed predominant expressions in liver, among the tissue types examined; expression of CYP2C18 mRNA was also detected in small intestine. In liver, CYP2C18 mRNA was the most abundant among the tree shrew CYP2C mRNAs. In metabolic assays using human CYP2C substrates, all tree shrew CYP2Cs showed metabolic activities toward diclofenac, R,S-omeprazole, paclitaxel, and R,S-warfarin, with the activity of CYP2C18 exceeding that of the other CYP2Cs. Moreover, tree shrew CYP2C76 enzymes metabolized progesterone more efficiently than human, cynomolgus, or marmoset CYP2Cs. Therefore, these novel tree shrew CYP2Cs are expressed abundantly in liver, encode functional enzymes that metabolize human CYP2C substrates, and are likely responsible for drug clearances.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan.
| | - Yuhki Minami
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Norie Murayama
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
5
|
Uno Y, Shimizu M, Yamazaki H. A variety of cytochrome P450 enzymes and flavin-containing monooxygenases in dogs and pigs commonly used as preclinical animal models. Biochem Pharmacol 2024; 228:116124. [PMID: 38490520 DOI: 10.1016/j.bcp.2024.116124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Drug oxygenation is mainly mediated by cytochromes P450 (P450s, CYPs) and flavin-containing monooxygenases (FMOs). Polymorphic variants of P450s and FMOs are known to influence drug metabolism. Species differences exist in terms of drug metabolism and can be important when determining the contributions of individual enzymes. The success of research into drug-metabolizing enzymes and their impacts on drug discovery and development has been remarkable. Dogs and pigs are often used as preclinical animal models. This research update provides information on P450 and FMO enzymes in dogs and pigs and makes comparisons with their human enzymes. Newly identified dog CYP3A98, a testosterone 6β- and estradiol 16α-hydroxylase, is abundantly expressed in small intestine and is likely the major CYP3A enzyme in small intestine, whereas dog CYP3A12 is the major CYP3A enzyme in liver. The roles of recently identified dog CYP2J2 and pig CYP2J33/34/35 were investigated. FMOs have been characterized in humans and several other species including dogs and pigs. P450 and FMO family members have been characterized also in cynomolgus macaques and common marmosets. P450s have industrial applications and have been the focus of attention of many pharmaceutical companies. The techniques used to investigate the roles of P450/FMO enzymes in drug oxidation and clinical treatments have not yet reached maturity and require further development. The findings summarized here provide a foundation for understanding individual pharmacokinetic and toxicological results in dogs and pigs as preclinical models and will help to further support understanding of the molecular mechanisms of human P450/FMO functionality.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Makiko Shimizu
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
6
|
Uno Y, Tsukiyama-Kohara K, Ishizuka M, Mizukawa H, Murayama N, Yamazaki H. Investigation of Functional Cytochrome P450 4A Enzymes in Liver and Kidney of Pigs, Cats, Tree Shrews, and Dogs in Comparison with the Metabolic Capacity of Human P450 4A11. Drug Metab Dispos 2024; 52:1009-1019. [PMID: 38951034 DOI: 10.1124/dmd.124.001780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024] Open
Abstract
Pigs are sometimes used in preclinical drug metabolism studies, with growing interest, and thus their drug-metabolizing enzymes, including the cytochromes P450 (P450 or CYP; EC 1.14.14.1), need to be examined. In the present study, novel CYP4A cDNAs were isolated and characterized, namely, pig CYP4A23 and CYP4A90; cat CYP4A37 and CYP4A106; and tree shrew CYP4A11a, CYP4A11d, CYP4A11e, CYP4A11f, and CYP4A11g. For comparison, the following known CYP4A cDNAs were also analyzed: pig CYP4A21 and dog CYP4A37, CYP4A38, and CYP4A39. These CYP4A cDNAs all contained open reading frames of 504-513 amino acids and had high amino acid sequence identity (74%-80%) with human CYP4As. Phylogenetic analysis of amino acid sequences revealed that these CYP4As were clustered in each species. All CYP4A genes contained 12 coding exons and formed a gene cluster in the corresponding genomic regions. A range of tissue types were analyzed, and these CYP4A mRNAs were preferentially expressed in liver and/or kidney, except for pig CYP4A90, which showed preferential expression in lung and duodenum. CYP4A enzymes, heterologously expressed in Escherichia coli, preferentially catalyzed lauric acid 12-hydroxylation and arachidonic acid 20-hydroxylation, just as human CYP4A11 does, with the same regioselectivity (i.e., at the ω-position of fatty acids). These results imply that dog, cat, pig, and tree shrew CYP4As have functional characteristics similar to those of human CYP4A11, with minor differences in lauric acid 12-hydroxylation. SIGNIFICANCE STATEMENT: Cytochrome P450 (P450, CYP) 4As are important P450s in human biological processes because of their fatty acid-metabolizing ability. Pig CYP4A21, CYP4A23, and CYP4A90; cat CYP4A37 and CYP4A106; tree shrew CYP4A11a, CYP4A11d, CYP4A11e, CYP4A11f, and CYP4A11g; and dog CYP4A37, CYP4A38, and CYP4A39 cDNAs were isolated and analyzed. These CYP4A cDNAs shared relatively high sequence identities with human CYP4A11 and CYP4A22. Pig, cat, tree shrew, and dog CYP4As in the liver and kidneys are likely to catalyze the ω-hydroxylation of fatty acids.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima City, Kagoshima, Japan (Y.U., K.T.-K.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (M.I.); Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan (H.M.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima City, Kagoshima, Japan (Y.U., K.T.-K.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (M.I.); Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan (H.M.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Mayumi Ishizuka
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima City, Kagoshima, Japan (Y.U., K.T.-K.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (M.I.); Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan (H.M.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Hazuki Mizukawa
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima City, Kagoshima, Japan (Y.U., K.T.-K.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (M.I.); Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan (H.M.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Norie Murayama
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima City, Kagoshima, Japan (Y.U., K.T.-K.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (M.I.); Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan (H.M.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Hiroshi Yamazaki
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima City, Kagoshima, Japan (Y.U., K.T.-K.); Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan (M.I.); Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan (H.M.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| |
Collapse
|
7
|
Woo Y, Ma M, Okawa M, Saito T. Hepatocyte Intrinsic Innate Antiviral Immunity against Hepatitis Delta Virus Infection: The Voices of Bona Fide Human Hepatocytes. Viruses 2024; 16:740. [PMID: 38793622 PMCID: PMC11126147 DOI: 10.3390/v16050740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/24/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024] Open
Abstract
The pathogenesis of viral infection is attributed to two folds: intrinsic cell death pathway activation due to the viral cytopathic effect, and immune-mediated extrinsic cellular injuries. The immune system, encompassing both innate and adaptive immunity, therefore acts as a double-edged sword in viral infection. Insufficient potency permits pathogens to establish lifelong persistent infection and its consequences, while excessive activation leads to organ damage beyond its mission to control viral pathogens. The innate immune response serves as the front line of defense against viral infection, which is triggered through the recognition of viral products, referred to as pathogen-associated molecular patterns (PAMPs), by host cell pattern recognition receptors (PRRs). The PRRs-PAMPs interaction results in the induction of interferon-stimulated genes (ISGs) in infected cells, as well as the secretion of interferons (IFNs), to establish a tissue-wide antiviral state in an autocrine and paracrine manner. Cumulative evidence suggests significant variability in the expression patterns of PRRs, the induction potency of ISGs and IFNs, and the IFN response across different cell types and species. Hence, in our understanding of viral hepatitis pathogenesis, insights gained through hepatoma cell lines or murine-based experimental systems are uncertain in precisely recapitulating the innate antiviral response of genuine human hepatocytes. Accordingly, this review article aims to extract and summarize evidence made possible with bona fide human hepatocytes-based study tools, along with their clinical relevance and implications, as well as to identify the remaining gaps in knowledge for future investigations.
Collapse
Affiliation(s)
- Yein Woo
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Muyuan Ma
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Masashi Okawa
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- R&D Department, PhoenixBio USA Corporation, New York, NY 10006, USA
| | - Takeshi Saito
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- USC Research Center for Liver Diseases, Los Angeles, CA 90033, USA
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
8
|
Ushirozako G, Murayama N, Tsukiyama-Kohara K, Yamazaki H, Uno Y. Novel Tree Shrew Cytochrome P450 2Ds (CYP2D8a and CYP2D8b) Are Functional Drug-Metabolizing Enzymes that Metabolize Bufuralol and Dextromethorphan. Drug Metab Dispos 2024; 52:305-311. [PMID: 38262704 DOI: 10.1124/dmd.123.001603] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024] Open
Abstract
Tree shrews are a nonprimate species used in a range of biomedical studies. Recent genome analysis of tree shrews found that the sequence identities and the numbers of genes of cytochrome P450 (CYP or P450), an important family of drug-metabolizing enzymes, are similar to those of humans. However, tree shrew P450s have not yet been sufficiently identified and analyzed. In this study, novel CYP2D8a and CYP2D8b cDNAs were isolated from tree shrew liver and were characterized, along with human CYP2D6, dog CYP2D15, and pig CYP2D25. The amino acid sequences of these tree shrew CYP2Ds were 75%-78% identical to human CYP2D6, and phylogenetic analysis showed that they were more closely related to human CYP2D6 than rat CYP2Ds, similar to dog and pig CYP2Ds. For tree shrew CYP2D8b, two additional transcripts were isolated that contained different patterns of deletion. The gene and genome structures of CYP2Ds are generally similar in dogs, humans, pigs, and tree shrews. Tree shrew CYP2D8a mRNA was most abundantly expressed in liver, among the tissue types analyzed, similar to dog CYP2D15 and pig CYP2D25 mRNAs. Tree shrew CYP2D8b mRNA was also expressed in liver, but at a level 7.3-fold lower than CYP2D8a mRNA. Liver microsomes and recombinant protein of both tree shrew CYP2Ds metabolized bufuralol and dextromethorphan, selective substrates of human CYP2D6, but the activity level of CYP2D8a greatly exceeded that of CYP2D8b. These results suggest that tree shrew CYP2D8a and CYP2D8b are functional drug-metabolizing enzymes, of which CYP2D8a is the major CYP2D in liver. SIGNIFICANCE STATEMENT: Novel tree shrew CYP2D8a and CYP2D8b cDNAs were isolated from liver. Their amino acid sequences were 75%-78% identical to human CYP2D6. For CYP2D8b, two additional transcripts contained different patterns of deletion. Tree shrew CYP2D8a mRNA was abundantly expressed in liver, similar to dog CYP2D15 and pig CYP2D25 mRNAs. Recombinant tree shrew CYP2Ds catalyzed the oxidation of bufuralol and dextromethorphan. Tree shrew CYP2D8a and CYP2D8b are functional drug-metabolizing enzymes, of which CYP2D8a is the major CYP2D in liver.
