1
|
Wołodko K, Šentjurc T, Walewska E, Laniecka E, Jura M, Galvão A. Increased susceptibility to diet-induced obesity in female mice impairs ovarian steroidogenesis: The role of elevated leptin signalling on nodal activity inhibition in theca cells. Mol Metab 2025; 91:102062. [PMID: 39536822 PMCID: PMC11646782 DOI: 10.1016/j.molmet.2024.102062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVES Susceptibility to obesity in humans is driven by the intricate interplay of genetic, environmental and behavioural factors. Moreover, the mechanisms linking maternal obesity to infertility remain largely understudied. In this study, we investigated how variable susceptibility to obesity in mice affects ovarian steroidogenesis, with a particular focus on the leptin-mediated dysregulation of Nodal signalling pathway in theca cells (TC). METHODS C56BL/6J (B6) and 129S1/SvlmJ (129) mice, models of maternal obesity (MO), were fed a chow diet (CD) and a high fat diet (HFD) for 16 weeks. To investigate the contrasting effects of leptin on ovarian steroidogenesis, B6 mice pharmacologically treated with leptin for 16 days on CD were used to model hyperleptinemia, while homozygous ob/ob (-/-) mice with genetic leptin deficiency, also on a CD, were used to examine the effects of obesity in the absence of leptin. Following the characterisation of the mouse phenotype, gonadal fat (GON), whole ovaries (WO), ovarian TC and granulosa cell (GC) fractions were collected for mRNA transcription and protein expression analysis. Finally, in vitro treated ovarian explants obtained from B6 mice were used to further elucidate the effects of Nodal on steroidogenesis. RESULTS The significant gain in body weight (BW) and fat mass (FM) in HFD-fed B6 mice (p < 0.05), was associated with increased mRNA transcription of the adipose tissue expansion genes Polymerase I and transcript release factor (Cavin), Secreted frizzled-related protein 5 (Sfrp5) and Mesoderm specific transcript (Mest) in GON (p < 0.05). Furthermore, the HFD-fed B6 mice presented also impaired glucose metabolism and insulin sensitivity (p < 0.05). In contrast, the HFD-fed 129 mice exhibited no changes in BW and FM, maintaining glucose and insulin metabolism. At the ovarian level, decreased protein expression of Steroidogenic Acute Regulatory Protein (StAR) in WO obtained from HFD-fed B6 mice (p = 0.05), was followed by reduced transcription of key steroidogenic genes like Star and Cytochrome P450 17a1 (Cyp17a) in TC (p < 0.05). Furthermore, the transcription of Nodal and its receptors was downregulated (p < 0.05), whereas mRNA levels of Suppressor of cytokine signalling 3 (Socs3) and SMAD family member 7 (Smad7) were upregulated in TC obtained from HFD-fed B6 mice (p < 0.05). No changes were seen in the genes regulating steroidogenesis, Nodal signalling, or Socs3 and Smad7 activity in the ovaries of HFD-fed 129 mice. Importantly, the pharmacological treatment of lean mice with leptin, upregulated the ovarian transcription of Socs3 and Smad7, while downregulating Nodal and its receptors (p < 0.05). Finally, in vitro pharmacological inhibition of Nodal signalling pathway in ovarian explants isolated from CD-fed B6 mice decreased the transcription of Star and Cyp17a in TC (p < 0.05), whereas Nodal treatment of explants obtained from HFD-fed B6 mice restored the transcription of both genes (p < 0.05). CONCLUSIONS Increased susceptibility to obesity in MO is associated with systemic hyperleptinemia and hypoestrogenism due to compromised ovarian steroidogenesis, largely driven by the inhibitory effects of leptin-Smad7 pathway on Nodal signalling activity in the TC compartment of ovarian follicles.
Collapse
Affiliation(s)
- Karolina Wołodko
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
| | - Tjaša Šentjurc
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
| | - Edyta Walewska
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
| | - Elżbieta Laniecka
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
| | - Magdalena Jura
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland
| | - António Galvão
- Institute of Animal Reproduction and Food Research of PAS, Department of Reproductive Immunology and Pathology, Olsztyn, Poland; The Royal Veterinary College, University of London, London, NW1 0TU, UK.
| |
Collapse
|
2
|
Gascard PD, Wang X, Nosrati M, Kim KB, Kashani-Sabet M, Tlsty TD, Leong SP, Hendrix MJC. Higher Nodal expression is often associated with poorer survival in patients diagnosed with melanoma and treated with anti-PD1 therapy. Pathol Oncol Res 2024; 30:1611889. [PMID: 39376672 PMCID: PMC11456440 DOI: 10.3389/pore.2024.1611889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/12/2024] [Indexed: 10/09/2024]
Abstract
Advanced melanoma is considered the most aggressive and deadly form of skin cancer whose incidence has been rising over the past three decades. In the absence of treatment, the median overall survival for advanced-stage metastatic disease is less than 6 months. Although most melanomas detected at an early stage can be cured with surgery, a subset of these eventually metastasize. Therefore, a critical need exists to identify unique molecular features that would be predictive of long-term outcome and response to specific therapies. Recent promising therapeutic regimens have included the use of immune checkpoint inhibitors, such as anti-PD1 antibodies. However, the ability to identify responders and non-responders to this therapy remains elusive. To address this challenge at the molecular level, previously our laboratory identified the emergence of a stem cell phenotype associated with advanced melanoma and other aggressive forms of cancer. Underlying this phenotype is the aberrant re-expression of the embryonic morphogen "Nodal". Particularly noteworthy, we have observed Nodal to remain in advanced tumors of non-responders to standard-of-care therapies (i.e., BRAFi). This pilot study is the first proof-of-principle attempt to predict treatment response survival outcome in a small cohort of melanoma patients receiving anti-PD1 immune checkpoint inhibitor therapy - based on their Nodal expression profile. Using advanced multiplex immunohistochemistry-based digital pathology, the major finding of this preliminary study indicates that higher Nodal expression is often associated with poorer overall survival after anti-PD1 therapy, reaching nearly statistical relevance.
Collapse
Affiliation(s)
- Philippe D. Gascard
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Xianhong Wang
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Mehdi Nosrati
- California Pacific Medical Center, Center for Melanoma Research and Treatment, Sutter Health, San Francisco, CA, United States
| | - Kevin B. Kim
- California Pacific Medical Center, Center for Melanoma Research and Treatment, Sutter Health, San Francisco, CA, United States
| | - Mohammed Kashani-Sabet
- California Pacific Medical Center, Center for Melanoma Research and Treatment, Sutter Health, San Francisco, CA, United States
| | - Thea D. Tlsty
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Stanley P. Leong
- California Pacific Medical Center, Center for Melanoma Research and Treatment, Sutter Health, San Francisco, CA, United States
| | - Mary J. C. Hendrix
- Department of Biology, Shepherd University, Shepherdstown, WV, United States
| |
Collapse
|
3
|
Wang SSY. Advancing biomarker development for diagnostics and therapeutics using solid tumour cancer stem cell models. TUMORI JOURNAL 2024; 110:10-24. [PMID: 36964664 DOI: 10.1177/03008916231158411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The cancer stem cell model hopes to explain solid tumour carcinogenesis, tumour progression and treatment failure in cancers. However, the cancer stem cell model has led to minimal clinical translation to cancer stem cell biomarkers and targeted therapies in solid tumours. Many reasons underlie the challenges, one being the imperfect understanding of the cancer stem cell model. This review hopes to spur further research into clinically translatable cancer stem cell biomarkers through first defining cancer stem cells and their associated models. With a better understanding of these models there would be a development of more accurate biomarkers. Making the clinical translation of biomarkers into diagnostic tools and therapeutic agents more feasible.
Collapse
|
4
|
Sivaccumar JP, Iaccarino E, Oliver A, Cantile M, Olimpieri P, Leonardi A, Ruvo M, Sandomenico A. Production in Bacteria and Characterization of Engineered Humanized Fab Fragment against the Nodal Protein. Pharmaceuticals (Basel) 2023; 16:1130. [PMID: 37631045 PMCID: PMC10459755 DOI: 10.3390/ph16081130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Drug development in recent years is increasingly focused on developing personalized treatments based on blocking molecules selective for therapeutic targets specifically present in individual patients. In this perspective, the specificity of therapeutic targets and blocking agents plays a crucial role. Monoclonal antibodies (mAbs) and their surrogates are increasingly used in this context thanks to their ability to bind therapeutic targets and to inhibit their activity or to transport bioactive molecules into the compartments in which the targets are expressed. Small antibody-like molecules, such as Fabs, are often used in certain clinical settings where small size and better tissue penetration are required. In the wake of this research trend, we developed a murine mAb (3D1) neutralizing the activity of Nodal, an oncofetal protein that is attracting an ever-increasing interest as a selective therapeutic target for several cancer types. Here, we report the preparation of a recombinant Fab of 3D1 that has been humanized through a computational approach starting from the sequence of the murine antibody. The Fab has been expressed in bacterial cells (1 mg/L bacterial culture), biochemically characterized in terms of stability and binding properties by circular dichroism and bio-layer interferometry techniques and tested in vitro on Nodal-positive cancer cells.
Collapse
Affiliation(s)
- Jwala P. Sivaccumar
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino, 111, 80131 Naples, Italy (E.I.)
| | - Emanuela Iaccarino
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino, 111, 80131 Naples, Italy (E.I.)
| | - Angela Oliver
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino, 111, 80131 Naples, Italy (E.I.)
- Università degli Studi della Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | | | | | - Antonio Leonardi
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, via Pansini 5, 80131 Naples, Italy
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino, 111, 80131 Naples, Italy (E.I.)
| | - Annamaria Sandomenico
- Institute of Biostructures and Bioimaging, CNR, Via P. Castellino, 111, 80131 Naples, Italy (E.I.)
| |
Collapse
|
5
|
Untiveros G, Dezi L, Gillette M, Sidor J, Strizzi L. Normal Skin Cells Increase Aggressiveness of Cutaneous Melanoma by Promoting Epithelial-to-Mesenchymal Transition via Nodal and Wnt Activity. Int J Mol Sci 2021; 22:11719. [PMID: 34769150 PMCID: PMC8583838 DOI: 10.3390/ijms222111719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023] Open
Abstract
Melanoma is a lethal form of skin cancer triggered by genetic and environmental factors. Excision of early-stage, poorly aggressive melanoma often leads to a successful outcome; however, left undiagnosed these lesions can progress to metastatic disease. This research investigates whether the exposure of poorly aggressive melanoma to certain normal skin cells can explain how non-metastatic melanoma becomes more aggressive while still confined to the skin. To this end, we used a serial co-culture approach to sequentially expose cells from two different, poorly aggressive human melanoma cell lines against normal cells of the skin beginning with normal melanocytes, then epidermal keratinocytes, and finally dermal fibroblasts. Protein extraction of melanoma cells occurred at each step of the co-culture sequence for western blot (WB) analysis. In addition, morphological and functional changes were assessed to detect differences between the serially co-cultured melanoma cells and non-co-cultured cells. Results show that the co-cultured melanoma cells assumed a more mesenchymal morphology and displayed a significant increase in proliferation and invasiveness compared to control or reference cells. WB analysis of protein from the co-cultured melanoma cells showed increased expression of Snail and decreased levels of E-cadherin suggesting that epithelial-to-mesenchymal transition (EMT) is occurring in these co-cultured cells. Additional WB analysis showed increased levels of Nodal protein and signaling and signs of increased Wnt activity in the co-cultured melanoma cells compared to reference cells. These data suggest that interaction between poorly aggressive melanoma cells with normal cells of the skin may regulate the transition from localized, poorly aggressive melanoma to invasive, metastatic disease via Nodal and/or Wnt induced EMT.
