1
|
Gao Q, Li Y, Zhong Y, Zhang SX, Yu CY, Chen G. Chemical profiling and anti-inflammatory effect of phenolic extract of Gentiana rigescens Franch. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119115. [PMID: 39551278 DOI: 10.1016/j.jep.2024.119115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gentiana rigescens Franch. (G. rigescens), known as "Dian Long Dan" in Southern Yunnan Herbal, has a long history in traditional Chinese medicine for treating hepatitis, allergies, postherpetic neuralgia, cholecystitis and rheumatism. AIM OF THE STUDY This study aims to comprehensively analyze the phenolic composition of G. rigescens, evaluate its potential anti-inflammatory effects, elucidate underlying mechanisms, and identify its in vivo bioactive phenolic constituents. MATERIALS AND METHODS The extraction of G. rigescens phenolic compounds (GRP) was optimized using the Box-Behnken response surface method, with four phenolic compounds (mangiferin, esculetin, ferulic acid and kaempferol) used as quality index markers. GRP's phytochemical composition was subsequently profiled via UPLC-Q-TOF-MS/MS analysis. Anti-inflammatory activity and mechanisms were assessed in LPS-stimulated RAW264.7 cells and murine models, utilizing NO production assays, ELISA, qRT-PCR, Western blotting and histopathological analysis. Bioactive phenolic compounds in blood were identified post-oral administration for in vivo activity prediction. RESULTS The optimal extraction conditions for GRP were determined as follows: Soxhlet extraction using acetone with hydrochloric acid 0.06 mol/L, at a liquid-to-solid ratio of 132: l. for 6.6 h. Seventy-one of phenolic compounds were identified in GRP using UPLC-Q-TOF-MS/MS. GRP significantly inhibited LPS-induced NO production in RAW 264.7 macrophages and reduced pro-inflammatory cytokines IL-6, IL-1β, and TNF-α while increasing anti-inflammatory IL-10. In the carrageenan-induced inflammatory model, GRP exhibited a 69.81% inhibition rate of toe swelling at high doses (1 g/kg), along with protective effects against joint injury, as observed in histological assessments. Mechanistically, GRP downregulated mRNA levels of inflammatory cytokines and reduced the expression of inflammatory proteins iNOS, COX-2, p65, p-p65 and P-IκB as shown by Western blotting. Twenty-five of phenolic compounds, including mangiferin, swertianolin, acacetin, umbelliferone and caffeic acid, were identified in vivo in the blood, indicating potential bioactive roles. CONCLUSIONS This study provides the first comprehensive profile of the phenolic composition of G. rigescen, alongside a detailed investigation of its anti-inflammatory activity, mechanisms, and in vivo bioactive components. These findings highlight the therapeutic potential of Dian Long Dan's phenolic constituents and support further research on G. rigescens.
Collapse
Affiliation(s)
- Qiao Gao
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yi Li
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yao Zhong
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Shu-Xian Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Chang-Yuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Guang Chen
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China.
| |
Collapse
|
2
|
Su S, Xuan X, Tan J, Yu Z, Jiao Y, Zhang Z, Ramakrishnan M. Analysis of the CHS Gene Family Reveals Its Functional Responses to Hormones, Salinity, and Drought Stress in Moso Bamboo ( Phyllostachys edulis). PLANTS (BASEL, SWITZERLAND) 2025; 14:161. [PMID: 39861515 PMCID: PMC11769273 DOI: 10.3390/plants14020161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025]
Abstract
Chalcone synthase (CHS), the first key structural enzyme in the flavonoid biosynthesis pathway, plays a crucial role in regulating plant responses to abiotic stresses and hormone signaling. However, its molecular functions remain largely unknown in Phyllostachys edulis, which is one of the most economically and ecologically important bamboo species and the most widely distributed one in China. This study identified 17 CHS genes in Phyllostachys edulis and classified them into seven subgroups, showing a closer evolutionary relationship to CHS genes from rice. Further analysis of PeCHS genes across nine scaffolds revealed that most expansion occurred through tandem duplications. Collinearity analysis indicated strong evolutionary conservation among CHS genes. Motif and gene structure analyses confirmed high structural similarity, suggesting shared functional characteristics. Additionally, cis-acting element analysis demonstrated that PeCHS genes are involved in hormonal regulation and abiotic stress responses. RNA-Seq expression profiles in different bamboo shoot tissues and heights, under various hormone treatments (gibberellin (GA), naphthaleneacetic acid (NAA), abscisic acid (ABA), and salicylic acid (SA)), as well as salinity and drought stress, revealed diverse response patterns among PeCHS genes, with significant differential expression, particularly under hormone treatments. Notably, PeCHS14 consistently maintained high expression levels, suggesting its key role in stress response mechanisms. qRT-PCR analysis further validated the expression differences in five PeCHS genes under GA and ABA treatments. Subcellular localization analysis demonstrated that PeCHS14 and PeCHS15 proteins are localized in the nucleus. This study provides a foundation for investigating the potential functions of PeCHS genes and identifies candidate genes for future research on the responses of Phyllostachys edulis to abiotic stresses and hormone signaling.
Collapse
Affiliation(s)
- Shiying Su
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (S.S.); (X.X.); (J.T.); (Z.Y.); (Y.J.)
| | - Xueyun Xuan
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (S.S.); (X.X.); (J.T.); (Z.Y.); (Y.J.)
| | - Jiaqi Tan
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (S.S.); (X.X.); (J.T.); (Z.Y.); (Y.J.)
| | - Zhen Yu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (S.S.); (X.X.); (J.T.); (Z.Y.); (Y.J.)
| | - Yang Jiao
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (S.S.); (X.X.); (J.T.); (Z.Y.); (Y.J.)
| | - Zhijun Zhang
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (S.S.); (X.X.); (J.T.); (Z.Y.); (Y.J.)
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Chen J, Jiang C, Liu Z, Wang P, Ma Q, Zhou N. Study on optimization of extraction and purification processes for total flavonoids from Lycopi herba roots and their anti-proliferative effects on fibrous synoviocytes in human rheumatoid arthritis. ULTRASONICS SONOCHEMISTRY 2025; 112:107164. [PMID: 39579583 PMCID: PMC11625243 DOI: 10.1016/j.ultsonch.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Lycopi herba, a traditional Chinese medicinal plant, has long been valued for its aerial parts. however, its roots, which are often discarded as non-medicinal waste, actually contain flavonoid compounds that possess potential medicinal values such as anti-inflammatory, antioxidant, and anti-tumor activities. Despite this, studies on the extraction, purification, and biological activity assessment of total flavonoids from L. herba roots (TFLHR) remain inadequate. Our study aimed to optimize the extraction and purification processes for TFLHR and evaluate their anti-proliferative effects on human fibroblast-like synoviocytes (HFLS-RA), which are key pathological cells in rheumatoid arthritis. By utilizing ultrasound-assisted extraction combined with response surface methodology (RSM), we optimized the extraction conditions, achieving a total flavonoid content of 90.484 ± 0.974 mg/g under the optimal settings: a liquid-solid ratio of 48:1 mL/g, 13 min of ultrasound treatment, 70 % ethanol, and an extraction temperature of 43°C. Subsequently, macroporous resin chromatography was employed for flavonoid purification, with AB-8 resin exhibiting the highest performance, achieving adsorption and desorption rates of 79.64 ± 1.51 % and 88.61 ± 1.02 %, respectively. By further refining the purification conditions through RSM, the purity of flavonoids was increased to 63.9 ± 1.86 %. Through ultra performance liquid chromatography tandem-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) analysis, 74 flavonoid compounds across 15 categories were identified. Further activity studies demonstrated that purified TFLHR exhibited significant concentration-dependent anti-proliferative effects on HFLS-RA cells. This study not only provides a scientific basis for the comprehensive utilization of L. herba root resources but also highlights the potential medicinal value of TFLHR in the treatment of rheumatoid arthritis, laying a foundation for future research into its specific mechanisms and clinical applications.
