1
|
Zhou Z, Qin P, Cheng X, Shao M, Ren Z, Zhao Y, Li Q, Liu L. ChatGPT in Oncology Diagnosis and Treatment: Applications, Legal and Ethical Challenges. Curr Oncol Rep 2025; 27:336-354. [PMID: 39998782 DOI: 10.1007/s11912-025-01649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE OF REVIEW This study aims to systematically review the trajectory of artificial intelligence (AI) development in the medical field, with a particular emphasis on ChatGPT, a cutting-edge tool that is transforming oncology's diagnosis and treatment practices. RECENT FINDINGS Recent advancements have demonstrated that ChatGPT can be effectively utilized in various areas, including collecting medical histories, conducting radiological & pathological diagnoses, generating electronic medical record (EMR), providing nutritional support, participating in Multidisciplinary Team (MDT) and formulating personalized, multidisciplinary treatment plans. However, some significant challenges related to data privacy and legal issues that need to be addressed for the safe and effective integration of ChatGPT into clinical practice. ChatGPT, an emerging AI technology, opens up new avenues and viewpoints for oncology diagnosis and treatment. If current technological and legal challenges can be overcome, ChatGPT is expected to play a more significant role in oncology diagnosis and treatment in the future, providing better treatment options and improving the quality of medical services.
Collapse
Affiliation(s)
- Zihan Zhou
- The First Clinical Medical College of Nanjing Medical University, Nanjing, 211166, China
| | - Peng Qin
- The First Clinical Medical College of Nanjing Medical University, Nanjing, 211166, China
| | - Xi Cheng
- The First Clinical Medical College of Nanjing Medical University, Nanjing, 211166, China
| | - Maoxuan Shao
- The First Clinical Medical College of Nanjing Medical University, Nanjing, 211166, China
| | - Zhaozheng Ren
- The First Clinical Medical College of Nanjing Medical University, Nanjing, 211166, China
| | - Yiting Zhao
- Stomatological College of Nanjing Medical University, Nanjing, 211166, China
| | - Qiunuo Li
- The First Clinical Medical College of Nanjing Medical University, Nanjing, 211166, China
| | - Lingxiang Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
2
|
Liu Q, Chen J, Liu Y, Zhang S, Feng H, Wan T, Zhang S, Zhang N, Yang Z. The impact of cathepsins on liver hepatocellular carcinoma: Insights from genetic and functional analyses. Gene 2025; 935:149064. [PMID: 39486661 DOI: 10.1016/j.gene.2024.149064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Liver Hepatocellular Carcinoma (LIHC), ranked as the second deadliest cancer globally, poses a major health challenge because of its widespread occurrence and poor prognosis. The mechanisms underlying LIHC development and progression remain unclear. Cathepsins are linked to tumorigenesis in other cancers, but their role in LIHC is underexplored. This study employed integrative analyses, including Mendelian Randomization (MR), bulk RNA-sequencing (bulk-seq), single-cell RNA sequencing (scRNA-seq), immunohistochemical (IHC) analysis, and cellular experiments with siRNA technology, to investigate the role of cathepsin E (CTSE) in LIHC. MR analysis identified CTSE as a factor associated with increased LIHC risk. Prognostic analysis using TCGA data showed that higher CTSE levels are linked to poorer survival, establishing CTSE as an independent prognostic risk factor. Integrative transcriptome analysis revealed close relation of CTSE to the extracellular matrix. scRNA-seq from TISCH2 demonstrated that CTSE is predominantly expressed in malignant LIHC cells. IHC confirmed higher CTSE expression in LIHC tissues compared to peritumoral tissues. Functional assays, such as qRT-PCR, Western blot, cell proliferation, and colony formation experiments, demonstrated that siRNA-mediated CTSE knockdown in HepG2 and Huh7 cell lines notably suppressed cell proliferation and altered the FAK/Paxillin/Akt signaling cascade. This research enhances our comprehension of LIHC development, emphasizing CTSE as a promising prognostic marker and potential therapeutic target. Inhibiting CTSE could slow the progression of LIHC, presenting novel opportunities for therapeutic approaches.
Collapse
Affiliation(s)
- Qi Liu
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China; Institute of Hepatobiliary Surgery, Key Laboratory of Digital Hepatobiliary Surgery of Chinese People's Liberation Army, Beijing 100853, China; Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Junyi Chen
- Medical School of Chinese People's Liberation Army, Beijing 100853, China
| | - Yuyang Liu
- Department of Neurosurgery, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China
| | - Shengwei Zhang
- Department of Gastroenterology, 987th Hospital of Joint Logistics Support Force, Baoji 721004, China
| | - Hui Feng
- Zhantansi Outpatient Department of Jingzhong Medical District, Chinese People's Liberation Army General Hospital, Beijing 100034, China
| | - Tao Wan
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China; Institute of Hepatobiliary Surgery, Key Laboratory of Digital Hepatobiliary Surgery of Chinese People's Liberation Army, Beijing 100853, China
| | - Shemin Zhang
- Department of Neurosurgery, 920th Hospital of Joint Logistics Support Force, Kunming 650032, China
| | - Ning Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China; Institute of Hepatobiliary Surgery, Key Laboratory of Digital Hepatobiliary Surgery of Chinese People's Liberation Army, Beijing 100853, China.
