1
|
Williamson AL. Approaches to Next-Generation Capripoxvirus and Monkeypox Virus Vaccines. Viruses 2025; 17:186. [PMID: 40006941 PMCID: PMC11861168 DOI: 10.3390/v17020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Globally, there are two major poxvirus outbreaks: mpox, caused by the monkeypox virus, and lumpy skin disease, caused by the lumpy skin disease virus. While vaccines for both diseases exist, there is a need for improved vaccines. The original vaccines used to eradicate smallpox, which also protect from the disease now known as mpox, are no longer acceptable. This is mainly due to the risk of serious adverse events, particularly in HIV-positive people. The next-generation vaccine for mpox prevention is modified vaccinia Ankara, which does not complete the viral replication cycle in humans and, therefore, has a better safety profile. However, two modified vaccinia Ankara immunizations are needed to give good but often incomplete protection, and there are indications that the immune response will wane over time. A better vaccine that induces a long-lived response with only one immunization is desirable. Another recently available smallpox vaccine is LC16m8. While LC16m8 contains replicating vaccinia virus, it is a more attenuated vaccine than the original vaccines and has limited side effects. The commonly used lumpy skin disease vaccines are based on attenuated lumpy skin disease virus. However, an inactivated or non-infectious vaccine is desirable as the disease spreads into new territories. This article reviews novel vaccine approaches, including mRNA and subunit vaccines, to protect from poxvirus infection.
Collapse
Affiliation(s)
- Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa;
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
2
|
Natami M, Gorgzadeh A, Gholipour A, Fatemi SN, Firouzeh N, Zokaei M, Mohammed Ali SH, Kheradjoo H, Sedighi S, Gholizadeh O, Kalavi S. An overview on mRNA-based vaccines to prevent monkeypox infection. J Nanobiotechnology 2024; 22:86. [PMID: 38429829 PMCID: PMC10908150 DOI: 10.1186/s12951-024-02355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
The human monkeypox virus (Mpox) is classified as a member of the Poxviridae family and belongs to the Orthopoxvirus genus. Mpox possesses double-stranded DNA, and there are two known genetic clades: those originating in West Africa and the Congo Basin, commonly known as Central African clades. Mpox may be treated with either the vaccinia vaccination or the therapeutics. Modifying the smallpox vaccine for treating and preventing Mpox has shown to be beneficial because of the strong link between smallpox and Mpox viruses and their categorization in the same family. Cross-protection against Mpox is effective with two Food and Drug Administration (FDA)-approved smallpox vaccines (ACAM2000 and JYNNEOSTM). However, ACAM2000 has the potential for significant adverse effects, such as cardiac issues, whereas JYNNEOS has a lower risk profile. Moreover, Mpox has managed to resurface, although with modified characteristics, due to the discontinuation and cessation of the smallpox vaccine for 40 years. The safety and efficacy of the two leading mRNA vaccines against SARS-CoV-2 and its many variants have been shown in clinical trials and subsequent data analysis. This first mRNA treatment model involves injecting patients with messenger RNA to produce target proteins and elicit an immunological response. High potency, the possibility of safe administration, low-cost manufacture, and quick development is just a few of the benefits of RNA-based vaccines that pave the way for a viable alternative to conventional vaccines. When protecting against Mpox infection, mRNA vaccines are pretty efficient and may one day replace the present whole-virus vaccines. Therefore, the purpose of this article is to provide a synopsis of the ongoing research, development, and testing of an mRNA vaccine against Mpox.