Collapse
Affiliation(s)
- Jie Chen
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China; Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing 404120, China
| | - Chunyang Jiang
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China; Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenyu Liu
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China
| | - Panpan Wang
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China
| | - Qiang Ma
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir Area, Chongqing Three Gorges Medical College, Chongqing 404120, China.
| | - Nong Zhou
- Chongqing Engineering Laboratory of Green Planting and Deep Processing of Famous-region Drug in the Three Gorges Reservoir Region, College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing 404020, China.
| |
Collapse
|
4
|
Mayindza Ekaghba EL, Grenet M, Gandolfo P, Loutelier-Bourhis C, Schmitz I, Afonso C, Lerouge P, Mengome LE. Phytochemical Analysis and Antidiarrheal Activity of Stem Bark Decoctions of Pentadesma butyracea Sabine (Clusiaceae). Molecules 2024; 29:5789. [PMID: 39683945 DOI: 10.3390/molecules29235789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Pentadesma butyracea is a medicinal plant of which bark decoctions are used in traditional medicine for the treatment of diarrhea symptoms in Gabon. The aim of the present work was to perform phytochemical and pharmacological analyses of decoctions of P. butyracea bark. In a principal approach, spectrophotometric analyses were used to quantify phenolic compounds, followed by liquid chromatography coupled to mass spectrometry analysis that allowed the identification of flavanone-flavone dimers as the main metabolites. Pharmacological analyses showed the absence of toxicity, thus confirming the safety of use of this decoction in traditional medicine. The antioxidant activity of the bark decoctions was demonstrated to depend on their phenolic contents. The decoction of stem barks harvested during the rainy season also induced a dose-dependent relaxation of isolated ileum fragments from Wistar rats. In addition, the antidiarrheal activity of P. butyracea barks was investigated against castor oil-induced diarrhea. The oral administration of different concentrations of this decoction led to a decrease in wet stools, indicating an antidiarrheal effect at the doses that were used. These results encourage the deepening of bio-guided research on P. butyracea bark decoctions in order to propose standard traditional medical treatments.
Collapse
Affiliation(s)
- Ericka Lorleil Mayindza Ekaghba
- Institut de Pharmacopée et Médecines Traditionnelles (IPHAMETRA), Centre National de la Recherche Scientifique et Technique (CENAREST), Libreville BP 12 141, Gabon
- Université de Rouen Normandie (UNIROUEN), Normandie Univeristy, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, F-76000 Rouen, France
| | - Manon Grenet
- Université de Rouen Normandie (UNIROUEN), Normandie Univeristy, Inserm U1245, F-76000 Rouen, France
| | - Pierrick Gandolfo
- Université de Rouen Normandie (UNIROUEN), Normandie Univeristy, Inserm U1245, F-76000 Rouen, France
| | - Corinne Loutelier-Bourhis
- Université de Rouen Normandie, INSA Rouen, Normandie Univeristy, CNRS, UMR6014-COBRA, F-76000 Rouen, France
| | - Isabelle Schmitz
- Université de Rouen Normandie, INSA Rouen, Normandie Univeristy, CNRS, UMR6014-COBRA, F-76000 Rouen, France
| | - Carlos Afonso
- Université de Rouen Normandie, INSA Rouen, Normandie Univeristy, CNRS, UMR6014-COBRA, F-76000 Rouen, France
| | - Patrice Lerouge
- Université de Rouen Normandie (UNIROUEN), Normandie Univeristy, GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, F-76000 Rouen, France
| | - Line Edwige Mengome
- Institut de Pharmacopée et Médecines Traditionnelles (IPHAMETRA), Centre National de la Recherche Scientifique et Technique (CENAREST), Libreville BP 12 141, Gabon
| |
Collapse
|
5
|
Mohammed HS, Elariny HA, Seif-Eldein NA, Mahgoub S, El-Said NT, Abu El Wafa SA, Taha EF. Investigating the involvement of the NLRP3/ASC/caspase-1 and NF-κb/MAPK pathways in the pathogenesis of gouty arthritis: Insights from irradiated and non-irradiated Trifolium alexandrium L. extracts and some metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118566. [PMID: 39002823 DOI: 10.1016/j.jep.2024.118566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Trifolium alexandrinum L. (TA), has traditionally been used in folk medicine for its anti-inflammatory properties against hyperuricemia and gout. However, the specific mechanisms of action of TA have not been thoroughly studied. AIM OF THE WORK This study aimed to evaluate the protective effects of irradiated (TR25) and non-irradiated (TR0) Trifolium alexandrinum L. aqueous extract (TAAE), along with two isolated compounds, caffeine (CAF) and saponin (SAP), in a rat model of acute gouty arthritis (GA). MATERIALS AND METHODS The GA model was established by injecting a monosodium urate (MSU) suspension into the knee joint. Synovial tissue pathology was assessed, and levels of TNF-α, IL-6, IL-1β, NF-κB, mTOR, AKT1, PI3K, NLRP3, and ASC were measured by ELISA. mRNA expression of ERK1, JNK, and p-38 MAPK was detected using qRT-PCR, and Caspase-1 protein expression was assessed by immunohistochemical analysis. Knee swelling, uric acid levels, liver and kidney function, and oxidative stress markers were also evaluated. RESULTS TAAE analysis identified 170 compounds, with 73 successfully identified using LC-HR-MS/MS, including caffeine citrate and theasapogenol B glycoside as the main constituents. The studied materials demonstrated significant protective effects against GA. TR25 administration significantly mitigated knee joint circumference compared to other treatments. It demonstrated potential in alleviating hyperuricemia, renal and hepatic impairments induced by MSU crystals. TR25 also alleviated oxidative stress and reduced levels of IL1β, IL-6, TNF-α, and NF-κB. Weak Caspase-1 immune-positive staining was observed in the TR25 group. TR25 decreased NLRP3 and ASC expression, reducing inflammatory cytokine levels in GA. It effectively inhibited the PI3K, AKT, and mTOR signaling pathways, promoting autophagy. Additionally, TR25 suppressed ERK1, JNK, and p-38 MAPK gene expression in synovial tissue. These effects were attributed to various components in TAAE, such as flavonoids, phenolic acids, tannins, alkaloids, and triterpenes. CONCLUSION Importantly, irradiation (25 KGy) enhanced the antioxidant effects and phtchemical contents of TAAE. Additionally, TR0, TR25, CAF, and SAP exhibited promising protective effects against GA, suggesting their therapeutic potential for managing this condition. These effects were likely mediated through modulation of the NLRP3/ASC/Caspase-1 and ERK/JNK/p-38 MAPK signaling pathways, as well as regulation of the PI3K/AKT/mTOR pathway. Further research is warranted to fully elucidate the underlying mechanisms and optimize their clinical applications.
Collapse
Affiliation(s)
- Hala Sh Mohammed
- Department of Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Hemat A Elariny
- Department of Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Noha A Seif-Eldein
- Department of Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Sebaey Mahgoub
- Food Analysis Laboratory, Ministry of Health, Zagazig, 44511, Egypt.
| | - Nermin T El-Said
- Department of Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Salwa A Abu El Wafa
- Department of Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Eman Fs Taha
- Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
6
|
Gamal El-Din MI, Mantawy EM, Said RS, Fahmy NM, Fayez S, Shahin MI, Nasr M, Elissawy AM, Singab ANB. Hibiscus schizopetalus boosts wound healing via restoring redox balance and hindering inflammatory responses in rats: Insights on metabolome profiling and molecular docking. Arch Pharm (Weinheim) 2024; 357:e2400392. [PMID: 39240066 DOI: 10.1002/ardp.202400392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024]
Abstract
Hibiscus species (Malvaceae) possess a plethora of appealing pharmacological activities with an extended history of customary use in diverse medical conditions. The present study aimed at comparing the metabolomic analyses of three Hibiscus species native to Egypt, namely H. tiliaceus, H. schizopetalus extract (HSE), and H. rosa-sinensis, alongside identifying a promising natural wound healing candidate. Chemical profiling of the leaf extracts was achieved via UPLC-ESI/MS/MS-guided analysis that resulted in the tentative identification of a total of 48 secondary metabolites pertaining to phenolic acids, flavonoids, anthocyanins, fatty acids, and fatty amides. Remarkably, in vitro studies revealed that HSE exhibited the topmost wound healing activity. Subsequently, HSE was formulated into hydro- and nanogel (1% w/v) formulations for further assessing its efficacy in the wound excision model. HSE-nanogel demonstrated a significant in vivo wound contraction activity alongside improving histopathological abnormalities. Mechanistically, HSE-nanogel upregulated the wound antioxidant status through increasing the levels of reduced glutathione (GSH) and catalase activity. Moreover, HSE-nanogel suppressed the wound inflammatory responses by diminishing the expressions of NF-ĸB, TNF-α, and IL-6. Molecular docking studies were performed on HSE's major constituents using CDOCKER, which further supported the in vivo findings. Collectively, HSE nanogel exhibits notable aptitude as a wound-healing agent, warranting further clinical appraisal.