| | - Zhanyu Yang
- Faculty of Hepato-Pancreato-Biliary Surgery, The First Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100853, China; Institute of Hepatobiliary Surgery, Key Laboratory of Digital Hepatobiliary Surgery of Chinese People's Liberation Army, Beijing 100853, China; Medical School of Chinese People's Liberation Army, Beijing 100853, China.
| |
Collapse
|
3
|
Vlahopoulos SA. Divergent Processing of Cell Stress Signals as the Basis of Cancer Progression: Licensing NFκB on Chromatin. Int J Mol Sci 2024; 25:8621. [PMID: 39201306 PMCID: PMC11354898 DOI: 10.3390/ijms25168621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Inflammation is activated by diverse triggers that induce the expression of cytokines and adhesion molecules, which permit a succession of molecules and cells to deliver stimuli and functions that help the immune system clear the primary cause of tissue damage, whether this is an infection, a tumor, or a trauma. During inflammation, short-term changes in the expression and secretion of strong mediators of inflammation occur, while long-term changes occur to specific groups of cells. Long-term changes include cellular transdifferentiation for some types of cells that need to regenerate damaged tissue, as well as death for specific immune cells that can be detrimental to tissue integrity if they remain active beyond the boundaries of essential function. The transcriptional regulator NFκB enables some of the fundamental gene expression changes during inflammation, as well as during tissue development. During recurrence of malignant disease, cell stress-induced alterations enable the growth of cancer cell clones that are substantially resistant to therapeutic intervention and to the immune system. A number of those alterations occur due to significant defects in feedback signal cascades that control the activity of NFκB. Specifically, cell stress contributes to feedback defects as it overrides modules that otherwise control inflammation to protect host tissue. NFκB is involved in both the suppression and promotion of cancer, and the key distinctive feature that determines its net effect remains unclear. This paper aims to provide a clear answer to at least one aspect of this question, namely the mechanism that enables a divergent response of cancer cells to critical inflammatory stimuli and to cell stress in general.
Collapse
|
4
|
Vlahopoulos S, Pan L, Varisli L, Dancik GM, Karantanos T, Boldogh I. OGG1 as an Epigenetic Reader Affects NFκB: What This Means for Cancer. Cancers (Basel) 2023; 16:148. [PMID: 38201575 PMCID: PMC10778025 DOI: 10.3390/cancers16010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
8-oxoguanine glycosylase 1 (OGG1), which was initially identified as the enzyme that catalyzes the first step in the DNA base excision repair pathway, is now also recognized as a modulator of gene expression. What is important for cancer is that OGG1 acts as a modulator of NFκB-driven gene expression. Specifically, oxidant stress in the cell transiently halts enzymatic activity of substrate-bound OGG1. The stalled OGG1 facilitates DNA binding of transactivators, such as NFκB to their cognate sites, enabling the expression of cytokines and chemokines, with ensuing recruitment of inflammatory cells. Recently, we highlighted chief aspects of OGG1 involvement in regulation of gene expression, which hold significance in lung cancer development. However, OGG1 has also been implicated in the molecular underpinning of acute myeloid leukemia. This review analyzes and discusses how these cells adapt through redox-modulated intricate connections, via interaction of OGG1 with NFκB, which provides malignant cells with alternative molecular pathways to transform their microenvironment, enabling adjustment, promoting cell proliferation, metastasis, and evading killing by therapeutic agents.
Collapse
Affiliation(s)
- Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| | - Lang Pan
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555, USA;
| | - Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey;
| | - Garrett M. Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA;
| | - Theodoros Karantanos
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA;
| | - Istvan Boldogh
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555, USA;
| |
Collapse
|
5
|
Li J, Tang M, Gao X, Tian S, Liu W. Mendelian randomization analyses explore the relationship between cathepsins and lung cancer. Commun Biol 2023; 6:1019. [PMID: 37805623 PMCID: PMC10560205 DOI: 10.1038/s42003-023-05408-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023] Open
Abstract
Lung cancer, a major contributor to cancer-related fatalities worldwide, involves a complex pathogenesis. Cathepsins, lysosomal cysteine proteases, play roles in various physiological and pathological processes, including tumorigenesis. Observational studies have suggested an association between cathepsins and lung cancer. However, the causal link between the cathepsin family and lung cancer remains undetermined. This study employed Mendelian randomization analyses to investigate this causal association. The univariable Mendelian randomization analysis results indicate that elevated cathepsin H levels increase the overall risk of lung cancer, adenocarcinoma, and lung cancer among smokers. Conversely, reverse Mendelian randomization analyses suggest that squamous carcinoma may lead to increased cathepsin B levels. A multivariable analysis using nine cathepsins as covariates reveals that elevated cathepsin H levels lead to an increased overall risk of lung cancer, adenocarcinoma, and lung cancer in smokers. In conclusion, cathepsin H may serve as a marker for lung cancer, potentially inspiring directions in lung cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Jialin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin, 130021, PR China
| | - Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin, 130021, PR China
| | - Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin, 130021, PR China
| | - Suyan Tian
- Division of Clinical Research, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin, 130021, PR China.