Collapse
Affiliation(s)
- Mohammad Natami
- Department of Urology, Shahid Mohammadi Hospital, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Arsalan Gholipour
- Free Researchers, Biotechnology and Nanobiotechnology, Babolsar, Iran
| | | | - Nima Firouzeh
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | - Shaylan Kalavi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic Azad University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Chiem K, Nogales A, Lorenzo M, Morales Vasquez D, Xiang Y, Gupta YK, Blasco R, de la Torre JC, Martínez-Sobrido L. Identification of In Vitro Inhibitors of Monkeypox Replication. Microbiol Spectr 2023; 11:e0474522. [PMID: 37278625 PMCID: PMC10434227 DOI: 10.1128/spectrum.04745-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
Monkeypox virus (MPXV) infections in humans have historically been restricted to regions of endemicity in Africa. However, in 2022, an alarming number of MPXV cases were reported globally, with evidence of person-to-person transmission. Because of this, the World Health Organization (WHO) declared the MPXV outbreak a public health emergency of international concern. The supply of MPXV vaccines is limited, and only two antivirals, tecovirimat and brincidofovir, approved by the U.S. Food and Drug Administration (FDA) for the treatment of smallpox, are currently available for the treatment of MPXV infection. Here, we evaluated 19 compounds previously shown to inhibit different RNA viruses for their ability to inhibit orthopoxvirus infections. We first used recombinant vaccinia virus (rVACV) expressing fluorescence (mScarlet or green fluorescent protein [GFP]) and luciferase (Nluc) reporter genes to identify compounds with antiorthopoxvirus activity. Seven compounds from the ReFRAME library (antimycin A, mycophenolic acid, AVN-944, pyrazofurin, mycophenolate mofetil, azaribine, and brequinar) and six compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) showed inhibitory activity against rVACV. Notably, the anti-VACV activity of some of the compounds in the ReFRAME library (antimycin A, mycophenolic acid, AVN-944, mycophenolate mofetil, and brequinar) and all the compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) were confirmed with MPXV, demonstrating their inhibitory activity in vitro against two orthopoxviruses. IMPORTANCE Despite the eradication of smallpox, some orthopoxviruses remain important human pathogens, as exemplified by the recent 2022 monkeypox virus (MPXV) outbreak. Although smallpox vaccines are effective against MPXV, access to those vaccines is limited. In addition, current antiviral treatment against MPXV infections is limited to the use of the FDA-approved drugs tecovirimat and brincidofovir. Thus, there is an urgent need to identify novel antivirals for the treatment of MPXV infection and other potentially zoonotic orthopoxvirus infections. Here, we show that 13 compounds, derived from two different libraries, previously found to inhibit several RNA viruses, also inhibit VACV. Notably, 11 compounds also displayed inhibitory activity against MPXV.
Collapse
Affiliation(s)
- Kevin Chiem
- Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Aitor Nogales
- Animal Health Research Centre, Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Maria Lorenzo
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | | | - Yan Xiang
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Yogesh K. Gupta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Rafael Blasco
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Juan Carlos de la Torre
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | | |
Collapse
|
4
|
Saadh MJ, Ghadimkhani T, Soltani N, Abbassioun A, Daniel Cosme Pecho R, Taha A, Jwad Kazem T, Yasamineh S, Gholizadeh O. Progress and prospects on vaccine development against monkeypox infection. Microb Pathog 2023; 180:106156. [PMID: 37201635 PMCID: PMC10186953 DOI: 10.1016/j.micpath.2023.106156] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
The monkeypox virus (MPOX) is an uncommon zoonotic illness brought on by an orthopoxvirus (OPXV). MPOX can occur with symptoms similar to smallpox. Since April 25, 2023, 110 nations have reported 87,113 confirmed cases and 111 fatalities. Moreover, the outspread prevalence of MPOX in Africa and a current outbreak of MPOX in the U.S. have made it clear that naturally occurring zoonotic OPXV infections remain a public health concern. Existing vaccines, though they provide cross-protection to MPOX, are not specific for the causative virus, and their effectiveness in the light of the current multi-country outbreak is still to be verified. Furthermore, as a sequel of the eradication and cessation of smallpox vaccination for four decades, MPOX found a