1
|
Dziewulska D, Tykałowski B, Łukaszuk E, Stenzel T. The course of pigeon circovirus infection in young pigeons experimentally kept under conditions mimicking the One Loft Race rearing system. J Vet Res 2025; 69:1-6. [PMID: 40144067 PMCID: PMC11936090 DOI: 10.2478/jvetres-2025-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Racing pigeon competitions are a popular sport where success depends on birds' ability to return fast to their loft of origin. However, many additional factors like differences in feeding, training, everyday care and even geographical loft location influence race outcomes, which has led to the development of the One Loft Race (OLR) system. The OLR system aims to eliminate these factors by housing pigeons from various lofts in equal conditions in one facility. This in turn, however, fosters inter-individual transmission of pathogens. Material and Methods Fifteen young racing pigeons from five different lofts, naturally infected with pigeon circovirus (PiCV) were reared in one unit for six weeks. Four uninfected birds were kept in a separate unit and were treated as controls for flow cytometry analyses (background establishment). Blood samples were collected every seven days to extract DNA for PiCV quantification using droplet digital PCR and to isolate the mononuclear cells for flow cytometry analyses. On day 42, all birds were euthanised for spleen samples to be collected for further analyses. Results The viraemia peak was noted on day 14 of the experiment and subsequently decreased afterwards, with a remarkable decrease noted on day 35. The percentage of IgM+ B lymphocytes, including apoptotic cells, in the blood was very similar throughout the experiment. The percentage of apoptotic splenic IgM+ B cells was approximately 40% higher in the experimental group than in the control group. Conclusion Study results showed that the birds' adaptation period and the specific immunity they had probably developed hindered PiCV replication. Mild PiCV infection led to a slight increase of B lymphocyte apoptosis in the spleen.
Collapse
Affiliation(s)
- Daria Dziewulska
- Department of Poultry Diseases, University of Warmia and Mazury in Olsztyn, 10-719Olsztyn, Poland
| | - Bartłomiej Tykałowski
- Department of Poultry Diseases, University of Warmia and Mazury in Olsztyn, 10-719Olsztyn, Poland
| | - Ewa Łukaszuk
- Department of Poultry Diseases, University of Warmia and Mazury in Olsztyn, 10-719Olsztyn, Poland
| | - Tomasz Stenzel
- Department of Poultry Diseases, University of Warmia and Mazury in Olsztyn, 10-719Olsztyn, Poland
| |
Collapse
|
2
|
Stenzel T, Dziewulska D, Łukaszuk E, Custer JM, De Koch MD, Kraberger S, Varsani A. The pigeon circovirus evolution, epidemiology and interaction with the host immune system under One Loft Race rearing conditions. Sci Rep 2024; 14:13815. [PMID: 38877168 PMCID: PMC11178769 DOI: 10.1038/s41598-024-64587-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024] Open
Abstract
This study was aimed to investigate the frequency of PiCV recombination, the kinetics of PiCV viremia and shedding and the correlation between viral replication and host immune response in young pigeons subclinically infected with various PiCV variants and kept under conditions mimicking the OLR system. Fifteen racing pigeons originating from five breeding facilities were housed together for six weeks. Blood and cloacal swab samples were collected from birds every seven days to recover complete PiCV genomes and determine PiCV genetic diversity and recombination dynamics, as well as to assess virus shedding rate, level of viremia, expression of selected genes and level of anti-PiCV antibodies. Three hundred and eighty-eight complete PiCV genomes were obtained and thirteen genotypes were distinguished. Twenty-five recombination events were detected. Recombinants emerged during the first three weeks of the experiment which was consistent with the peak level of viremia and viral shedding. A further decrease in viremia and shedding partially corresponded with IFN-γ and MX1 gene expression and antibody dynamics. Considering the role of OLR pigeon rearing system in spreading infectious agents and allowing their recombination, it would be reasonable to reflect on the relevance of pigeon racing from both an animal welfare and epidemiological perspective.
Collapse
Affiliation(s)
- Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
| | - Daria Dziewulska
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ewa Łukaszuk
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Joy M Custer
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, USA
| | - Matthew D De Koch
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, USA
| | - Simona Kraberger
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, USA.