Collapse
Affiliation(s)
- Genki Ushirozako
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima, Japan (G.U., K.T.-K., Y.U.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Norie Murayama
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima, Japan (G.U., K.T.-K., Y.U.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima, Japan (G.U., K.T.-K., Y.U.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Hiroshi Yamazaki
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima, Japan (G.U., K.T.-K., Y.U.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| | - Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima, Japan (G.U., K.T.-K., Y.U.); and Showa Pharmaceutical University, Machida, Tokyo, Japan (N.M., H.Y.)
| |
Collapse
|
9
|
Uno Y, Makiguchi M, Ushirozako G, Tsukiyama-Kohara K, Shimizu M, Yamazaki H. Molecular and functional characterization of flavin-containing monooxygenases (FMO1-6) in tree shrews. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109835. [PMID: 38215804 DOI: 10.1016/j.cbpc.2024.109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/08/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Flavin-containing monooxygenases (FMOs) are a family of important drug oxygenation enzymes that, in humans, consist of five functional enzymes (FMO1-5) and a pseudogene (FMO6P). The tree shrew is a non-rodent primate-like species that is used in various biomedical studies, but its usefulness in drug metabolism research has not yet been investigated. In this study, tree shrew FMO1-6 cDNAs were isolated and characterized by sequence analysis, tissue expression, and metabolic function. Compared with human FMOs, tree shrew FMOs showed sequence identities of 85-90 % and 81-89 %, respectively, for cDNA and amino acids. Phylogenetic analysis showed that each tree shrew and human FMO were closely clustered. The genomic and genetic structures of the FMO genes were conserved in tree shrews and humans. Among the five tissue types analyzed (lung, heart, kidney, small intestine, and liver), FMO3 and FMO1 mRNAs were most abundant in liver and kidney, respectively. Recombinant tree shrew FMO1-6 proteins expressed in bacterial membranes all mediated benzydamine and trimethylamine N-oxygenations and methyl p-tolyl sulfide S-oxygenation. The selective human FMO3 substrate trimethylamine was predominantly metabolized by tree shrew FMO3. Additionally, tree shrew FMO6 was active toward trimethylamine, as is cynomolgus macaque FMO6, in contrast with the absence of activity of the human FMO6P pseudogene product. Tree shrew FMO1-6, which are orthologous to human FMOs (FMO1-5 and FMO6P) were identified, and tree shrew FMO3 has functional and molecular features generally comparable to those of human FMO3 as the predominant FMO in liver.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan.
| | - Miaki Makiguchi
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Genki Ushirozako
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
10
|
Ushirozako G, Murayama N, Tsukiyama-Kohara K, Yamazaki H, Uno Y. Tree shrew cytochrome P450 2E1 is a functional enzyme that metabolises chlorzoxazone and p-nitrophenol. Xenobiotica 2023; 53:573-580. [PMID: 37934191 DOI: 10.1080/00498254.2023.2280996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/05/2023] [Indexed: 11/08/2023]
Abstract
Cytochromes P450 (CYPs or P450s) are important enzymes for drug metabolism. Tree shrews are non-primate animal species used in various fields of biomedical research, including infection (especially hepatitis viruses), depression, and myopia. A recent tree shrew genome analysis indicated that the sequences and the numbers of P450 genes are similar to those of humans; however, P450s have not been adequately identified and analysed in this species.In this study, a novel CYP2E1 was isolated from tree shrew liver and was characterised in comparison with human, dog, and pig CYP2E1. Tree shrew CYP2E1 and human CYP2E1 showed high amino acid sequence identity (83%) and were closely related in a phylogenetic tree.Gene and genome structures of CYP2E1 were generally similar in humans, dogs, pigs, and tree shrews. Tissue expression patterns showed that tree shrew CYP2E1 mRNA was predominantly expressed in liver, just as for dog and pig CYP2E1 mRNAs. In tree shrews, recombinant CYP2E1 protein and liver microsomes metabolised chlorzoxazone and p-nitrophenol, probe substrates of human CYP2E1, just as they do in dogs and pigs.These results suggest that tree shrew CYP2E1 encodes a functional drug-metabolising enzyme that plays a role in the liver, similar to human CYP2E1.
Collapse
Affiliation(s)
- Genki Ushirozako
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan
| | | | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Tokyo, Japan
| | - Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Japan
| |
Collapse
|
11
|
Ushirozako G, Noda Y, Murayama N, Kawaguchi H, Tsukiyama-Kohara K, Yamazaki H, Uno Y. Newly Identified Tree Shrew Cytochrome P450 2A13 is Expressed in Liver and Lung and Encodes a Functional Drug-Metabolizing Enzyme Similar to Dog Cytochrome P450 2A13 and Pig Cytochrome P450 2A19. Drug Metab Dispos 2023; 51:610-617. [PMID: 36669854 DOI: 10.1124/dmd.122.001152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/17/2022] [Accepted: 01/13/2023] [Indexed: 01/22/2023] Open
Abstract
The tree shrew, a non-rodent primate-like species, is used in various fields of biomedical research, including hepatitis virus infection, myopia, depression, and toxicology. Recent genome analysis found that the numbers of cytochrome P450 (P450 or CYP) genes are similar in tree shrews and humans and their sequence identities are high. Although the P450s are a family of important drug-metabolizing enzymes, they have not yet been fully investigated in tree shrews. In the current study, tree shrew CYP2A13 cDNA was isolated from liver, and its characteristics were compared with those of pig, dog, and human CYP2As. Tree shrew CYP2A13 amino acid sequences were highly identical (87-92%) to the human CYP2As and contained sequence motifs characteristic of P450s. Phylogenetic analysis revealed that tree shrew CYP2A13 was more closely related to human CYP2As than to rat CYP2As, similar to dog and pig CYP2As. Among the tissue types analyzed, tree shrew CYP2A13 mRNA was preferentially expressed in liver and lung, similar to dog CYP2A13 mRNA, whereas dog CYP2A25 and pig CYP2A19 mRNAs were predominantly expressed in liver. Tree shrew liver microsomes and tree shrew CYP2A13 proteins heterologously expressed in Escherichia coli catalyzed coumarin 7-hydroxylation and phenacetin O-deethylation, just as human, dog, and pig CYP2A proteins and liver microsomes do. These results demonstrate that tree shrew CYP2A13 is expressed in liver and lung and encodes a functional drug-metabolizing enzyme. SIGNIFICANCE STATEMENT: Novel tree shrew cytochrome P450 2A13 (CYP2A13) was identified and characterized in comparison with human, dog, and pig CYP2As. Tree shrew CYP2A13 isolated from liver had high sequence identities and close phylogenetic relationships to its human homologs and was abundantly expressed in liver and lung at the mRNA level. Tree shrew CYP2A13 metabolized coumarin and phenacetin, human selective CYP2A6 and CYP2A13 substrates, respectively, similar to dog and pig CYP2As, and is a functional drug-metabolizing enzyme likely responsible for drug clearances.
Collapse
Affiliation(s)
- Genki Ushirozako
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (G.U., Y.U.); Showa Pharmaceutical University, Tokyo, Japan (Y.N., N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.); and Transboundary Animal Diseases Center and Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (K.T.-K.)
| | - Yutaro Noda
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (G.U., Y.U.); Showa Pharmaceutical University, Tokyo, Japan (Y.N., N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.); and Transboundary Animal Diseases Center and Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (K.T.-K.)
| | - Norie Murayama
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (G.U., Y.U.); Showa Pharmaceutical University, Tokyo, Japan (Y.N., N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.); and Transboundary Animal Diseases Center and Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (K.T.-K.)
| | - Hiroaki Kawaguchi
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (G.U., Y.U.); Showa Pharmaceutical University, Tokyo, Japan (Y.N., N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.); and Transboundary Animal Diseases Center and Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (K.T.-K.)
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (G.U., Y.U.); Showa Pharmaceutical University, Tokyo, Japan (Y.N., N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.); and Transboundary Animal Diseases Center and Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (K.T.-K.)
| | - Hiroshi Yamazaki
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (G.U., Y.U.); Showa Pharmaceutical University, Tokyo, Japan (Y.N., N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.); and Transboundary Animal Diseases Center and Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (K.T.-K.)
| | - Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (G.U., Y.U.); Showa Pharmaceutical University, Tokyo, Japan (Y.N., N.M., H.Y.); School of Veterinary Medicine, Kitasato University, Aomori, Japan (H.K.); and Transboundary Animal Diseases Center and Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan (K.T.-K.)
| |
Collapse
|
12
|
Uno Y, Jikuya S, Noda Y, Oguchi A, Murayama N, Kawaguchi H, Tsukiyama-Kohara K, Yamazaki H. Newly identified cytochrome P450 3A genes of tree shrews and pigs are expressed and encode functional enzymes. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109579. [PMID: 36822299 DOI: 10.1016/j.cbpc.2023.109579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Novel cytochrome P450 3A5 (CYP3A5) cDNA in tree shrews (which are non-rodent primate-like species) and pig CYP3A227 cDNA were identified, along with known pig CYP3A22, CYP3A29, and CYP3A46 cDNAs. All five cDNAs contained open reading frames encoding a polypeptide of 503 amino acids that shared high sequence identity (72-78 %) with human CYP3A4 and were more closely related to human CYP3As than rat CYP3As by phylogenetic analysis. CYP3A5 was the only CYP3A in the tree shrew genome, but pig CYP3A genes formed a CYP3A gene cluster in the genomic region corresponding to that of human CYP3A genes. Tree shrew CYP3A5 mRNA was predominantly expressed in liver and small intestine, among the tissues analyzed, whereas pig CYP3A227 mRNA was most abundantly expressed in jejunum, followed by liver. Metabolic assays established that tree shrew CYP3A5 and pig CYP3A proteins heterologously expressed in Escherichia coli metabolized typical human CYP3A4 substrates nifedipine and midazolam. These results suggest that novel tree shrew CYP3A5 and pig CYP3A227 were functional enzymes able to metabolize human CYP3A4 substrates in liver and small intestine, similar to human CYP3A4, although pig CYP3A227 mRNA was minimally expressed in all tissues analyzed.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan.
| | - Shiori Jikuya
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Yutaro Noda
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Asuka Oguchi
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Norie Murayama
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Hiroaki Kawaguchi
- School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Kyoko Tsukiyama-Kohara
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan; Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan; Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan
| | - Hiroshi Yamazaki
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
13
|
Uno Y, Noda Y, Murayama N, Tsukiyama-Kohara K, Yamazaki H. Novel cytochrome P450 1 (CYP1) genes in tree shrews are expressed and encode functional drug-metabolizing enzymes. Comp Biochem Physiol C Toxicol Pharmacol 2023; 265:109534. [PMID: 36563947 DOI: 10.1016/j.cbpc.2022.109534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/19/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Tree shrews (Tupaia belangeri) are a non-rodent primate-like species sometimes used for biomedical research involving hepatitis virus infections and toxicology. Genome analysis has indicated similarities between tree shrews and humans in the numbers of cytochromes P450 (P450 or CYP), which constitute a family of important drug-metabolizing enzymes; however, P450s have not been fully investigated in tree shrews. In this study, we identified CYP1A1, CYP1A2, CYP1B1, and CYP1D1 cDNAs from tree shrew liver and compared their characteristics with dog, pig, and human CYP1As. The deduced amino acid sequences of tree shrew CYP1s were highly identical (82-87 %) to human CYP1s. In tree shrews, CYP1A1 and CYP1A2 mRNAs were preferentially expressed in liver, whereas CYP1D1 mRNA was preferentially expressed in kidney and lung. In contrast, CYP1B1 mRNA was expressed in various tissues, with the most abundant expression in spleen. Among the tree shrew CYP1 mRNAs, CYP1A2 mRNA was most abundant in liver, and CYP1B1 mRNA was most abundant in kidney, small intestine, and lung. All tree shrew CYP1 proteins heterologously expressed in Escherichia coli catalyzed caffeine and estradiol in a similar manner to tree shrew liver microsomes and human, dog, and pig CYP1 proteins. These results suggest that tree shrew CYP1A1, CYP1A2, CYP1B1, and CYP1D1 genes, different form human pseudogene CYP1D1P, are expressed in liver, small intestine, lung, and/or kidney and encode functional drug-metabolizing enzymes important in toxicology.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan.
| | - Yutaro Noda
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan.
| |
Collapse
|
14
|
Kayesh MEH, Hashem MA, Sanada T, Kitab B, Rashid MHO, Akter L, Ezzikouri S, Murakami S, Ogawa S, Tanaka Y, Kohara M, Tsukiyama-Kohara K. Characterization of innate immune response to hepatitis B virus genotype F acute infection in tree shrew (Tupaia belangeri) model. FRONTIERS IN VIROLOGY 2022; 2. [DOI: 10.3389/fviro.2022.926831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Hepatitis B virus (HBV) infection is a global public health problem. The clinical outcomes of HBV infections are influenced by host as well as viral factors, including viral genotypes and subgenotypes. The interplay between HBV and host innate immunity remains unclear because of the lack of a suitable small animal model. Tree shrews (Tupaia belangeri) have been utilized as a useful animal model for hepatitis viruses such as hepatitis B and C viruses. In this study, we characterized acute infections by HBV genotype F (HBV-F) wild type (Wt) and mutant type (Mt) viruses in adult tree shrews. Serum alanine aminotransferase levels were measured before and post- infection 7 and 14 dpi. Both HBV-F-Wt and Mt were detected in the HBV-F-infected tree shrew serum and liver tissue at 7 and 14 dpi. We examined the intrahepatic expression patterns of Toll-like receptors (TLRs) (TLR1–9 mRNAs), cGAS, several transcription factors such as STAT1, STAT2, IRF7, HNF4, PD-L1, and cytokines, including IFN-β, IFN-γ, IL-6, and TNF-α in HBV-F Wt/Mt-infected tree shrews. When compared with uninfected animal group, significant suppression of TLR8 in HBV-F-Wt infected animals and significant suppression of PD-L1 in both HBV-F-Wt and Mt infected animals were observed. Thus, tree shrew can be a useful animal model to characterize HBV-F pathogenesis.