possibility to re-emerge, but with distinct characteristics. The World Health Organization (WHO) suggested that nations use affordable MPOX vaccines within a framework of coordinated clinical effectiveness and safety evaluations. Vaccines administered in the smallpox control program and conferred immunity against MPOX. Currently, vaccines approved by WHO for use against MPOX are replicating (ACAM2000), low replicating (LC16m8), and non-replicating (MVA-BN). Although vaccines are accessible, investigations have demonstrated that smallpox vaccination is approximately 85% efficient in inhibiting MPOX. In addition, developing new vaccine methods against MPOX can help prevent this infection. To recognize the most efficient vaccine, it is essential to assess effects, including reactogenicity, safety, cytotoxicity effect, and vaccine-associated side effects, especially for high-risk and vulnerable people. Recently, several orthopoxvirus vaccines have been produced and are being evaluated. Hence, this review aims to provide an overview of the efforts dedicated to several types of vaccine candidates with different strategies for MPOX, including inactivated, live-attenuated, virus-like particles (VLPs), recombinant protein, nucleic acid, and nanoparticle-based vaccines, which are being developed and launched.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | | | - Narges Soltani
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Arian Abbassioun
- Department of Virology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Ali Taha
- Medical Technical College, Al-Farahidi University, Iraq
| | - Tareq Jwad Kazem
- Scientific Affairs Department, Al-Mustaqbal University, 51001, Hillah, Babylon, Iraq
| | - Saman Yasamineh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| | - Omid Gholizadeh
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Chiem K, Nogales A, Lorenzo M, Vasquez DM, Xiang Y, Gupta YK, Blasco R, de la Torre JC, Mart Nez-Sobrido L. Antivirals against monkeypox infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537483. [PMID: 37131608 PMCID: PMC10153157 DOI: 10.1101/2023.04.19.537483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Monkeypox virus (MPXV) infection in humans are historically restricted to endemic regions in Africa. However, in 2022, an alarming number of MPXV cases have been reported globally with evidence of person-to-person transmission. Because of this, the World Health Organization (WHO) declared the MPXV outbreak a public health emergency of international concern. MPXV vaccines are limited and only two antivirals, tecovirimat and brincidofovir, approved by the United States (US) Food and Drug Administration (FDA) for the treatment of smallpox, are currently available for the treatment of MPXV infection. Here, we evaluated 19 compounds previously shown to inhibit different RNA viruses for their ability to inhibit Orthopoxvirus infections. We first used recombinant vaccinia virus (rVACV) expressing fluorescence (Scarlet or GFP) and luciferase (Nluc) reporter genes to identify compounds with anti-Orthopoxvirus activity. Seven compounds from the ReFRAME library (antimycin A, mycophenolic acid, AVN- 944, pyrazofurin, mycophenolate mofetil, azaribine, and brequinar) and six compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) showed antiviral activity against rVACV. Notably, the anti-VACV activity of some of the compounds in the ReFRAME library (antimycin A, mycophenolic acid, AVN- 944, mycophenolate mofetil, and brequinar) and all the compounds from the NPC library (buparvaquone, valinomycin, narasin, monensin, rotenone, and mubritinib) were confirmed with MPXV, demonstrating the broad-spectrum antiviral activity against Orthopoxviruses and their potential to be used for the antiviral treatment of MPXV, or other Orthopoxvirus, infections. IMPORTANCE Despite the eradication of smallpox, some Orthopoxviruses remain important human pathogens, as exemplified by the recent 2022 monkeypox virus (MPXV) outbreak. Although smallpox vaccines are effective against MPXV, there is presently limited access to those vaccines. In addition, current antiviral treatment against MPXV infections is limited to the use of the FDA-approved drugs tecovirimat and brincidofovir. Thus, there is an urgent need to identify novel antivirals for the treatment of MPXV, and other potentially zoonotic Orthopoxvirus infections. Here, we show that thirteen compounds, derived from two different libraries, previously found to inhibit several RNA viruses, exhibit also antiviral activity against VACV. Notably, eleven compounds also displayed antiviral activity against MPXV, demonstrating their potential to be incorporated into the therapeutic armamentarium to combat Orthopoxvirus infections.