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Observatory, Cape Town, South Africa.
| |
Collapse
|
3
|
Nath BK, Das T, Peters A, Gupta SD, Sarker S, Forwood JK, Raidal SR, Das S. Australasian Pigeon Circoviruses Demonstrate Natural Spillover Infection. Viruses 2023; 15:2025. [PMID: 37896802 PMCID: PMC10611180 DOI: 10.3390/v15102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Pigeon circovirus (PiCV) is considered to be genetically diverse, with a relatively small circular single-stranded DNA genome of 2 kb that encodes for a capsid protein (Cap) and a replication initiator protein (Rep). Australasia is known to be the origin of diverse species of the Order Columbiformes, but limited data on the PiCV genome sequence has hindered phylogeographic studies in this species. To fill this gap, this study was conducted to investigate PiCV in 118 characteristic samples from different birds across Australia using PCR and sequencing. Eighteen partial PiCV Rep sequences and one complete PiCV genome sequence were recovered from reservoir and aberrant hosts. Phylogenetic analyses revealed that PiCV circulating in Australia was scattered across three different subclades. Importantly, one subclade dominated within the PiCV sequenced from Australia and Poland, whereas other PiCV sequenced in this study were more closely related to the PiCV sequenced from China, USA and Japan. In addition, PiCV Rep sequences obtained from clinically affected plumed whistling duck, blue billed duck and Australian magpie demonstrated natural spillover of PiCV unveiled host generalist characteristics of the pigeon circovirus. These findings indicate that PiCV genomes circulating in Australia lack host adapted population structure but demonstrate natural spillover infection.
Collapse
Affiliation(s)
- Babu Kanti Nath
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (T.D.); (A.P.); (S.R.R.); (S.D.)
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (S.D.G.); (J.K.F.)
| | - Tridip Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (T.D.); (A.P.); (S.R.R.); (S.D.)
| | - Andrew Peters
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (T.D.); (A.P.); (S.R.R.); (S.D.)
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (S.D.G.); (J.K.F.)
| | - Suman Das Gupta
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (S.D.G.); (J.K.F.)
| | - Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4814, Australia;
| | - Jade K. Forwood
- Biosecurity Research Program and Training Centre, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (S.D.G.); (J.K.F.)
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
- Training Hub Promoting Regional Industry and Innovation in Virology and Epidemiology, Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Shane R. Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (T.D.); (A.P.); (S.R.R.); (S.D.)
| | - Shubhagata Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; (T.D.); (A.P.); (S.R.R.); (S.D.)
| |
Collapse
|
4
|
Nath BK, Das S, Das T, Forwood JK, Raidal SR. Development and applications of a TaqMan based quantitative real-time PCR for the rapid detection of Pigeon circovirus (PiCV). J Virol Methods 2022; 308:114588. [PMID: 35870671 DOI: 10.1016/j.jviromet.2022.114588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
Abstract
TaqMan probe based quantitative polymerase reaction (TaqMan qPCR) is a robust and reliable technique for detecting and quantifying target DNA copies. Quantitative molecular diagnosis of genetically diverse single stranded DNA (ssDNA) virus such as Pigeon circovirus (PiCV) can be challenging owing to difficulties in primer binding or low abundance of template DNA copies in clinical specimens. Several methods have been described for the detection of PiCV, being qPCR the most simple and reliable. As far as is known, two qPCR systems described until now are based on SYBR green. This study reports development and validation of a highly sensitive TaqMan qPCR targeted to Rep for the detection of highly diverse PiCV in pigeon samples with excellent reproducibility, specificity, and sensitivity. The limit of detection was determined as low as 2 (two) plasmid copies. Estimations of 100 % specificity and 100 % sensitivity were obtained based on the qPCR results with panel of 60 samples (known PiCV positive, n = 30; known PiCV negative, n = 20; samples positive to Beak and feather disease virus (BFDV), n = 5 and samples positive to canine circovirus, n = 5). Co-efficient of variation (CV) for Ct values ranged between 0.27 % and 0.78 % in the same assay and 1.84-2.87 % in different assays.