Collapse
Affiliation(s)
- Mariam I Gamal El-Din
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Riham S Said
- Department of Drug Radiation Research, National Center for Radiation Research & Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nouran M Fahmy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Shaimaa Fayez
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mai I Shahin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ahmed M Elissawy
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Khaled N, Ibrahim N, Ali AE, Youssef FS, El-Ahmady SH. LC-qTOF-MS/MS phytochemical profiling of Tabebuia impetiginosa (Mart. Ex DC.) Standl. leaf and assessment of its neuroprotective potential in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118292. [PMID: 38705428 DOI: 10.1016/j.jep.2024.118292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tabebuia impetiginosa (Bignoniaceae) was traditionally used for memory enhancement and central nervous system (CNS) stimulation. AIM OF THE STUDY This study aims to create a metabolic profile of the ethyl acetate fraction of T. impetiginosa (TEF) and investigate for the first time its neuroprotective potential on cyclophosphamide (CP)-induced chemobrain, validating its traditional use. MATERIALS AND METHODS Metabolite profiling of TEF was performed using Liquid Chromatography coupled with Quadrupole Time of Flight-Mass/Mass Spectrometry (LC-qTOF-MS/MS). For the in vivo study, CP (200 mg/kg, i.p.) was administered to induce cognitive impairment in rats; TEF (30 mg/kg, p.o.) was administered throughout the 14 days of the experiment to assess its role in mitigating CP-induced neuronal deficits. Behavioral tests including locomotor, Y-maze, and passive avoidance tests were conducted. Additionally, biochemical markers such as reduced glutathione (GSH), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), and caspase-3 immunoexpression were assessed in the hippocampus area. RESULTS Forty-four phytoconstituents were tentatively identified in TEF, mainly iridoids and organic acids. TEF showed significant memory enhancement as evidenced by the increase in step-through latency in the passive avoidance test by 1.5 folds and the increase in sequence alternation percentage (SAP) in the Y-maze test by 67.3%, as compared to CP-group. Moreover, it showed pronounced antioxidant and anti-inflammatory potentials evidenced by the significant elevation in reduced glutathione (GSH) levels by 80% and a pronounced decline in MDA and TNF-α levels by 24% and 45%, respectively relative to the CP group. TEF treatment restored normal hippocampal histological features and attenuated apoptotic caspase-3 expression by 70% compared to the CP group. CONCLUSIONS TEF can act as a promising natural scaffold in managing the chemobrain induced by CP in cancer patients.
Collapse
Affiliation(s)
- Nesma Khaled
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt.
| | - Nehal Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt.
| | - Alaa E Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt.
| | - Sherweit H El-Ahmady
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
8
|
Wu C, Ma H, Lu S, Shi X, Liu J, Yang C, Zhang R. Effects of bamboo leaf flavonoids on growth performance, antioxidants, immune function, intestinal morphology, and cecal microbiota in broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7656-7667. [PMID: 38770921 DOI: 10.1002/jsfa.13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Bamboo leaf flavonoids (BLF) are the main bioactive ingredients in bamboo leaves. They have antioxidant, anti-inflammatory, antibacterial, and other effects. In this study, the effects of dietary BLF on growth performance, immune response, antioxidant capacity, and intestinal microbiota of broilers were investigated. A total of 288 broilers were divided into three groups with eight replicates and 12 birds in each replicate. Broilers were fed a basic diet or the basic diet supplemented with 1000 or 2000 mg kg-1 BLF for 56 days. RESULTS The results showed that supplementation of BLF increased body weight (BW) and average daily weight gain (ADG), and reduced average daily feed intake (ADFI) (P < 0.05). The serum immunoglobulin A (IgA), immunoglobulin M (IgM), and interleukin 10 (IL-10) content of broilers in the BLF1000 group was increased and the interleukin 1β (IL-1β) and tumor necrosis factor-α (TNF-α) content was decreased (P < 0.05). The levels of IgM and IL-10 in jejunum mucosa were found to be enhanced by BLF (P < 0.05). The BLF1000 group exhibited a significant reduction in the concentration of TNF-α (P < 0.05). Serum and jejunum mucosa total antioxidant capacity (T-AOC) levels in the BLF1000 group were increased (P < 0.05). The serum catalase (CAT) and glutathione peroxidase (GSH-Px) effects of the BLF1000 group and serum CAT effects of BLF2000 group were increased (P < 0.05). The CON group demonstrated a lower relative abundance of Christensenellaceae_R-7_group and Oscillibacter than the BLF group (P < 0.05). CONCLUSION Dietary BLF inclusion enhanced the growth performance, immune, and antioxidant functions, improved the intestinal morphology, and ameliorated the intestinal microflora structure in broiler. Adding 1000 mg kg-1 BLF to the broiler diet can be considered as an effective growth promoter. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chao Wu
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Hui Ma
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Shuwan Lu
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Xueyan Shi
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Jinsong Liu
- Vegamax Green Animal Health products Key agricultural Enterprise Research Institute of Zhejiang Province, Zhejiang Vegamax Biotechnology Co., Ltd, Zhejiang, China
| | - Caimei Yang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology, College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang Agricultural and Forestry University, Zhejiang, China
| |
Collapse
|
9
|
Frańska M, Kasperkowiak M. Comment on the "Does saponin in quinoa really embody the source of its bitterness?". Food Chem 2024; 450:139319. [PMID: 38640538 DOI: 10.1016/j.foodchem.2024.139319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
Saponins are considered the main source of the bitter taste of quinoa, however, it has not been confirmed by Song et al. (2024). These authors suggested that saponin extracts contribute to the umami taste, however, the stronger source of the bitter taste may be the flavonoids contained in the extracts. It is an interesting finding in view of the flavonoids role in the field of food sciences. The UPLC-MS results showed that besides saponins, also polyphenols were present in the analyzed samples. However, the presented results of UPLC-MS analysis should be substantially improved, mainly with respect to the reported accurate masses and retention times, as described in details in this comment.
Collapse
Affiliation(s)
- Magdalena Frańska
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| | - Małgorzata Kasperkowiak
- Centre for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| |
Collapse
|
10
|
Du T, Wang Y, Xie H, Liang D, Gao S. Fragmentation Patterns of Phenolic C-Glycosides in Mass Spectrometry Analysis. Molecules 2024; 29:2953. [PMID: 38998905 PMCID: PMC11243344 DOI: 10.3390/molecules29132953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Many phenolic C-glycosides possess nutritional benefits and pharmacological efficacies. However, the MS/MS fragmentation pattern of phenolic C-glycosides analysis is understudied. This paper aims to determine the MS/MS fragmentation patterns of phenolic C-glycosides. METHOD Ten compounds with different sugar moieties, aglycones, and substitutes were analyzed to determine the impact of these structural features on MS/MS fragmentation using UPLC-QTOF-MS analysis. RESULTS The results showed that water loss followed by RDA reaction and alpha cleavage in the C-C bonded sugar moieties are the major fragmentation pathways. Additionally, the sugar cleavage was not affected by the skeleton and the substitute of the aglycones. These results suggested that the fragmentation patterns of phenolic C-glycosides differ from those in the O-glycosides, where the O-C glycosidic bond is the most cleavage-liable bond in MS/MS analysis. CONCLUSIONS These MS/MS fragmentation patterns can be used for the identification of C-glycosides from dietary components and herbal medicine as well as developing robust methods using MRM methods to quantify C-glycosides.