Collapse
|
6
|
Chandran D, Nandanagopal V, Gopan M, Megha K, Hari Sankar C, Muhammad Aslam M, Savanth VV, Pran M, Nainu F, Yatoo MI, Ebad Ur Rehman M, Chopra H, Emran TB, Dey A, Sharma AK, A. Saied A, Dhama K. Major Advances in Monkeypox Vaccine Research and Development – An Update. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022; 16:3083-3095. [DOI: 10.22207/jpam.16.spl1.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Monkeypox (MPX) is a zoonotic disease that is endemic to the western and central regions of Africa and it is caused by monkeypox virus (MPXV), which is classified as a member of the Poxviridae family, specifically the Chordopoxvirinae subfamily, and the Orthopoxvirus genus. The current multiregional outbreak of MPX, which started in May of 2022, has since swiftly spread across the globe and thus has been declared a global public health emergency by the World Health Organization (WHO). Protective immunity against MPXV can be achieved by administering a smallpox vaccination, as the two viruses share antigenic properties. Although smallpox was declared eradicated in 1980, the vaccine campaign was halted the following year, leaving the population with significantly less immunity than it had before. The potential for human-to-human transmission of MPXV has grown as a result. Due to the lack of a particular treatment for MPX infection, anti-viral medications initially designed for the smallpox virus are being employed. However, the prognosis for MPX may vary depending on factors like immunization history, pre-existing illnesses, and comorbidities, even though the majority of persons who develop MPX have a mild, self-limiting illness. Vaccines and antiviral drugs are being researched as potential responses to the latest 2022 MPX epidemic. The first-generation smallpox vaccinations maintained in national stockpiles of several countries are not recommended due to not meeting the current safety and manufacturing criteria, as stated by the WHO. Newer, safer (second- and third-generation) smallpox vaccines, such as JYNNEOSTM, which has been licensed for the prevention of MPX, are indicated as potentially useful in the interim guideline. Studies on vaccines and antiviral drugs are still being investigated as possible remedies to the recent MPX outbreak. This mini-review article serves as a retrospective look at the evolution of smallpox vaccines from their inception in the 1700s to the current trends up to the end of year 2022, specifically for developing monkeypox vaccines.
Collapse
|
7
|
Abstract
Human monkeypox is a viral zoonosis endemic to West and Central Africa that has recently generated increased interest and concern on a global scale as an emerging infectious disease threat in the midst of the slowly relenting COVID-2019 disease pandemic. The hallmark of infection is the development of a flu-like prodrome followed by the appearance of a smallpox-like exanthem. Precipitous person-to-person transmission of the virus among residents of 100 countries where it is nonendemic has motivated the immediate and widespread implementation of public health countermeasures. In this review, we discuss the origins and virology of monkeypox virus, its link with smallpox eradication, its record of causing outbreaks of human disease in regions where it is endemic in wildlife, its association with outbreaks in areas where it is nonendemic, the clinical manifestations of disease, laboratory diagnostic methods, case management, public health interventions, and future directions.
Collapse
Affiliation(s)
- Sameer Elsayed
- Department of Medicine, Western University, London, Ontario, Canada
- Department of Pathology & Laboratory Medicine, Western University, London, Ontario, Canada
- Department of Epidemiology & Biostatistics, Western University, London, Ontario, Canada
| | - Lise Bondy
- Department of Medicine, Western University, London, Ontario, Canada
| | - William P. Hanage
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Farahat RA, Shrestha AB, Elsayed M, Memish ZA. Monkeypox vaccination: Does it cause neurologic and psychiatric manifestations? - Correspondence. Int J Surg 2022; 106:106926. [PMID: 36126856 PMCID: PMC9481469 DOI: 10.1016/j.ijsu.2022.106926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 10/26/2022]
Affiliation(s)
| | | | - Mohamed Elsayed
- Department of Psychiatry, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Germany
| | - Ziad A Memish
- Research and Innovation Center, King Saud Medical City, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
9
|
Parker S, D'Angelo J, Buller RM, Smee DF, Lantto J, Nielsen H, Jensen A, Prichard M, George SL. A human recombinant analogue to plasma-derived vaccinia immunoglobulin prophylactically and therapeutically protects against lethal orthopoxvirus challenge. Antiviral Res 2021; 195:105179. [PMID: 34530009 PMCID: PMC9628779 DOI: 10.1016/j.antiviral.2021.105179] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022]
Abstract
Orthopoxviruses such as variola and monkeypox viruses continue to threaten the human population. Monkeypox virus is endemic in central and western Africa and outbreaks have reached as far as the U.S. Although variola virus, the etiologic agent of smallpox, has been eradicated by a successful vaccination program, official and likely clandestine stocks of the virus exist. Moreover, studies with ectromelia virus (the etiological agent of mousepox) have revealed that IL-4 recombinant viruses are significantly more virulent than wild-type viruses even in mice treated with vaccines and/or antivirals. For these reasons, it is critical that antiviral modalities are developed to treat these viruses should outbreaks, or deliberate dissemination, occur. Currently, 2 antivirals (brincidofovir and tecovirimat) are in the U.S. stockpile allowing for emergency use of the drugs to treat smallpox. Both antivirals have advantages and disadvantages in a clinical and emergency setting. Here we report on the efficacy of a recombinant immunoglobulin (rVIG) that demonstrated efficacy against several orthopoxviruses in vitro and in vivo in both a prophylactic and therapeutic fashion. A single intraperitoneal injection of rVIG significantly protected mice when given up to 14 days before or as late as 6 days post challenge. Moreover, rVIG reduced morbidity, as measured by weight-change, as well as several previously established biomarkers of disease. In rVIG treated mice, we found that vDNA levels in blood were significantly reduced, as was ALT (a marker of liver damage) and infectious virus levels in the liver. No apparent adverse events were observed in rVIG treated mice, suggesting the immunoglobulin is well tolerated. These findings suggest that recombinant immunoglobulins could be candidates for further evaluation and possible licensure under the FDA Animal Rule.