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, Jilin, 130021, PR China.
| |
Collapse
|
6
|
Fleming B, Edison P, Kenny L. Cognitive impairment after cancer treatment: mechanisms, clinical characterization, and management. BMJ 2023; 380:e071726. [PMID: 36921926 DOI: 10.1136/bmj-2022-071726] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Cognitive impairment is a debilitating side effect experienced by patients with cancer treated with systemically administered anticancer therapies. With around 19.3 million new cases of cancer worldwide in 2020 and the five year survival rate growing from 50% in 1970 to 67% in 2013, an urgent need exists to understand enduring side effects with severe implications for quality of life. Whereas cognitive impairment associated with chemotherapy is recognized in patients with breast cancer, researchers have started to identify cognitive impairment associated with other treatments such as immune, endocrine, and targeted therapies only recently. The underlying mechanisms are diverse and therapy specific, so further evaluation is needed to develop effective therapeutic interventions. Drug and non-drug management strategies are emerging that target mechanistic pathways or the cognitive deficits themselves, but they need to be rigorously evaluated. Clinically, consistent use of objective diagnostic tools is necessary for accurate diagnosis and clinical characterization of cognitive impairment in patients treated with anticancer therapies. This should be supplemented with clinical guidelines that could be implemented in daily practice. This review summarizes the recent advances in the mechanisms, clinical characterization, and novel management strategies of cognitive impairment associated with treatment of non-central nervous system cancers.
Collapse
Affiliation(s)
- Ben Fleming
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Paul Edison
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Laura Kenny
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
7
|
Lin CL, Yu CI, Lee TH, Chuang JMJ, Han KF, Lin CS, Huang WP, Chen JYF, Chen CY, Lin MY, Lee CH. Plumbagin induces the apoptosis of drug-resistant oral cancer in vitro and in vivo through ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154655. [PMID: 36689858 DOI: 10.1016/j.phymed.2023.154655] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Oral cancer is one of the leading causes of cancer-related deaths worldwide. Chemotherapy is widely used in the treatment of oral cancer, but its clinical efficacy is limited by drug resistance. Hence, novel compounds capable of overcoming drug-resistance are urgently needed. PURPOSE Plumbagin (PG), a natural compound isolated from Plumbago zeylanica L, has been used to treat various cancers. In this study, we investigated the anticancer effects of PG on drug-resistant oral cancer (CR-SAS) cells, as well as the underlying mechanism. METHODS MTT assays were used to evaluate the effect of PG on the viability of CR-SAS cells. Apoptosis and reactive oxygen species (ROS) production by the cells were determined using flow cytometry. Protein expression levels were detected by western blotting. RESULTS The results show that PG reduces the viability and causes the apoptosis of CR-SAS cells. PG is able to induce intracellular and mitochondrial ROS generation that leads to mitochondrial dysfunction. Furthermore, endoplasmic reticulum (ER) stress was triggered in PG-treated CR-SAS cells. The inhibition of ROS using N-acetylcysteine (NAC) abrogated the PG-induced ER stress and apoptosis, as well as the reduction in cell viability. Meanwhile, similar results were observed both in zebrafish and in murine models of drug-resistant oral cancer. CONCLUSION Our results indicate that PG induces the apoptosis of CR-SAS cells via the ROS-mediated ER stress pathway and mitochondrial dysfunction. It will be interesting to develop the natural compound PG for the treatment of drug-resistant oral cancer.
Collapse
Affiliation(s)
- Chien-Liang Lin
- Department of Nursing, School of Nursing, Fooyin University, Kaohsiung 831301, Taiwan; Department of Radiation Oncology, Yuan's General Hospital, Kaohsiung 802635, Taiwan
| | - Chung-I Yu
- Department of Orthopedics, Department of Surgery, Chi Mei Medical Center, Liouying, Tainan 736402, Taiwan
| | - Tzong-Huei Lee
- Institute of Fisheries Science, National Taiwan University, Taipei 106319, Taiwan
| | - Jimmy Ming-Jung Chuang
- Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan
| | - Kuang-Fen Han
- Department of Nursing, Min-Hwei Junior College of Health Care Management, Tainan 736302, Taiwan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Wan-Ping Huang
- Department of Medical Research, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Jeff Yi-Fu Chen
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Chung-Yi Chen
- Department of Nutrition and Health Science, School of Medical and Health Sciences, Fooyin University, Kaohsiung 831301, Taiwan
| | - Mei-Ying Lin
- Community Health Promotion Center, Kaohsiung Municipal Ci-Jin Hospital, Kaohsiung 805004, Taiwan
| | - Chien-Hsing Lee
- Department of Pharmacology, School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University; Department of Medical Research, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung 807378, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807378, Taiwan; Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan.