Collapse
Affiliation(s)
- Gustavo Untiveros
- Department of Pathology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Lindsay Dezi
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA;
| | - Megan Gillette
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (M.G.); (J.S.)
| | - Julia Sidor
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA; (M.G.); (J.S.)
| | - Luigi Strizzi
- Department of Pathology, College of Graduate Studies, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA
| |
Collapse
|
6
|
RSV Promotes Epithelial Neuroendocrine Phenotype Differentiation through NODAL Signaling Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9956078. [PMID: 34541002 PMCID: PMC8445725 DOI: 10.1155/2021/9956078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/16/2021] [Indexed: 01/04/2023]
Abstract
Background Respiratory syncytial virus (RSV) infects infants and children, predisposing them to development of asthma during adulthood. Epithelial neuroendocrine phenotypes may be associated with development of asthma. This study hopes to ascertain if RSV infection promotes epithelial neuroendocrine phenotypes through the NODAL signaling pathway. Methods The GSE6802 data set was obtained from the GEO database, and the differential genes were analyzed using the R language. An in vitro model was constructed with RSV infected human respiratory epithelial cells, and then real-time qPCR and immunofluorescence were used to detect the expression of different epithelial biomarkers and airway neuropeptides. The acute and chronic infection model of RSV infection was established by intranasal injection of RSV into guinea pigs. Immunohistochemistry and Western blot were used to detect the expression of pulmonary neuroendocrine cells markers ENO2 and neuropeptides. Results The expression levels of ENO2, SP, CGRP, and NODAL/ACTRII were significantly higher in the RSV infection group than those of the control group, which were abrogated by siRNA-NODAL. In vivo, we found that the expression levels of ENO2, SP, and CGRP were significantly higher than that of the control group. Conclusion RSV promotes epithelial neuroendocrine phenotypes through the NODAL signaling pathway.
Collapse
|
7
|
Wang X, Liu S, Cao H, Li X, Rong Y, Liu G, Du H, Shen H. Increasing Embryonic Morphogen Nodal Expression Suggests Malignant Transformation in Colorectal Lesions and as a Potential Marker for CMS4 Subtype of Colorectal Cancer. Pathol Oncol Res 2021; 27:587029. [PMID: 34257534 PMCID: PMC8262187 DOI: 10.3389/pore.2021.587029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/22/2021] [Indexed: 12/02/2022]
Abstract
Nodal, an embryonic morphogen in TGF-β family, is related with tumorigenicity and progression in various tumors including colorectal cancer (CRC). However, the difference of Nodal expression between CRC and colorectal polyps has not yet been investigated. Besides, whether Nodal can be used as a marker for consensus molecular subtype classification-4 (CMS4) of CRC is also worth studying. We analyzed Nodal expression in patients of CRC (161), high-grade intraepithelial neoplasia (HGIN, 28) and five types of colorectal polyps (116). The Nodal expression difference among groups and the association between Nodal expression and clinicopathological features were analyzed. Two categories logistic regression model was used to predict the odds ratio (OR) of risk factors for high tumor-stroma percentage (TSP), and ROC curve was used to assess the diagnostic value of Nodal in predicting high TSP in CRC. We found that Nodal expression was significantly elevated in CRC and HGIN (p < 0.0001). The increased expression of Nodal was related with high TSP, mismatch repair-proficient (pMMR) status, lymph node metastasis and advanced AJCC stage (p < 0.05). Besides, Nodal expression was the only risk factor for high TSP (OR = 6.94; p < 0.001), and ROC curve demonstrated that Nodal expression was able to efficiently distinguish high and low TSP. In conclusion, different expression of Nodal between CRC/HGIN and benign lesions is suggestive of a promoting role for Nodal in colorectal tumor progression. Besides, Nodal might also be used as a potential marker for CMS4 subtype of CRC.
Collapse
Affiliation(s)
- Xiaopai Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Pathology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Shousheng Liu
- Department of General Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huijiao Cao
- Department of General Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiubo Li
- Department of Pathology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuming Rong
- Department of General Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guorong Liu
- Department of Pathology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hong Du
- Department of Pathology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hong Shen
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Xu X, Zhou X, Gao C, Cao L, Zhang Y, Hu X, Cui Y. Nodal promotes the malignancy of non-small cell lung cancer (NSCLC) cells via activation of NF-κB/IL-6 signals. Biol Chem 2020; 400:777-785. [PMID: 30699065 DOI: 10.1515/hsz-2018-0392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/16/2019] [Indexed: 01/09/2023]
Abstract
Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer deaths worldwide. Understanding the mechanisms responsible for the malignancy of NSCLC cells is important for therapy and drug development. Nodal, an important embryonic morphogen, has been reported to modulate tumorigenesis. We found that Nodal can trigger the proliferation of NSCLC cells and decrease the sensitivity to doxorubicin (Dox) and cisplatin (CDDP) treatment. Targeted inhibition of Nodal can suppress the proliferation of NSCLC cells. Among the measured cytokines, Nodal can increase the expression of interleukin-6 (IL-6) and vascular endothelial growth factor A (VEGFA) in NSCLC cells. Inhibition of IL-6, while not VEGFA, attenuated Nodal induced cell proliferation, suggesting the essential roles of IL-6 in Nodal induced malignancy of NSCLC cells. Nodal can trigger the phosphorylation, nuclear translocation and transcriptional activities of p65, the key signal transducer of NF-κB. This was due to the fact that Nodal can increase the phosphorylation of IKKβ/IκBα. The inhibitor of IKKβ abolished Nodal induced activation of p65 and expression of IL-6. Collectively, we found that Nodal can increase the proliferation and decrease chemosensitivity of NSCLC cells via regulation of NF-κB/IL-6 signals. It indicated that Nodal might be a potential therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Xiaoyun Zhou
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Chao Gao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Lei Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Ye Zhang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Xue Hu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| | - Yushang Cui
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Shuaifuyuan No. 1, Dongcheng District, Beijing 100730, China
| |
Collapse
|
9
|
Pang T, Yin X, Luo T, Lu Z, Nie M, Yin K, Xue X. Cancer‐associated fibroblasts promote malignancy of gastric cancer cells via Nodal signalling. Cell Biochem Funct 2019; 38:4-11. [PMID: 31733068 DOI: 10.1002/cbf.3446] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/03/2019] [Accepted: 07/29/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Tao Pang
- Department of Gastrointestinal SurgeryChanghai Hospital Shanghai China
| | - Xiaoyi Yin
- Department of Gastrointestinal SurgeryChanghai Hospital Shanghai China
| | - Tianhang Luo
- Department of Gastrointestinal SurgeryChanghai Hospital Shanghai China
| | - Zhengmao Lu
- Department of Gastrointestinal SurgeryChanghai Hospital Shanghai China
| | - Mingming Nie
- Department of Gastrointestinal SurgeryChanghai Hospital Shanghai China
| | - Kai Yin
- Department of Gastrointestinal SurgeryChanghai Hospital Shanghai China
| | - Xuchao Xue
- Department of Gastrointestinal SurgeryChanghai Hospital Shanghai China
| |
Collapse
|
10
|
Zhang X, Zhang J, Zhou H, Fan G, Li Q. Molecular Mechanisms and Anticancer Therapeutic Strategies in Vasculogenic Mimicry. J Cancer 2019; 10:6327-6340. [PMID: 31772665 PMCID: PMC6856738 DOI: 10.7150/jca.34171] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022] Open
Abstract
Vasculogenic mimicry (VM) is a vascular formation mechanism used by aggressive tumor cells. VM provides an alternative pathway for adequate blood perfusion and challenges the traditional angiogenesis mechanism that depends only on endothelial cells (ECs), as VM-forming tumor cells express a mixed endothelial/tumor phenotype. VM is closely correlated with tumor invasion, migration, and progression. Hence, anticancer therapeutic strategies targeting VM biogenesis are essential. It is widely acknowledged that the VM formation mechanism involves multiple pathways. The purpose of this review is to describe the potential molecular mechanisms related to different pathways and discuss the involvement of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in VM formation. Moreover, we discuss the significance of VM in clinical practice and present new anticancer therapeutic strategies that target VM.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, P.R. China
| | - Jigang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, P.R. China
| | - Heming Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, P.R. China
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, P.R. China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, Shanghai, 200080, P.R. China
| |
Collapse
|
11
|
Asnaghi L, White DT, Yoon L, Price A, Lee GY, Sahoo A, Mumm JS, Eberhart CG. Downregulation of Nodal inhibits metastatic progression in retinoblastoma. Acta Neuropathol Commun 2019; 7:137. [PMID: 31451106 PMCID: PMC6709548 DOI: 10.1186/s40478-019-0785-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Retinoblastoma is the most common intraocular malignancy in children. We previously found that the ACVR1C/SMAD2 pathway is significantly upregulated in invasive retinoblastoma samples from patients. Here we studied the role of an ACVR1C ligand, Nodal, in regulating growth and metastatic dissemination in retinoblastoma. Inhibition of Nodal using multiple short hairpin (shRNAs) in WERI Rb1 and Y79 retinoblastoma cell cultures reduced growth by more than 90%, as determined by CCK-8 growth assay. Proliferation was also significantly inhibited, as found by Ki67 assay. These effects were paralleled by inhibition in the phosphorylation of the downstream effector SMAD2, as well as induction of apoptosis, as we observed more than three-fold increase in the percentage of cells positive for cleaved-caspase-3 or expressing cleaved-PARP1. Importantly, we found that downregulation of Nodal potently suppressed invasion in vitro, by 50 to 80%, as determined by transwell invasion assay (p = 0.02). Using an orthotopic model of retinoblastoma in zebrafish, we found 34% reduction in the ability of the cells to disseminate outside the eye, when Nodal was knocked down by shRNA (p = 0.0003). These data suggest that Nodal plays an important role in promoting growth, proliferation and invasion in retinoblastoma, and can be considered a new therapeutic target for both primary tumor growth and metastatic progression.