Collapse
|
15
|
Uno Y, Ushirozako G, Uehara S, Murayama N, Fujiki Y, Kawaguchi H, Tsukiyama-Kohara K, Yamazaki H. Newly identified tree shrew cytochrome P450 2B6 (CYP2B6) and pig CYP2B6b are functional drug-metabolising enzymes. Xenobiotica 2022; 52:687-696. [PMID: 36286316 DOI: 10.1080/00498254.2022.2141153] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tree shrews have high phylogenetic affinity to humans and are used in various fields of biomedical research, especially hepatitis virus infection; however, cytochromes P450 (P450s or CYPs) have not been investigated in this species.In this study, tree shrew CYP2B6 and pig CYP2B6b were newly identified and had amino acid sequences highly identical (80% and 78%, respectively) to human CYP2B6, containing sequence motifs characteristic of P450s.Phylogenetic analysis revealed that novel tree shrew CYP2B6 was more closely related to known human CYP2B6 than dog, pig, or rat CYP2Bs are.Among the tissue types analysed, tree shrew CYP2B6 mRNA was preferentially expressed in liver and lung, whereas pig CYP2B6b mRNA was preferentially expressed in jejunum and lung.Tree shrew CYP2B6 and pig CYP2B6b proteins heterologously expressed in Escherichia coli metabolised human CYP2B6 substrates efavirenz, ethoxycoumarin, propofol, and testosterone, suggesting that these novel CYP2Bs are functional drug-metabolizing enzymes in liver and/or lung.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Genki Ushirozako
- Department of Basic Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | - Yuki Fujiki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| | | | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Center, Kagoshima University, Kagoshima, Japan.,Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Japan
| |
Collapse
|
16
|
Mammalian animal models for dengue virus infection: a recent overview. Arch Virol 2021; 167:31-44. [PMID: 34761286 PMCID: PMC8579898 DOI: 10.1007/s00705-021-05298-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023]
Abstract
Dengue, a rapidly spreading mosquito-borne human viral disease caused by dengue virus (DENV), is a public health concern in tropical and subtropical areas due to its expanding geographical range. DENV can cause a wide spectrum of illnesses in humans, ranging from asymptomatic infection or mild dengue fever (DF) to life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Dengue is caused by four DENV serotypes; however, dengue pathogenesis is complex and poorly understood. Establishing a useful animal model that can exhibit dengue-fever-like signs similar to those in humans is essential to improve our understanding of the host response and pathogenesis of DENV. Although several animal models, including mouse models, non-human primate models, and a recently reported tree shrew model, have been investigated for DENV infection, animal models with clinical signs that are similar to those of DF in humans have not yet been established. Although animal models are essential for understanding the pathogenesis of DENV infection and for drug and vaccine development, each animal model has its own strengths and limitations. Therefore, in this review, we provide a recent overview of animal models for DENV infection and pathogenesis, focusing on studies of the antibody-dependent enhancement (ADE) effect in animal models.
Collapse
|
17
|
Kayesh MEH, Sanada T, Kohara M, Tsukiyama-Kohara K. Tree Shrew as an Emerging Small Animal Model for Human Viral Infection: A Recent Overview. Viruses 2021; 13:v13081641. [PMID: 34452505 PMCID: PMC8402676 DOI: 10.3390/v13081641] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 02/08/2023] Open
Abstract
Viral infection is a global public health threat causing millions of deaths. A suitable small animal model is essential for viral pathogenesis and host response studies that could be used in antiviral and vaccine development. The tree shrew (Tupaia belangeri or Tupaia belangeri chinenesis), a squirrel-like non-primate small mammal in the Tupaiidae family, has been reported to be susceptible to important human viral pathogens, including hepatitis viruses (e.g., HBV, HCV), respiratory viruses (influenza viruses, SARS-CoV-2, human adenovirus B), arboviruses (Zika virus and dengue virus), and other viruses (e.g., herpes simplex virus, etc.). The pathogenesis of these viruses is not fully understood due to the lack of an economically feasible suitable small animal model mimicking natural infection of human diseases. The tree shrew model significantly contributes towards a better understanding of the infection and pathogenesis of these important human pathogens, highlighting its potential to be used as a viable viral infection model of human viruses. Therefore, in this review, we summarize updates regarding human viral infection in the tree shrew model, which highlights the potential of the tree shrew to be utilized for human viral infection and pathogenesis studies.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.S.); (M.K.)
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (T.S.); (M.K.)
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
- Correspondence: ; Tel.: +81-99-285-3589
| |
Collapse
|
18
|
Luo MT, Mu D, Yang X, Luo RH, Zheng HY, Chen M, Guo YQ, Zheng YT. Tree Shrew Cells Transduced with Human CD4 and CCR5 Support Early Steps of HIV-1 Replication, but Viral Infectivity Is Restricted by APOBEC3. J Virol 2021; 95:e0002021. [PMID: 34076481 PMCID: PMC8312864 DOI: 10.1128/jvi.00020-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/17/2021] [Indexed: 01/05/2023] Open
Abstract
The host range of human immunodeficiency virus type 1 (HIV-1) is narrow. Therefore, using ordinary animal models to study HIV-1 replication, pathogenesis, and therapy is impractical. The lack of applicable animal models for HIV-1 research spurred our investigation on whether tree shrews (Tupaia belangeri chinensis), which are susceptible to many types of human viruses, can act as an animal model for HIV-1. Here, we report that tree shrew primary cells are refractory to wild-type HIV-1 but support the early replication steps of HIV-1 pseudotyped with the vesicular stomatitis virus glycoprotein envelope (VSV-G), which can bypass entry receptors. The exogenous expression of human CD4 renders the tree shrew cell line infectible to X4-tropic HIV-1IIIB, suggesting that tree shrew CXCR4 is a functional HIV-1 coreceptor. However, tree shrew cells did not produce infectious HIV-1 progeny virions, even with the human CD4 receptor. Subsequently, we identified tree shrew (ts) apolipoprotein B editing catalytic polypeptide 3 (tsAPOBEC3) proteins as active inhibitors of HIV-1 particle infectivity, with virus infectivity reduced 10- to 1,000-fold. Unlike human APOBEC3G, the tsA3Z2c-Z1b protein was not degraded by the HIV-1 viral infectivity factor (Vif) but markedly restricted HIV-1 replication through mutagenicity and reverse transcription inhibition. The pooled knockout of tsA3Z2c-Z1b partially restored the infectivity of the HIV-1 progeny. This work suggests that tsAPOBEC3 proteins serve as an additional barrier to the development of HIV-1 tree shrew models, even when virus entry is overcome by exogenous expression of human CD4. IMPORTANCE The development of animal models is critical for studying human diseases and their pathogenesis and for evaluating drug and vaccine efficacy. For improved AIDS research, the ideal animal model of HIV-1 infection should be a small laboratory mammal that closely mimics virus replication in humans. Tree shrews exhibit considerable potential as animal models for the study of human diseases and therapeutic responses. Here, we report that human CD4-expressing tree shrew cells support the early steps of HIV-1 replication and that tree shrew CXCR4 is a functional coreceptor of HIV-1. However, tree shrew cells harbor additional restrictions that lead to the production of HIV-1 virions with low infectivity. Thus, the tsAPOBEC3 proteins are partial barriers to developing tree shrews as an HIV-1 model. Our results provide insight into the genetic basis of HIV inhibition in tree shrews and build a foundation for the establishment of gene-edited tree shrew HIV-1-infected models.
Collapse
Affiliation(s)
- Meng-Ting Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Bio-safety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Dan Mu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Bio-safety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xiang Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Bio-safety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Rong-Hua Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Bio-safety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Bio-safety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Min Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Bio-safety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ying-Qi Guo
- National Resource Center for Non-Human Primates, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Bio-safety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- National Resource Center for Non-Human Primates, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
19
|
Li N, Gu W, Lu C, Sun X, Tong P, Han Y, Wang W, Dai J. Characteristics of Angiotensin I-converting enzyme 2, type II transmembrane serine protease 2 and 4 in tree shrew indicate it as a potential animal model for SARS-CoV-2 infection. Bioengineered 2021; 12:2836-2850. [PMID: 34227905 PMCID: PMC8806782 DOI: 10.1080/21655979.2021.1940072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Angiotensin I-converting enzyme 2 (ACE2), type II transmembrane serine protease 2 and 4 (TMPRSS2 and TMPRSS4) are important receptors for SARS-CoV-2 infection. In this study, the full-length tree shrewACE2 gene was cloned and sequenced, and its biological information was analyzed. The expression levels of ACE2, TMPRSS2 and TMPRSS4 in various tissues or organs of the tree shrew were detected. The results showed that the full-length ACE2 gene in tree shrews was 2,786 bp, and its CDS was 2,418 bp, encoding 805 amino acids. Phylogenetic analysis based on the CDS of ACE2 revealed that tree shrews were more similar to rabbits (85.93%) and humans (85.47%) but far from mice (82.81%) and rats (82.58%). In silico analysis according to the binding site of SARS-CoV-2 with the ACE2 receptor of different species predicted that tree shrews had potential SARS-CoV-2 infection possibility, which was similar to that of rabbits, cats and dogs but significantly higher than that of mice and rats. In addition, various tissues or organs of tree shrews expressed ACE2, TMPRSS2 and TMPRSS4. Among them, the kidney most highly expressed ACE2, followed by the lung and liver. The esophagus, lung, liver, intestine and kidney had relatively high expression levels of TMPRSS2 and TMPRSS4. In general, we reported for the first time the expression of ACE2, TMPRSS2 and TMPRSS4 in various tissues or organs in tree shrews. Our results revealed that tree shrews could be used as a potential animal model to study the mechanism underlying SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Na Li
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| | - Wenpeng Gu
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| | - Caixia Lu
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| | - Xiaomei Sun
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| | - Pinfen Tong
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| | - Yuanyuan Han
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| | - Wenguang Wang
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| | - Jiejie Dai
- The Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Yunnan Innovation Team of Standardization and Application Research in Tupaia Belangeri Chinensis, Kunming, China
| |
Collapse
|
20
|
Lu T, Peng H, Zhong L, Wu P, He J, Deng Z, Huang Y. The Tree Shrew as a Model for Cancer Research. Front Oncol 2021; 11:653236. [PMID: 33768009 PMCID: PMC7985444 DOI: 10.3389/fonc.2021.653236] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Animal disease models are necessary in medical research, and an appropriate animal model is of great importance for studies about the prevention or treatment of cancer. The most important thing in the selection of animal models is to consider the similarity between animals and humans. The tree shrew (Tupaia belangeri) is a squirrel-like mammal which placed in the order Scandentia. Whole-genome sequencing has revealed that tree shrews are extremely similar to primate and humans than to rodents, with many highly conserved genes, which makes the data from studies that use tree shrews as models more convincing and the research outcomes more easily translatable. In tumor research, tree shrews are often used as animal models for hepatic and mammary cancers. As research has progressed, other types of tree shrew tumor models have been developed and exhibit clinical manifestations similar to those of humans. Combining the advantages of both rodents and primates, the tree shrew is expected to be the most powerful animal model for studying tumors.