Collapse
Affiliation(s)
- Babu K Nath
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga, New South Wales 2678, Australia
| | - Shubhagata Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga, New South Wales 2678, Australia
| | - Tridip Das
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga, New South Wales 2678, Australia
| | - Jade K Forwood
- School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga, New South Wales 2678, Australia
| | - Shane R Raidal
- School of Agricultural, Environmental and Veterinary Sciences, Faculty of Science and Health, Charles Sturt University, Wagga, New South Wales 2678, Australia; School of Dentistry and Medical Sciences, Faculty of Science and Health, Charles Sturt University, Wagga, New South Wales 2678, Australia.
| |
Collapse
|
5
|
Silva BBI, Urzo MLR, Encabo JR, Simbulan AM, Lunaria AJD, Sedano SA, Hsu KC, Chen CC, Tyan YC, Chuang KP. Pigeon Circovirus over Three Decades of Research: Bibliometrics, Scoping Review, and Perspectives. Viruses 2022; 14:1498. [PMID: 35891478 PMCID: PMC9317399 DOI: 10.3390/v14071498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
The pigeon circovirus (PiCV), first described in the literature in the early 1990s, is considered one of the most important infectious agents affecting pigeon health. Thirty years after its discovery, the current review has employed bibliometric strategies to map the entire accessible PiCV-related research corpus with the aim of understanding its present research landscape, particularly in consideration of its historical context. Subsequently, developments, current knowledge, and important updates were provided. Additionally, this review also provides a textual analysis examining the relationship between PiCV and the young pigeon disease syndrome (YPDS), as described and propagated in the literature. Our examination revealed that usages of the term 'YPDS' in the literature are characterizations that are diverse in range, and neither standard nor equivalent. Guided by our understanding of the PiCV research corpus, a conceptualization of PiCV diseases was also presented in this review. Proposed definitions and diagnostic criteria for PiCV subclinical infection (PiCV-SI) and PiCV systemic disease (PiCV-SD) were also provided. Lastly, knowledge gaps and open research questions relevant to future PiCV-related studies were identified and discussed.
Collapse
Affiliation(s)
- Benji Brayan Ilagan Silva
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Michael Louie R. Urzo
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
- Graduate School, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines
| | - Jaymee R. Encabo
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
| | - Alea Maurice Simbulan
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
| | - Allen Jerard D. Lunaria
- Microbiology Division, Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines; (M.L.R.U.); (J.R.E.); (A.M.S.); (A.J.D.L.)
| | - Susan A. Sedano
- Veterinary Vaccines Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Los Baños, Los Baños 4031, Laguna, Philippines;
| | - Keng-Chih Hsu
- Language Center, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (K.-C.H.); (C.-C.C.)
| | - Chia-Chi Chen
- Language Center, National Pingtung University of Science and Technology, Pingtung 912, Taiwan; (K.-C.H.); (C.-C.C.)
- You Guan Yi Biotechnology Company, Kaohsiung 807, Taiwan
| | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Kuo-Pin Chuang
- International Degree Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
- School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
- School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Companion Animal Research Center, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
6
|
Wang H, Gao H, Jiang Z, Shi L, Zhao P, Zhang Y, Wang C. Molecular detection and phylogenetic analysis of pigeon circovirus from racing pigeons in Northern China. BMC Genomics 2022; 23:290. [PMID: 35410130 PMCID: PMC8995411 DOI: 10.1186/s12864-022-08425-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/28/2022] [Indexed: 01/20/2023] Open
Abstract
Background Pigeon circovirus (PiCV) infections in pigeons (Columba livia) have been reported worldwide. Currently, pigeon racing is becoming increasingly popular and considered to be a national sport in China, and even, the greatest competitions of racing pigeons are taking place in China. However, there are still no epidemiologic data regarding PiCV infections among racing pigeons in China. The purpose of our study was to provide information of prevalence, genetic variation and evolution of PiCV from racing pigeons in China. Results To trace the prevalence, genetic variation and evolution of PiCV in sick and healthy racing pigeons, 622 samples were collected from 11 provinces or municipalities in China from 2016 to 2019. The results showed that the positive rate of PiCV was 19.3% (120/622) at the sample level and 59.0% (23/39) at the club level, thus suggesting that the virus was prevalent in Chinese racing pigeons. A sequence analysis revealed that the cap genes of the PiCV strains identified in our study displayed a high genetic diversity and shared nucleotide homologies of 71.9%–100% and amino acid homologies of 71.7%–100%. 28 and 36 unique amino acid substitutions were observed in the Cap and Rep proteins derived from our PiCV strains, respectively. A cladogram representation of PiCV strains phylogeny based on 90 cap gene sequences showed that the strains in this study could be further divided into seven clades (A, B, C, E, G, H, and I) and some of them were closely related to worldwide strains from different types of pigeons. A large number of recombination events (31 events) were also detected in the PiCV genomes from Chinese racing pigeons. Conclusions These findings indicate that PiCV strains circulating in China exhibit a high genetic diversity and also contribute to information of prevalence, genetic variation and evolution of PiCV from racing pigeons in China. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08425-8.