| |
Collapse
|
8
|
Lee CW, Kim SM, Sa S, Hong M, Nam SM, Han HW. Relationship between drug targets and drug-signature networks: a network-based genome-wide landscape. BMC Med Genomics 2023; 16:17. [PMID: 36717817 PMCID: PMC9885570 DOI: 10.1186/s12920-023-01444-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Drugs produce pharmaceutical and adverse effects that arise from the complex relationship between drug targets and signatures; by considering such relationships, we can begin to understand the cellular mechanisms of drugs. In this study, we selected 463 genes from the DSigDB database corresponding to targets and signatures for 382 FDA-approved drugs with both protein binding information for a drug-target score (KDTN, i.e., the degree to which the protein encoded by the gene binds to a number of drugs) and microarray signature information for a drug-sensitive score (KDSN, i.e., the degree to which gene expression is stimulated by the drug). Accordingly, we constructed two drug-gene bipartite network models, a drug-target network and drug-signature network, which were merged into a multidimensional model. Analysis revealed that the KDTN and KDSN were in mutually exclusive and reciprocal relationships in terms of their biological network structure and gene function. A symmetric balance between the KDTN and KDSN of genes facilitates the possibility of therapeutic drug effects in whole genome. These results provide new insights into the relationship between drugs and genes, specifically drug targets and drug signatures.
Collapse
Affiliation(s)
- Chae Won Lee
- grid.410886.30000 0004 0647 3511Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, 13488 South Korea ,grid.410886.30000 0004 0647 3511Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam, 13488 South Korea
| | - Sung Min Kim
- grid.410886.30000 0004 0647 3511Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, 13488 South Korea ,grid.410886.30000 0004 0647 3511Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam, 13488 South Korea
| | - Soonok Sa
- grid.410886.30000 0004 0647 3511Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, 13488 South Korea ,grid.410886.30000 0004 0647 3511Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam, 13488 South Korea
| | - Myunghee Hong
- grid.410886.30000 0004 0647 3511Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, 13488 South Korea ,grid.410886.30000 0004 0647 3511Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam, 13488 South Korea
| | - Sang-Min Nam
- grid.452398.10000 0004 0570 1076Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Hyun Wook Han
- grid.410886.30000 0004 0647 3511Department of Biomedical Informatics, CHA University School of Medicine, CHA University, Seongnam, 13488 South Korea ,grid.410886.30000 0004 0647 3511Institute of Basic Medical Sciences, School of Medicine, CHA University, Seongnam, 13488 South Korea
| |
Collapse
|
9
|
Li YQ, Zheng Z, Liu QX, Lu X, Zhou D, Zhang J, Zheng H, Dai JG. Repositioning of Antiparasitic Drugs for Tumor Treatment. Front Oncol 2021; 11:670804. [PMID: 33996598 PMCID: PMC8117216 DOI: 10.3389/fonc.2021.670804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Drug repositioning is a strategy for identifying new antitumor drugs; this strategy allows existing and approved clinical drugs to be innovatively repurposed to treat tumors. Based on the similarities between parasitic diseases and cancer, recent studies aimed to investigate the efficacy of existing antiparasitic drugs in cancer. In this review, we selected two antihelminthic drugs (macrolides and benzimidazoles) and two antiprotozoal drugs (artemisinin and its derivatives, and quinolines) and summarized the research progresses made to date on the role of these drugs in cancer. Overall, these drugs regulate tumor growth via multiple targets, pathways, and modes of action. These antiparasitic drugs are good candidates for comprehensive, in-depth analyses of tumor occurrence and development. In-depth studies may improve the current tumor diagnoses and treatment regimens. However, for clinical application, current investigations are still insufficient, warranting more comprehensive analyses.
Collapse
Affiliation(s)
- Yan-Qi Li
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhi Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Quan-Xing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dong Zhou
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ji-Gang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
10
|
Kumar P, Devaki B, Jonnala UK, Amere Subbarao S. Hsp90 facilitates acquired drug resistance of tumor cells through cholesterol modulation however independent of tumor progression. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118728. [PMID: 32343987 DOI: 10.1016/j.bbamcr.2020.118728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/11/2020] [Accepted: 04/19/2020] [Indexed: 12/23/2022]
Abstract
Acquired multidrug resistance of cancer cells challenges the chemotherapeutic interventions. To understand the role of molecular chaperone, Hsp90 in drug adapted tumor cells, we have used in vitro drug adapted epidermoid tumor cells as a model system. We found that chemotherapeutic drug adaptation of tumor cells is mediated by induced activities of both Hsp90 and P-glycoprotein (P-gp). Although the high-affinity conformation of Hsp90 has correlated with the enhanced drug efflux activity, we did not observe a direct interaction between P-gp and Hsp90. The enrichment of P-gp and Hsp90 at the cholesterol-rich membrane microdomains is found obligatory for enhanced drug efflux activity. Since inhibition of cholesterol biosynthesis is not interfering with the drug efflux activity, it is presumed that the net cholesterol redistribution mediated by Hsp90 regulates the enhanced drug efflux activity. Our in vitro cholesterol and Hsp90 interaction studies have furthered our presumption that Hsp90 facilitates cholesterol redistribution. The drug adapted cells though exhibited anti-proliferative and anti-tumor effects in response to 17AAG treatment, drug treatment has also enhanced the drug efflux activity. Our findings suggest that drug efflux activity and metastatic potential of tumor cells are independently regulated by Hsp90 by distinct mechanisms. We expose the limitations imposed by Hsp90 inhibitors against multidrug resistant tumor cells.