Collapse
Affiliation(s)
- Tao Lu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Hongmei Peng
- Scientific Research and Education Department, The First People's Hospital of Changde City, Changde, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Pan Wu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Jian He
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Zhiming Deng
- The First People's Hospital of Changde City, Changde, China
| | - Yong Huang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| |
Collapse
|
21
|
Li X, Zhou Z, Liu W, Fan Y, Luo Y, Li K, Zheng Z, Tian X, Zhou R. Chinese tree shrew: a permissive model for in vitro and in vivo replication of human adenovirus species B. Emerg Microbes Infect 2021; 10:424-438. [PMID: 33622191 PMCID: PMC7971223 DOI: 10.1080/22221751.2021.1895679] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human adenovirus (HAdV) species B can cause severe acute respiratory diseases. However, the researches to combat this infection have been hampered by the lack of an animal model permissive to the virus. Here, we report in vitro and in vivo HAdV species B infections of tree shrews, the closest relative of primates. HAdV-3, -7, -14, and -55 efficiently replicated in primary cell cultures. After intranasal inoculation of tree shrews with HAdV-55, the viral replication in the oropharyngeal region remained high until day 5 post-infection and was still detected until day 12. HAdV-55 in the lung or turbinate bone tissues reached the highest levels between days 3 and 5 post-infection, which indicated viral replication in the upper and lower respiratory tracts. HAdV-55 infection caused severe interstitial pneumonia in the animal. IL-8, IL-10, IL-17A, and IFN-γ expression in the peripheral blood mononuclear cells from infected animals was up-regulated. The pre-vaccination with HAdV-55 cleared the virus faster in the respiratory tract, mitigated lung pathological changes. Finally, HAdV-55 infection was propagated among tree shrews. Our study demonstrated that the tree shrew is a permissive animal model for HAdV species B infection and may serve as a valuable platform for testing multiple anti-viral treatments.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhichao Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ye Fan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yinzhu Luo
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, People's Republic of China
| | - Kangtian Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhenxia Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
22
|
Hayes CN, Chayama K. Unmet Needs in Basic Research of Hepatitis B Virus Infection: In Vitro and In Vivo Models. HEPATITIS B VIRUS AND LIVER DISEASE 2021:29-49. [DOI: 10.1007/978-981-16-3615-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Kayesh MEH, Hashem MA, Tsukiyama-Kohara K. Koala retrovirus epidemiology, transmission mode, pathogenesis, and host immune response in koalas (Phascolarctos cinereus): a review. Arch Virol 2020; 165:2409-2417. [PMID: 32770481 PMCID: PMC7413838 DOI: 10.1007/s00705-020-04770-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022]
Abstract
Koala retrovirus (KoRV) is a major threat to koala health and conservation. It also represents a series of challenges across the fields of virology, immunology, and epidemiology that are of great potential interest to any researcher in the field of retroviral diseases. KoRV is a gammaretrovirus that is present in both endogenous and exogenous forms in koala populations, with a still-active endogenization process. KoRV may induce immunosuppression and neoplastic conditions such as lymphoma and leukemia and play a role in chlamydiosis and other diseases in koalas. KoRV transmission modes, pathogenesis, and host immune response still remain unclear, and a clear understanding of these areas is critical for devising effective preventative and therapeutic strategies. Research on KoRV is clearly critical for koala conservation. In this review, we provide an overview of the current understanding and future challenges related to KoRV epidemiology, transmission mode, pathogenesis, and host immune response and discuss prospects for therapeutic and preventive vaccines.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Md Abul Hashem
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
- Department of Health, Chattogram City Corporation, Chattogram, 4000, Bangladesh
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
24
|
Luo PH, Shu YM, Ni RJ, Liu YJ, Zhou JN. A Characteristic Expression Pattern of Core Circadian Genes in the Diurnal Tree Shrew. Neuroscience 2020; 437:145-160. [PMID: 32339628 DOI: 10.1016/j.neuroscience.2020.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 02/08/2023]
Abstract
The day-active tree shrew may serve as an animal model of human-like diurnal rhythms. However, the molecular basis for circadian rhythms in this species has remained unclear. In the present study, we investigated the expression patterns of core circadian genes involved in transcriptional/translational feedback loops (TTFLs) in both central and peripheral tissues of the tree shrew. The expression of 12 core circadian genes exhibited similar rhythmic patterns in the olfactory bulb, prefrontal cortex, hippocampus, and cerebellum, while the hypothalamus exhibited the weakest oscillations. The rhythms in peripheral tissues, especially the liver, were much more robust than those in brain tissues. ARNTL and NPAS2 were weakly rhythmic in brain tissues but exhibited almost the strongest rhythmicity in peripheral tissues. CLOCK and CRY2 exhibited the weakest rhythms in both central and peripheral tissues, while NR1D1 and CIART exhibited robust rhythms in both tissues. Most of these circadian genes were highly expressed at light/dark transitions in both brain and peripheral tissues, such as ARNTL and NPAS2 peaking at dusk while PERs peaking at dawn. Additionally, the peripheral clock was phase-advanced relative to the brain clock, as there was a significant advance (2-4 h) for PER3, DBP, NR1D1 and NR1D2. Furthermore, these genes exhibited an anti-phasic relationship between the diurnal tree shrew and the nocturnal mouse (i.e., 12-h phasing differential). Collectively, our findings demonstrate a characteristic expression pattern of core circadian genes in the tree shrew, which may provide a means for elucidating molecular mechanisms of diurnal rhythms.
Collapse
Affiliation(s)
- Peng-Hao Luo
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yu-Mian Shu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China; School of Architecture and Civil Engineering, Chengdu University, Chengdu, China
| | - Rong-Jun Ni
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China; Psychiatric Laboratory and Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ya-Jing Liu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China; Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiang-Ning Zhou
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
25
|
Pathological and genetic aspects of spontaneous mammary gland tumor in Tupaia belangeri (tree shrew). PLoS One 2020; 15:e0233232. [PMID: 32421739 PMCID: PMC7233572 DOI: 10.1371/journal.pone.0233232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/30/2020] [Indexed: 01/19/2023] Open
Abstract
Mammary gland cancer is the most common cancer occurring in women globally. Incidences of this cancer in Japan are on the increase. Annually, more than 70,000 new cases are recorded in Japan and about 1.7 million in the world. Many cases are still difficult to cure completely, and animal models are required for the characterization of the biology, therapeutic strategy, and preventive measures for spontaneous mammary tumor. The mouse model used currently has some limitations owing to structural differences between mouse and human mammary glands. Tupaia belangeri (tree shrew), which belongs to the Tupaiidae family, shows relatively high genetic homology and structural similarity to human mammary glands. Here, we characterized the spontaneous mammary tumors in 61 female tree shrews of different ages. The incidence rate was 24.6% (15/61), and the rate of simultaneous or metachronous multiplex tumors was 60% (9/15). From the incidence pattern, some cases seemed to be of familial mammary gland tumor, as the offspring of female tree shrews No. 3 and 9 and male tree shrew No. 11 showed a high incidence rate, of 73.3% (11/15). Average incidence age for tumor development was 2 years and 3 months, and the earliest was 10 months. Histochemical analysis indicated that spontaneous mammary gland tumors in the tree shrew show the features of intraductal papillary adenomas (22 cases), except 2 tubulopapillary carcinoma cases (No. 75 and 131). All the cases were positive for the progesterone receptor, whereas 91.3% were positive for the estrogen receptor, and 4.3% were HER-2 positive. We have also confirmed the expression of nectin-4 in some mammary tumor cells. Additionally, we subjected tree shrews to cytodiagnosis or X-ray CT. Thus, the findings of this study highlight the potential of the tree shrew as a valuable new animal model for mammary gland tumor study.
Collapse
|
26
|
Sugahara G, Ishida Y, Sun J, Tateno C, Saito T. Art of Making Artificial Liver: Depicting Human Liver Biology and Diseases in Mice. Semin Liver Dis 2020; 40:189-212. [PMID: 32074631 PMCID: PMC8629128 DOI: 10.1055/s-0040-1701444] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Advancement in both bioengineering and cell biology of the liver led to the establishment of the first-generation humanized liver chimeric mouse (HLCM) model in 2001. The HLCM system was initially developed to satisfy the necessity for a convenient and physiologically representative small animal model for studies of hepatitis B virus and hepatitis C virus infection. Over the last two decades, the HLCM system has substantially evolved in quality, production capacity, and utility, thereby growing its versatility beyond the study of viral hepatitis. Hence, it has been increasingly employed for a variety of applications including, but not limited to, the investigation of drug metabolism and pharmacokinetics and stem cell biology. To date, more than a dozen distinctive HLCM systems have been established, and each model system has similarities as well as unique characteristics, which are often perplexing for end-users. Thus, this review aims to summarize the history, evolution, advantages, and pitfalls of each model system with the goal of providing comprehensive information that is necessary for researchers to implement the ideal HLCM system for their purposes. Furthermore, this review article summarizes the contribution of HLCM and its derivatives to our mechanistic understanding of various human liver diseases, its potential for novel applications, and its current limitations.
Collapse
Affiliation(s)
- Go Sugahara
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Yuji Ishida
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Jeffrey Sun
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chise Tateno
- Research & Development Department, PhoenixBio, Co., Ltd, Higashi-Hiroshima, Hiroshima, Japan
| | - Takeshi Saito
- Department of Medicine, Division of Gastrointestinal and Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California,USC Research Center for Liver Diseases, Los Angeles, California
| |
Collapse
|
27
|
Pathogenesis and Immune Response Caused by Vector-Borne and Other Viral Infections in a Tupaia Model. Microorganisms 2019; 7:microorganisms7120686. [PMID: 31842286 PMCID: PMC6956204 DOI: 10.3390/microorganisms7120686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
The Tupaia or tree shrew (Tupaia belangeri), a small mammal of the Tupaiidae family, is an increasingly used and promising infection model for virological and immunological research. Recently, sequencing of the Tupaia whole genome revealed that it is more homologous to the genome of humans than of rodents. Viral infections are a global threat to human health, and a complex series of events are involved in the interactions between a virus and the host immune system, which play important roles in the activation of an immune response and the outcome of an infection. Majority of immune response data in viral infections are obtained from studies using animal models that enhance the understanding of host-virus interactions; a proper understanding of these interactions is very important for the development of effective antivirals and prophylactics. Therefore, animal models that are permissive to infection and that recapitulate human disease pathogenesis and immune responses to viral infections are essential. Several studies have shown the permissiveness of Tupaia to a number of important human viral infections in vitro and in vivo without prior adaptation of the viruses; the immune responses and clinical manifestations were comparable to those observed in human infections. Thus, the Tupaia is being utilized and developed as a promising immunocompetent small animal model for viral infection studies. In this review, we focused on the immune responses, mostly innate, during viral infection and pathogenesis in the Tupaia model; we evaluated the interaction between the virus and the components of host resistance, the usefulness of this model for immunopathogenesis studies, and the vaccines and antivirals available.