Collapse
Affiliation(s)
- Haoran Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Hui Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Zhiwen Jiang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Leibo Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Pengwei Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yanming Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Chengbao Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
7
|
A Pilot Study Investigating the Dynamics of Pigeon Circovirus Recombination in Domesticated Pigeons Housed in a Single Loft. Viruses 2021; 13:v13060964. [PMID: 34067378 PMCID: PMC8224587 DOI: 10.3390/v13060964] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/26/2022] Open
Abstract
Pigeon circovirus (PiCV) infects pigeon populations worldwide and has been associated with immunosuppression in younger pigeons. Recombination is a common mechanism of evolution that has previously been shown in various members of the Circoviridae family, including PiCV. In this study, three groups of pigeons acquired from separate lofts were screened for PiCV, and their genome sequence was determined. Following this, they were housed in a single loft for 22 days, during which blood and cloacal swab samples were taken. From these blood and cloacal swabs, PiCV genomes were determined with the aim to study the spread and recombination dynamics of PiCV in the birds. Genome sequences of PiCV were determined from seven pigeons (seven tested PiCV positive) before they were housed together in a loft (n = 58 sequences) and thereafter from the ten pigeons from blood and cloacal swabs (n = 120). These 178 PiCV genome sequences represent seven genotypes (98% pairwise identity genotype demarcation), and they share >88% genome-wide pairwise identity. Recombination analysis revealed 13 recombination events, and a recombination hotspot spanning the 3′ prime region, the replication-associated protein (rep) gene and the intergenic region. A cold spot in the capsid protein-coding region of the genome was also identified. The majority of the recombinant regions were identified in the rep coding region. This study provides insights into the evolutionary dynamics of PiCV in pigeons kept under closed rearing systems.
Collapse
|
8
|
Sarker S, Das S, Ghorashi SA, Forwood JK, Raidal SR. Pigeon circoviruses from feral pigeons in Australia demonstrate extensive recombination and genetic admixture with other circoviruses. Avian Pathol 2019; 48:512-520. [PMID: 31199167 DOI: 10.1080/03079457.2019.1629391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Like other avian circovirus species, Pigeon circovirus (PiCV) is known to be genetically diverse with a relatively small circular single-stranded DNA genome of 2 kb that encodes for a capsid protein (Cap) and a replication initiator protein (Rep). Recent paleoviral evidence hints towards a probable Gondwanan origin of avian circoviruses, paralleling the evolution and dispersal of their hosts. Limited availability of PiCV genome sequence data in Australia has hindered phylogeographic studies in this species, so we screened clinically normal rock doves (Columba livia) in regional New South Wales, and demonstrated a high prevalence (76%) of PiCV infection by PCR. We also recovered 12 complete novel PiCV genomes and phylogenetic analyses revealed that PiCV circulating in Australian feral pigeons formed two strongly supported monophyletic clades. One clade resided with PiCV genomes from Poland, Australia, United Kingdom, Belgium, China, and Japan, and another basal clade was more closely related to PiCV genomes from Poland. A novel more distantly-related PiCV rep gene formed a solitary clade with weak posterior support. So we further analysed all selected partial rep gene sequences to demonstrate a likely naturally occurring spillover infection from a passerine circovirus candidate. The findings suggest that there is a high degree of genetic variation within PiCV in Columbiformes with potential greater admixture between avian circoviruses within Australia than previously known. RESEARCH HIGHLIGHTS Confirmed high prevalence rate of PiCV circulating in Australian wild pigeons. Highlighted extensive recombination events within Australian PiCV. Demonstrated a likely naturally occurring spillover infection from a passerine circovirus candidate.