Collapse
Affiliation(s)
- Pankaj Kumar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, Telangana, India
| | - Bharath Devaki
- Presently at Department of Molecular & Cell Biology, University of Texas, Dallas, USA
| | - Ujwal Kumar Jonnala
- Presently at SYNGENE International Ltd., Biocon BMS R & D Centre, Bengaluru, Karnataka, India
| | - Sreedhar Amere Subbarao
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, Telangana, India.
| |
Collapse
|
11
|
Imidazo[1,2- b]pyrazole-7-Carboxamide Derivative Induces Differentiation-Coupled Apoptosis of Immature Myeloid Cells Such as Acute Myeloid Leukemia and Myeloid-Derived Suppressor Cells. Int J Mol Sci 2020; 21:ijms21145135. [PMID: 32698503 PMCID: PMC7404197 DOI: 10.3390/ijms21145135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/29/2022] Open
Abstract
Chemotherapy-induced differentiation of immature myeloid progenitors, such as acute myeloid leukemia (AML) cells or myeloid-derived suppressor cells (MDSCs), has remained a challenge for the clinicians. Testing our imidazo[1,2-b]pyrazole-7-carboxamide derivative on HL-60 cells, we obtained ERK phosphorylation as an early survival response to treatment followed by the increase of the percentage of the Bcl-xlbright and pAktbright cells. Following the induction of Vav1 and the AP-1 complex, a driver of cellular differentiation, FOS, JUN, JUNB, and JUND were elevated on a concentration and time-dependent manner. As a proof of granulocytic differentiation, the cells remained non-adherent, the expression of CD33 decreased; the granularity, CD11b expression, and MPO activity of HL-60 cells increased upon treatment. Finally, viability of HL-60 cells was hampered shown by the depolarization of mitochondria, activation of caspase-3, cleavage of Z-DEVD-aLUC, appearance of the sub-G1 population, and the leakage of the lactate-dehydrogenase into the supernatant. We confirmed the differentiating effect of our drug candidate on human patient-derived AML cells shown by the increase of CD11b and decrease of CD33+, CD7+, CD206+, and CD38bright cells followed apoptosis (IC50: 80 nM) after treatment ex vivo. Our compound reduced both CD11b+/Ly6C+ and CD11b+/Ly6G+ splenic MDSCs from the murine 4T1 breast cancer model ex vivo.
Collapse
|
12
|
Stagni V, Kaminari A, Sideratou Z, Sakellis E, Vlahopoulos SA, Tsiourvas D. Targeting breast cancer stem-like cells using chloroquine encapsulated by a triphenylphosphonium-functionalized hyperbranched polymer. Int J Pharm 2020; 585:119465. [PMID: 32497731 DOI: 10.1016/j.ijpharm.2020.119465] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 01/07/2023]
Abstract
Cancer stem cells (CSCs) have garnered increasing attention over the past decade, as they are believed to play a crucial role in tumor progression and drug resistance. Accumulating evidence provides insight into the function of autophagy in maintenance and survival of CSCs. Here, we studied the impact of a mitochondriotropic triphenylphosphonium-functionalized dendrimeric nanocarrier on cultured breast cancer cell lines, grown either as adherent cells or as mammospheres that mimic a stem-like phenotype. The nanocarrier manifested a substantial cytotoxicity both alone as well as after encapsulation of chloroquine, a well-known autophagy inhibitor. The cytotoxic effects of the nanocarrier could be ascribed to interference with mitochondrial function. Importantly, mammospheres were selectively sensitive to encapsulated chloroquine and this depends on the expression of the gene encoding ATM kinase. Ataxia-telangiectasia mutated (ATM) kinase is an enzyme that functions as an essential signaling mediator that enables growth of cancer stem cells through the regulation of autophagy. We noted that this ATM-dependent sensitivity of mammospheres to encapsulated chloroquine was independent of the status of the tumor suppressor gene p53. Our study suggests that breast cancer stem cells, as they are modeled by mammospheres, are sensitive to encapsulated chloroquine, depending on the expression of the ATM kinase, which is thereby characterized as a potential biomarker for sensitivity to this type of treatment.
Collapse
Affiliation(s)
- Venturina Stagni
- Laboratory of Cell Signaling, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy; Institute of Molecular Biology and Pathology, National Research Council (CNR), Via DegliApuli 4, 00185 Rome, Italy.
| | - Archontia Kaminari
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15310 Aghia Paraskevi, Greece
| | - Zili Sideratou
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15310 Aghia Paraskevi, Greece
| | - Elias Sakellis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15310 Aghia Paraskevi, Greece
| | - Spiros A Vlahopoulos
- Ηoremeio Research Laboratory, First Department of Paediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Dimitris Tsiourvas
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15310 Aghia Paraskevi, Greece.
| |
Collapse
|
13
|
Lambrou GI, Hatziagapiou K, Vlahopoulos S. Inflammation and tissue homeostasis: the NF-κB system in physiology and malignant progression. Mol Biol Rep 2020; 47:4047-4063. [PMID: 32239468 DOI: 10.1007/s11033-020-05410-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023]
Abstract
Disruption of tissue function activates cellular stress which triggers a number of mechanisms that protect the tissue from further damage. These mechanisms involve a number of homeostatic modules, which are regulated at the level of gene expression by the transactivator NF-κB. This transcription factor shifts between activation and repression of discrete, cell-dependent gene expression clusters. Some of its target genes provide feedback to NF-κB itself, thereby strengthening the inflammatory response of the tissue and later terminating inflammation to facilitate restoration of tissue homeostasis. Disruption of key feedback modules for NF-κB in certain cell types facilitates the survival of clones with genomic aberrations, and protects them from being recognized and eliminated by the immune system, to enable thereby carcinogenesis.