Collapse
|
28
|
Schäfer M, Fan Y, Gu T, Heydeck D, Stehling S, Ivanov I, Yao YG, Kuhn H. The lipoxygenase pathway of Tupaia belangeri representing Scandentia. Genomic multiplicity and functional characterization of the ALOX15 orthologs in the tree shrew. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158550. [PMID: 31676437 DOI: 10.1016/j.bbalip.2019.158550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 12/31/2022]
Abstract
The tree shrew (Tupaia belangeri) is a rat-sized mammal, which is more closely related to humans than mice and rats. However, the use of tree shrew to explore the patho-mechanisms of human inflammatory disorders has been limited since nothing is known about eicosanoid metabolism in this mammalian species. Eicosanoids are important lipid mediators exhibiting pro- and anti-inflammatory activities, which are biosynthesized via lipoxygenase and cyclooxygenase pathways. When we searched the tree shrew genome for the presence of cyclooxygenase and lipoxygenase isoforms we found copies of functional COX1, COX2 and LOX genes. Interestingly, we identified four copies of ALOX15 genes, which encode for four structurally distinct ALOX15 orthologs (tupALOX15a-d). To explore the catalytic properties of these enzymes we expressed tupALOX15a and tupALOX15c as catalytically active proteins and characterized their enzymatic properties. As predicted by the Evolutionary Hypothesis of ALOX15 specificity we found that the two enzymes converted arachidonic acid predominantly to 12S-HETE and they also exhibited membrane oxygenase activities. However, their reaction kinetic properties (KM for arachidonic acid and oxygen, T- and pH-dependence) and their substrate specificities were remarkably different. In contrast to mice and humans, tree shrew ALOX15 isoforms are highly expressed in the brain suggesting a role of these enzymes in cerebral function. The genomic multiplicity and the tissue expression patterns of tree shrew ALOX15 isoforms need to be considered when the results of in vivo inflammation studies obtained in this animal are translated into the human situation.
Collapse
Affiliation(s)
- Marjann Schäfer
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Tianle Gu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Dagmar Heydeck
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Sabine Stehling
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Igor Ivanov
- Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, Vernadskogo pr. 86, 119571 Moscow, Russia
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Hartmut Kuhn
- Institute of Biochemistry, Charité - University Medicine Berlin, Corporate member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
29
|
Sanada T, Yamamoto N, Kayesh MEH, Tsukiyama-Kohara K, Hasegawa H, Miyazaki T, Takano JI, Shiogama Y, Yasutomi Y, Goh Y, Yoshida O, Hiasa Y, Kohara M. Intranasal vaccination with HBs and HBc protein combined with carboxyl vinyl polymer induces strong neutralizing antibody, anti-HBs IgA, and IFNG response. Biochem Biophys Res Commun 2019; 520:86-92. [PMID: 31582218 DOI: 10.1016/j.bbrc.2019.09.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 12/22/2022]
Abstract
Hepatitis B virus (HBV) infection causes acute and chronic hepatitis, which is a major public health concern worldwide. Immunization methods incorporating hepatitis B surface-small (HBs-S) antigen and hepatitis B core antigen (HBc) have been proposed as candidate therapeutic vaccines, but the elimination of existing HBV infection remains a challenge. To enhance the efficacy of HBs and HBc vaccination, we investigated HBs-large (HBs-L) as an immunogen, and carboxyl vinyl polymer (CVP) as an excipient. HBs-S or HBs-L, in combination with HBc antigen, was administered subcutaneously (without CVP) or intranasally (with or without CVP) for the evaluation of immune response in the tree shrew, which is considered to be a suitable small animal model of HBV infection. Immunization with HBs-L antigen by either route induced a rapid IgG response. Intranasal immunization with HBs-S or HBs-L and HBc formulated with CVP strongly induced neutralizing antibody activity, IgA response, and HBc-specific expression of the interferon gamma-encoding gene. These data indicated the potential of HBs-L and HBc intranasal immunization with CVP, not only as a therapeutic vaccine, but also as a prophylactic vaccine candidate.
Collapse
Affiliation(s)
- Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Naoki Yamamoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | | | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima-city, Kagoshima 890-8580, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Influenza Virus Research Center, National Institute of Infectious Diseases, Gakuen, Musashimurayama-city, Tokyo 208-0011, Japan
| | - Takashi Miyazaki
- Toko Yakuhin Kogyo Co., Ltd., 20 Tsuji, Tateyama-machi, Toyama, 930-0211, Japan
| | - Jun-Ichiro Takano
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Yumiko Shiogama
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Yasuhiro Yasutomi
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Yasumasa Goh
- Beacle, Inc., Yoshida-kawaracho, Sakyo-ku, Kyoto, 606-8305, Japan
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shizukawa, Toon, Ehime, 791-0295, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Shizukawa, Toon, Ehime, 791-0295, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
30
|
Construction of complete Tupaia belangeri transcriptome database by whole-genome and comprehensive RNA sequencing. Sci Rep 2019; 9:12372. [PMID: 31451757 PMCID: PMC6710255 DOI: 10.1038/s41598-019-48867-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/13/2019] [Indexed: 01/02/2023] Open
Abstract
The northern tree shrew (Tupaia belangeri) possesses high potential as an animal model of human diseases and biology, given its genetic similarity to primates. Although genetic information on the tree shrew has already been published, some of the entire coding sequences (CDSs) of tree shrew genes remained incomplete, and the reliability of these CDSs remained difficult to determine. To improve the determination of tree shrew CDSs, we performed sequencing of the whole-genome, mRNA, and total RNA and integrated the resulting data. Additionally, we established criteria for the selection of reliable CDSs and annotated these sequences by comparison to the human transcriptome, resulting in the identification of complete CDSs for 12,612 tree shrew genes and yielding a more accurate tree shrew genome database (TupaiaBase: http://tupaiabase.org). Transcriptome profiles in hepatitis B virus infected tree shrew livers were analyzed for validation. Gene ontology analysis showed enriched transcriptional regulation at 1 day post-infection, namely in the “type I interferon signaling pathway”. Moreover, a negative regulator of type I interferon, SOCS3, was induced. This work, which provides a tree shrew CDS database based on genomic DNA and RNA sequencing, is expected to serve as a powerful tool for further development of the tree shrew model.
Collapse
|
31
|
Zhang L, Shen ZL, Feng Y, Li DQ, Zhang NN, Deng YQ, Qi XP, Sun XM, Dai JJ, Yang CG, Yang ZF, Qin CF, Xia XS. Infectivity of Zika virus on primary cells support tree shrew as animal model. Emerg Microbes Infect 2019; 8:232-241. [PMID: 30866776 PMCID: PMC6455147 DOI: 10.1080/22221751.2018.1559707] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that caused the public health emergency. Recently, we have proved a novel small animal tree shrew was susceptive to ZIKV infection and presented the most common rash symptoms as ZIKV patients. Here we further cultured the primary cells from different tissues of this animal to determine the tissue tropism of ZIKV infection in vitro. The results showed that the primary cells from tree shrew kidney, lung, liver, skin and aorta were permissive to ZIKV infection and could support viral replication by the detection of viral specific RNA intra- and extra-cells. In comparing, the skin fibroblast and vascular endothelial cells were highly permissive to ZIKV infection with high releasing of active virus particles in supernatants proved by its infectivity in established neonatal mouse model. The expressions of ZIKV envelop and nonstructural protein-1, and the effects and strong immune response of primary tree shrew cells were also detected followed by ZIKV infection. These findings provide powerful in vitro cell-level evidence to support tree shrew as animal model of ZIKV infection and may help to explain the rash manifestations in vivo.
Collapse
Affiliation(s)
- Li Zhang
- a Faculty of Environmental Science and Engineering , Kunming University of Science and Technology , Kunming , People's Republic of China.,b Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine , Kunming University of Science and Technology , Kunming , People's Republic of China
| | - Zhi-Li Shen
- b Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine , Kunming University of Science and Technology , Kunming , People's Republic of China
| | - Yue Feng
- b Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine , Kunming University of Science and Technology , Kunming , People's Republic of China
| | - Dao-Qun Li
- b Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine , Kunming University of Science and Technology , Kunming , People's Republic of China
| | - Na-Na Zhang
- c State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , People's Republic of China
| | - Yong-Qiang Deng
- c State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , People's Republic of China
| | - Xiao-Peng Qi
- d Key Laboratory of Animal Models and Human Disease Mechanisms , Kunming Institute of Zoology, Chinese Academy of Sciences , Kunming , People's Republic of China
| | - Xiao-Mei Sun
- e Center of Tree Shrew Germplasm Resources , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Jie-Jie Dai
- e Center of Tree Shrew Germplasm Resources , Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Chun-Guang Yang
- f State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease , First Affiliated Hospital of Guagnzhou Medical University , Guangzhou , People's Republic of China
| | - Zi-Feng Yang
- f State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease , First Affiliated Hospital of Guagnzhou Medical University , Guangzhou , People's Republic of China
| | - Cheng-Feng Qin
- c State Key Laboratory of Pathogen and Biosecurity , Beijing Institute of Microbiology and Epidemiology , Beijing , People's Republic of China
| | - Xue-Shan Xia
- b Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine , Kunming University of Science and Technology , Kunming , People's Republic of China
| |
Collapse
|
32
|
Li X, Liu W, Qiu S, Xu D, Zhou Z, Tian X, Li C, Gu S, Zhou R. [Construction of real-time polymerase chain reaction detection for infection-related cytokines of tree shrew]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2019; 36:407-413. [PMID: 31232543 PMCID: PMC9929971 DOI: 10.7507/1001-5515.201801036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Indexed: 11/03/2022]
Abstract
Tree shrew is a novel and high-quality experimental animal model. In this study, the real-time polymerase chain reaction methods were established to detect infection-related cytokines interleukin-6 (IL-6), IL-8, IL-10, IL-17A, interferon-γ (IFN-γ) and housekeeping gene glyceraldehyde-phosphate dehydrogenase ( GAPDH) of tree shrew. The results indicated that the establised methods had good specificity. The high point of the linear range of these reagents reached 1 × 10 10 copies, and the low points ranged from 10 copies (IL-6, IL-17A), 100 copies (IL-10, GAPDH) to 1 000 copies (IL-8, IFN-γ). In this interval, the linear correlation coefficient R 2 of each reagent was greater than 0.99. The lowest detectable values of IL-6, IL-8, IL-10, IL-17A, IFN-γ and GAPDH were 8, 8, 4, 8, 128 and 4 copies, respectively. The results showed that the established detection methods had good specificity, sensitivity and wide linear range. The methods were suitable for detection of multiple concentration range samples, and could be used for the subsequent studies of tree shrew cytokines.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, P.R.China
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120,
| | - Shuyan Qiu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, P.R.China
| | - Duo Xu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, P.R.China
| | - Zhichao Zhou
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, P.R.China
| | - Xingui Tian
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, P.R.China
| | - Chi Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, P.R.China
| | - Shujun Gu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, P.R.China
| | - Rong Zhou
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, P.R.China
| |
Collapse
|
33
|
Yuan B, Yang C, Xia X, Zanin M, Wong SS, Yang F, Chang J, Mai Z, Zhao J, Zhang Y, Li R, Zhong N, Yang Z. The tree shrew is a promising model for the study of influenza B virus infection. Virol J 2019; 16:77. [PMID: 31174549 PMCID: PMC6555921 DOI: 10.1186/s12985-019-1171-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/30/2019] [Indexed: 11/23/2022] Open
Abstract
Background Influenza B virus is a main causative pathogen of annual influenza epidemics, however, research on influenza B virus in general lags behind that on influenza A viruses, one of the important reasons is studies on influenza B viruses in animal models are limited. Here we investigated the tree shrew as a potential model for influenza B virus studies. Methods Tree shrews and ferrets were inoculated with either a Yamagata or Victoria lineage influenza B virus. Symptoms including nasal discharge and weight loss were observed. Nasal wash and respiratory tissues were collected at 2, 4 and 6 days post inoculation (DPI). Viral titers were measured in nasal washes and tissues were used for pathological examination and extraction of mRNA for measurement of cytokine expression. Results Clinical signs and pathological changes were also evident in the respiratory tracts of tree shrews and ferrets. Although nasal symptoms including sneezing and rhinorrhea were evident in ferrets infected with influenza B virus, tree shrews showed no significant respiratory symptoms, only milder nasal secretions appeared. Weight loss was observed in tree shrews but not ferrets. V0215 and Y12 replicated in all three animal (ferrets, tree shrews and mice) models with peak titers evident on 2DPI. There were no significant differences in peak viral titers in ferrets and tree shrews inoculated with Y12 at 2 and 4DPI, but viral titers were detected at 6DPI in tree shrews. Tree shrews infected with influenza B virus showed similar seroconversion and respiratory tract pathology to ferrets. Elevated levels of cytokines were detected in the tissues isolated from the respiratory tract after infection with either V0215 or Y12 compared to the levels in the uninfected control in both animals. Overall, the tree shrew was sensitive to infection and disease by influenza B virus. Conclusion The tree shrew to be a promising model for influenza B virus research. Electronic supplementary material The online version of this article (10.1186/s12985-019-1171-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bing Yuan
- Department of Respiration, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, People's Republic of China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, People's Republic of China
| | - Chunguang Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science And Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Mark Zanin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Sook-San Wong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Fan Yang
- Medical Faculty, Kunming University of Science And Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Jixiang Chang
- Medical Faculty, Kunming University of Science And Technology, Kunming, Yunnan, 650500, People's Republic of China
| | - Zhitong Mai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Jin Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Yunhui Zhang
- Department of Respiration, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, People's Republic of China.,The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, 650032, People's Republic of China
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People's Republic of China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People's Republic of China. .,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, People's Republic of China.