Collapse
Affiliation(s)
- Scott Parker
- Division of Infectious Diseases, Department of Internal Medicine, Saint Louis University, and St. Louis VA Medical Center, St. Louis, MO, 63104, USA
| | - June D'Angelo
- Division of Infectious Diseases, Department of Internal Medicine, Saint Louis University, and St. Louis VA Medical Center, St. Louis, MO, 63104, USA
| | - R Mark Buller
- Department of Molecular Microbiology and Immunology, Saint Louis University, St. Louis, MO, 63104, USA
| | - Donald F Smee
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322, USA
| | - Johan Lantto
- Symphogen, Pederstrupvej 93, DK-2750, Ballerup, Denmark
| | | | - Allan Jensen
- Symphogen, Pederstrupvej 93, DK-2750, Ballerup, Denmark
| | - Mark Prichard
- Department of Pediatrics, University of Alabama, Birmingham, AL, 35233, USA
| | - Sarah L George
- Division of Infectious Diseases, Department of Internal Medicine, Saint Louis University, and St. Louis VA Medical Center, St. Louis, MO, 63104, USA.
| |
Collapse
|
10
|
Ando J, Ngo MC, Ando M, Leen A, Rooney CM. Identification of protective T-cell antigens for smallpox vaccines. Cytotherapy 2020; 22:642-652. [PMID: 32747299 PMCID: PMC7205715 DOI: 10.1016/j.jcyt.2020.04.098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/27/2020] [Indexed: 01/28/2023]
Abstract
Background aims E3L is an immediate-early protein of vaccinia virus (VV) that is detected within 0.5 h of infection, potentially before the many immune evasion genes of vaccinia can exert their protective effects. E3L is highly conserved among orthopoxviruses and hence could provide important protective T-cell epitopes that should be retained in any subunit or attenuated vaccine. We have therefore evaluated the immunogenicity of E3L in healthy VV-vaccinated donors. Methods Peripheral blood mononuclear cells from healthy volunteers (n = 13) who had previously received a smallpox vaccine (Dryvax) were activated and expanded using overlapping E3L peptides and their function, specificity and antiviral activity was analyzed. E3L-specific T cells were expanded from 7 of 12 (58.3%) vaccinated healthy donors. Twenty-five percent of these produced CD8+ T-cell responses and 87.5% produced CD4+ T cells. We identified epitopes restricted by HLA-B35 and HLA-DR15. Results E3L-specific T cells killed peptide-loaded target cells as well as vaccinia-infected cells, but only CD8+ T cells could prevent the spread of infectious virus in virus inhibition assays. The epitopes recognized by E3L-specific T cells were shared with monkeypox, and although there was a single amino acid change in the variola epitope homolog, it was recognized by vaccinia-specific T-cells. Conclusions It might be important to include E3L in any deletion mutant or subunit vaccine and E3L could provide a useful antigen to monitor protective immunity in humans.