Collapse
Affiliation(s)
- Subir Sarker
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University , Melbourne , Australia.,School of Animal and Veterinary Sciences, Charles Sturt University , Wagga Wagga , Australia
| | - Shubhagata Das
- School of Animal and Veterinary Sciences, Charles Sturt University , Wagga Wagga , Australia
| | - Seyed A Ghorashi
- School of Animal and Veterinary Sciences, Charles Sturt University , Wagga Wagga , Australia
| | - Jade K Forwood
- School of Biomedical Sciences, Charles Sturt University , Wagga Wagga , Australia
| | - Shane R Raidal
- School of Animal and Veterinary Sciences, Charles Sturt University , Wagga Wagga , Australia.,Veterinary Diagnostic Laboratory, Charles Sturt University , Wagga Wagga , Australia
| |
Collapse
|
9
|
Stenzel T, Dziewulska D, Śmiałek M, Tykałowski B, Kowalczyk J, Koncicki A. Comparison of the immune response to vaccination with pigeon circovirus recombinant capsid protein (PiCV rCP) in pigeons uninfected and subclinically infected with PiCV. PLoS One 2019; 14:e0219175. [PMID: 31251772 PMCID: PMC6599111 DOI: 10.1371/journal.pone.0219175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/18/2019] [Indexed: 11/17/2022] Open
Abstract
Infections with immunosuppressive pigeon circovirus (PiCV) pose the most severe health problem to the global pigeon breeding. The vaccination with immunogenic PiCV recombinant capsid protein (PiCV rCP) is a potential tool for disease control. Because of the high prevalence of PiCV asymptomatic infections, the subclinically infected pigeons will be vaccinated in practice. The aim of this study was to answer a question if vaccination of asymptomatic, infected with PiCV pigeons induces a similar immune response to PiCV rCP as in uninfected birds. One hundred and twenty 6-week-old carrier pigeons were divided into 4 groups (2 groups of naturally infected and uninfected with PiCV individuals). Birds from groups V and V1 were vaccinated twice with PiCV rCP mixed with an adjuvant, whereas pigeons from groups C and C1 were immunized with an adjuvant only. The expression of genes encoding IFN-γ, CD4, and CD8 T lymphocyte receptors; the number of anti-PiCV rCP IgY-secreting B cells (SBC) and anti-PiCV rCP IgY were evaluated 2, 21, 39 and 46 days post vaccination (dpv). Study results showed that the expression of CD8 and IFN-γ genes was higher in both groups of infected pigeons than in the uninfected birds, irrespective of vaccination. In the uninfected birds, the expression of these genes was insignificantly higher in the vaccinated pigeons. The anti-PiCV rCP IgY-SBC were detected on 2 and 23 dpv and seroconversion was noted on 23 and 39 dpv in V and V1 groups, respectively. In the light of the results obtained, it could be concluded that pigeon circovirus recombinant capsid protein elicits the immune response in both naturally infected and uninfected pigeons, but its rate varies depending on PiCV infectious status. The infection with PiCV masks the potential cellular immune response to the vaccination with PiCV rCP and leads to the suppression of humoral immunity.
Collapse
Affiliation(s)
- Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Daria Dziewulska
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Marcin Śmiałek
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Bartłomiej Tykałowski
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Joanna Kowalczyk
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Andrzej Koncicki
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
10
|
Immunogenicity of Pigeon Circovirus Recombinant Capsid Protein in Pigeons. Viruses 2018; 10:v10110596. [PMID: 30384424 PMCID: PMC6265742 DOI: 10.3390/v10110596] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/18/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Pigeon circovirus (PiCV) is the most frequently diagnosed virus in pigeons and is thought to be one of the causative factors of a complex disease called the young pigeon disease syndrome (YPDS). The development of a vaccine against this virus could be a strategy for YPDS control. Since laboratory culture of PiCV is impossible, its recombinant capsid protein (rCP) can be considered as a potential antigen candidate in sub-unit vaccines. The aim of this basic research was to evaluate the immune response of pigeons to PiCV rCP. Sixty six-week-old carrier pigeons were divided into two groups (experimental immunized with PiCV rCP mixed with an adjuvant, and control immunized with an adjuvant only), and immunized twice in a 21-day interval. On the day of immunization and on two, 23, 39, and 46 days post first immunization (dpv), samples of blood, spleen, and bursa of Fabricius were collected from six birds from each group to examine anti-PiCV rCP IgY, anti-PiCV rCP IgY-secreting B cells (SBC), IFN-γ gene expression, and percentage of T CD3+, CD4+, CD8+, and B IgM+ lymphocytes. The results indicated a correct immune response to PiCV rCP both in humoral and cell-mediated immunity, which was manifested by seroconversion since 23 dpv, by a significantly higher anti-PiCV rCP IgY-SBC number on two and 23 dpv, and significantly higher IFN-γ gene expression since two dpv. There were no significant differences or trends noted between particular T and B lymphocyte subpopulations. To conclude, PiCV rCP may be deemed immunogenic and could be considered as an antigen candidate in sub-unit vaccines against PiCV infections in pigeons.