Collapse
|
12
|
Sandomenico A, Ruvo M. Targeting Nodal and Cripto-1: Perspectives Inside Dual Potential Theranostic Cancer Biomarkers. Curr Med Chem 2019; 26:1994-2050. [PMID: 30207211 DOI: 10.2174/0929867325666180912104707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Elucidating the mechanisms of recurrence of embryonic signaling pathways in tumorigenesis has led to the discovery of onco-fetal players which have physiological roles during normal development but result aberrantly re-activated in tumors. In this context, Nodal and Cripto-1 are recognized as onco-developmental factors, which are absent in normal tissues but are overexpressed in several solid tumors where they can serve as theranostic agents. OBJECTIVE To collect, review and discuss the most relevant papers related to the involvement of Nodal and Cripto-1 in the development, progression, recurrence and metastasis of several tumors where they are over-expressed, with a particular attention to their occurrence on the surface of the corresponding sub-populations of cancer stem cells (CSC). RESULTS We have gathered, rationalized and discussed the most interesting findings extracted from some 370 papers related to the involvement of Cripto-1 and Nodal in all tumor types where they have been detected. Data demonstrate the clear connection between Nodal and Cripto-1 presence and their multiple oncogenic activities across different tumors. We have also reviewed and highlighted the potential of targeting Nodal, Cripto-1 and the complexes that they form on the surface of tumor cells, especially of CSC, as an innovative approach to detect and suppress tumors with molecules that block one or more mechanisms that they regulate. CONCLUSION Overall, Nodal and Cripto-1 represent two innovative and effective biomarkers for developing potential theranostic anti-tumor agents that target normal as well as CSC subpopulations and overcome both pharmacological resistance and tumor relapse.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| |
Collapse
|
13
|
Asnaghi L, White DT, Key N, Choi J, Mahale A, Alkatan H, Edward DP, Elkhamary SM, Al-Mesfer S, Maktabi A, Hurtado CG, Lee GY, Carcaboso AM, Mumm JS, Safieh LA, Eberhart CG. ACVR1C/SMAD2 signaling promotes invasion and growth in retinoblastoma. Oncogene 2018; 38:2056-2075. [PMID: 30401983 PMCID: PMC6430693 DOI: 10.1038/s41388-018-0543-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022]
Abstract
Retinoblastoma is the most common intraocular cancer in children. While the primary tumor can often be treated by local or systemic chemotherapy, metastatic dissemination is generally resistant to therapy and remains a leading cause of pediatric cancer death in much of the world. In order to identify new therapeutic targets in aggressive tumors, we sequenced RNA transcripts in five snap frozen retinoblastomas which invaded the optic nerve and five which did not. A three-fold increase was noted in mRNA levels of ACVR1C/ALK7, a type I receptor of the TGF-β family, in invasive retinoblastomas, while downregulation of DACT2 and LEFTY2, negative modulators of the ACVR1C signaling, was observed in most invasive tumors. A two- to three-fold increase in ACVR1C mRNA was also found in invasive WERI Rb1 and Y79 cells as compared to non-invasive cells in vitro. Transcripts of ACVR1C receptor and its ligands (Nodal, Activin A/B, and GDF3) were expressed in six retinoblastoma lines, and evidence of downstream SMAD2 signaling was present in all these lines. Pharmacological inhibition of ACVR1C signaling using SB505124, or genetic downregulation of the receptor using shRNA potently suppressed invasion, growth, survival, and reduced the protein levels of the mesenchymal markers ZEB1 and Snail. The inhibitory effects on invasion, growth, and proliferation were recapitulated by knocking down SMAD2, but not SMAD3. Finally, in an orthotopic zebrafish model of retinoblastoma, a 55% decrease in tumor spread was noted (p=0.0026) when larvae were treated with 3 μM of SB505124, as compared to DMSO. Similarly, knockdown of ACVR1C in injected tumor cells using shRNA also resulted in a 54% reduction in tumor dissemination in the zebrafish eye as compared to scrambled shRNA control (p=0.0005). Our data support a role for the ACVR1C/SMAD2 pathway in promoting invasion and growth of retinoblastoma.
Collapse
Affiliation(s)
- Laura Asnaghi
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - David T White
- Department of Ophthalmology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Nolan Key
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Joshua Choi
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Alka Mahale
- King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Hind Alkatan
- King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia.,Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Deepak P Edward
- Department of Ophthalmology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.,King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia.,University of Illinois Eye and Ear Infirmary, Chicago, IL, USA
| | - Sahar M Elkhamary
- King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia.,Department of Diagnostic Radiology, Mansoura Faculty of Medicine, Mansoura, Egypt
| | | | - Azza Maktabi
- King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Christopher G Hurtado
- Department of Ophthalmology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Grace Y Lee
- Department of Ophthalmology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | | | - Jeff S Mumm
- Department of Ophthalmology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | | | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA. .,Department of Ophthalmology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA. .,Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Exploring major signaling cascades in melanomagenesis: a rationale route for targetted skin cancer therapy. Biosci Rep 2018; 38:BSR20180511. [PMID: 30166456 PMCID: PMC6167501 DOI: 10.1042/bsr20180511] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/14/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
Although most melanoma cases may be treated by surgical intervention upon early diagnosis, a significant portion of patients can still be refractory, presenting low survival rates within 5 years after the discovery of the illness. As a hallmark, melanomas are highly prone to evolve into metastatic sites. Moreover, melanoma tumors are highly resistant to most available drug therapies and their incidence have increased over the years, therefore leading to public health concerns about the development of novel therapies. Therefore, researches are getting deeper in unveiling the mechanisms by which melanoma initiation can be triggered and sustained. In this context, important progress has been achieved regarding the roles and the impact of cellular signaling pathways in melanoma. This knowledge has provided tools for the development of therapies based on the intervention of signal(s) promoted by these cascades. In this review, we summarize the importance of major signaling pathways (mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)-Akt, Wnt, nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB), Janus kinase (JAK)-signal transducer and activator of transcription (STAT), transforming growth factor β (TGF-β) and Notch) in skin homeostasis and melanoma progression. Available and developing melanoma therapies interfering with these signaling cascades are further discussed.
Collapse
|
15
|
Kalyan A, Carneiro BA, Chandra S, Kaplan J, Chae YK, Matsangou M, Hendrix MJC, Giles F. Nodal Signaling as a Developmental Therapeutics Target in Oncology. Mol Cancer Ther 2018; 16:787-792. [PMID: 28468864 DOI: 10.1158/1535-7163.mct-16-0215] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 11/22/2016] [Accepted: 12/05/2016] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment is a vital feature of oncogenesis and tumor progression. There are several parallels between cancer cells and early developmental stem cells, including their plasticity and signaling mechanisms. In early fetal development, Nodal is expressed for endodermal and mesodermal differentiation. This expression has been shown reemerge in the setting of epithelial cancers, such as breast and melanoma. High Nodal expression correlates to an aggressive tumor grade in these malignancies. Nodal signal begins with its interaction with its coreceptor, Cripto-1, leading to activation of Smad2/Smad3 and ultimately downstream transcription and translation. Lefty is the natural inhibitor of Nodal and controls Nodal signaling during fetal development. However, cancer cells lack the presence of Lefty, thus leading to uncontrolled tumor growth. Given this understanding, inhibition of the Nodal pathway offers a new novel therapeutic target in oncology. Mol Cancer Ther; 16(5); 787-92. ©2017 AACR.
Collapse
Affiliation(s)
- Aparna Kalyan
- Developmental Therapeutics Program, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Olson Pavilion, Chicago, Illinois. .,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Benedito A Carneiro
- Developmental Therapeutics Program, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Olson Pavilion, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Sunandana Chandra
- Developmental Therapeutics Program, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Olson Pavilion, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Jason Kaplan
- Developmental Therapeutics Program, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Olson Pavilion, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Young Kwang Chae
- Developmental Therapeutics Program, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Olson Pavilion, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Maria Matsangou
- Developmental Therapeutics Program, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Olson Pavilion, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Mary J C Hendrix
- Developmental Therapeutics Program, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Olson Pavilion, Chicago, Illinois.,Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Anne and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Francis Giles
- Developmental Therapeutics Program, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Olson Pavilion, Chicago, Illinois.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| |
Collapse
|
16
|
Jiang Y, Li H, Wang Y, Tian T, He Y, Jin Y, Han C, Jin X, Zhang F, Morii E. ALDH enzyme activity is regulated by Nodal and histamine in the A549 cell line. Oncol Lett 2017; 14:6955-6961. [PMID: 29181106 DOI: 10.3892/ol.2017.7057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 06/27/2017] [Indexed: 01/11/2023] Open
Abstract
The present study aimed to examine whether the enzyme activity of aldehyde dehydrogenase (ALDH) was regulated by Nodal and histamine in the human alveolar adenocarcinoma A549 cell line. The regulated enzyme activity of ALDH was analyzed by flow cytometry in the A549 cell line. ALDH1 and Nodal expression was investigated by immunohistochemistry in28 cases of lung mixed adenocarcinoma. The enzyme activity of ALDH was upregulated by histamine and agonists of histamine H1 receptor (H1R) and histamine H2 receptor (H2R). ALDH activity was also downregulated by recombinant human Nodal and antagonists of H1R and H2R in the A549 cell line. In addition, expression of Nodal and ALDH1 were inversely correlated in lung mixed adenocarcinoma. ALDH enzyme activity was regulated by Nodal and histamine in lung adenocarcinoma.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Hui Li
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yi Wang
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Tian Tian
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yan He
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yinji Jin
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Changsong Han
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiaoming Jin
- Department of Pathology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Fengmin Zhang
- Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Calvanese L, Focà A, Sandomenico A, Focà G, Caporale A, Doti N, Iaccarino E, Leonardi A, D'Auria G, Ruvo M, Falcigno L. Structural insights into the interaction of a monoclonal antibody and Nodal peptides by STD-NMR spectroscopy. Bioorg Med Chem 2017; 25:6589-6596. [PMID: 29113739 DOI: 10.1016/j.bmc.2017.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/05/2017] [Accepted: 10/26/2017] [Indexed: 12/31/2022]
Abstract
Nodal is a growth factor expressed during early embryonic development, but reactivated in several advanced-stage cancers. Targeting of Nodal signaling, which occurs via the binding to Cripto-1 co-receptor, results in inhibition of cell aggressiveness and reduced tumor growth. The Nodal binding region to Cripto-1 was identified and targeted with a high affinity monoclonal antibody (3D1). By STD-NMR technique, we investigated the interaction of Nodal fragments with 3D1 with the aim to elucidate at atomic level the interaction surface. Data indicate with high accuracy the antibody-antigen contact atoms and confirm the information previously obtained by immune-enzymatic methods. Main residues contacted by 3D1 are P46, V47, E49 and E50, which belong to the Nodal loop involved in the interaction with the co-receptor.