Collapse
Affiliation(s)
- Jun Ando
- Center for Cell and Gene Therapy, Departments of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Minhtran C Ngo
- Center for Cell and Gene Therapy, Departments of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Miki Ando
- Center for Cell and Gene Therapy, Departments of Pediatrics, Baylor College of Medicine, Houston, Texas, USA; Department of Hematology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ann Leen
- Center for Cell and Gene Therapy, Departments of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Cliona M Rooney
- Center for Cell and Gene Therapy, Departments of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
11
|
Wolf K, Hether T, Gilchuk P, Kumar A, Rajeh A, Schiebout C, Maybruck J, Buller RM, Ahn TH, Joyce S, DiPaolo RJ. Identifying and Tracking Low-Frequency Virus-Specific TCR Clonotypes Using High-Throughput Sequencing. Cell Rep 2019; 25:2369-2378.e4. [PMID: 30485806 PMCID: PMC7770954 DOI: 10.1016/j.celrep.2018.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/18/2018] [Accepted: 10/31/2018] [Indexed: 12/30/2022] Open
Abstract
Tracking antigen-specific T cell responses over time within individuals is difficult because of lack of knowledge of antigen-specific TCR sequences, limitations in sample size, and assay sensitivities. We hypothesized that analyses of high-throughput sequencing of TCR clonotypes could provide functional readouts of individuals' immunological histories. Using high-throughput TCR sequencing, we develop a database of TCRβ sequences from large cohorts of mice before (naive) and after smallpox vaccination. We computationally identify 315 vaccine-associated TCR sequences (VATS) that are used to train a diagnostic classifier that distinguishes naive from vaccinated samples in mice up to 9 months post-vaccination with >99% accuracy. We determine that the VATS library contains virus-responsive TCRs by in vitro expansion assays and virus-specific tetramer sorting. These data outline a platform for advancing our capabilities to identify pathogen-specific TCR sequences, which can be used to identify and quantitate low-frequency pathogen-specific TCR sequences in circulation over time with exceptional sensitivity.
Collapse
Affiliation(s)
- Kyle Wolf
- Department of Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, MO 63104, USA
| | - Tyler Hether
- Adaptive Biotechnologies, Seattle, WA 98102, USA
| | - Pavlo Gilchuk
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | - Amrendra Kumar
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ahmad Rajeh
- Program in Bioinformatics and Computational Biology, Saint Louis University, Saint Louis, MO 63104, USA
| | - Courtney Schiebout
- Program in Bioinformatics and Computational Biology, Saint Louis University, Saint Louis, MO 63104, USA
| | - Julie Maybruck
- Federal Bureau of Investigation, Washington, DC 20535, USA
| | - R Mark Buller
- Department of Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, MO 63104, USA
| | - Tae-Hyuk Ahn
- Department of Computer Science, Saint Louis University, Saint Louis, MO 63104, USA; Program in Bioinformatics and Computational Biology, Saint Louis University, Saint Louis, MO 63104, USA
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University, Saint Louis, MO 63104, USA.
| |
Collapse
|
12
|
Kennedy RB, Poland GA, Ovsyannikova IG, Oberg AL, Asmann YW, Grill DE, Vierkant RA, Jacobson RM. Impaired innate, humoral, and cellular immunity despite a take in smallpox vaccine recipients. Vaccine 2016; 34:3283-90. [PMID: 27177944 PMCID: PMC5528000 DOI: 10.1016/j.vaccine.2016.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 11/29/2022]
Abstract
Smallpox vaccine is highly effective, inducing protective immunity to smallpox and diseases caused by related orthopoxviruses. Smallpox vaccine efficacy was historically defined by the appearance of a lesion or "take" at the vaccine site, which leaves behind a characteristic scar. Both the take and scar are readily recognizable and were used during the eradication effort to indicate successful vaccination and to categorize individuals as "protected." However, the development of a typical vaccine take may not equate to the successful development of a robust, protective immune response. In this report, we examined two large (>1000) cohorts of recipients of either Dryvax(®) or ACAM2000 using a testing and replication study design and identified subgroups of individuals who had documented vaccine takes, but who failed to develop robust neutralizing antibody titers. Examination of these individuals revealed that they had suboptimal cellular immune responses as well. Further testing indicated these low responders had a diminished innate antiviral gene expression pattern (IFNA1, CXCL10, CXCL11, OASL) upon in vitro stimulation with vaccinia virus, perhaps indicative of a dysregulated innate response. Our results suggest that poor activation of innate antiviral pathways may result in suboptimal immune responses to the smallpox vaccine. These genes and pathways may serve as suitable targets for adjuvants in new attenuated smallpox vaccines and/or effective antiviral therapy targets against poxvirus infections.