Collapse
Affiliation(s)
- Ting Du
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Yang Wang
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Huan Xie
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Dong Liang
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| | - Song Gao
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA
| |
Collapse
|
11
|
Alberti Á, Riethmüller E, Felegyi-Tóth CA, Czigle S, Czégényi D, Filep R, Papp N. Phytochemical Investigation of Polyphenols from the Aerial Parts of Tanacetum balsamita Used in Transylvanian Ethnobotany and Parallel Artificial Membrane Permeability Assay. PLANTS (BASEL, SWITZERLAND) 2024; 13:1652. [PMID: 38931084 PMCID: PMC11207953 DOI: 10.3390/plants13121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
In this study, based on ethnobotanical data recorded in Transylvania, the polyphenolic compounds and the permeability of the aerial part's extract of Tanacetum balsamita were investigated. Ultrahigh-performance liquid chromatography-tandem mass spectrometry was applied for the analysis of the extracts. Parallel artificial membrane permeability assay (PAMPA) for the gastrointestinal tract and the blood-brain barrier was conducted. In the ethanolic and aqueous extracts of the species traditionally used for wound, furuncle, and liver disorders, 92 polyphenols were characterized (e.g., flavonoid, hydroxycinnamic acid, catechin, dihydroxybenzoyl, lignan derivatives, and a monoterpene) including 54 compounds identified for the first time in the plant. In the PAMPA tests, eight components were shown to be capable of passive diffusion across the studied membranes. These include apigenin and seven methoxylated flavonoid derivatives. Based on these results, methoxylated flavonoids might promote the pharmacological potential of T. balsamita to be applied in the enhancement of novel remedies.
Collapse
Affiliation(s)
- Ágnes Alberti
- Department of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, Üllői út 26, HU-1085 Budapest, Hungary; (Á.A.); (E.R.); (C.A.F.-T.)
| | - Eszter Riethmüller
- Department of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, Üllői út 26, HU-1085 Budapest, Hungary; (Á.A.); (E.R.); (C.A.F.-T.)
| | - Csenge Anna Felegyi-Tóth
- Department of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, Üllői út 26, HU-1085 Budapest, Hungary; (Á.A.); (E.R.); (C.A.F.-T.)
| | - Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia
| | - Dóra Czégényi
- Department of Hungarian Ethnography and Anthropology, University of Babeş-Bolyai of Cluj-Napoca, Horea 31, RO-400202 Cluj-Napoca, Romania;
| | - Rita Filep
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Rókus u. 2., HU-7624 Pécs, Hungary;
| | - Nóra Papp
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Rókus u. 2., HU-7624 Pécs, Hungary;
| |
Collapse
|
12
|
Abdelbaset S, Ayoub IM, Mohamed OG, Tripathi A, Eldahshan OA, El-Kersh DM. Metabolic profiling of Vitex Pubescens Vahl bark via UPLC-ESI-QTOF/MS/MS analysis and evaluation of its antioxidant and acetylcholinesterase inhibitory activities. BMC Complement Med Ther 2024; 24:232. [PMID: 38877470 PMCID: PMC11177471 DOI: 10.1186/s12906-024-04520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Alzheimer's disease is a neurodegenerative age-related disease that primarily affects the elderly population leading to progressive memory impairments and neural deficits. It is counted as a major cause of geriatric dependency and disability. The pathogenesis of Alzheimer's disease incidence is complex and involves various hypotheses, including the cholinergic hypothesis, deposition of β-amyloid plaques, neuroinflammation, oxidative stress, and apoptosis. Conventional treatments such as donepezil aim to delay the symptoms but do not affect the progression of the disease and may cause serious side effects like hepatoxicity. The use of natural candidates for Alzheimer's disease treatment has drawn the attention of many researchers as it offers a multitargeted approach. METHODS This current study investigates the metabolic profiles of total defatted methanolic extract of Vitex pubescens bark and its polar fractions, viz. ethyl acetate and n-butanol, using ultra-performance liquid chromatography-electrospray ionization-quadrupole time-of-flight tandem mass spectrometry(UPLC-ESI-QTOF/MS/MS) technique as well as evaluate the antioxidant using free radical scavenging assays, viz. DPPH and ABTS assays and in-vitro acetylcholinesterase inhibitory activities using Ellman's microplate assay. RESULTS Metabolic profiling revealed a total of 71, 43, and 55 metabolites tentatively identified in the defatted methanolic extract, ethyl acetate, and n-butanol fractions, respectively. Phenolic acids were the most abundant class, viz. benzoic acids, and acyl quinic acid derivatives followed by flavonoids exemplified mainly by luteolin-C-glycosides and apigenin-C-glycosides. Quantification of the total phenolic and flavonoid contents in the total defatted methanolic extract confirmed its enrichment with phenolics and flavonoids equivalent to 138.61 ± 9.39 µg gallic acid/mg extract and 119.63 ± 4.62 µg rutin/mg extract, respectively. Moreover, the total defatted methanolic extract exhibited promising antioxidant activity confirmed through DPPH and ABTS assays with a 50% inhibitory concentration (IC50) value equivalent to 52.79 ± 2.16 µg/mL and 10.02 ± µg/mL, respectively. The inhibitory activity of acetylcholine esterase (AchE) was assessed using in-vitro Ellman's colorimetric assay, the total defatted methanolic extract, ethyl acetate, and n-butanol fractions exhibited IC50 values of 52.9, 15.1 and 108.8 µg/mL that they proved the significant inhibition of AchE activity. CONCLUSION The results obtained herein unraveled the potential use of the total methanolic extract of Vitex pubescens bark and its polar fractions as natural candidates for controlling Alzheimer's disease progression.
Collapse
Affiliation(s)
- Safa Abdelbaset
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Iriny M Ayoub
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Osama G Mohamed
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr el Aini St., Cairo, 11562, Egypt
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ashootosh Tripathi
- Natural Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Omayma A Eldahshan
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
- Center for Drug Discovery Research and Development, Ain Shams University, Cairo, Egypt.
| | - Dina M El-Kersh
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
- Drug Research and Development Group (DRD-G), The British University in Egypt (BUE), Cairo, 11837, Egypt
| |
Collapse
|
13
|
Sirén H. Research of saccharides and related biocomplexes: A review with recent techniques and applications. J Sep Sci 2024; 47:e2300668. [PMID: 38699940 DOI: 10.1002/jssc.202300668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 05/05/2024]
Abstract
Saccharides and biocompounds as saccharide (sugar) complexes have various roles and biological functions in living organisms due to modifications via nucleophilic substitution, polymerization, and complex formation reactions. Mostly, mono-, di-, oligo-, and polysaccharides are stabilized to inactive glycosides, which are formed in metabolic pathways. Natural saccharides are important in food and environmental monitoring. Glycosides with various functionalities are significant in clinical and medical research. Saccharides are often studied with the chromatographic methods of hydrophilic interaction liquid chromatography and anion exchange chromatograpy, but also with capillary electrophoresis and mass spectrometry with their on-line coupling systems. Sample preparation is important in the identification of saccharide compounds. The cases discussed here focus on bioscience, clinical, and food applications.
Collapse
Affiliation(s)
- Heli Sirén
- Chemicum Building, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
AbouZeid EM, Hussein RA, Salama AA, Youssef FS, El-Ahmady SH, Ammar NM, Afifi AH. Metabolomic study of the estrogenic and anti-osteoporotic potential of Erythrina bidwillii leaf. Biomed Chromatogr 2024; 38:e5810. [PMID: 38146195 DOI: 10.1002/bmc.5810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023]
Abstract
Erythrina bidwillii Lindl., Leguminosae, constitutes a valuable crop for horticulture and medicine; however, it is rarely investigated. Menopause is a crucial transitional period in women's health. Women worldwide consider the use of phytoestrogens as a safe hormone replacement therapy to alleviate detrimental menopausal symptoms. Thus, the discovery of novel phytoestrogens is highly demanded. The present study aimed to investigate, for the first time, the metabolomic profile and the estrogenic potential of E. bidwillii Lindl. leaf. Ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry and gas chromatography-mass spectrometry metabolite profiling revealed the prevalence of alkaloids, flavonoids, isoflavonoids and fatty acids. Additionally, five erythrinan alkaloids, cristanine A (1), 8-oxoerythraline (2), (+)-erythrinine (3), (+)-erythraline (4) and 8-oxoerythrinine (5), along with the isoflavonoid genistin (6), were isolated. Erythrina bidwillii leaf extract exhibited significant in vivo estrogenic, anti-osteoporotic, anti-hyperlipidemic, hepatoprotective, and nephroprotective activities, utilizing ovariectomized rat model. Moreover, ethyl acetate and hexane fractions possessed significant in vitro estrogeic potential on MCF-7 cell lines. An in silico study of the isolated metabolites revealed that (+)-erythrinine (3) and 8-oxoerythrinine (5) exhibited the highest affinity for ERα and ERβ, respectively, modeling them as potential estrogenic lead metabolites. Therefore, E. bidwillii leaf could be employed as promising hormone replacement therapy for postmenopausal women after thorough clinical trials.