Collapse
|
11
|
Dziewulska D, Stenzel T, Śmiałek M, Tykałowski B, Koncicki A. The impact of Aloe vera and licorice extracts on selected mechanisms of humoral and cell-mediated immunity in pigeons experimentally infected with PPMV-1. BMC Vet Res 2018; 14:148. [PMID: 29716604 PMCID: PMC5930501 DOI: 10.1186/s12917-018-1467-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/20/2018] [Indexed: 12/02/2022] Open
Abstract
Background The aim of the study was to evaluate the impact of herbal extracts on selected immunity mechanisms in clinically healthy pigeons and pigeons inoculated with the pigeon paramyxovirus type 1 (PPMV-1). For the first 7 days post-inoculation (dpi), an aqueous solution of Aloe vera or licorice extract was administered daily at 300 or 500 mg/kg body weight (BW). The birds were euthanized at 4, 7 and 14 dpi, and spleen samples were collected during necropsy. Mononuclear cells were isolated from spleen samples and divided into two parts: one part was used to determine the percentage of IgM+ B cells in a flow cytometric analysis, and the other was used to evaluate the expression of genes encoding IFN-γ and surface receptors on CD3+, CD4+ and CD8+ T cells. Results The expression of the IFN-γ gene increased in all birds inoculated with PPMV-1 and receiving both herbal extracts. The expression of the CD3 gene was lowest at 14 dpi in healthy birds and at 7 dpi in inoculated pigeons. The expression of the CD4 gene was higher in uninoculated pigeons receiving both herbal extracts than in the control group throughout nearly the entire experiment with a peak at 7 dpi. A reverse trend was observed in pigeons inoculated with PPMV-1 and receiving both herbal extracts. In uninoculated birds, increased expression of the CD8 gene was noted in the pigeons receiving a lower dose of the Aloe vera extract and both doses of licorice extracts. No significant differences in the expression of this gene were found between inoculated pigeons receiving both herbal extracts. The percentage of IgM+ B cells did not differ between any of the evaluated groups. Conclusions This results indicate that Aloe vera and licorice extracts have immunomodulatory properties and can be used successfully to prevent viral diseases, enhance immunity and as supplementary treatment for viral diseases in pigeons.
Collapse
Affiliation(s)
- Daria Dziewulska
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 13/14, 10-719, Olsztyn, Poland.
| | - Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 13/14, 10-719, Olsztyn, Poland
| | - Marcin Śmiałek
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 13/14, 10-719, Olsztyn, Poland
| | - Bartłomiej Tykałowski
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 13/14, 10-719, Olsztyn, Poland
| | - Andrzej Koncicki
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, ul. Oczapowskiego 13/14, 10-719, Olsztyn, Poland
| |
Collapse
|
12
|
Stenzel T, Koncicki A. The epidemiology, molecular characterization and clinical pathology of circovirus infections in pigeons - current knowledge. Vet Q 2017; 37:166-174. [PMID: 28463055 DOI: 10.1080/01652176.2017.1325972] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The first cases of circovirus infections in pigeons were documented less than 25 years ago. Since then, circovirus infections have been reported on nearly all continents. The specificity of pigeon breeding defies biosecurity principles, which could be the reason for the high prevalence of PiCV infections. PiCV infections in pigeons lead to atrophy of immune system organs and lymphocyte apoptosis. Infected birds could be more susceptible to infections of the respiratory and digestive tract. PiCV has been associated with the young pigeon disease syndrome (YPDS). PiCVs are characterized by high levels of genetic diversity due to frequent point mutations, recombination processes in the PiCV genome and positive selection. Genetic recombinations and positive selection play the key role in the evolution of PiCV. A protocol for culturing PiCV under laboratory conditions has not yet been developed, and traditional vaccines against the infection are not available. Recombinant capsid proteins for detecting anti-PiCV antibodies have been obtained, and these antigens can be used in the production of diagnostic tests and subunit vaccines against PiCV infections. However, YPDS has complex etiology, and it remains unknown whether immunization against PiCV alone will contribute to effective control of YPDS.