Collapse
Affiliation(s)
- Richard B Kennedy
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gregory A Poland
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Inna G Ovsyannikova
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ann L Oberg
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Yan W Asmann
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Diane E Grill
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Robert A Vierkant
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Robert M Jacobson
- Mayo Vaccine Research Group, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
The Vaccinia Virus H3 Envelope Protein, a Major Target of Neutralizing Antibodies, Exhibits a Glycosyltransferase Fold and Binds UDP-Glucose. J Virol 2016; 90:5020-5030. [PMID: 26937025 PMCID: PMC4859701 DOI: 10.1128/jvi.02933-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/26/2016] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED The highly conserved H3 poxvirus protein is a major target of the human antibody response against poxviruses and is likely a key contributor to protection against infection. Here, we present the crystal structure of H3 from vaccinia virus at a 1.9-Å resolution. H3 looks like a glycosyltransferase, a family of enzymes that transfer carbohydrate molecules to a variety of acceptor substrates. Like glycosyltransferases, H3 binds UDP-glucose, as shown by saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy, and this binding requires Mg(2+) Mutation of the glycosyltransferase-like metal ion binding motif in H3 greatly diminished its binding to UDP-glucose. We found by flow cytometry that H3 binds to the surface of human cells but does not bind well to cells that are deficient in surface glycosaminoglycans. STD NMR experiments using a heparin sulfate decasaccharide confirmed that H3 binds heparin sulfate. We propose that a surface of H3 with an excess positive charge may be the binding site for heparin. Heparin binding and glycosyltransferase activity may be involved in the function of H3 in the poxvirus life cycle. IMPORTANCE Poxviruses are under intense research because of bioterrorism concerns, zoonotic infections, and the side effects of existing smallpox vaccines. The smallpox vaccine using vaccinia virus has been highly successful, but it is still unclear why the vaccine is so effective. Studying the antigens that the immune system recognizes may allow a better understanding of how the vaccine elicits immunity and how improved vaccines can be developed. Poxvirus protein H3 is a major target of the immune system. The H3 crystal structure shows that it has a glycosyltransferase protein fold. We demonstrate that H3 binds the sugar nucleotide UDP-glucose, as do glycosyltransferases. Our experiments also reveal that H3 binds cell surface molecules that are involved in the attachment of poxviruses to cells. These structural and functional studies of H3 will help in designing better vaccines and therapeutics.
Collapse
|
14
|
Franceschi V, Parker S, Jacca S, Crump RW, Doronin K, Hembrador E, Pompilio D, Tebaldi G, Estep RD, Wong SW, Buller MR, Donofrio G. BoHV-4-Based Vector Single Heterologous Antigen Delivery Protects STAT1(-/-) Mice from Monkeypoxvirus Lethal Challenge. PLoS Negl Trop Dis 2015; 9:e0003850. [PMID: 26086739 PMCID: PMC4473039 DOI: 10.1371/journal.pntd.0003850] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/27/2015] [Indexed: 01/13/2023] Open
Abstract
Monkeypox virus (MPXV) is the etiological agent of human (MPX). It is an emerging orthopoxvirus zoonosis in the tropical rain forest of Africa and is endemic in the Congo-basin and sporadic in West Africa; it remains a tropical neglected disease of persons in impoverished rural areas. Interaction of the human population with wildlife increases human infection with MPX virus (MPXV), and infection from human to human is possible. Smallpox vaccination provides good cross-protection against MPX; however, the vaccination campaign ended in Africa in 1980, meaning that a large proportion of the population is currently unprotected against MPXV infection. Disease control hinges on deterring zoonotic exposure to the virus and, barring that, interrupting person-to-person spread. However, there are no FDA-approved therapies against MPX, and current vaccines are limited due to safety concerns. For this reason, new studies on pathogenesis, prophylaxis and therapeutics are still of great interest, not only for the scientific community but also for