Collapse
Affiliation(s)
- Enaam M AbouZeid
- Department of Pharmacognosy, National Research Centre, Giza, Egypt
| | - Rehab A Hussein
- Department of Pharmacognosy, National Research Centre, Giza, Egypt
| | - Abeer A Salama
- Department of Pharmacology, National Research Centre, Giza, Egypt
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Sherweit H El-Ahmady
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | | | - Ahmed H Afifi
- Department of Pharmacognosy, National Research Centre, Giza, Egypt
| |
Collapse
|
15
|
Marzouk M, Khalifa SM, Ahmed AH, Metwaly AM, Sh Mohammed H, Taie HAA. LC/HRESI-MS/MS screening, phytochemical characterization, and in vitro antioxidant and cytotoxic potential of Jatropha integerrima Jacq. extracts. Bioorg Chem 2023; 140:106825. [PMID: 37683543 DOI: 10.1016/j.bioorg.2023.106825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Avoiding the probable dangerous side effects of synthetic drugs, this study aims the identification of natural antioxidant and antitumor agents from J. integerrima leaf and floral extracts. A highly efficient and fast UPLC/ESI-qTOF-HRMS/MS screening has led to characterization of 30 flavonoids, i.e. 12 flavonols, 6 flavones, 3 dihydroflavonols, 4 anthocyanins (flower), 2 dihydroflavonols, and 3 isoflavones from both J. integerrima extracts. In addition, six major polyphenols were identified for the first time from leaf extract, and their structures were established as apigenin 7-O-β-d-neohesperidoside (rhoifolin, 1), apigenin 8-C-β-D-4C1-glucopyranoside (vitexin, 2), luteolin 6-C-β-D-4C1-glucopyranoside (isoorientin, 3), 6,6″-di-C-β-D-4C1-glucopyranosyl-methylene-biapigenin (Jatrophenol-I, 4), (E)-p-coumaric acid methyl ester (5), and (E)-ferulic acid methyl ester (6) with HRESI-MS and NMR analyses. The in vitro antioxidant activity of both extracts and major pure isolates was decided using DPPH, reducing power capability, FRAP, and ABTS radical scavenging assays, and their in vitro cytotoxicity was evaluated on Ehrlich ascites carcinoma cells (EACC), as well.The flower extract and compound 3 have shown the strongest antioxidant and cytotoxic effects. At low concentrations (25 µg/mL), they showed the highest DPPH radical scavenging ability (79.63 ± 0.42 and 76.20 ± 0.35%) regarding BHA (91.44 ± 0.29% at 100 µg/mL). In the parameter of absorbance, they exhibited higher reducing power ability (1.402 ± 0.025 and 1.178 ± 0.019%) than that of BHA (0.975 ± 0.013 at 100 µg/mL). Similarly, they proved superior FRAP (1427 ± 9.61 and 1377 ± 13.61 µmol Trolox/ 100 g) and highest ABTS activity (80.19 ± 0.55 and 68.38 ± 0.19%), which are higher activities compared to BHA (88.42 ± 0.24% at 100 µg/mL). Furthermore, all samples gave noticeable cytotoxicity at the same concentration (100 µg/mL), especially the flower extract and compound 3 which showed a relatively high effect on the viability of EACC (81.12 ± 0.24 and 77.21 ± 0.76 %, respectively) relative to vincristine reference drug (90.64 ± 0.39 %). Based on the findings, the extracts and isolates can be considered as potent antioxidant and cytotoxic natural agents, especially flower extract and isoorientin (3), which may supply novel insight into their likely application in pharmaceutical industries.
Collapse
Affiliation(s)
- Mohamed Marzouk
- Chemistry of Tanning Materials and Leather Technology Department, Chemical Industries Research Institute, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Cairo 12622, Egypt
| | - Shimaa M Khalifa
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al Azhar University, Cairo 11754, Egypt
| | - Amal H Ahmed
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al Azhar University, Cairo 11754, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy & Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Hala Sh Mohammed
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy (Girls), Al Azhar University, Cairo 11754, Egypt
| | - Hanan A A Taie
- Plant Biochemistry Department, Agricultural and Biology Research Institute, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Cairo 12622, Egypt.
| |
Collapse
|
16
|
Mostafa MM, Farag MA. Profiling of primary and phytonutrients in edible mahlab cherry ( Prunus mahaleb L.) seeds in the context of its different cultivars and roasting as analyzed using molecular networking and chemometric tools. PeerJ 2023; 11:e15908. [PMID: 37663279 PMCID: PMC10474835 DOI: 10.7717/peerj.15908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Prunus mahaleb L. (mahlab cherry) is a deciduous plant that is native to the Mediterranean region and central Europe with a myriad of medicinal, culinary and cosmetic uses. The present study explored different cultivars of mahlab (white from Egypt and Greece, red from Egypt and post roasting). UPLC-MS led to the detection of 110 primary and secondary metabolites belonging to different classes including phenylpropanoids (hydroxy cinnamates, coumaroyl derivatives), organic acids, coumarins, cyanogenic glycosides, flavonoids, nitrogenous compounds, amino acids and fatty acids, of which 39 are first time to be detected in Prunus mahaleb L. A holistic assessment of metabolites was performed for further analysis of dataset using principal component analysis (PCA) among mahlab cultivars to assess variance within seeds. The results revealed that phenolic acids (coumaric acid-O-hexoside, ferulic acid-O-hexoside, ferulic acid-O-hexoside dimer, dihydrocoumaroyl-O-hexoside dimer and ferulic acid), coumarins (coumarin and herniarin) and amino acids (pyroglutamic acid) were abundant in white mahlab cultivars (cvs.) from different locations. In contrast, red mahlab and its roasted seeds were more rich in organic acids (citric and malic acids), amygdalin derivative and sphingolipids. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) revealed for markers in red mahlab and in response to roasting, where red mahlab was rich in nitrogenous compounds viz. nonamide, deoxy fructosyl leucine, glutaryl carnitine and isoleucine, while roasted product (REM) was found to be enriched in choline.