Collapse
Affiliation(s)
- Tomasz Stenzel
- a Department of Poultry Diseases, Faculty of Veterinary Medicine , University of Warmia and Mazury , Olsztyn , Poland
| | - Andrzej Koncicki
- a Department of Poultry Diseases, Faculty of Veterinary Medicine , University of Warmia and Mazury , Olsztyn , Poland
| |
Collapse
|
13
|
Wang KC, Zhuang QY, Qiu Y, Wang T, Chen JM. Genome sequence characterization of pigeon circoviruses in China. Virus Res 2017; 233:1-7. [PMID: 28268176 DOI: 10.1016/j.virusres.2017.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/01/2017] [Accepted: 03/03/2017] [Indexed: 12/24/2022]
Abstract
Pigeon circovirus (PiCV) was detected by PCR in pigeons from China. Altogether, 48 out of 244 pigeons tested positive for PiCV (positive rate, 19.67%), suggesting that the virus was prevalent in China. From the 48 PiCV-positive samples, about 2040bp complete genome fragments were obtained by full length genome amplification and sequenced with a next-generation sequencing platform. Characteristics of the ORFs from different PiCV strains tested in this study were analyzed. Several insertion, deletion or substitutions were discovered during the analysis of the nucleotide sequence compared with sequences reported previously. In phylogenetic tree analysis, 48 sequences isolated in this study could be further divided into five clades (A, B, C, D, and F), clade E includes reference sequences only. Two major groups were found in the six clades, distinguished by ATA and ATG initiation codons. Most of the viruses isolated in the study were in the ATG group, with fewer in the ATA branch.
Collapse
Affiliation(s)
- Kai-Cheng Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong Province, China.
| | - Qing-Ye Zhuang
- China Animal Health and Epidemiology Center, Qingdao, Shandong Province, China
| | - Yuan Qiu
- China Animal Health and Epidemiology Center, Qingdao, Shandong Province, China
| | - Tong Wang
- China Animal Health and Epidemiology Center, Qingdao, Shandong Province, China
| | - Ji-Ming Chen
- China Animal Health and Epidemiology Center, Qingdao, Shandong Province, China
| |
Collapse
|
14
|
Stenzel T, Woźniakowski G, Pestka D, Choszcz D, Tykałowski B, Śmiałek M, Koncicki A. Application of pigeon circovirus recombinant capsid protein for detecting anti-PiCV antibodies in the sera of asymptomatic domestic pigeons and the potential use of a combination of serological and molecular tests for controlling circovirus infections in pigeon breeding flocks. Poult Sci 2016; 96:303-308. [PMID: 27578880 DOI: 10.3382/ps/pew266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/04/2016] [Accepted: 06/15/2016] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to evaluate the serologic status of domestic pigeons not infected and asymptomatically infected with the pigeon circovirus (PiCV) with the use of an enzyme-linked assay based on PiCV recombinant capsid protein as a plate antigen. Recombinant PiCV capsid protein was produced by transforming E. coli BL21 (DE3) Rosetta colonies with expression plasmids.Blood samples and cloacal swabs were collected from 171 asymptomatic pigeons. The birds were divided into two groups (infected and not infected with PiCV) based on the results of Sybr Green real time PCR screening for the presence of PiCV genetic material. Approximately 70% of the pigeons tested positive for anti-PiCV antibodies regardless of their infection status. Antibody levels, the coefficient of variation and standard deviation were significantly higher in the group of infected pigeons.The results indicate that ELISA is a highly useful test that complements molecular methods in evaluations of PiCV infection status in domestic pigeons. The spread of pigeon circovirus infections can be controlled by keeping breeding flocks free of PiCV, which can only be achieved by subjecting birds to real time PCR and serological tests.