Collapse
Affiliation(s)
- Luisa Calvanese
- CIRPeB, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Annalia Focà
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Annamaria Sandomenico
- CIRPeB, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy; Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Giuseppina Focà
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Andrea Caporale
- CIRPeB, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Emanuela Iaccarino
- DISTABIF, Università degli Studi della Campania "Lugi Vanvitelli", via Vivaldi, 43, 80100 Caserta, Italy
| | - Antonio Leonardi
- Dept. Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, Naples, Italy
| | - Gabriella D'Auria
- CIRPeB, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy; Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, via Mezzocannone, 16, 80134 Napoli, Italy; Dept. of Pharmacy, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy
| | - Menotti Ruvo
- CIRPeB, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy; Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, via Mezzocannone, 16, 80134 Napoli, Italy.
| | - Lucia Falcigno
- CIRPeB, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy; Institute of Biostructures and Bioimaging, National Research Council, IBB-CNR, via Mezzocannone, 16, 80134 Napoli, Italy; Dept. of Pharmacy, University of Naples Federico II, via Mezzocannone, 16, 80134 Napoli, Italy.
| |
Collapse
|
18
|
Margaryan NV, Seftor EA, Seftor RE, Hendrix MJ. Targeting the Stem Cell Properties of Adult Breast Cancer Cells: Using Combinatorial Strategies to Overcome Drug Resistance. CURRENT MOLECULAR BIOLOGY REPORTS 2017; 3:159-164. [PMID: 29152453 PMCID: PMC5687579 DOI: 10.1007/s40610-017-0067-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Cancer is a major public health problem worldwide. In aggressive cancers, which are heterogeneous in nature, there exists a paucity of targetable molecules that can be used to predict outcome and response to therapy in patients, especially those in the high risk category with a propensity to relapse following chemotherapy. This review addresses the challenges pertinent to treating aggressive cancer cells with inherent stem cell properties, with a special focus on triple-negative breast cancer (TNBC). RECENT FINDINGS Plasticity underlies the cancer stem cell (CSC) phenotype in aggressive cancers like TNBC. Progenitors and CSCs implement similar signaling pathways to sustain growth, and the convergence of embryonic and tumorigenic signaling pathways has led to the discovery of novel oncofetal targets, rigorously regulated during normal development, but aberrantly reactivated in aggressive forms of cancer. SUMMARY Translational studies have shown that Nodal, an embryonic morphogen, is reactivated in aggressive cancers, but not in normal tissues, and underlies tumor growth, invasion, metastasis and drug resistance. Front-line therapies do not inhibit Nodal, but when a combinatorial approach is used with an agent such as doxorubicin followed by anti-Nodal antibody therapy, significant decreases in cell growth and viability occur. These findings are of special interest in the development of new therapeutic interventions that target the stem cell properties of cancer cells to overcome drug resistance and metastasis.
Collapse
Affiliation(s)
- Naira V. Margaryan
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
- Cancer Institute, West Virginia University, Morgantown, WV 26506 USA
- Department of Biology, Shepherd University, Shepherdstown, WV 25443 USA
| | - Elisabeth A. Seftor
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
- Cancer Institute, West Virginia University, Morgantown, WV 26506 USA
- Department of Biology, Shepherd University, Shepherdstown, WV 25443 USA
| | - Richard E.B. Seftor
- Department of Biochemistry, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
- Cancer Institute, West Virginia University, Morgantown, WV 26506 USA
- Department of Biology, Shepherd University, Shepherdstown, WV 25443 USA
| | - Mary J.C. Hendrix
- Department of Internal Medicine, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
- Cancer Institute, West Virginia University, Morgantown, WV 26506 USA
- Department of Biology, Shepherd University, Shepherdstown, WV 25443 USA
| |
Collapse
|
19
|
Bodenstine TM, Chandler GS, Reed DW, Margaryan NV, Gilgur A, Atkinson J, Ahmed N, Hyser M, Seftor EA, Strizzi L, Hendrix MJC. Nodal expression in triple-negative breast cancer: Cellular effects of its inhibition following doxorubicin treatment. Cell Cycle 2017; 15:1295-302. [PMID: 27007464 DOI: 10.1080/15384101.2016.1160981] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Triple-negative breast cancer (TNBC) represents an aggressive cancer subtype characterized by the lack of expression of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). The independence of TNBC from these growth promoting factors eliminates the efficacy of therapies which specifically target them, and limits TNBC patients to traditional systemic neo/adjuvant chemotherapy. To better understand the growth advantage of TNBC - in the absence of ER, PR and HER2, we focused on the embryonic morphogen Nodal (associated with the cancer stem cell phenotype), which is re-expressed in aggressive breast cancers. Most notably, our previous data demonstrated that inhibition of Nodal signaling in breast cancer cells reduces their tumorigenic capacity. Furthermore, inhibiting Nodal in other cancers has resulted in improved effects of chemotherapy, although the mechanisms for this remain unknown. Thus, we hypothesized that targeting Nodal in TNBC cells in combination with conventional chemotherapy may improve efficacy and represent a potential new strategy. Our preliminary data demonstrate that Nodal is highly expressed in TNBC when compared to invasive hormone receptor positive samples. Treatment of Nodal expressing TNBC cell lines with a neutralizing anti-Nodal antibody reduces the viability of cells that had previously survived treatment with the anthracycline doxorubicin. We show that inhibiting Nodal may alter response mechanisms employed by cancer cells undergoing DNA damage. These data suggest that development of therapies which target Nodal in TNBC may lead to additional treatment options in conjunction with chemotherapy regimens - by altering signaling pathways critical to cellular survival.
Collapse
Affiliation(s)
- Thomas M Bodenstine
- a Cancer Biology and Epigenomics Program at the Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago , Chicago , IL , USA
| | - Grace S Chandler
- a Cancer Biology and Epigenomics Program at the Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago , Chicago , IL , USA
| | - David W Reed
- a Cancer Biology and Epigenomics Program at the Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago , Chicago , IL , USA
| | - Naira V Margaryan
- a Cancer Biology and Epigenomics Program at the Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago , Chicago , IL , USA
| | - Alina Gilgur
- a Cancer Biology and Epigenomics Program at the Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago , Chicago , IL , USA
| | | | - Nida Ahmed
- b Presence Saint Francis Hospital , Evanston , IL , USA
| | - Matthew Hyser
- b Presence Saint Francis Hospital , Evanston , IL , USA
| | - Elisabeth A Seftor
- a Cancer Biology and Epigenomics Program at the Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago , Chicago , IL , USA
| | - Luigi Strizzi
- a Cancer Biology and Epigenomics Program at the Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago , Chicago , IL , USA.,c Department of Pathology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Mary J C Hendrix
- a Cancer Biology and Epigenomics Program at the Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago , Chicago , IL , USA.,d Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| |
Collapse
|
20
|
Gong W, Sun B, Sun H, Zhao X, Zhang D, Liu T, Zhao N, Gu Q, Dong X, Liu F. Nodal signaling activates the Smad2/3 pathway to regulate stem cell-like properties in breast cancer cells. Am J Cancer Res 2017; 7:503-517. [PMID: 28401007 PMCID: PMC5385639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 06/07/2023] Open
Abstract
Nodal signaling plays several vital roles in the embryogenesis process. However, its reexpression in breast cancer is correlated with cancer progression, metastasis and poor prognosis. Recently, Nodal has also been reported to regulate self-renewal capacity in pancreatic cancer. This study aimed to explore the role of Nodal in breast cancer stem cells (BCSCs) and the underlying mechanisms. Therefore, the immunohistochemistry staining of Nodal in 135 human breast cancer cases was performed to analyzed the relationship of Nodal signaling, clinical outcomes and BCSC marker. And the results showed that high Nodal expression was positively correlated with poor prognosis and BCSC marker expression in breast cancer samples. We further assessed the effects of Nodal in regulating the BCSC properties in breast cancer cell lines and xenografts. Then, SB431542 was administered in vitro and in vivo to explore the function of the Smad2/3 pathway. And we demonstrated that Nodal signaling up-regulated the expression of ALDH1, CD44, CD133, Sox2, Oct4 and Nanog by activating the Smad2/3 pathway, thereby enhancing the tumorigenicity and sphere-forming ability of breast cancer cells. Furthermore, treatment with SB431542 could inhibit the properties of BCSCs in vitro and in vivo. In conclusion, these findings indicate that Nodal signaling may play a vital role in maintaining the BCSC phenotype in breast cancer and serve as a potential target to explore BCSC-specific therapies.
Collapse
Affiliation(s)
- Wenchen Gong
- Department of Pathology, Tianjin Medical UniversityTianjin 300070, PR China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical UniversityTianjin 300070, PR China
- Department of Pathology, Tianjin General Hospital, Tianjin Medical UniversityTianjin 300052, PR China
| | - Huizhi Sun
- Department of Pathology, Tianjin Medical UniversityTianjin 300070, PR China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical UniversityTianjin 300070, PR China
- Department of Pathology, Tianjin General Hospital, Tianjin Medical UniversityTianjin 300052, PR China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical UniversityTianjin 300070, PR China
- Department of Pathology, Tianjin General Hospital, Tianjin Medical UniversityTianjin 300052, PR China
| | - Tieju Liu
- Department of Pathology, Tianjin Medical UniversityTianjin 300070, PR China
- Department of Pathology, Tianjin General Hospital, Tianjin Medical UniversityTianjin 300052, PR China
| | - Nan Zhao
- Department of Pathology, Tianjin Medical UniversityTianjin 300070, PR China
- Department of Pathology, Tianjin General Hospital, Tianjin Medical UniversityTianjin 300052, PR China
| | - Qiang Gu
- Department of Pathology, Tianjin Medical UniversityTianjin 300070, PR China
- Department of Pathology, Tianjin General Hospital, Tianjin Medical UniversityTianjin 300052, PR China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical UniversityTianjin 300070, PR China
| | - Fang Liu
- Department of Pathology, Tianjin Medical UniversityTianjin 300070, PR China
| |
Collapse
|
21
|
Hendrix MJ, Kandela I, Mazar AP, Seftor EA, Seftor RE, Margaryan NV, Strizzi L, Murphy GF, Long GV, Scolyer RA. Targeting melanoma with front-line therapy does not abrogate Nodal-expressing tumor cells. J Transl Med 2017; 97:176-186. [PMID: 27775691 DOI: 10.1038/labinvest.2016.107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/24/2016] [Accepted: 09/06/2016] [Indexed: 01/12/2023] Open
Abstract
Metastatic melanoma is a highly aggressive skin cancer with a poor prognosis. It is the leading cause of skin cancer deaths with a median overall survival for advanced-stage metastatic disease of <6 months. Despite advances in the field with conventional and targeted therapies, the heterogeneity of melanoma poses the greatest ongoing challenge, ultimately leading to relapse and progression to a more drug-resistant tumor in most patients. Particularly noteworthy are recent findings, indicating that these therapies exert selective pressure on tumors resulting in the activation of pathways associated with cancer stem cells that are unresponsive to current therapy. Our previous studies have shown how Nodal, an embryonic morphogen of the transforming growth factor-beta superfamily, is one of these critical factors that is reactivated in aggressive melanoma and resistant to conventional chemotherapy, such as dacarbazine. In the current study, we sought to determine whether BRAF inhibitor (BRAFi) therapy targeted Nodal-expressing tumor cells in uniquely matched unresectable stage III and IV melanoma patient samples before and after therapy that preceded their eventual death due to disease. The results demonstrate that BRAFi treatment failed to affect Nodal levels in melanoma tissues. Accompanying experiments in soft agar and in nude mice showed the advantage of using combinatorial treatment with BRAFi plus anti-Nodal monoclonal antibody to suppress tumor growth and metastasis. These data provide a promising new approach using front-line therapy combined with targeting a cancer stem cell-associated molecule-producing a more efficacious response than monotherapy.