Collapse
|
17
|
Shalaby AS, Eid HH, El-Shiekh RA, Mohamed OG, Tripathi A, Al-Karmalawy AA, Sleem AA, Morsy FA, Ibrahim KM, Tadros SH, Youssef FS. Taming Food-Drug Interaction Risk: Potential Inhibitory Effects of Citrus Juices on Cytochrome Liver Enzymes Can Safeguard the Liver from Overdose Paracetamol-Induced Hepatotoxicity. ACS OMEGA 2023; 8:26444-26457. [PMID: 37521669 PMCID: PMC10373174 DOI: 10.1021/acsomega.3c03100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
Paracetamol overdose is the leading cause of drug-induced hepatotoxicity worldwide. Because of N-acetyl cysteine's limited therapeutic efficacy and safety, searching for alternative therapeutic substitutes is necessary. This study investigated four citrus juices: Citrus sinensis L. Osbeck var. Pineapple (pineapple sweet orange), Citrus reticulata Blanco × Citrus sinensis L. Osbeck (Murcott mandarin), Citrus paradisi Macfadyen var. Ruby Red (red grapefruit), and Fortunella margarita Swingle (oval kumquat) to improve the herbal therapy against paracetamol-induced liver toxicity. UHPLC-QTOF-MS/MS profiling of the investigated samples resulted in the identification of about 40 metabolites belonging to different phytochemical classes. Phenolic compounds were the most abundant, with the total content ranked from 609.18 to 1093.26 μg gallic acid equivalent (GAE)/mL juice. The multivariate data analysis revealed that phloretin 3',5'-di-C-glucoside, narirutin, naringin, hesperidin, 2-O-rhamnosyl-swertisin, fortunellin (acacetin-7-O-neohesperidoside), sinensetin, nobiletin, and tangeretin represented the crucial discriminatory metabolites that segregated the analyzed samples. Nevertheless, the antioxidant activity of the samples was 1135.91-2913.92 μM Trolox eq/mL juice, 718.95-3749.47 μM Trolox eq/mL juice, and 2304.74-4390.32 μM Trolox eq/mL juice, as revealed from 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid, ferric-reducing antioxidant power, and oxygen radical absorbance capacity, respectively. The in vivo paracetamol-induced hepatotoxicity model in rats was established and assessed by measuring the levels of hepatic enzymes and antioxidant biomarkers. Interestingly, the concomitant administration of citrus juices with a toxic dose of paracetamol effectively recovered the liver injury, as confirmed by normal sections of hepatocytes. This action could be due to the interactions between the major identified metabolites (hesperidin, hesperetin, phloretin 3',5'-di-C-glucoside, fortunellin, poncirin, nobiletin, apigenin-6,8-digalactoside, 6',7'-dihydroxybergamottin, naringenin, and naringin) and cytochrome P450 isoforms (CYP3A4, CYP2E1, and CYP1A2), as revealed from the molecular docking study. The most promising compounds in the three docking processes were hesperidin, fortunellin, poncirin, and naringin. Finally, a desirable food-drug interaction was achieved in our research to overcome paracetamol overdose-induced hepatotoxicity.
Collapse
Affiliation(s)
- Aya S. Shalaby
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Hanaa H. Eid
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Riham A. El-Shiekh
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Osama G. Mohamed
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Natural
Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ashootosh Tripathi
- Natural
Products Discovery Core, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ahmed A. Al-Karmalawy
- Pharmaceutical
Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Amany A. Sleem
- Pharmacology
Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Fatma Adly Morsy
- Pathology
Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Khaled M. Ibrahim
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Soad H. Tadros
- Pharmacognosy
Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Fadia S. Youssef
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain-Shams
University, Abbasia, Cairo 11566, Egypt
| |
Collapse
|
18
|
Cheng Y, Wan S, Yao L, Lin D, Wu T, Chen Y, Zhang A, Lu C. Bamboo leaf: A review of traditional medicinal property, phytochemistry, pharmacology, and purification technology. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116166. [PMID: 36649850 DOI: 10.1016/j.jep.2023.116166] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bamboos are perennial evergreen plants that belong to the subfamily Bambusoideae of the true grass family Poaceae, with more than thousands of species distributed around the world. They are used as a traditional medicine with demonstrated effects of anti-oxidation, free radical scavenging, anti-inflammatory, liver protection and ameliorating cognitive deficits. Bamboo leaf is mainly used for the treatment of atherosclerotic, diabetic and nervous system diseases. AIM OF THE STUDY This review aims to provide up-to-date information on the traditional medicinal properties, phytochemistry, pharmacology, and purification technologies of bamboo leaf. MATERIALS AND METHODS Relevant information on bamboo leaf was obtained by an online search of worldwide accepted scientific databases (Web of Science, ScienceDirect, Elsevier, SpringerLink, ACS Publications, Wiley Online Library and CNKI). RESULTS More than 100 chemical compounds, including flavonoids and flavonoid glycosides, volatile components, phenolic acids, polysaccharide, coenzyme Q10, phenylpropanoid and amino acids have been reported to be present. These compounds were usually extracted by column chromatography and membrane separation technologies. Preparative high performance liquid chromatography (PHPLC), high-speed counter-current chromatography (HSCCC), simulated moving bed chromatography (SMB) and dynamic axial compression chromatography (DAC) were the advanced separation technologies have been used to isolate C-glycosides from bamboo leaf flavonoid, the main bioactive ingredient of bamboo leaf. Currently, bamboo leaf is mainly used for the treatment of atherosclerotic, diabetic, hepatic diseases and nervous system related symptoms, which are attributed to the presence of bioactive components of bamboo leaf. CONCLUSIONS Phytochemical and pharmacological analyses of bamboo leaf have been revealed in recent studies. However, most of the pharmacological studies on bamboo leaf have focused on bamboo leaf flavonoids. Further studies need to pay more attention to other phytochemical components of bamboo leaf. In addition, there is lack of sufficient clinical data and toxicity studies on bamboo leaf. Therefore, more clinical and toxicity researches on this plant and constituents are recommended.
Collapse
Affiliation(s)
- Yaqian Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Siqi Wan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Linna Yao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Ding Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Tong Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China
| | - Yongjian Chen
- Zhejiang Limited Company of Science and Technology of SHENGSHI BIOLOGY, Huzhou, 313000, China
| | - Ailian Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China.
| | - Chenfei Lu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China; Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou, 311300, China.
| |
Collapse
|
19
|
Bai J, Jing X, Yang Y, Wang X, Feng Y, Ge F, Li J, Yao M. Comprehensive profiling of chemical composition of Gleditsiae spina using ultra-high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9467. [PMID: 36594178 DOI: 10.1002/rcm.9467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
RATIONALE Gleditsiae spina (GS) is an important herb used in traditional and folk medicinal systems of East Asian countries for its various medicinal properties. In China, it has been traditionally used through the centuries for its anticancer, detoxication, detumescence, apocenosis, and antiparasitic effects. Although some of its ingredients have been isolated and identified, most active constituents remain unknown. Past research mostly exploited nuclear magnetic resonance for the identification of compounds, which is suitable for monomers only. Moreover, the extraction and isolation procedures for obtaining purified molecules are time consuming. Therefore, establishing an efficient approach will assist in rapid discovery of the potential active ingredients of GS. The present study aimed to identify the chemical constituents in GS by a data analysis strategy using ultra-high-performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry. METHODS First, the theoretical formula of the candidate compound was calculated using the accurate mass of the precursor/adduct ions. Second, the compounds were classified by the diagnostic ions from the MS/MS data. Third, characteristic ion filtering was used to identify the structures. Finally, the diverse skeletons and substitutions were further identified through the neutral loss in the GS. RESULTS A total of 277 compounds were identified in GS, comprising 169 flavonoids, 70 lignans, and 38 other compounds. At least 43 potential new compounds were represented. CONCLUSIONS This experiment devised an efficient and systematic method for detecting complex compounds and provided a foundation for future research into bioactive ingredients and quality control of GS.