| |
Collapse
|
34
|
Sanada T, Yasui F, Honda T, Kayesh MEH, Takano JI, Shiogama Y, Yasutomi Y, Tsukiyama-Kohara K, Kohara M. Avian H5N1 influenza virus infection causes severe pneumonia in the Northern tree shrew (Tupaia belangeri). Virology 2019; 529:101-110. [PMID: 30684692 DOI: 10.1016/j.virol.2019.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 01/07/2023]
Abstract
Avian-origin influenza viruses like H5N1 and H7N9 often cause severe symptoms with high mortality in humans. Animal models are useful for clarification of the mechanisms of pathogenicity of these infections. In this study, to expand the potential utility of the Northern tree shrew (Tupaia belangeri) for influenza virus infection, we assessed the pathogenicity of H5N1 and H7N9 avian influenza viruses in tupaia. Infectious virus was detected continuously from nasal, oral, tracheal, and conjunctival swab samples in the animals infected with these viruses. H5N1 influenza virus infection of tupaia caused severe diffuse pneumonia with fever and weight loss. In contrast, H7N9 influenza virus infection caused focal pneumonia. The severity of pneumonia was correlated with proinflammatory cytokine transcript levels. These results indicated that tupaia can be another suitable animal model for avian influenza virus research.
Collapse
Affiliation(s)
- Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Fumihiko Yasui
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| | - Tomoko Honda
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Jun-Ichiro Takano
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Yumiko Shiogama
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki 305-0843, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24, Korimoto, Kagoshima-city, Kagoshima 890-0065, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
35
|
Using Tree Shrews (Tupaia belangeri) as a Novel Animal Model of Liver Transplantation. Curr Med Sci 2018; 38:1069-1074. [PMID: 30536071 DOI: 10.1007/s11596-018-1985-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/19/2018] [Indexed: 10/27/2022]
Abstract
Liver transplantation (LT) is most effective and promising approach for end-stage liver disease. However, there remains room for further improvement and innovation, for example, to reduce ischemic reperfusion injury, transplant rejection and immune tolerance. A good animal model of LT is essential for such innovation in transplant research. Although rat LT model has been used since the last century, it has never been an ideal model because the results observed in rat may not be applied to human because these two species are genetically distinct from each other. In this study, we for the first time performed LT using the tree shrew (Tupaia belangeri), a species in the Order Scandentia which is closely related with primates, and evaluated the possibility to adopt this species as a new model of LT. We performed LT on 30 animals using the two-cuff technique, examining the success rate, the survival rate and the immunological reaction. The recipient operation time was 60 min averagely, and we limited the time of the anhepatic phase within 20 min. Twenty-seven (90%) of the animals survived for at least 3 days after the transplantation. Thirteen animals that did not receive any immunosuppressive drug died in 8 days mostly because of acute rejection effect (n=9), similar to the reaction in human but not in experimental rat. The rest 14 animals that were given rapamycin survived significantly longer (38 days) and half of them survived for 60 days until the end of the study. Our results suggest that performing LT in tree shrews can yield high success rate and high survival rate. More importantly, the tree shrews share similar immunological reaction with human. In addition, previous genomics study found that the tree shrews share more proteins with human. In sum, the tree shrews may outperform the experimental rats and could be used as a better and cost-effective animal model for LT.
Collapse
|
36
|
Li J, Wang W, Tong P, Leung CK, Yang G, Li Z, Li N, Sun X, Han Y, Lu C, Kuang D, Dai J, Zeng X. Autophagy Induction by HIV-Tat and Methamphetamine in Primary Midbrain Neuronal Cells of Tree Shrews via the mTOR Signaling and ATG5/ATG7 Pathway. Front Neurosci 2018; 12:921. [PMID: 30574066 PMCID: PMC6291520 DOI: 10.3389/fnins.2018.00921] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/23/2018] [Indexed: 12/22/2022] Open
Abstract
Background: Addictive stimulant drugs, such as methamphetamine (METH), increase the risk of exposure to the human immunodeficiency virus-1 (HIV-1) infection and thus predispose individuals to the development of HIV-associated neurocognitive disorders (HANDs). Previous studies have indicated that HIV-Tat (the transactivator of transcription) and METH can synergistically induce autophagy in SH-SY5Y neuroblastoma cells and that autophagy plays a pivotal role in the neuronal dysfunction in HANDs. However, the underlying mechanism of METH-and HIV-Tat-induced neuronal autophagy remains unclear. Methods: We cultured primary midbrain neuronal cells of tree shrews and treated them with METH and HIV-Tat to study the role of METH and HIV-Tat in inducing autophagy. We evaluated the effects of the single or combined treatment of METH and HIV-Tat on the protein expressions of the autophagy-related genes, including Beclin-1 and LC3B, ATG5, and ATG7 in METH and HIV-Tat-induced autophagy. In addition, the presence of autophagosomes in the METH and/or HIV-Tat treatment was revealed using transmission electron microscopy. Results: The results indicated that METH increased the protein levels of LC3B and Beclin-1, and these effects were significantly enhanced by HIV-Tat. Moreover, the results suggested that ATG5 and ATG7 were involved in the METH and HIV-Tat-induced autophagy. In addition, it was found that mTOR inhibition via pharmacological intervention could trigger autophagy and promote METH and HIV-Tat-induced autophagy. Discussion: Overall, this study contributes to the knowledge of the molecular underpinnings of METH and HIV-Tat-induced autophagy in primary midbrain neuronal cells. Our findings may facilitate the development of therapeutic strategies for METH-and HIV-Tat-induced autophagy in HANDs.
Collapse
Affiliation(s)
- Juan Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.,School of Basic Medicine, Kunming Medical University, Kunming, China
| | - Wenguang Wang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Pinfen Tong
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Chi-Kwan Leung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Chinese University of Hong Kong - Shandong University (CUHK-SDU) Joint Laboratory of Reproductive Genetics, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Genmeng Yang
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Zhen Li
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| | - Na Li
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xiaomei Sun
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Yuanyuan Han
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Caixia Lu
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Dexuan Kuang
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Jiejie Dai
- Center of Tree Shrew Germplasm Resources, Institute of Medical Biology, The Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Xiaofeng Zeng
- School of Forensic Medicine, Kunming Medical University, Kunming, China
| |
Collapse
|
37
|
Li R, Zanin M, Xia X, Yang Z. The tree shrew as a model for infectious diseases research. J Thorac Dis 2018; 10:S2272-S2279. [PMID: 30116606 DOI: 10.21037/jtd.2017.12.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite major advances in medicine, infectious diseases still pose a significant threat to humanity. Mammalian models of disease have proved extremely useful in adding to the understanding of infectious diseases and the development of prophylactic and/or therapeutic interventions. Arguably the most important considerations of any animal model are (I) the similarity of the model to humans with respect to anatomy, physiology, immunology and disease progression, and (II) the expense of conducting experiments using the model organism. Often the choice of a model represents a compromise between these factors. Here we review the Northern Tree shrew (Tupaia belangeri), or tupaia, as a useful model for the study of infectious diseases. Tupaias are non-human primates similar in size to squirrels that are indigenous to Asia. Their genome has been sequenced and, overall, shows relatively high similarity to humans. There is also a close homology of many aspects of tupaia biology with human biology. Importantly, from an infectious diseases viewpoint, tupaias are susceptible to infection with unadapted human pathogens and manifest clinical signs akin to human infections. Overall, the relatively small size of the tupaia, their homology to humans and their susceptibility to human pathogens make them a useful model for the study of infectious diseases.
Collapse
Affiliation(s)
- Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guagnzhou Medical University, Guangzhou 510120, China
| | - Mark Zanin
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650031, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guagnzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
38
|
Atlas of the Striatum and Globus Pallidus in the Tree Shrew: Comparison with Rat and Mouse. Neurosci Bull 2018; 34:405-418. [PMID: 29508249 DOI: 10.1007/s12264-018-0212-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 11/04/2017] [Indexed: 02/05/2023] Open
Abstract
The striatum and globus pallidus are principal nuclei of the basal ganglia. Nissl- and acetylcholinesterase-stained sections of the tree shrew brain showed the neuroanatomical features of the caudate nucleus (Cd), internal capsule (ic), putamen (Pu), accumbens, internal globus pallidus, and external globus pallidus. The ic separated the dorsal striatum into the Cd and Pu in the tree shrew, but not in rats and mice. In addition, computer-based 3D images allowed a better understanding of the position and orientation of these structures. These data provided a large-scale atlas of the striatum and globus pallidus in the coronal, sagittal, and horizontal planes, the first detailed distribution of parvalbumin-immunoreactive cells in the tree shrew, and the differences in morphological characteristics and density of parvalbumin-immunoreactive neurons between tree shrew and rat. Our findings support the tree shrew as a potential model for human striatal disorders.
Collapse
|
39
|
Huang X, Yan Y, Wang S, Wang Q, Shi J, Shao Z, Dai J. Molecular cloning and characterization of the full-length cDNA encoding the tree shrew (tupaia belangeri) CD28. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Oxidative Stress and Immune Responses During Hepatitis C Virus Infection in Tupaia belangeri. Sci Rep 2017; 7:9848. [PMID: 28852124 PMCID: PMC5575003 DOI: 10.1038/s41598-017-10329-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/08/2017] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic liver disease, cirrhosis, and hepatocellular carcinoma. To address the molecular basis of HCV pathogenesis using tupaias (Tupaia belangeri), we characterized host responses upon HCV infection. Adult tupaias were infected with HCV genotypes 1a, 1b, 2a, or 4a. Viral RNA, alanine aminotransferase, anti-HCV core and anti-nonstructural protein NS3 antibody titres, reactive oxygen species (ROS), and anti-3β-hydroxysterol-Δ24reductase (DHCR24) antibody levels were measured at 2-week intervals from 0 to 41 weeks postinfection. All HCV genotypes established infections and showed intermittent HCV propagation. Moreover, all tupaias produced anti-core and anti-NS3 antibodies. ROS levels in sera and livers were significantly increased, resulting in induction of DHCR24 antibody production. Similarly, lymphocytic infiltration, disturbance of hepatic cords, and initiation of fibrosis were observed in livers from HCV-infected tupaias. Intrahepatic levels of Toll-like receptors 3, 7, and 8 were significantly increased in all HCV-infected tupaias. However, interferon-β was only significantly upregulated in HCV1a- and HCV2a-infected tupaias, accompanied by downregulation of sodium taurocholate cotransporting polypeptide. Thus, our findings showed that humoral and innate immune responses to HCV infection, ROS induction, and subsequent increases in DHCR24 auto-antibody production occurred in our tupaia model, providing novel insights into understanding HCV pathogenesis.