Collapse
Affiliation(s)
- Mary Jc Hendrix
- Department of Biology, Shepherd University, Shepherdstown, WV, USA.,Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Irawati Kandela
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Andrew P Mazar
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Elisabeth A Seftor
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Richard Eb Seftor
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Naira V Margaryan
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Robert C. Byrd Health Sciences Center, West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, USA
| | - Luigi Strizzi
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Pathology, Midwestern University, Downers Grove, IL, USA
| | - George F Murphy
- Department of Pathology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Georgina V Long
- Melanoma Institute Australia and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia and Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| |
Collapse
|
22
|
Hendrix MJC, Seftor EA, Seftor REB, Chao JT, Chien DS, Chu YW. Tumor cell vascular mimicry: Novel targeting opportunity in melanoma. Pharmacol Ther 2016; 159:83-92. [PMID: 26808163 PMCID: PMC4779708 DOI: 10.1016/j.pharmthera.2016.01.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In 1999, the American Journal of Pathology published an article, entitled "Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry" by Maniotis and colleagues, which ignited a spirited debate for several years and earned the journal's distinction of a "citation classic" (Maniotis et al., 1999). Tumor cell vasculogenic mimicry (VM), also known as vascular mimicry, describes the plasticity of aggressive cancer cells forming de novo vascular networks and is associated with the malignant phenotype and poor clinical outcome. The tumor cells capable of VM share the commonality of a stem cell-like, transendothelial phenotype, which may be induced by hypoxia. Since its introduction as a novel paradigm for melanoma tumor perfusion, many studies have contributed new findings illuminating the underlying molecular pathways supporting VM in a variety of tumors, including carcinomas, sarcomas, glioblastomas, astrocytomas, and melanomas. Of special significance is the lack of effectiveness of angiogenesis inhibitors on tumor cell VM, suggesting a selective resistance by this phenotype to conventional therapy. Facilitating the functional plasticity of tumor cell VM are key proteins associated with vascular, stem cell, extracellular matrix, and hypoxia-related signaling pathways--each deserving serious consideration as potential therapeutic targets and diagnostic indicators of the aggressive, metastatic phenotype. This review highlights seminal findings pertinent to VM, including the effects of a novel, small molecular compound, CVM-1118, currently under clinical development to target VM, and illuminates important molecular pathways involved in the suppression of this plastic, aggressive phenotype, using melanoma as a model.
Collapse
Affiliation(s)
- Mary J C Hendrix
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60614, United States; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States.
| | - Elisabeth A Seftor
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60614, United States
| | - Richard E B Seftor
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60614, United States; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | | | | | | |
Collapse
|
23
|
Biava PM. New Views in the Integrative Treatment of Oncologic Disease: Stem Cell Differentiation Stage Factors and Their Role in Tumor Cell Reprogramming. WORLD FUTURES 2016; 72:43-52. [DOI: 10.1080/02604027.2016.1143290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
24
|
Strizzi L, Sandomenico A, Margaryan NV, Focà A, Sanguigno L, Bodenstine TM, Chandler GS, Reed DW, Gilgur A, Seftor EA, Seftor RE, Khalkhali-Ellis Z, Leonardi A, Ruvo M, Hendrix MJ. Effects of a novel Nodal-targeting monoclonal antibody in melanoma. Oncotarget 2015; 6:34071-86. [PMID: 26460952 PMCID: PMC4741437 DOI: 10.18632/oncotarget.6049] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022] Open
Abstract
Nodal is highly expressed in various human malignancies, thus supporting the rationale for exploring Nodal as a therapeutic target. Here, we describe the effects of a novel monoclonal antibody (mAb), 3D1, raised against human Nodal. In vitro treatment of C8161 human melanoma cells with 3D1 mAb shows reductions in anchorage-independent growth and vasculogenic network formation. 3D1 treated cells also show decreases of Nodal and downstream signaling molecules, P-Smad2 and P-ERK and of P-H3 and CyclinB1, with an increase in p27. Similar effects were previously reported in human breast cancer cells where Nodal expression was generally down-regulated; following 3D1 mAb treatment, both Nodal and P-H3 levels are reduced. Noteworthy is the reduced growth of human melanoma xenografts in Nude mice treated with 3D1 mAb, where immunostaining of representative tumor sections show diminished P-Smad2 expression. Similar effects both in vitro and in vivo were observed in 3D1 treated A375SM melanoma cells harboring the active BRAF(V600E) mutation compared to treatments with IgG control or a BRAF inhibitor, dabrafenib. Finally, we describe a 3D1-based ELISA for the detection of Nodal in serum samples from cancer patients. These data suggest the potential of 3D1 mAb for selecting and targeting Nodal expressing cancers.
Collapse
Affiliation(s)
- Luigi Strizzi
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini del CNR and CIRPeB, Università Federico II di Napoli, Naples, Italy
| | - Naira V. Margaryan
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Annalia Focà
- Istituto di Biostrutture e Bioimmagini del CNR and CIRPeB, Università Federico II di Napoli, Naples, Italy
| | - Luca Sanguigno
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, Naples, Italy
| | - Thomas M. Bodenstine
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Grace S. Chandler
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - David W. Reed
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Alina Gilgur
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Elisabeth A. Seftor
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Richard E.B. Seftor
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zhila Khalkhali-Ellis
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II di Napoli, Naples, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini del CNR and CIRPeB, Università Federico II di Napoli, Naples, Italy
| | - Mary J.C. Hendrix
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
25
|
New Anti-Nodal Monoclonal Antibodies Targeting the Nodal Pre-Helix Loop Involved in Cripto-1 Binding. Int J Mol Sci 2015; 16:21342-62. [PMID: 26370966 PMCID: PMC4613256 DOI: 10.3390/ijms160921342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/21/2015] [Accepted: 08/27/2015] [Indexed: 12/25/2022] Open
Abstract
Nodal is a potent embryonic morphogen belonging to the TGF-β superfamily. Typically, it also binds to the ALK4/ActRIIB receptor complex in the presence of the co-receptor Cripto-1. Nodal expression is physiologically restricted to embryonic tissues and human embryonic stem cells, is absent in normal cells but re-emerges in several human cancers, including melanoma, breast, and colon cancer. Our aim was to obtain mAbs able to recognize Nodal on a major CBR (Cripto-Binding-Region) site and to block the Cripto-1-mediated signalling. To achieve this, antibodies were raised against hNodal(44-67) and mAbs generated by the hybridoma technology. We have selected one mAb, named 3D1, which strongly associates with full-length rhNodal (KD 1.4 nM) and recognizes the endogenous protein in a panel of human melanoma cell lines by western blot and FACS analyses. 3D1 inhibits the Nodal-Cripto-1 binding and blocks Smad2/3 phosphorylation. Data suggest that inhibition of the Nodal-Cripto-1 axis is a valid therapeutic approach against melanoma and 3D1 is a promising and interesting agent for blocking Nodal-Cripto mediated tumor development. These findings increase the interest for Nodal as both a diagnostic and prognostic marker and as a potential new target for therapeutic intervention.
Collapse
|
26
|
Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA. Nanoparticle Probes for the Detection of Cancer Biomarkers, Cells, and Tissues by Fluorescence. Chem Rev 2015; 115:10530-74. [PMID: 26313138 DOI: 10.1021/acs.chemrev.5b00321] [Citation(s) in RCA: 647] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Alyssa B Chinen
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chenxia M Guan
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jennifer R Ferrer
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Stacey N Barnaby
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timothy J Merkel
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemistry, ‡Department of Chemical Engineering, §Department of Interdepartmental Biological Sciences, and ∥International Institute for Nanotechnology, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
27
|
Hardy KM, Strizzi L, Margaryan NV, Gupta K, Murphy GF, Scolyer RA, Hendrix MJC. Targeting nodal in conjunction with dacarbazine induces synergistic anticancer effects in metastatic melanoma. Mol Cancer Res 2015; 13:670-80. [PMID: 25767211 DOI: 10.1158/1541-7786.mcr-14-0077] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Metastatic melanoma is a highly aggressive skin cancer with a poor prognosis. Despite a complete response in fewer than 5% of patients, the chemotherapeutic agent dacarbazine (DTIC) remains the reference drug after almost 40 years. More recently, FDA-approved drugs have shown promise but patient outcome remains modest, predominantly due to drug resistance. As such, combinatorial targeting has received increased attention, and will advance with the identification of new molecular targets. One attractive target for improving melanoma therapy is the growth factor Nodal, whose normal expression is largely restricted to embryonic development, but is reactivated in metastatic melanoma. In this study, we sought to determine how Nodal-positive human melanoma cells respond to DTIC treatment and to ascertain whether targeting Nodal in combination with DTIC would be more effective than monotherapy. A single treatment with DTIC inhibited cell growth but did not induce apoptosis. Rather than reducing Nodal expression, DTIC increased the size of the Nodal-positive subpopulation, an observation coincident with increased cellular invasion. Importantly, clinical tissue specimens from patients with melanomas refractory to DTIC therapy stained positive for Nodal expression, both in pre- and post-DTIC tumors, underscoring the value of targeting Nodal. In vitro, anti-Nodal antibodies alone had some adverse effects on proliferation and apoptosis, but combining DTIC treatment with anti-Nodal antibodies decreased cell growth and increased apoptosis synergistically, at concentrations incapable of producing meaningful effects as monotherapy. IMPLICATIONS Targeting Nodal in combination with DTIC therapy holds promise for the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Katharine M Hardy
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Luigi Strizzi
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Naira V Margaryan
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kanika Gupta
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois. Howard Hughes Medical Institute NU Bioscientist Program, Weinberg College of Arts and Sciences, Northwestern University, Evanston, Illinois
| | - George F Murphy
- Department of Pathology, Harvard Medical School, Brigham & Women's Hospital, Boston, Massachusetts
| | - Richard A Scolyer
- Melanoma Institute Australia; Sydney Medical School, The University of Sydney; and Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Mary J C Hendrix
- Program in Cancer Biology and Epigenomics, Stanley Manne Children's Research Institute at Ann and Robert H. Lurie Children's Hospital of Chicago, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
28
|
Lefty inhibits glioma growth by suppressing Nodal-activated Smad and ERK1/2 pathways. J Neurol Sci 2014; 347:137-42. [DOI: 10.1016/j.jns.2014.09.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 09/13/2014] [Accepted: 09/15/2014] [Indexed: 01/01/2023]
|
29
|
Khalkhali-Ellis Z, Kirschmann DA, Seftor EA, Gilgur A, Bodenstine TM, Hinck AP, Hendrix MJC. Divergence(s) in nodal signaling between aggressive melanoma and embryonic stem cells. Int J Cancer 2014; 136:E242-51. [PMID: 25204799 DOI: 10.1002/ijc.29198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 08/04/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022]
Abstract
The significant role of the embryonic morphogen Nodal in maintaining the pluripotency of embryonic stem cells is well documented. Interestingly, the recent discovery of Nodal's re-expression in several aggressive and metastatic cancers has highlighted its critical role in self renewal and maintenance of the stem cell-like characteristics of tumor cells, such as melanoma. However, the key TGFβ/Nodal signaling component(s) governing Nodal's effects in metastatic melanoma remain mostly unknown. By employing receptor profiling at the mRNA and protein level(s), we made the novel discovery that embryonic stem cells and metastatic melanoma cells share a similar repertoire of Type I serine/threonine kinase receptors, but diverge in their Type II receptor expression. Ligand:receptor crosslinking and native gel binding assays indicate that metastatic melanoma cells employ the heterodimeric TGFβ receptor I/TGFβ receptor II (TGFβRI/TGFβRII) for signal transduction, whereas embryonic stem cells use the Activin receptors I and II (ACTRI/ACTRII). This unexpected receptor usage by tumor cells was tested by: neutralizing antibody to block its function; and transfecting the dominant negative receptor to compete with the endogenous receptor for ligand binding. Furthermore, a direct biological role for TGFβRII was found to underlie vasculogenic mimicry (VM), an endothelial phenotype contributing to vascular perfusion and associated with the functional plasticity of aggressive melanoma. Collectively, these findings reveal the divergence in Nodal signaling between embryonic stem cells and metastatic melanoma that can impact new therapeutic strategies targeting the re-emergence of embryonic pathways.