Collapse
Affiliation(s)
- Jiqing Bai
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiucun Jing
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuangui Yang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xiaoping Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yulin Feng
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Fei Ge
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Junmao Li
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Min Yao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
- Jiangxi Institute for Drug Control, Nanchang, China
| |
Collapse
|
20
|
Zhang X, Zheng F, Zhao C, Li Z, Li C, Xia Y, Zheng S, Wang X, Sun X, Zhao X, Lin X, Lu X, Xu G. Novel Method for Comprehensive Annotation of Plant Glycosides Based on Untargeted LC-HRMS/MS Metabolomics. Anal Chem 2022; 94:16604-16613. [DOI: 10.1021/acs.analchem.2c02362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Xiuqiong Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Fujian Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Zaifang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Chao Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- Dalian University of Technology, Dalian116024, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Yueyi Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Sijia Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Xinxin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Xiaoshan Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Xinjie Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Xiaohui Lin
- Dalian University of Technology, Dalian116024, P. R. China
| | - Xin Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, P. R. China
- University of Chinese Academy of Sciences, Beijing100049, P. R. China
- Liaoning Province Key Laboratory of Metabolomics, Dalian116023, P. R. China
| |
Collapse
|
21
|
Napolitano A, Di Napoli M, Castagliuolo G, Badalamenti N, Cicio A, Bruno M, Piacente S, Maresca V, Cianciullo P, Capasso L, Bontempo P, Varcamonti M, Basile A, Zanfardino A. The chemical composition of the aerial parts of Stachys spreitzenhoferi (Lamiaceae) growing in Kythira Island (Greece), and their antioxidant, antimicrobial, and antiproliferative properties. PHYTOCHEMISTRY 2022; 203:113373. [PMID: 35977603 DOI: 10.1016/j.phytochem.2022.113373] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 05/27/2023]
Abstract
The Stachys L. genus has been used in traditional medicine to treat skin inflammations, stomach disorders, and stress. The aim of this study was to investigate the chemical profile and biological activity of the methanolic extract of Stachys spreitzenhoferi Heldr. (Lamiaceae) aerial parts, collected on the island of Kythira, South Greece. The analysis by liquid chromatography coupled with electrospray ionization and high-resolution mass spectrometry [LC-(-)ESI/HRMSn] of the methanol extract revealed the occurrence of thirty-six compounds - flavonoids, phenylethanoid glycosides, iridoids, quinic acid derivatives, aliphatic alcohol glycosides, and oligosaccharides - highlighting the substantial presence, as main peaks, of the iridoid melittoside (2) along with flavonoid compounds such as 4'-O-methylisoscutellarein mono-acetyl-diglycoside/chrysoeriol mono-acetyl-diglycoside (24), trimethoxy- (35) and tetramethoxyflavones (36). This extract was tested for its antimicrobial properties against Gram-positive and negative pathogenic strains. The extract was not active against Gram-negative bacteria tested, but it possessed a good dose-dependent antimicrobial activity towards S. aureus (MIC: 1.0 mg/mL) and L. monocytogenes (MIC: 1.0 mg/mL) Gram-(+) strains. Furthermore, this extract has been tested for its possible antioxidant activity in vitro. In particular, it has been shown that these molecules cause a decrease in DPPH, ABTS, and H2O2 radicals. The extract of S. spreitzenhoferi exhibited anti-DPPH activity (IC50: 0.17 mg/mL), anti-H2O2 activity (IC50: 0.125 mg/mL), and promising antiradical effect with an IC50 value of 0.18 mg/mL for anti-ABTS activity. S. spreitzenhoferi extract caused a decrease in ROS (at the concentration of 200 μg/mL) and an increase in the activity of the antioxidant enzymes SOD, CAT, and GPX in OZ-stimulated PMNs. Furthermore, it exhibited antiproliferative activity against acute myeloid leukemia (U937 cell), causing 50% of cell death at the 0.75 mg/mL.
Collapse
Affiliation(s)
- Assunta Napolitano
- Department of Pharmacy, University of Salerno, Fisciano, SA, 84084, Italy
| | - Michela Di Napoli
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy
| | - Giusy Castagliuolo
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy
| | - Natale Badalamenti
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Adele Cicio
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Maurizio Bruno
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy; Centro Interdipartimentale di Ricerca "Riutilizzo bio-based degli scarti da matrici agroalimentari" (RIVIVE), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, 90128, Palermo, Italy
| | - Sonia Piacente
- Department of Pharmacy, University of Salerno, Fisciano, SA, 84084, Italy
| | - Viviana Maresca
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy
| | | | - Lucia Capasso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7,80138 Naples, Italy
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via L. De Crecchio 7,80138 Naples, Italy
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy.
| | - Anna Zanfardino
- Department of Biology, University of Naples Federico II, Naples, 80100, Italy
| |
Collapse
|
22
|
Structural Investigation of Betulinic Acid Plasma Metabolites by Tandem Mass Spectrometry. Molecules 2022; 27:molecules27217359. [PMID: 36364186 PMCID: PMC9656950 DOI: 10.3390/molecules27217359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022] Open
Abstract
Betulinic acid (BA) has been extensively studied in recent years mainly for its antiproliferative and antitumor effect in various types of cancers. Limited data are available regarding the pharmacokinetic profile of BA, particularly its metabolic transformation in vivo. In this study, we present the screening and structural investigations by ESI Orbitrap MS in the negative ion mode and CID MS/MS of phase I and phase II metabolites detected in mouse plasma after the intraperitoneal administration of a nanoemulsion containing BA in SKH 1 female mice. Obtained results indicate that the main phase I metabolic reactions that BA undergoes are monohydroxylation, dihydroxylation, oxidation and hydrogenation, while phase II reactions involved sulfation, glucuronidation and methylation. The fragmentation pathway for BA and its plasma metabolites were elucidated by sequencing of the precursor ions by CID MS MS experiments.
Collapse
|
23
|
Mutations in Rht-B1 Locus May Negatively Affect Frost Tolerance in Bread Wheat. Int J Mol Sci 2022; 23:ijms23147969. [PMID: 35887316 PMCID: PMC9324540 DOI: 10.3390/ijms23147969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
The wheat semi-dwarfing genes Rht (Reduced height) are widely distributed among the contemporary wheat varieties. These genes also exert pleiotropic effects on plant tolerance towards various abiotic stressors. In this work, frost tolerance was studied in three near-isogenic lines of the facultative variety ‘April Bearded’ (AB), carrying the wild type allele Rht-B1a (tall phenotype), and the mutant alleles Rht-B1b (semi-dwarf) and Rht-B1c (dwarf), and was further compared with the tolerance of a typical winter type variety, ‘Mv Beres’. The level of freezing tolerance was decreasing in the order ‘Mv Beres’ > AB Rht-B1a > AB Rht-B1b > AB Rht-B1c. To explain the observed differences, cold acclimation-related processes were studied: the expression of six cold-related genes, the phenylpropanoid pathway, carbohydrates, amino acids, polyamines and compounds in the tricarboxylic acid cycle. To achieve this, a comprehensive approach was applied, involving targeted analyses and untargeted metabolomics screening with the help of gas chromatography/liquid chromatography—mass spectrometry setups. Several cold-related processes exhibited similar changes in these genotypes; indeed, the accumulation of eight putrescine and agmatine derivatives, 17 flavones and numerous oligosaccharides (max. degree of polymerization 18) was associated with the level of freezing tolerance in the ‘April Bearded’ lines. In summary, the mutant Rht alleles may further decrease the generally low frost tolerance of the Rht-B1a, and, based on the metabolomics study, the mechanisms of frost tolerance may differ for a typical winter variety and a facultative variety. Present results point to the complex nature of frost resistance.
Collapse
|
24
|
Preparation and pharmacokinetics in vivo of linarin solid dispersion and liposome. CHINESE HERBAL MEDICINES 2022; 14:310-316. [PMID: 36117666 PMCID: PMC9476784 DOI: 10.1016/j.chmed.2021.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/16/2021] [Accepted: 12/28/2021] [Indexed: 11/28/2022] Open
Abstract
Objective The current investigation aimed to determine the appropriate dosage form by comparing solid dispersion and liposome to achieve the purpose of improving the solubility and bioavailability of linarin. Methods Linarin solid dispersion (LSD) and linarin liposome (LL) were developed via the solvent method and the thin film hydration method respectively. The Transwell chamber model of Caco-2 cells was established to evaluate the absorption of drug. The pharmacokinetics of linarin, LSD and LL in rats after ig administration were carried out by high performance liquid chromatography (HPLC) method. Results The solubility of LSD and LL was severally 3.29 times and 3.09 times than that of linarin. The permeation coefficients of LSD and LL were greater than 10−6, indicating that the absorption of LSD and LL were both better than linarin. The bioavailability of the LSD was 3.363 times higher than that of linarin, and the bioavailability of LL was 0.9886 times higher than that of linarin. Conclusion The linarin was more suitable for making solid dispersion to enhance its solubility and bioavailability.