Collapse
Affiliation(s)
- George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527, Goudi-Athens, Greece.
| |
Collapse
|
14
|
Varisli L, Cen O, Vlahopoulos S. Dissecting pharmacological effects of chloroquine in cancer treatment: interference with inflammatory signaling pathways. Immunology 2020; 159:257-278. [PMID: 31782148 PMCID: PMC7011648 DOI: 10.1111/imm.13160] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Chloroquines are 4-aminoquinoline-based drugs mainly used to treat malaria. At pharmacological concentrations, they have significant effects on tissue homeostasis, targeting diverse signaling pathways in mammalian cells. A key target pathway is autophagy, which regulates macromolecule turnover in the cell. In addition to affecting cellular metabolism and bioenergetic flow equilibrium, autophagy plays a pivotal role at the interface between inflammation and cancer progression. Chloroquines consequently have critical effects in tissue metabolic activity and importantly, in key functions of the immune system. In this article, we will review the work addressing the role of chloroquines in the homeostasis of mammalian tissue, and the potential strengths and weaknesses concerning their use in cancer therapy.
Collapse
Affiliation(s)
- Lokman Varisli
- Union of Education and Science Workers (EGITIM SEN), Diyarbakir Branch, Diyarbakir, Turkey
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, Turkey
| | - Osman Cen
- Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Natural Sciences, Joliet Jr College, Joliet, IL, USA
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
15
|
Gao A, Hu XL, Saeed M, Chen BF, Li YP, Yu HJ. Overview of recent advances in liposomal nanoparticle-based cancer immunotherapy. Acta Pharmacol Sin 2019; 40:1129-1137. [PMID: 31371782 PMCID: PMC6786406 DOI: 10.1038/s41401-019-0281-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/23/2019] [Indexed: 01/01/2023]
Abstract
The clinical performance of conventional cancer therapy approaches (surgery, radiotherapy, and chemotherapy) has been challenged by tumor metastasis and recurrence that is mainly responsible for cancer-caused mortalities. The cancer immunotherapy is being emerged nowadays as a promising therapeutic modality in order to achieve a highly efficient therapeutic performance while circumventing tumor metastasis and relapse. Liposomal nanoparticles (NPs) may serve as an ideal platform for systemic delivery of the immune modulators. In this review, we summarize the cutting-edge progresses in liposomal NPs for cancer immunotherapy, with focus on dendritic cells, T cells, tumor cells, natural killer cells, and macrophages. The review highlights the major challenges and provides a perspective regarding the clinical translation of liposomal nanoparticle-based immunotherapy.
Collapse
|
16
|
Yee EMH, Cirillo G, Brandl MB, Black DS, Vittorio O, Kumar N. Synthesis of Dextran-Phenoxodiol and Evaluation of Its Physical Stability and Biological Activity. Front Bioeng Biotechnol 2019; 7:183. [PMID: 31440502 PMCID: PMC6694440 DOI: 10.3389/fbioe.2019.00183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/15/2019] [Indexed: 12/04/2022] Open
Abstract
Phenoxodiol, an isoflavene anti-tumor agent, was conjugated on the polysaccharide dextran using immobilized laccase as biocatalyst. The success of the enzymatic conjugation was determined by UV-vis spectrophotometry and its functionalization degree was assessed by 1H NMR and was found to be 3.25 mg phenoxodiol/g of conjugate. An accelerated stability test showed that the resultant conjugate was nine times more stable than the free phenoxodiol when tested for its residual anti-oxidant activity with the Folin-Ciocalteu assay. The in vitro anti-proliferative activity of the conjugate was evaluated against neuroblastoma SKN-BE(2)C, triple-negative breast cancer MDA-MB-231, and glioblastoma U87 cancer cells. The conjugate was shown to be generally more potent than phenoxodiol against all three cell types tested. Additionally, the cytotoxicity and anti-angiogenic activity of the conjugate were also evaluated against non-malignant human lung fibroblast MRC-5 and human microvascular endothelial cells HMEC-1, respectively. The conjugate was found to be 1.5 times less toxic than phenoxodiol while mostly retaining 62% of its anti-angiogenic activity in the conjugate form. This study provides further evidence that the conjugation of natural product-derived drugs onto polysaccharide molecules such as dextran can lead to better stability and enhanced biological activity of the conjugate compared to the free drug alone.