Collapse
Affiliation(s)
- Zhila Khalkhali-Ellis
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | | | | | | | | |
Collapse
|
30
|
Kirsammer G, Strizzi L, Margaryan NV, Gilgur A, Hyser M, Atkinson J, Kirschmann DA, Seftor EA, Hendrix MJC. Nodal signaling promotes a tumorigenic phenotype in human breast cancer. Semin Cancer Biol 2014; 29:40-50. [PMID: 25073112 DOI: 10.1016/j.semcancer.2014.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/17/2014] [Indexed: 11/19/2022]
Abstract
The Ras-ERK pathway is deregulated in approximately a third of human cancers, particularly those of epithelial origin. In aggressive, triple-negative, basal-like breast cancers, most tumors display increased MEK and ERK phosphorylation and exhibit a gene expression profile characteristic of Kras or EGFR mutant tumors; however, Ras family genetic mutations are uncommon in triple-negative breast cancer and EGFR mutations account for only a subset of these tumors. Therefore, the upstream events that activate MAPK signaling and promote tumor aggression in triple-negative breast cancers remain poorly defined. We have previously shown that a secreted TGF-β family signaling ligand, Nodal, is expressed in breast cancer in correlation with disease progression. Here we highlight key findings demonstrating that Nodal is required in aggressive human breast cancer cells to activate ERK signaling and downstream tumorigenic phenotypes both in vitro and in vivo. Experimental knockdown of Nodal signaling downregulates ERK activity, resulting in loss of c-myc, upregulation of p27, G1 cell cycle arrest, increased apoptosis and decreased tumorigenicity. The data suggest that ERK activation by Nodal signaling regulates c-myc and p27 proteins post-translationally and that this cascade is essential for aggressive breast tumor behavior in vivo. As the MAPK pathway is an important target for treating triple-negative breast cancers, upstream Nodal signaling may represent a promising target for breast cancer diagnosis and combined therapies aimed at blocking ERK pathway activation.
Collapse
Affiliation(s)
- Gina Kirsammer
- Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, 2430 N Halsted St., Chicago, IL 60614, United States
| | - Luigi Strizzi
- Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, 2430 N Halsted St., Chicago, IL 60614, United States; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Naira V Margaryan
- Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, 2430 N Halsted St., Chicago, IL 60614, United States
| | - Alina Gilgur
- Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, 2430 N Halsted St., Chicago, IL 60614, United States
| | - Matthew Hyser
- Presence Saint Francis Hospital, 355 Ridge Ave, Evanston, IL 60202, United States
| | - Janis Atkinson
- Presence Saint Francis Hospital, 355 Ridge Ave, Evanston, IL 60202, United States
| | - Dawn A Kirschmann
- Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, 2430 N Halsted St., Chicago, IL 60614, United States
| | - Elisabeth A Seftor
- Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, 2430 N Halsted St., Chicago, IL 60614, United States
| | - Mary J C Hendrix
- Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, 2430 N Halsted St., Chicago, IL 60614, United States; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States.
| |
Collapse
|
31
|
Chung HJ, Mahalingam M. Angiogenesis, vasculogenic mimicry and vascular invasion in cutaneous malignant melanoma – implications for therapeutic strategies and targeted therapies. Expert Rev Anticancer Ther 2014; 14:621-39. [DOI: 10.1586/14737140.2014.883281] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Seftor EA, Seftor REB, Weldon D, Kirsammer GT, Margaryan NV, Gilgur A, Hendrix MJC. Melanoma tumor cell heterogeneity: a molecular approach to study subpopulations expressing the embryonic morphogen nodal. Semin Oncol 2014; 41:259-266. [PMID: 24787297 DOI: 10.1053/j.seminoncol.2014.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
As the frequency of melanoma increases, current treatment strategies are struggling to significantly impact patient survival. One of the critical issues in designing efficient therapies is understanding the composition of heterogeneous melanoma tumors in order to target cancer stem cells (CSCs) and drug-resistant subpopulations. In this review, we summarize recent findings pertinent to the reemergence of the embryonic Nodal signaling pathway in melanoma and its significance as a prognostic biomarker and therapeutic target. In addition, we offer a novel molecular approach to studying the functional relevance of Nodal-expressing subpopulations and their CSC phenotype.
Collapse
Affiliation(s)
- Elisabeth A Seftor
- Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine
| | - Richard E B Seftor
- Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine
| | | | - Gina T Kirsammer
- Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine
| | - Naira V Margaryan
- Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine
| | - Alina Gilgur
- Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine
| | - Mary J C Hendrix
- Cancer Biology and Epigenomics Program, Ann and Robert H. Lurie Children's Hospital of Chicago Research Center, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine
| |
Collapse
|
33
|
Sun J, Liu SZ, Lin Y, Cao XP, Liu JM. TGF-β promotes glioma cell growth via activating Nodal expression through Smad and ERK1/2 pathways. Biochem Biophys Res Commun 2014; 443:1066-72. [DOI: 10.1016/j.bbrc.2013.12.097] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 12/18/2013] [Indexed: 12/29/2022]
|
34
|
Age-Dependent Association between Protein Expression of the Embryonic Stem Cell Marker Cripto-1 and Survival of Glioblastoma Patients. Transl Oncol 2013; 6:732-41. [PMID: 24466376 DOI: 10.1593/tlo.13427] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/13/2013] [Accepted: 08/18/2013] [Indexed: 12/26/2022] Open
Abstract
Exploring the re-emergence of embryonic signaling pathways may reveal important information for cancer biology. Nodal is a transforming growth factor-β (TGF-β)-related morphogen that plays a critical role during embryonic development. Nodal signaling is regulated by the Cripto-1 co-receptor and another TGF-β member, Lefty. Although these molecules are poorly detected in differentiated tissues, they have been found in different human cancers. Poor prognosis of glioblastomas justifies the search for novel signaling pathways that can be exploited as potential therapeutic targets. Because our intracranial glioblastoma rat xenograft model has revealed importance of gene ontology categories related to development and differentiation, we hypothesized that increased activity of Nodal signaling could be found in glioblastomas. We examined the gene expressions of Nodal, Cripto-1, and Lefty in microarrays of invasive and angiogenic xenograft samples developed from four patients with glioblastoma. Protein expression was evaluated by immunohistochemistry in 199 primary glioblastomas, and expression levels were analyzed for detection of correlations with available clinical information. Gene expression of Nodal, Lefty, and Cripto-1 was detected in the glioblastoma xenografts. Most patient samples showed significant levels of Cripto-1 detected by immunohistochemistry, whereas only weak to moderate levels were detected for Nodal and Lefty. Most importantly, the higher Cripto-1 scores were associated with shorter survival in a subset of younger patients. These findings suggest for the first time that Cripto-1, an important molecule in developmental biology, may represent a novel prognostic marker and therapeutic target in categories of younger patients with glioblastoma.
Collapse
|
35
|
Wielscher M, Liou W, Pulverer W, Singer CF, Rappaport-Fuerhauser C, Kandioler D, Egger G, Weinhäusel A. Cytosine 5-Hydroxymethylation of the LZTS1 Gene Is Reduced in Breast Cancer. Transl Oncol 2013; 6:715-21. [PMID: 24466374 PMCID: PMC3890706 DOI: 10.1593/tlo.13523] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 02/07/2023] Open
Abstract
Change of DNA cytosine methylation (5mC) is an early event in the development of cancer, and the recent discovery of a 5-hydroxymethylated form (5hmC) of cytosine suggests a regulatory epigenetic role that might be different from 5-methylcytosine. Here, we aimed at elucidating the role of 5hmC in breast cancer. To interrogate the 5hmC levels of the leucine zipper, putative tumor suppressor 1 (LZTS1) gene in detail, we analyzed 75 primary breast cancer tissue samples from initial diagnosis and 12 normal breast tissue samples derived from healthy persons. Samples were subjected to 5hmC glucosyltransferase treatment followed by restriction digestion and segment-specific amplification of 11 polymerase chain reaction products. Nine of the 11 5'LZTS1 fragments showed significantly lower (fold change of 1.61-6.01, P < .05) 5hmC content in primary breast cancer tissue compared to normal breast tissue samples. No significant differences were observed for 5mC DNA methylation. Furthermore, both LZTS1 and TET1 mRNA expressions were significantly reduced in tumor samples (n = 75, P < .001, Student's t test), which correlated significantly with 5hmC levels in samples. 5hmC levels in breast cancer tissues were associated with unfavorable histopathologic parameters such as lymph node involvement (P < .05, Student's t test). A decrease of 5hmC levels of LZTS1, a classic tumor suppressor gene known to influence metastasis in breast cancer progression, is correlated to down-regulation of LZTS1 mRNA expression in breast cancer and might epigenetically enhance carcinogenesis. The study provides support for the novel hypothesis that suggests a strong influence of 5hmC on mRNA expression. Finally, one may also consider 5hmC as a new biomarker.