Collapse
|
25
|
Darwish RS, Abdulmunem OA, Khairy A, Ghareeb DA, Yassin AM, Abdulmalek SA, Shawky E. Comparative metabolomics reveals the cytotoxic and anti-inflammatory discriminatory chemical markers of raw and roasted colocynth fruit ( Citrullus colocynthis L.). RSC Adv 2021; 11:37049-37062. [PMID: 35496437 PMCID: PMC9043832 DOI: 10.1039/d1ra07751a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 01/24/2023] Open
Abstract
Colocynth has a long history of use in traditional medicine for treatment of various inflammatory diseases where it is commonly roasted before being applied for medical purposes to reduce its toxicity. This study aims at tracking the effect of heat processing on the metabolic profile of the peels, pulps and seeds of colocynth fruit using UPLC-QqQ-MS-based metabolomics. The analysis resulted in tentative identification of 72 compounds belonging to different chemical classes. With roasting, a decline was observed in the relative amounts of chemical constituents where 42, 25 and 29 compounds were down-regulated in the peels, pulps and seeds, respectively. EC100 values resulting in 100% cell viability were all higher in roasted samples compared to their relevant raw ones. Correlation analysis indicated that the main cytotoxic chemical markers were cucurbitacin glycosides and their genins. Further, ex vivo anti-inflammatory activity testing multivariate models revealed that unprocessed samples correlated with inhibition of TNF-α, IL-1β and IFN-γ where quercetrin, calodendroside A, and hexanoic acid methyl ester were the most significant chemical markers, while processed samples showed correlation with IL-6 pro-inflammatory marker inhibition with protocatechuic and protocatechuic acid glycoside being the main correlated chemical markers. Colocynth has a long history of use in traditional medicine for treatment of various inflammatory diseases where it is commonly roasted before being applied for medical purposes to reduce its toxicity.![]()
Collapse
Affiliation(s)
- Reham S Darwish
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alkhartoom square Alexandria 21521 Egypt +20 1005294669
| | - Omar A Abdulmunem
- General Program Student, Faculty of Pharmacy, Alexandria University Egypt
| | - Asmaa Khairy
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alkhartoom square Alexandria 21521 Egypt +20 1005294669
| | - Doaa A Ghareeb
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications New Borg El Arab Alexandria Egypt.,Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University Alexandria Egypt.,Biochemistry Department, Faculty of Science, Alexandria University Alexandria Egypt
| | - Abdelrahman M Yassin
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications New Borg El Arab Alexandria Egypt
| | - Shaymaa A Abdulmalek
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation Industry Development Center, City of Scientific Research & Technological Applications New Borg El Arab Alexandria Egypt.,Bio-screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University Alexandria Egypt.,Biochemistry Department, Faculty of Science, Alexandria University Alexandria Egypt
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University Alkhartoom square Alexandria 21521 Egypt +20 1005294669
| |
Collapse
|
26
|
Sheng X, Chen H, Wang J, Zheng Y, Li Y, Jin Z, Li J. Joint Transcriptomic and Metabolic Analysis of Flavonoids in Cyclocarya paliurus Leaves. ACS OMEGA 2021; 6:9028-9038. [PMID: 33842773 PMCID: PMC8028134 DOI: 10.1021/acsomega.1c00059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/18/2021] [Indexed: 05/02/2023]
Abstract
Flavonoids are a class of commonly occurring natural compounds in the plant kingdom with various biological activities. This study compares the content of flavonoids in Cyclocarya paliurus at different developmental stages to better inform the selection of the optimal picking period. Thus, we analyzed the transcriptome and metabolome of C. paliurus at different developmental stages. The transcriptome analysis revealed 44 genes involved in the biosynthesis of flavonoids in C. paliurus, with 10 differentially expressed genes across the four different developmental stages. The metabolites were separated and identified by a combination of chromatography and mass spectrometry, followed by multi-reaction monitoring mode analysis of triple quadrupole mass spectrometry for complete metabolite quantification. In the flavonoid synthesis pathway, a total of 137 differential flavonoids were detected. The joint transcriptome and metabolome analysis showed that the expression trends in differential metabolites and genes were significantly related. Four MYB transcription factors and two bHLH transcription factors that are closely related to flavonoid biosynthesis were identified. The regulation network of flavonoid biosynthesis in C. paliurus was thus established, providing guidance for follow-up research.
Collapse
Affiliation(s)
- Xiaoling Sheng
- School
of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Zhejiang
Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Huanwei Chen
- Forest
Research Institute of Longquan City, Longquan 323700, China
| | - Jianmei Wang
- Zhejiang
Yuanyang Agriculture Development Company Ltd., Suicang 323000, China
| | - Yongli Zheng
- Zhejiang
Provincial Agricultural Products Quality Safety Center, Hangzhou 310007, China
| | - Yueling Li
- Zhejiang
Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Zexin Jin
- Zhejiang
Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - Junmin Li
- Zhejiang
Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
- , . Phone/Fax: +86 576 88660396
| |
Collapse
|
27
|
Ying Y, Wan H, Zhao X, Yu L, He Y, Jin W. Pharmacokinetic-Pharmacodynamic Modeling of the Antioxidant Activity of Quzhou Fructus Aurantii Decoction in a Rat Model of Hyperlipidemia. Biomed Pharmacother 2020; 131:110646. [PMID: 32942150 DOI: 10.1016/j.biopha.2020.110646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/03/2020] [Accepted: 08/16/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Quzhou Fructus Aurantii (QFA) is an herb that is commonly used to alleviate inflammation in individuals dealing with obesity.To date, however, no systematic pharmacokinetic (PK) or pharmacodynamic (PD) analyses of the clinical efficacy of QFA under hyperlipemia-associated oxidative stress conditions have been conducted. The present study, was therefore designed to construct a PK-PD model for this herb, with the goal of linking QFA PK profiles to key therapeutic outlines to guide the therapeutic use of this herb in clinical settings. METHODS Rats were fed a high-fat diet in order to establish a model of hyperlipidemia, after which they were randomized into a normal control group (NCG), a normal treatment group (NTG), a model control group (MCG), and a model treated group (MTG) (n = 6 each). QAF decoction was used to treat rats in the NTG and MTG groups (25 g/kg), while equivalent volumes of physiological saline were administered to rats in the NCG and MCG groups. Plasma samples were collected from the mandibular vein for animals at appropriate time points and analyzed via high-performance liquid chromatography (HPLC). We evaluated PK properties for three QAF components and compared these dynamics between the NTG and MTG groups, while also measuring levels of lipid peroxidation (LPO) in the plasma of rats in all four treatment groups. We then constructed a PK-PD model based upon plasma neohesperidin, luteolin, and nobiletin concentrations and LPO levels using a three-compartment PK model together with a Sigmoid Emax PD model. This model thereby enabled us to assess the antioxidative impact of neohesperidin, luteolin, and nobiletin on hyperlipidemia in rats. RESULTS When comparing the NTG and MTG groups, we detected significant differences in the following parameters pertaining to neohesperidin, luteolin, and nobiletin:t1/2β, V1, t1/2γ, CL1 (p < 0.01) and AUC0-t, Tmax, Cmax (p < 0.05). Relative to NTG group rats, AUC0-t, TmaxandCmaxvalues significantly higher for MTG group rats (p < 0.01), while t1/2β, V1, and t1/2γ values were significantly lower in MTG group rats (p < 0.01) in MTG rats. QAF decoction also exhibited excellent PD efficacy in MTG rats, with significant reductions in plasma LPO levels relative to NTG rats (p < 0.01) following treatment. This therapeutic efficacy may be attributable to the activity of neohesperidin, luteolin, and nobiletin, as LPO levels and plasma concentrations of these compounds were negatively correlated in treated rats. Based upon Akaike Information Criterion (AIC) values, we determined that neohesperidin, luteolin, and nobiletin PK processes were consistent with a three-compartment model. Together, these findings indicated that three active components in QAF decoction (neohesperidin, luteolin, and nobiletin) may exhibit antioxidant activity in vivo. CONCLUSION Our in vivo data indicated that neohesperidin, luteolin and nobiletin components of QAF decoctions exhibit distinct PK and PD properties. Together, these findings suggest that hyperlipidemia-related oxidative stress can significantly impact QFA decoction PK and PD parameters. Our data additionally offer fundamental insights that can be used to design appropriate dosing regimens for individualized clinical QAF decoction treatment.
Collapse
Affiliation(s)
- Yuqi Ying
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Haoyu Wan
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Xixi Zhao
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Li Yu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Yu He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| | - Weifeng Jin
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang, China.
| |
Collapse
|