Collapse
|
41
|
Feng Y, Feng YM, Lu C, Han Y, Liu L, Sun X, Dai J, Xia X. Tree shrew, a potential animal model for hepatitis C, supports the infection and replication of HCV in vitro and in vivo. J Gen Virol 2017; 98:2069-2078. [PMID: 28758632 PMCID: PMC5656785 DOI: 10.1099/jgv.0.000869] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The tree shrew (Tupaia belangeri chinensis), a small animal widely distributed in Southeast Asia and southwest China, has the potential to be developed as an animal model for hepatitis C. To determine the susceptibility of the tree shrew to hepatitis C virus (HCV) infection in vitro and in vivo, a well-established HCV, produced from the J6/JFH1-Huh7.5.1 culture system, was used to infect cultured primary tupaia hepatocytes (PTHs) and tree shrews. The in vitro results showed that HCV genomic RNA and HCV-specific nonstructural protein 5A (NS5A) could be detected in the PTH cell culture from days 3-15 post-infection, although the viral load was lower than that observed in Huh7.5.1 cell culture. The occurrence of five sense mutations [S391A, G397A, L402F and M405T in the hypervariable region 1 (HVR1) of envelope glycoprotein 2 and I2750M in NS5B] suggested that HCV undergoes genetic evolution during culture. Fourteen of the 30 experimental tree shrews (46.7 %) were found to be infected, although the HCV viremia was intermittent in vivo. A positive test for HCV RNA in liver tissue provided stronger evidence for HCV infection and replication in tree shrews. The results of an immunohistochemistry assay also demonstrated the presence of four HCV-specific proteins (Core, E2, NS3/4 and NS5A) in the hepatocytes of infected tree shrews. The pathological changes observed in the liver tissue of infected tree shrews could be considered to be representative symptoms of mild hepatitis. These results revealed that the tree shrew can be used as an animal model supporting the infection and replication of HCV in vitro and in vivo.
Collapse
Affiliation(s)
- Yue Feng
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Yue-Mei Feng
- Academy of Public Health, Kunming Medical University, Kunming, Yunnan 650500, PR China
| | - Caixia Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan 650118, PR China
| | - Yuanyuan Han
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan 650118, PR China
| | - Li Liu
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Xiaomei Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan 650118, PR China
| | - Jiejie Dai
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan 650118, PR China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Yunnan Provincial Center for Molecular Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| |
Collapse
|
42
|
Shao M, Ge GZ, Liu WJ, Xiao J, Xia HJ, Fan Y, Zhao F, He BL, Chen C. Characterization and phylogenetic analysis of Krüppel-like transcription factor (KLF) gene family in tree shrews (Tupaia belangeri chinensis). Oncotarget 2017; 8:16325-16339. [PMID: 28032601 PMCID: PMC5369966 DOI: 10.18632/oncotarget.13883] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
Abstract
Krüppel-like factors (KLFs) are a family of zinc finger transcription factors regulating embryonic development and diseases. The phylogenetics of KLFs has not been studied in tree shrews, an animal lineage with a closer relationship to primates than rodents. Here, we identified 17 KLFs from Chinese tree shrew (Tupaia belangeri chinensis). KLF proteins are highly conserved among humans, monkeys, rats, mice and tree shrews compared to zebrafish and chickens. The CtBP binding site, Sin3A binding site and nuclear localization signals are largely conserved between tree shrews and human beings. Tupaia belangeri (Tb) KLF5 contains several conserved post-transcriptional modification motifs. Moreover, the mRNA and protein expression patterns of multiple tbKLFs are tissue-specific. TbKLF5, like hKLF5, significantly promotes NIH3T3 cell proliferation in vitro. These results provide insight for future studies regarding the structure and function of the tbKLF gene family.
Collapse
Affiliation(s)
- Ming Shao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Guang-Zhe Ge
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.,Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wen-Jing Liu
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ji Xiao
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hou-Jun Xia
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Feng Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Bao-Li He
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
43
|
Szabo M, Svensson Akusjärvi S, Saxena A, Liu J, Chandrasekar G, Kitambi SS. Cell and small animal models for phenotypic drug discovery. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:1957-1967. [PMID: 28721015 PMCID: PMC5500539 DOI: 10.2147/dddt.s129447] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The phenotype-based drug discovery (PDD) approach is re-emerging as an alternative platform for drug discovery. This review provides an overview of the various model systems and technical advances in imaging and image analyses that strengthen the PDD platform. In PDD screens, compounds of therapeutic value are identified based on the phenotypic perturbations produced irrespective of target(s) or mechanism of action. In this article, examples of phenotypic changes that can be detected and quantified with relative ease in a cell-based setup are discussed. In addition, a higher order of PDD screening setup using small animal models is also explored. As PDD screens integrate physiology and multiple signaling mechanisms during the screening process, the identified hits have higher biomedical applicability. Taken together, this review highlights the advantages gained by adopting a PDD approach in drug discovery. Such a PDD platform can complement target-based systems that are currently in practice to accelerate drug discovery.
Collapse
Affiliation(s)
- Mihaly Szabo
- Department of Microbiology Tumor, and Cell Biology
| | | | - Ankur Saxena
- Department of Microbiology Tumor, and Cell Biology
| | - Jianping Liu
- Department of Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | | | | |
Collapse
|
44
|
Kayesh MEH, Ezzikouri S, Chi H, Sanada T, Yamamoto N, Kitab B, Haraguchi T, Matsuyama R, Nkogue CN, Hatai H, Miyoshi N, Murakami S, Tanaka Y, Takano JI, Shiogama Y, Yasutomi Y, Kohara M, Tsukiyama-Kohara K. Interferon-β response is impaired by hepatitis B virus infection in Tupaia belangeri. Virus Res 2017; 237:47-57. [PMID: 28551415 DOI: 10.1016/j.virusres.2017.05.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/25/2017] [Accepted: 05/18/2017] [Indexed: 01/03/2023]
Abstract
To date, the chimpanzee has been used as the natural infection model for hepatitis B virus (HBV). However, as this model is very costly and difficult to use because of ethical and animal welfare issues, we aimed to establish the tupaia (Tupaia belangeri) as a new model for HBV infection and characterized its intrahepatic innate immune response upon HBV infection. First, we compared the propagation of HBV genotypes A2 and C in vivo in tupaia hepatocytes. At 8-10days post infection (dpi), the level of HBV-A2 propagation in the tupaia liver was found to be higher than that of HBV-C. Abnormal architecture of liver cell cords and mitotic figures were also observed at 8 dpi with HBV-A2. Moreover, we found that HBV-A2 established chronic infection in some tupaias. We then aimed to characterize the intrahepatic innate immune response in this model. First, we infected six tupaias with HBV-A2 (strains JP1 and JP4). At 28 dpi, intrahepatic HBV-DNA and serum hepatitis B surface antigens (HBsAg) were detected in all tupaias. The levels of interferon (IFN)-β were found to be significantly suppressed in the three tupaias infected with HBV A2_JP4, while no significant change was observed in the three infected with HBV A2_JP1. Expression of toll-like receptor (TLR) 1 was suppressed, while that of TLR3 and TLR9 were induced, in HBV A2_JP1-infected tupaias. Expression of TLR8 was induced in all tupaias. Next, we infected nine tupaias with HBV-A2 (JP1, JP2, and JP4), and characterized the infected animals after 31 weeks. Serum HBsAg levels were detected at 31 weeks post-infection (wpi) and IFN-β was found to be significantly suppressed in all tupaias. TLR3 was not induced, except in tupaia #93 and #96. Suppression of TLR9 was observed in all tupaias, except tupaia #93. Also, we investigated the expression levels of cyclic GMP-AMP synthase, which was found to be induced in all tupaias at 28 dpi and in four tupaias at 31 wpi. Additionally, we evaluated the expression levels of sodium-taurocholate cotransporting polypeptide, which was found to be suppressed during chronic HBV infection. Thus, the tupaia infection model of HBV clearly indicated the suppression of IFN-β at 31 wpi, which might have contributed to the establishment of chronic HBV infection.
Collapse
Affiliation(s)
- Mohammad Enamul Hoque Kayesh
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan; Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Sayeh Ezzikouri
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Haiying Chi
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Japan
| | - Naoki Yamamoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Japan
| | - Bouchra Kitab
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Takumi Haraguchi
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Rika Matsuyama
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Chimène Nze Nkogue
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan; Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Hitoshi Hatai
- Department of Animal Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Noriaki Miyoshi
- Department of Animal Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Shuko Murakami
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Jun-Ichiro Takano
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Yumiko Shiogama
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba, Ibaraki, 305-0843, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Japan
| | - Kyoko Tsukiyama-Kohara
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan; Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan; Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
45
|
Ding R, Zhang H, Zhang L, Zhao W, Li Y, Yang J, Zhang Y, Ma S. Assessment of sequence homology and immunologic cross-reactivity between tree shrew (Tupaia belangeri) and human IL-21. PLoS One 2017; 12:e0176707. [PMID: 28467480 PMCID: PMC5415133 DOI: 10.1371/journal.pone.0176707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 04/16/2017] [Indexed: 01/05/2023] Open
Abstract
Many studies have indicated that the expression of interleukin-21 (IL-21) is associated with the pathogenesis of certain liver diseases. However, in alternative animal models of liver diseases, it remains unknown whether the tree shrew could be utilized to analyze the relationship between IL-21 and liver diseases. Here, the phylogenetic tree, sequence alignment and protein structure model of tree shrew and human IL-21 were analyzed using bioinformatics software. A pEGFP-N3/tsIL-21 eukaryotic expression vector of tree shrew IL-21 (tsIL-21) was constructed, and IL-21 expression by the vector-transfected Huh7 cells was evaluated using the newly established quantitative real-time PCR and immunologic protocols for assessing human IL-21. The cytokine profiles were also evaluated in tree shrew spleen lymphocytes induced by recombinant human IL-21 or concanavalin A. It was found that the coding sequence (CDS) of tsIL-21 amplified from spleen lymphocytes belonged to the predicted sequence. The tsIL-21 was closely clustered with primate IL-21 rather than rodent IL-21, and it had an alignment of 83.33% with the human IL-21 nucleotide sequence and 69.93% with the amino acid sequence. The profiles of secondary structure, hydrophobicity and surface charge of tsIL-21 were also similar with those of human IL-21. The tsIL-21 expressed by the vector-transfected Huh7 cells could be identified by their different sources of antibodies against human IL-21, which were all dose-dependent. Recombinant human IL-21 could induce the change of the cytokine profiles of tree shrew spleen lymphocytes, which showed a higher expression of IL-10 and IFN-γ rather than IL-2, IL-4, IL-17, TNF-a and IL-21 during the five-day stimulation. These results indicate that tsIL-21 has a high degree of homology, structural similarity and immunological cross-reactivity with human IL-21 and also confirm the accuracy of this predicted tsIL-21CDS. The protocols utilized in this study will lead to the experimental feasibility of further IL-21-related studies in vivo.