Collapse
Affiliation(s)
- Matthias Wielscher
- Molecular Diagnostics Unit, Health and Environment Department, Austrian Institute of Technology, Vienna, Austria
| | - Willy Liou
- Molecular Diagnostics Unit, Health and Environment Department, Austrian Institute of Technology, Vienna, Austria
| | - Walter Pulverer
- Molecular Diagnostics Unit, Health and Environment Department, Austrian Institute of Technology, Vienna, Austria
| | - Christian F Singer
- Department of Obstetrics and Gynecology and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | | | - Gerda Egger
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Andreas Weinhäusel
- Molecular Diagnostics Unit, Health and Environment Department, Austrian Institute of Technology, Vienna, Austria
| |
Collapse
|
36
|
Abstract
Much of the focus on the transforming growth factor-β (TGFβ) superfamily in cancer has revolved around the TGFβ ligands themselves. However, it is now becoming apparent that deregulated signalling by many of the other superfamily members also has crucial roles in both the development of tumours and metastasis. Furthermore, these signalling pathways are emerging as plausible therapeutic targets. Their roles in tumorigenesis frequently reflect their function in embryonic development or in adult tissue homeostasis, and their influence extends beyond the tumours themselves, to the tumour microenvironment and more widely to complications of cancer such as cachexia and bone loss.
Collapse
Affiliation(s)
- Lalage M Wakefield
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, Maryland 20892-4255, USA.
| | | |
Collapse
|
37
|
Nodal promotes invasive phenotypes via a mitogen-activated protein kinase-dependent pathway. Oncogene 2013; 33:461-73. [PMID: 23334323 PMCID: PMC5025281 DOI: 10.1038/onc.2012.608] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 10/20/2012] [Accepted: 11/12/2012] [Indexed: 12/17/2022]
Abstract
The progression of cancer from localized to invasive disease is requisite for metastasis, and is often characterized by epithelial-to-mesenchymal transition (EMT) and alterations in cellular adhesion and migration. Studies have shown that this transition is associated with an up-regulation of embryonic stem cell-associated genes, resulting in a dedifferentiated phenotype and poor patient prognosis. Nodal is an embryonic factor that plays a critical role in promoting early invasive events during development. Nodal is silenced as stem cells differentiate; however, it re-emerges in adult life during placentation and mammary gland development, and is aberrantly expressed in many cancers. Here, we show that Nodal over-expression, in poorly-invasive breast cancer and choriocarcinoma cells, causes increased invasion and migration in vitro. Furthermore, we show that Nodal over-expression in these epithelial cancer types induces an EMT-like event concomitant with the internalization of E-Cadherin. This ability of Nodal to promote cellular invasion and EMT-like phenomena is dependent upon the phosphorylation of ERK1/2. Since Nodal normally signals through SMADs, these findings lend insight into an alternative pathway that is hijacked by this protein in cancer. To evaluate the clinical implications of our results, we show that Nodal inhibition reduces liver tumor burden in a model of spontaneous breast cancer metastasis in vivo, and that Nodal loss-of-function in aggressive breast cancer lines results in a decrease in invasive phenotypes. Our results demonstrate that Nodal is involved in promoting invasion in multiple cellular contexts, and that Nodal inhibition may be useful as a therapeutic target for patients with progressive disease.
Collapse
|
38
|
Strizzi L, Hardy KM, Bodenstine TM, Hendrix MJC. Targeting the Stem Cell Plasticity of Tumor Cells. STEM CELLS HANDBOOK 2013:441-448. [DOI: 10.1007/978-1-4614-7696-2_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
39
|
Quail DF, Zhang G, Walsh LA, Siegers GM, Dieters-Castator DZ, Findlay SD, Broughton H, Putman DM, Hess DA, Postovit LM. Embryonic morphogen nodal promotes breast cancer growth and progression. PLoS One 2012; 7:e48237. [PMID: 23144858 PMCID: PMC3492336 DOI: 10.1371/journal.pone.0048237] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 09/26/2012] [Indexed: 11/23/2022] Open
Abstract
Breast cancers expressing human embryonic stem cell (hESC)-associated genes are more likely to progress than well-differentiated cancers and are thus associated with poor patient prognosis. Elevated proliferation and evasion of growth control are similarly associated with disease progression, and are classical hallmarks of cancer. In the current study we demonstrate that the hESC-associated factor Nodal promotes breast cancer growth. Specifically, we show that Nodal is elevated in aggressive MDA-MB-231, MDA-MB-468 and Hs578t human breast cancer cell lines, compared to poorly aggressive MCF-7 and T47D breast cancer cell lines. Nodal knockdown in aggressive breast cancer cells via shRNA reduces tumour incidence and significantly blunts tumour growth at primary sites. In vitro, using Trypan Blue exclusion assays, Western blot analysis of phosphorylated histone H3 and cleaved caspase-9, and real time RT-PCR analysis of BAX and BCL2 gene expression, we demonstrate that Nodal promotes expansion of breast cancer cells, likely via a combinatorial mechanism involving increased proliferation and decreased apopotosis. In an experimental model of metastasis using beta-glucuronidase (GUSB)-deficient NOD/SCID/mucopolysaccharidosis type VII (MPSVII) mice, we show that although Nodal is not required for the formation of small (<100 cells) micrometastases at secondary sites, it supports an elevated proliferation:apoptosis ratio (Ki67:TUNEL) in micrometastatic lesions. Indeed, at longer time points (8 weeks), we determined that Nodal is necessary for the subsequent development of macrometastatic lesions. Our findings demonstrate that Nodal supports tumour growth at primary and secondary sites by increasing the ratio of proliferation:apoptosis in breast cancer cells. As Nodal expression is relatively limited to embryonic systems and cancer, this study establishes Nodal as a potential tumour-specific target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Daniela F. Quail
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Guihua Zhang
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Logan A. Walsh
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Gabrielle M. Siegers
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | | - Scott D. Findlay
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Heather Broughton
- Department of Physiology and Pharmacology and Robarts Research Institute, London, Ontario, Canada
| | - David M. Putman
- Department of Physiology and Pharmacology and Robarts Research Institute, London, Ontario, Canada
| | - David A. Hess
- Department of Physiology and Pharmacology and Robarts Research Institute, London, Ontario, Canada
| | - Lynne-Marie Postovit
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
40
|
Quail DF, Walsh LA, Zhang G, Findlay SD, Moreno J, Fung L, Ablack A, Lewis JD, Done SJ, Hess DA, Postovit LM. Embryonic protein nodal promotes breast cancer vascularization. Cancer Res 2012; 72:3851-63. [PMID: 22855743 DOI: 10.1158/0008-5472.can-11-3951] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor vascularization is requisite for breast cancer progression, and high microvascular density in tumors is a poor prognostic indicator. Patients bearing breast cancers expressing human embryonic stem cell (hESC)-associated genes similarly exhibit high mortality rates, and the expression of embryonic proteins is associated with tumor progression. Here, we show that Nodal, a hESC-associated protein, promotes breast cancer vascularization. We show that high levels of Nodal are positively correlated with high vascular densities in human breast lesions (P = 0.0078). In vitro, we show that Nodal facilitates breast cancer-induced endothelial cell migration and tube formation, largely by upregulating the expression and secretion of proangiogenic factors by breast cancer cells. Using a directed in vivo angiogenesis assay and a chick chorioallantoic membrane assay, we show that Nodal promotes vascular recruitment in vivo. In a clinically relevant in vivo model, whereby Nodal expression was inhibited following tumor formation, we found a significant reduction in tumor vascularization concomitant with elevated hypoxia and tumor necrosis. These findings establish Nodal as a potential target for the treatment of breast cancer angiogenesis and progression.
Collapse
Affiliation(s)
- Daniela F Quail
- Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Konantz M, Balci TB, Hartwig UF, Dellaire G, André MC, Berman JN, Lengerke C. Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann N Y Acad Sci 2012; 1266:124-37. [PMID: 22901264 DOI: 10.1111/j.1749-6632.2012.06575.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zebrafish has become a powerful vertebrate model for genetic studies of embryonic development and organogenesis and increasingly for studies in cancer biology. Zebrafish facilitate the performance of reverse and forward genetic approaches, including mutagenesis and small molecule screens. Moreover, several studies report the feasibility of xenotransplanting human cells into zebrafish embryos and adult fish. This model provides a unique opportunity to monitor tumor-induced angiogenesis, invasiveness, and response to a range of treatments in vivo and in real time. Despite the high conservation of gene function between fish and humans, concern remains that potential differences in zebrafish tissue niches and/or missing microenvironmental cues could limit the relevance and translational utility of data obtained from zebrafish human cancer cell xenograft models. Here, we summarize current data on xenotransplantation of human cells into zebrafish, highlighting the advantages and limitations of this model in comparison to classical murine models of xenotransplantation.
Collapse
Affiliation(s)
- Martina Konantz
- Department of Hematology and Oncology, University of Tübingen Medical Center II, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Seftor REB, Hess AR, Seftor EA, Kirschmann DA, Hardy KM, Margaryan NV, Hendrix MJC. Tumor cell vasculogenic mimicry: from controversy to therapeutic promise. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1115-25. [PMID: 22944600 DOI: 10.1016/j.ajpath.2012.07.013] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/24/2012] [Accepted: 07/30/2012] [Indexed: 01/25/2023]
Abstract
In 1999, The American Journal of Pathology published an article entitled "Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry," by Maniotis and colleagues, which ignited a spirited debate for several years and earned distinction as a citation classic. Tumor cell vasculogenic mimicry (VM) refers to the plasticity of aggressive cancer cells forming de novo vascular networks, which thereby contribute to perfusion of rapidly growing tumors, transporting fluid from leaky vessels, and/or connecting with the constitutional endothelial-lined vasculature. The tumor cells capable of VM share a plastic, transendothelial phenotype, which may be induced by hypoxia. Since VM was introduced as a novel paradigm for melanoma tumor perfusion, many studies have contributed new findings illuminating the underlying molecular pathways supporting VM in a variety of tumors, including carcinomas, sarcomas, glioblastomas, astrocytomas, and melanomas. Facilitating the functional plasticity of tumor cell VM are key proteins associated with vascular, stem cell, and hypoxia-related signaling pathways, each deserving serious consideration as potential therapeutic targets and diagnostic indicators of the aggressive, metastatic phenotype.