Collapse
Affiliation(s)
- Eugene M. H. Yee
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| | - Giuseppe Cirillo
- Department of Pharmacy Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Miriam B. Brandl
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, Australia
| | - David StC Black
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| | - Orazio Vittorio
- Lowy Cancer Research Centre, Children's Cancer Institute, University of New South Wales, Sydney, NSW, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
17
|
The Autophagy-Lysosomal Pathways and Their Emerging Roles in Modulating Proteostasis in Tumors. Cells 2018; 8:cells8010004. [PMID: 30577555 PMCID: PMC6356230 DOI: 10.3390/cells8010004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
In normal physiological condition, the maintenance of cellular proteostasis is a prerequisite for cell growth, functioning, adapting to changing micro-environments, and responding to extracellular stress. Cellular proteostasis is maintained by specific proteostasis networks (PNs) to prevent protein misfolding, aggregating, and accumulating in subcellular compartments. Commonly, the PNs are composed of protein synthesis, molecular chaperones, endoplasmic reticulum (ER), unfolded protein response (UPR), stress response pathways (SRPs), secretions, ubiquitin proteasome system (UPS), and autophagy-lysosomal pathways (ALPs). Although great efforts have been made to explore the underlying detailed mechanisms of proteostasis, there are many questions remain to explore, especially in proteostasis regulated by the ALPs. Proteostasis out-off-balance is correlated with various human diseases such as diabetes, stroke, inflammation, hypertension, pulmonary fibrosis, and Alzheimer’s disease. Enhanced regulation of PNs is observed in tumors, thereby indicating that proteostasis may play a pivotal role in tumorigenesis and cancer development. Recently, inhibitors targeting the UPS have shown to be failed in solid tumor treatment. However, there is growing evidence showing that the ALPs play important roles in regulation of proteostasis alone or with a crosstalk with other PNs in tumors. In this review, we provide insights into the proteostatic process and how it is regulated by the ALPs, such as macroautophagy, aggrephagy, chaperone-mediated autophagy, microautophagy, as well as mitophagy during tumor development.
Collapse
|
18
|
Pro-apoptotic peptides-based cancer therapies: challenges and strategies to enhance therapeutic efficacy. Arch Pharm Res 2018; 41:594-616. [PMID: 29804279 DOI: 10.1007/s12272-018-1038-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 05/10/2018] [Indexed: 12/30/2022]
Abstract
Cancer is a leading cause of death worldwide. Despite many advances in the field of cancer therapy, an effective cure is yet to be found. As a more potent alternative for the conventional small molecule anti-cancer drugs, pro-apoptotic peptides have emerged as a new class of anticancer agents. By interaction with certain members in the apoptotic pathways, they could effectively kill tumor cells. However, there remain bottleneck challenges for clinical application of these pro-apoptotic peptides in cancer therapy. In this review, we will overview the developed pro-apoptotic peptides and outline the widely adopted molecular-based and nanoparticle-based strategies to enhance their anti-tumor effects.
Collapse
|
19
|
Yang CY, Hsieh CC, Lin CK, Lin CS, Peng B, Lin GJ, Sytwu HK, Chang WL, Chen YW. Danshen extract circumvents drug resistance and represses cell growth in human oral cancer cells. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:555. [PMID: 29284481 PMCID: PMC5747158 DOI: 10.1186/s12906-017-2063-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 12/15/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Danshen is a common traditional Chinese medicine used to treat neoplastic and chronic inflammatory diseases in China. However, the effects of Danshen on human oral cancer cells remain relatively unknown. This study investigated the antiproliferative effects of a Danshen extract on human oral cancer SAS, SCC25, OEC-M1, and KB drug-resistant cell lines and elucidated the possible underlying mechanism. METHODS We investigated the anticancer potential of the Danshen extract in human oral cancer cell lines and an in vivo oral cancer xenograft mouse model. The expression of apoptosis-related molecules was evaluated through Western blotting, and the concentration of in vivo apoptotic markers was measured using immunohistochemical staining. The antitumor effects of 5-fluorouracil and the Danshen extract were compared. RESULTS Cell proliferation assays revealed that the Danshen extract strongly inhibited oral cancer cell proliferation. Cell morphology studies revealed that the Danshen extract inhibited the growth of SAS, SCC25, and OEC-M1 cells by inducing apoptosis. The Flow cytometric analysis indicated that the Danshen extract induced cell cycle G0/G1 arrest. Immunoblotting analysis for the expression of active caspase-3 and X-linked inhibitor of apoptosis protein indicated that Danshen extract-induced apoptosis in human oral cancer SAS cells was mediated through the caspase pathway. Moreover, the Danshen extract significantly inhibited growth in the SAS xenograft mouse model. Furthermore, the Danshen extract circumvented drug resistance in KB drug-resistant oral cancer cells. CONCLUSION The study results suggest that the Danshen extract could be a potential anticancer agent in oral cancer treatment.