Collapse
Affiliation(s)
- Rong Ding
- Department of Infectious Diseases, Kunming General Hospital of Chengdu Military Region, Kunming, China
| | - Hui Zhang
- State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lihong Zhang
- Department of Infectious Diseases, Kunming General Hospital of Chengdu Military Region, Kunming, China
| | - Wenwen Zhao
- State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianyong Yang
- Cell Biological Therapy Center, Kunming General Hospital of Chengdu Military Region, Kunming, China
| | - Yuanxu Zhang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shiwu Ma
- Department of Infectious Diseases, Kunming General Hospital of Chengdu Military Region, Kunming, China
- State Key Laboratory of Organ Failure Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
- * E-mail:
| |
Collapse
|
46
|
Kouwaki T, Fukushima Y, Daito T, Sanada T, Yamamoto N, Mifsud EJ, Leong CR, Tsukiyama-Kohara K, Kohara M, Matsumoto M, Seya T, Oshiumi H. Extracellular Vesicles Including Exosomes Regulate Innate Immune Responses to Hepatitis B Virus Infection. Front Immunol 2016; 7:335. [PMID: 27630638 PMCID: PMC5005343 DOI: 10.3389/fimmu.2016.00335] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/19/2016] [Indexed: 12/16/2022] Open
Abstract
The innate immune system is essential for controlling viral infection. Hepatitis B virus (HBV) persistently infects human hepatocytes and causes hepatocellular carcinoma. However, the innate immune response to HBV infection in vivo remains unclear. Using a tree shrew animal model, we showed that HBV infection induced hepatic interferon (IFN)-γ expression during early infection. Our in vitro study demonstrated that hepatic NK cells produced IFN-γ in response to HBV only in the presence of hepatic F4/80+ cells. Moreover, extracellular vesicles (EVs) released from HBV-infected hepatocytes contained viral nucleic acids and induced NKG2D ligand expression in macrophages by stimulating MyD88, TICAM-1, and MAVS-dependent pathways. In addition, depletion of exosomes from EVs markedly reduced NKG2D ligand expression, suggesting the importance of exosomes for NK cell activation. In contrast, infection of hepatocytes with HBV increased immunoregulatory microRNA levels in EVs and exosomes, which were transferred to macrophages, thereby suppressing IL-12p35 mRNA expression in macrophages to counteract the host innate immune response. IFN-γ increased the hepatic expression of DDX60 and augmented the DDX60-dependent degradation of cytoplasmic HBV RNA. Our results elucidated the crucial role of exosomes in antiviral innate immune response against HBV.
Collapse
Affiliation(s)
- Takahisa Kouwaki
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University , Honjo, Chuo-ku, Kumamoto , Japan
| | - Yoshimi Fukushima
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University , Honjo, Chuo-ku, Kumamoto , Japan
| | - Takuji Daito
- Laboratory for Biologics Development, Research Center for Zoonosis Control, GI-CoRE Global Station for Zoonosis Control, Hokkaido University , Kita-Ku, Sapporo , Japan
| | - Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science , Kamikitazawa, Setagaya-ku, Tokyo , Japan
| | - Naoki Yamamoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science , Kamikitazawa, Setagaya-ku, Tokyo , Japan
| | - Edin J Mifsud
- Laboratory for Biologics Development, Research Center for Zoonosis Control, GI-CoRE Global Station for Zoonosis Control, Hokkaido University , Kita-Ku, Sapporo , Japan
| | - Chean Ring Leong
- Section of Bioengineering Technology, Universiti Kuala Lumpur (UniKL) MICET , Melaka , Malaysia
| | - Kyoko Tsukiyama-Kohara
- Joint Faculty of Veterinary Medicine, Transboundary Animal Diseases Center, Kagoshima University , Korimoto, Kagoshima , Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science , Kamikitazawa, Setagaya-ku, Tokyo , Japan
| | - Misako Matsumoto
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University , Kita-Ku, Sapporo , Japan
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University , Kita-Ku, Sapporo , Japan
| | - Hiroyuki Oshiumi
- Department of Immunology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Chuo-ku, Kumamoto, Japan; Laboratory for Biologics Development, Research Center for Zoonosis Control, GI-CoRE Global Station for Zoonosis Control, Hokkaido University, Kita-Ku, Sapporo, Japan; Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-Ku, Sapporo, Japan; JST, PREST, Honjo, Chuo-ku, Kumamoto, Japan
| |
Collapse
|
47
|
Lamontagne RJ, Bagga S, Bouchard MJ. Hepatitis B virus molecular biology and pathogenesis. HEPATOMA RESEARCH 2016; 2:163-186. [PMID: 28042609 PMCID: PMC5198785 DOI: 10.20517/2394-5079.2016.05] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As obligate intracellular parasites, viruses need a host cell to provide a milieu favorable to viral replication. Consequently, viruses often adopt mechanisms to subvert host cellular signaling processes. While beneficial for the viral replication cycle, virus-induced deregulation of host cellular signaling processes can be detrimental to host cell physiology and can lead to virus-associated pathogenesis, including, for oncogenic viruses, cell transformation and cancer progression. Included among these oncogenic viruses is the hepatitis B virus (HBV). Despite the availability of an HBV vaccine, 350-500 million people worldwide are chronically infected with HBV, and a significant number of these chronically infected individuals will develop hepatocellular carcinoma (HCC). Epidemiological studies indicate that chronic infection with HBV is the leading risk factor for the development of HCC. Globally, HCC is the second highest cause of cancer-associated deaths, underscoring the need for understanding mechanisms that regulate HBV replication and the development of HBV-associated HCC. HBV is the prototype member of the Hepadnaviridae family; members of this family of viruses have a narrow host range and predominately infect hepatocytes in their respective hosts. The extremely small and compact hepadnaviral genome, the unique arrangement of open reading frames, and a replication strategy utilizing reverse transcription of an RNA intermediate to generate the DNA genome are distinguishing features of the Hepadnaviridae. In this review, we provide a comprehensive description of HBV biology, summarize the model systems used for studying HBV infections, and highlight potential mechanisms that link a chronic HBV-infection to the development of HCC. For example, the HBV X protein (HBx), a key regulatory HBV protein that is important for HBV replication, is thought to play a cofactor role in the development of HBV-induced HCC, and we highlight the functions of HBx that may contribute to the development of HBV-associated HCC.
Collapse
Affiliation(s)
- R. Jason Lamontagne
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Sumedha Bagga
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Michael J. Bouchard
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
48
|
Thomas E, Liang TJ. Experimental models of hepatitis B and C - new insights and progress. Nat Rev Gastroenterol Hepatol 2016; 13:362-74. [PMID: 27075261 PMCID: PMC5578419 DOI: 10.1038/nrgastro.2016.37] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Viral hepatitis is a major cause of morbidity and mortality, affecting hundreds of millions of people worldwide. Hepatitis-causing viruses initiate disease by establishing both acute and chronic infections, and several of these viruses are specifically associated with the development of hepatocellular carcinoma. Consequently, intense research efforts have been focusing on increasing our understanding of hepatitis virus biology and on improving antiviral therapy and vaccination strategies. Although valuable information on viral hepatitis emerged from careful epidemiological studies on sporadic outbreaks in humans, experimental models using cell culture, rodent and non-human primates were essential in advancing the field. Through the use of these experimental models, improvement in both the treatment and prevention of viral hepatitis has progressed rapidly; however, agents of viral hepatitis are still among the most common pathogens infecting humans. In this Review, we describe the important part that these experimental models have played in the study of viral hepatitis and led to monumental advances in our understanding and treatment of these pathogens. Ongoing developments in experimental models are also described.
Collapse
Affiliation(s)
- Emmanuel Thomas
- Schiff Center for Liver Diseases and Sylvester Cancer Center, Room
PAP514, Papanicolaou Building, 1550 NW 10th Avenue, Miami, Florida 33136, USA
| | - T. Jake Liang
- Liver Diseases Branch, NIH, Building 10-9B16, Bethesda, Maryland
20892–1800, USA
| |
Collapse
|
49
|
Chen X, He M, Li G, Zhou Y, Zhao G, Lei Y, Yang K, Tian L, Huang Y. [Study of the Changes on Tree Shrew Bronchial Epithelium
Induced by Xuanwei Bituminous Coal Dust]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2016; 18:469-74. [PMID: 26302342 PMCID: PMC6000230 DOI: 10.3779/j.issn.1009-3419.2015.08.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND AND OBJECTIVE Lung cancer is the type of cancer with the highest incidence and mortality in numerous countries and regions. Establishing an appropriate animal model that can be used to simulate lung cancer etiology, pathogenesis, and similar processes, is urgent. We explore the feasibility of establishing a lung cancer model induced by Xuanwei bituminous coal dust PM10 (particulate matter with diameters of 10 μm or less), which affects bronchial epithelium of tree shrews. METHODS The neck skin of adult tree shrews is dissected, and the thyroid cartilage is fully exposed. Subsequently, the weak part at the top of the thyroid cartilage is treated with intratracheal agents by perfusion via a special infusion needle puncture method. Regular X-ray examination and lung tissue biopsy were performed on the sacrificed animals to observe changes in pulmonary imaging and bronchial epithelial cells after perfusion of Xuanwei bituminous coal dust PM 10. RESULTS The tree shrews of the experimental group (exposed to bituminous coal dust) died in a week after perfusion with PM10, whereas no animal died until the end of the experiment in the blank control and the solvent control groups. Sections of lung tissue biopsy of the regularly killed tree shrews were stained with hematoxylin and eosin. The lung tissues of tree shrews in the experimental group showed a serial changes caused by bronchial epithelial hyperplasia, such as squamous metaplasia, dysplasia, and early invasive carcinoma, whereas no significant pathological changes were observed in the blank control and solvent control groups. CONCLUSIONS Endotracheal infusion of Xuanwei bituminous coal dust PM10 induces lung cancer in tree shrews. Thus, the lung cancer model was established.
.
Collapse
Affiliation(s)
- Xiaobo Chen
- Department of Cardiothoracic Surgery, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Meng He
- Department of Cardiothoracic Surgery, Rizhao People's Hospital, Rizhao 276800, China
| | - Guangjian Li
- Department of Cardiothoracic Surgery, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Yongchun Zhou
- Department of Cardiothoracic Surgery, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Guangqiang Zhao
- Department of Cardiothoracic Surgery, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Yujie Lei
- Department of Cardiothoracic Surgery, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Kaiyun Yang
- Department of Cardiothoracic Surgery, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| | - Linwei Tian
- Shenzhen Research Institute of Chinese University Hong Kong, Shenzhen 518057, China
| | - Yunchao Huang
- Department of Cardiothoracic Surgery, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming 650118, China
| |
Collapse
|
50
|
Hai-Ying C, Nagano K, Ezzikouri S, Yamaguchi C, Kayesh MEH, Rebbani K, Kitab B, Nakano H, Kouji H, Kohara M, Tsukiyama-Kohara K. Establishment of an intermittent cold stress model using Tupaia belangeri and evaluation of compound C737 targeting neuron-restrictive silencer factor. Exp Anim 2016; 65:285-92. [PMID: 27041457 PMCID: PMC4976242 DOI: 10.1538/expanim.15-0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Previous studies have shown that intermittent cold stress (ICS) induces depression-like behaviors in mammals. Tupaia belangeri (the tree shrew) is the only experimental animal other than the chimpanzee that has been shown to be susceptible to infection by hepatitis B and C viruses. Moreover, full genome sequence analysis has revealed strong homology between host proteins in Tupaia and in humans and other primates. Tupaia neuromodulator receptor proteins are also known to have a high degree of homology with their corresponding primate proteins. Based on these similarities, we hypothesized that induction of ICS in Tupaia would provide a useful animal model of stress responses. We exposed young adult Tupaia to ICS and observed decreases in body temperature and body weight in both female and male Tupaia, suggesting that Tupaia are an appropriate animal model for ICS studies. We further examined the efficacy of a new small-molecule compound, C737, against the effects of ICS. C737 mimics the helical structure of neuron-restrictive silencer factor (NRSF/REST), which regulates a wide range of target genes involved in neuronal function and pain modulation. Treatment with C737 significantly reduced stress-induced weight loss in female Tupaia; these effects were stronger than those elicited by the antidepressant agomelatine. These results suggest that Tupaia represents a useful non-rodent ICS model. Our data also provide new insights into the function of NRSF/REST in stress-induced depression and other disorders with epigenetic influences or those with high prevalence in women.
Collapse
Affiliation(s)
- Chi Hai-Ying
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima-city, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|