Collapse
Affiliation(s)
- Richard E B Seftor
- Children's Hospital of Chicago Research Center, Northwestern University, Chicago, Illinois 60614-3394, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Lai CY, Schwartz BE, Hsu MY. CD133+ melanoma subpopulations contribute to perivascular niche morphogenesis and tumorigenicity through vasculogenic mimicry. Cancer Res 2012; 72:5111-8. [PMID: 22865455 DOI: 10.1158/0008-5472.can-12-0624] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor cell subpopulations that express cancer stem cell markers such as CD133 (prominin1) or ABCB5 are thought to be crucial for tumor initiation and heterogeneity, but their biological significance in melanoma has been controversial. Here, we report that CD133(+) and ABCB5(+) subpopulations are colocalized in melanomas in perivascular niches that contain CD144 (VE-cadherin)(+) melanoma cells forming vessel-like channels, a phenomenon termed vasculogenic mimicry (VM). RNAi-mediated attenuation of CD133 established its critical function in morphogenesis of these perivascular niches as well as in melanoma tumorigenicity. Niche-associated genes CD144 and ABCB5 were downregulated in tumors derived from CD133 knockdown (KD) melanoma cells compared with controls. CD133KD cells also lacked the ability to form CD144(+) VM-like channels in a manner that was associated with a depletion of the ABCB5(+) cell subpopulation. Finally, CD133 KD cells exhibited poorer tumor growth in vivo. Taken together, our findings corroborate models in which CD133(+)/ABCB5(+) melanoma cells reside in a complex anastomosing microvascular niche that encompasses CD144(+) VM channels as well as authentic endothelial cell-lined blood vessels. Further, they indicate that CD133(+) cells act as stem-like cells, which drive tumor growth by promoting VM and the morphogenesis of a specialized perivascular niche in melanoma.
Collapse
Affiliation(s)
- Chiou-Yan Lai
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
44
|
Strizzi L, Hardy KM, Kirschmann DA, Ahrlund-Richter L, Hendrix MJC. Nodal expression and detection in cancer: experience and challenges. Cancer Res 2012; 72:1915-20. [PMID: 22508696 DOI: 10.1158/0008-5472.can-11-3419] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nodal is a TGF-β-related embryonic morphogen that is expressed in multiple human cancers. Detection of Nodal expression in these tissues can be challenging if issues related to Nodal transcription and protein processing are not considered. Here, we discuss certain characteristics related to Nodal expression and function and how these can facilitate acquisition and interpretation of expression data, contributing to our understanding of the potential role of Nodal in human cancer. We also discuss how Nodal could be exploited clinically as a novel biomarker for cancer progression and therapeutic target.
Collapse
Affiliation(s)
- Luigi Strizzi
- Children's Memorial Research Center, Cancer Biology and Epigenomics Program, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60614, USA
| | | | | | | | | |
Collapse
|
45
|
Strizzi L, Hardy KM, Margaryan NV, Hillman DW, Seftor EA, Chen B, Geiger XJ, Thompson EA, Lingle WL, Andorfer CA, Perez EA, Hendrix MJC. Potential for the embryonic morphogen Nodal as a prognostic and predictive biomarker in breast cancer. Breast Cancer Res 2012; 14:R75. [PMID: 22577960 PMCID: PMC3446338 DOI: 10.1186/bcr3185] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/11/2012] [Indexed: 12/02/2022] Open
Abstract
Introduction The re-emergence of the tumour growth factor-beta (TGF-beta)-related embryonic morphogen Nodal has recently been reported in several different human cancers. In this study, we examined the expression of Nodal in a series of benign and malignant human breast tissues to determine the clinical significance of this expression and whether Nodal could represent a potential therapeutic target in breast cancer. Methods Tissue sections from 431 therapeutically naive patients diagnosed with benign or malignant breast disease were stained for Nodal by immunohistochemistry and analysed in a blinded manner. The degree of Nodal staining was subsequently correlated with available clinical data, such as diagnoses and disease stage. These tissue findings were further explored in breast cancer cell lines MDA-MB-231 and MDA-MB-468 treated with a Nodal blocking antibody to determine biological effects for target validation. Results A variable degree of Nodal staining was detected in all samples. The intensity of Nodal staining was significantly greater in undifferentiated, advanced stage, invasive breast cancer compared with benign breast disease or early stage breast cancer. Treatment of human breast cancer cells in vitro with Nodal blocking antibody significantly reduced proliferation and colony-forming ability in soft agar, concomitant with increased apoptosis. Conclusions These data suggest a potential role for Nodal as a biomarker for disease progression and a promising target for anti-Nodal therapy in breast cancer.
Collapse
Affiliation(s)
- Luigi Strizzi
- Children's Memorial Research Center, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 2300 Children's Plaza, Chicago, IL 60614, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Costa FF, Seftor EA, Bischof JM, Kirschmann DA, Strizzi L, Arndt K, Bonaldo MDF, Soares MB, Hendrix MJC. Epigenetically reprogramming metastatic tumor cells with an embryonic microenvironment. Epigenomics 2012; 1:387-98. [PMID: 20495621 DOI: 10.2217/epi.09.25] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED We have previously shown that the microenvironment of human embryonic stem cells (hESCs) is able to change and reprogram aggressive cancer cells to a less aggressive state. Some mechanisms implicated in the phenotypic changes observed after this exposure are mainly associated with the Nodal signaling pathway, which plays a key role in tumor cell plasticity. However, several other molecular mechanisms might be related directly and/or indirectly to these changes, including microRNA (miRNA) regulation and DNA methylation. AIM To further explore the epigenetic mechanisms potentially underlying the phenotypic changes that occur after exposing metastatic melanoma cells to a hESC microenvironment. MATERIALS & METHODS A total of 365 miRNAs were screened using the TaqMan® Low Density Arrays. We also evaluated whether DNA methylation could be one of the factors regulating the expression of the inhibitor of Nodal, Lefty, in hESCs (where it is highly expressed) vs melanoma cells (where it is not expressed). RESULTS Using these experimental approaches, we identified miRNAs that are up- and down-regulated in melanoma cells exposed to a hESC microenvironment, such as miR-302a and miR-27b, respectively. We also demonstrate that Notch4 is one of the targets of miR-302a, which is upstream of Nodal. Additionally, one of the mechanisms that might explain the absence of the inhibitor of Nodal, Lefty, in cancer cells is silencing by DNA methylation, which provides new insights into the unregulated expression of Nodal in melanoma. CONCLUSION These findings suggest that epigenetic changes such as DNA methylation and regulation by microRNAs might play a significant role in tumor cell plasticity and the metastatic phenotype.
Collapse
Affiliation(s)
- Fabricio F Costa
- Cancer Biology and Epigenomics Program, Children’s Memorial Research Center and Northwestern University’s Feinberg School of Medicine, 2300 Children’s Plaza, Chicago, IL 60614, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kirschmann DA, Seftor EA, Hardy KM, Seftor REB, Hendrix MJC. Molecular pathways: vasculogenic mimicry in tumor cells: diagnostic and therapeutic implications. Clin Cancer Res 2012; 18:2726-32. [PMID: 22474319 DOI: 10.1158/1078-0432.ccr-11-3237] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumor cell vasculogenic mimicry (VM) describes the functional plasticity of aggressive cancer cells forming de novo vascular networks, thereby providing a perfusion pathway for rapidly growing tumors, transporting fluid from leaky vessels, and/or connecting with endothelial-lined vasculature. The underlying induction of VM seems to be related to hypoxia, which may also promote the plastic, transendothelial phenotype of tumor cells capable of VM. Since its introduction in 1999 as a novel paradigm for melanoma tumor perfusion, many studies have contributed new insights into the underlying molecular pathways supporting VM in a variety of tumors, including melanoma, glioblastoma, carcinomas, and sarcomas. In particular, critical VM-modulating genes are associated with vascular (VE-cadherin, EphA2, VEGF receptor 1), embryonic and/or stem cell (Nodal, Notch4), and hypoxia-related (hypoxia-inducible factor, Twist1) signaling pathways. Each of these pathways warrants serious scrutiny as potential therapeutic, vascular targets, and diagnostic indicators of plasticity, drug resistance, and the aggressive metastatic phenotype.
Collapse
Affiliation(s)
- Dawn A Kirschmann
- Children's Memorial Research Center, Robert H Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60614, USA
| | | | | | | | | |
Collapse
|
48
|
ZHANG ZHIWEI, JIANG TAO, LI QUANLIN, WANG JIANBO, YANG DEYONG, LI XIANCHENG, WANG QIFEI, SONG XISHUANG. Nodal activates smad and extracellular signal-regulated kinases 1/2 pathways promoting renal cell carcinoma proliferation. Mol Med Rep 2012; 12:587-94. [DOI: 10.3892/mmr.2015.3343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 01/07/2015] [Indexed: 11/06/2022] Open
|
49
|
Harris PJ, Speranza G, Dansky Ullmann C. Targeting embryonic signaling pathways in cancer therapy. Expert Opin Ther Targets 2012; 16:131-45. [DOI: 10.1517/14728222.2011.645808] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
De Silva T, Ye G, Liang YY, Fu G, Xu G, Peng C. Nodal promotes glioblastoma cell growth. Front Endocrinol (Lausanne) 2012; 3:59. [PMID: 22645523 PMCID: PMC3355829 DOI: 10.3389/fendo.2012.00059] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 04/11/2012] [Indexed: 11/22/2022] Open
Abstract
Nodal is a member of the transforming growth factor-β (TGF-β) superfamily that plays critical roles during embryogenesis. Recent studies in ovarian, breast, prostate, and skin cancer cells suggest that Nodal also regulates cell proliferation, apoptosis, and invasion in cancer cells. However, it appears to exert both tumor-suppressing and tumor-promoting effects, depending on the cell type. To further understand the role of Nodal in tumorigenesis, we examined the effect of Nodal in glioblastoma cell growth and spheroid formation using U87 cell line. Treatment of U87 with recombinant Nodal significantly increased U87 cell growth. In U87 cells stably transfected with the plasmid encoding Nodal, Smad2 phosphorylation was strongly induced and cell growth was significantly enhanced. Overexpression of Nodal also resulted in tight spheroid formation. On the other hand, the cells stably transfected with Nodal siRNA formed loose spheroids. Nodal is known to signal through activin receptor-like kinase 4 (ALK4) and ALK7 and the Smad2/3 pathway. To determine which receptor and Smad mediate the growth promoting effect of Nodal, we transfected siRNAs targeting ALK4, ALK7, Smad2, or Smad3 into Nodal-overexpressing cells and observed that cell growth was significantly inhibited by ALK4, ALK7, and Smad3 siRNAs. Taken together, these findings suggest that Nodal may have tumor-promoting effects on glioblastoma cells and these effects are mediated by ALK4, ALK7, and Smad3.
Collapse
Affiliation(s)
- Tanya De Silva
- Department of Biology, York UniversityToronto, ON, Canada
| | - Gang Ye
- Department of Biology, York UniversityToronto, ON, Canada
| | - Yao-Yun Liang
- Department of Biology, York UniversityToronto, ON, Canada
| | - Guodong Fu
- Department of Biology, York UniversityToronto, ON, Canada
| | - Guoxiong Xu
- Department of Biology, York UniversityToronto, ON, Canada
| | - Chun Peng
- Department of Biology, York UniversityToronto, ON, Canada
- *Correspondence: Chun Peng, Department of Biology, York University, 4700 Keele Street, Toronto, ON, Canada M3J 1P3. e-mail:
| |
Collapse
|