Collapse
Grants
- TSGH-C105-006-008-S05 Tri-Service General Hospital, Taiwan, Republic of China
- TSGH-C106-004-006-008-S05 Tri-Service General Hospital, Taiwan, Republic of China
- TSGH-C106-121 Tri-Service General Hospital, Taiwan, Republic of China
- MAB-106-090 National Defense Medical Center, Taiwan, Republic of China
- MOST 105-2314-B-016-021-MY3 National Science Council, Taiwan, Republic of China
- TSGH-C105-190 Tri-service General Hospital, Taiwan, Republic of China
Collapse
Affiliation(s)
- Cheng-Yu Yang
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Cheng-Chih Hsieh
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Chih-Kung Lin
- Division of Anatomic Pathology, Taipei Tzu Chi Hospital, Taipei, Taiwan, Republic of China
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan, Republic of China
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Bo Peng
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Gu-Jiun Lin
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Huey-Kang Sytwu
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Wen-Liang Chang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Yuan-Wu Chen
- School of Dentistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Oral and Maxillofacial Surgery, Tri-Service General Hospital, No. 161, Section 6, Min-Chuan East Road, Neihu 114, Taipei, 114 Taiwan, Republic of China
| |
Collapse
|
20
|
Panagiotaki KN, Sideratou Z, Vlahopoulos SA, Paravatou-Petsotas M, Zachariadis M, Khoury N, Zoumpourlis V, Tsiourvas D. A Triphenylphosphonium-Functionalized Mitochondriotropic Nanocarrier for Efficient Co-Delivery of Doxorubicin and Chloroquine and Enhanced Antineoplastic Activity. Pharmaceuticals (Basel) 2017; 10:E91. [PMID: 29160846 PMCID: PMC5748647 DOI: 10.3390/ph10040091] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023] Open
Abstract
Drug delivery systems that target subcellular organelles and, in particular, mitochondria are considered to have great potential in treating disorders that are associated with mitochondrial dysfunction, including cancer or neurodegenerative diseases. To this end, a novel hyperbranched mitochondriotropic nanocarrier was developed for the efficient co-delivery of two different (both in chemical and pharmacological terms) bioactive compounds. The carrier is based on hyperbranched poly(ethyleneimine) functionalized with triphenylphosphonium groups that forms ~100 nm diameter nanoparticles in aqueous media and can encapsulate doxorubicin (DOX), a well-known anti-cancer drug, and chloroquine (CQ), a known chemosensitizer with arising potential in anticancer medication. The anticancer activity of this system against two aggressive DOX-resistant human prostate adenocarcinoma cell lines and in in vivo animal studies was assessed. The co-administration of encapsulated DOX and CQ leads to improved cell proliferation inhibition at extremely low DOX concentrations (0.25 μΜ). In vivo experiments against DU145 human prostate cancer cells grafted on immunodeficient mice resulted in tumor growth arrest during the three-week administration period and no pervasive side effects. The findings put forward the potential of such targeted low dose combination treatments as a therapeutic scheme with minimal adverse effects.
Collapse
Affiliation(s)
- Katerina N Panagiotaki
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| | - Zili Sideratou
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| | - Spiros A Vlahopoulos
- Ηoremeio Research Laboratory, First Department of Paediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Maria Paravatou-Petsotas
- Institute of Nuclear and Radiological Sciences and Technology Energy and Safety, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| | - Michael Zachariadis
- Institute of Biosciences and Applications, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| | - Nikolas Khoury
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Vassilis Zoumpourlis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Dimitris Tsiourvas
- Institute of Nanoscience and Nanotechnology, NCSR ''Demokritos", 15310 Aghia Paraskevi, Greece.
| |
Collapse
|
21
|
Vlahopoulos SA. Aberrant control of NF-κB in cancer permits transcriptional and phenotypic plasticity, to curtail dependence on host tissue: molecular mode. Cancer Biol Med 2017; 14:254-270. [PMID: 28884042 PMCID: PMC5570602 DOI: 10.20892/j.issn.2095-3941.2017.0029] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of the transcription factor NF-κB in shaping the cancer microenvironment is becoming increasingly clear. Inflammation alters the activity of enzymes that modulate NF-κB function, and causes extensive changes in genomic chromatin that ultimately drastically alter cell-specific gene expression. NF-κB regulates the expression of cytokines and adhesion factors that control interactions among adjacent cells. As such, NF-κB fine tunes tissue cellular composition, as well as tissues' interactions with the immune system. Therefore, NF-κB changes the cell response to hormones and to contact with neighboring cells. Activating NF-κB confers transcriptional and phenotypic plasticity to a cell and thereby enables profound local changes in tissue function and composition. Research suggests that the regulation of NF-κB target genes is specifically altered in cancer. Such alterations occur not only due to mutations of NF-κB regulatory proteins, but also because of changes in the activity of specific proteostatic modules and metabolic pathways. This article describes the molecular mode of NF-κB regulation with a few characteristic examples of target genes.
Collapse
Affiliation(s)
- Spiros A Vlahopoulos
- The First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Athens 11527, Greece
| |
Collapse
|
22
|
Integrative computational in-depth analysis of dysregulated miRNA-mRNA interactions in drug-resistant pediatric acute lymphoblastic leukemia cells: an attempt to obtain new potential gene-miRNA pathways involved in response to treatment. Tumour Biol 2015; 37:7861-72. [DOI: 10.1007/s13277-015-4553-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/30/2015] [Indexed: 12/28/2022] Open
|