Collapse
Affiliation(s)
- Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| | | | - Daria Pestka
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Dariusz Choszcz
- Department of Heavy Duty Machines and Research Methodology, Faculty of Technical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Bartłomiej Tykałowski
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Marcin Śmiałek
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Andrzej Koncicki
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, ul. Oczapowskiego 13, 10-719 Olsztyn, Poland
| |
Collapse
|
15
|
Mahzounieh M, Heidari Khoei H, Ghasemi Shamsabadi M, Dastjerdi A. Detection and phylogenetic characterization of Columbid circoviruses in Chaharmahal va Bakhtiari province, Iran. Avian Pathol 2014; 43:524-8. [DOI: 10.1080/03079457.2014.966648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
Stenzel T, Pestka D, Choszcz D. The prevalence and genetic characterization of Chlamydia psittaci from domestic and feral pigeons in Poland and the correlation between infection rate and incidence of pigeon circovirus. Poult Sci 2014; 93:3009-16. [PMID: 25306457 DOI: 10.3382/ps.2014-04219] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydiosis is a zoonotic disease caused by Chlamydia psittaci that occurs in a wide range of bird species. High infection rates with C. psittaci are found in pigeons, which can act as vectors transmitting this bacterium to poultry and humans. Chlamydia shedding by pigeons is intermittent and can be activated by stressors or immunosuppression. The most common immunosuppressive factor for pigeons is a pigeon circovirus (PiCV) infection. The main aim of the study was to evaluate the prevalence of C. psittaci in Polish populations of domestic and feral pigeons (Columba livia) in the context of its correlation with PiCV infections. The second objective was to determine the genetic characteristics of Polish C. psittaci isolates. The study was conducted on 377 pigeon samples (276 domestic and 101 feral pigeons) collected from pigeons from different regions of Poland. The average prevalence of C. psittaci in the Polish pigeon population was determined at 6.8%, and it was higher in domestic than in feral pigeons. This is the first ever study to suggest a potential correlation between C. psittaci and PiCV infections, which could be attributed to the fact that there are 2 to 3 times more pigeons infected with C. psittaci and coinfected with PiCV than pigeons infected with C. psittaci alone. This trend was observed mainly in the population of sick pigeons. As many as 88.2% of isolates were recognized as belonging to genotype B, and the remaining isolates were identified as belonging to genotype E. The isolates analyzed in this study demonstrated low levels of genetic variation (96-100% homology among the isolates and in relation to reference strains). Chlamydia psittaci could be expected to spread across pigeon populations due to the high probability of mutual infections between birds and the increasing number of PiCV infections.
Collapse
Affiliation(s)
- Tomasz Stenzel
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Daria Pestka
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Dariusz Choszcz
- Faculty of Technical Sciences, Department of Heavy Duty Machines and Research Methodology, University of Warmia and Mazury, Oczapowskiego 11, 10-719 Olsztyn, Poland
| |
Collapse
|
17
|
Abstract
Newcastle disease (ND) is a highly contagious and devastating viral disease of poultry and other birds that has a worldwide distribution. ND in pigeons is called paramyxovirosis and is caused by antigenic "pigeon variant" of the virus (pigeon paramyxovirus type 1, PPMV-1). During PPMV-1 infections, central nervous system symptoms and sometimes high mortality are observed. In the case of infection with viscerotropic strains which exhibit specific affinity for the kidneys, the first observed sign is polyuria, and neural symptoms appear only in individual birds in the flock. Due to the similarity of symptoms of paramyxovirosis to the pigeon herpes virus infection (PHV), sodium chloride poisoning, overdose of ronidazole or vitamin B1 deficiency, it is necessary to perform laboratory tests to make a correct diagnosis. After virus isolation PPMV-1 can be detected initially by haemagglutination assay (HA). PPMV-1 can be confirmed by conventional serological tests such a haemagglutination inhibition test (HI) or molecular-based techniques. In the prophylaxis of paramyxovirosis in pigeons, inactivated vaccines are used, administered by subcutaneous injection in various prevention programs. However, vaccination should be only one component of a strategy of PPMV-1 control, on a par with effective biosecurity and proper, effective methods of prevention and diagnostics of paramyxovirosis.
Collapse
|