the governments concerned that MPXV could be used as a bioterror agent. In the present study, a new vaccination strategy approach based on three recombinant bovine herpesvirus 4 (BoHV-4) vectors, each expressing different MPXV glycoproteins, A29L, M1R and B6R were investigated in terms of protection from a lethal MPXV challenge in STAT1 knockout mice. BoHV-4-A-CMV-A29LgD106ΔTK, BoHV-4-A-EF1α-M1RgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK were successfully constructed by recombineering, and their capacity to express their transgene was demonstrated. A small challenge study was performed, and all three recombinant BoHV-4 appeared safe (no weight-loss or obvious adverse events) following intraperitoneal administration. Further, BoHV-4-A-EF1α-M1RgD106ΔTK alone or in combination with BoHV-4-A-CMV-A29LgD106ΔTK and BoHV-4-A-EF1α-B6RgD106ΔTK, was shown to be able to protect, 100% alone and 80% in combination, STAT1(-/-) mice against mortality and morbidity. This work demonstrated the efficacy of BoHV-4 based vectors and the use of BoHV-4 as a vaccine-vector platform.
Collapse
Affiliation(s)
| | - Scott Parker
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Sarah Jacca
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Ryan W. Crump
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Konstantin Doronin
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Edguardo Hembrador
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Daniela Pompilio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Giulia Tebaldi
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| | - Ryan D. Estep
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Scott W. Wong
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Mark R. Buller
- Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Gaetano Donofrio
- Department of Medical-Veterinary Science, University of Parma, Parma, Italy
| |
Collapse
|
15
|
Guimarães AP, de Souza FR, Oliveira AA, Gonçalves AS, de Alencastro RB, Ramalho TC, França TC. Design of inhibitors of thymidylate kinase from Variola virus as new selective drugs against smallpox. Eur J Med Chem 2015; 91:72-90. [DOI: 10.1016/j.ejmech.2014.09.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/15/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
|
16
|
Postchallenge administration of brincidofovir protects healthy and immune-deficient mice reconstituted with limited numbers of T cells from lethal challenge with IHD-J-Luc vaccinia virus. J Virol 2015; 89:3295-307. [PMID: 25589648 DOI: 10.1128/jvi.03340-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Protection from lethality by postchallenge administration of brincidofovir (BCV, CMX001) was studied in normal and immune-deficient (nude, nu/nu) BALB/c mice infected with vaccinia virus (VACV). Whole-body bioluminescence imaging was used to record total fluxes in the nasal cavity, lungs, spleen, and liver and to enumerate pox lesions on tails of mice infected via the intranasal route with 10(5) PFU of recombinant IHD-J-Luc VACV expressing luciferase. Areas under the flux curve (AUCs) were calculated for individual mice to assess viral loads. A three-dose regimen of 20 mg/kg BCV administered every 48 h starting either on day 1 or day 2 postchallenge protected 100% of mice. Initiating BCV treatment earlier was more efficient in reducing viral loads and in providing protection from pox lesion development. All BCV-treated mice that survived challenge were also protected from rechallenge with IHD-J-Luc or WRvFire VACV without additional treatment. In immune-deficient mice, BCV protected animals from lethality and reduced viral loads while animals were on the drug. Viral recrudescence occurred within 4 to 9 days, and mice succumbed ∼10 to 20 days after treatment termination. Nude mice reconstituted with 10(5) T cells prior to challenge with 10(4) PFU of IHD-J-Luc and treated with BCV postchallenge survived the infection, cleared the virus from all organs, and survived rechallenge with 10(5) PFU of IHD-J-Luc VACV without additional BCV treatment. Together, these data suggest that BCV protects immunocompetent and partially T cell-reconstituted immune-deficient mice from lethality, reduces viral dissemination in organs, prevents pox lesion development, and permits generation of VACV-specific memory. IMPORTANCE Mass vaccination is the primary element of the public health response to a smallpox outbreak. In addition to vaccination, however, antiviral drugs are required for individuals with uncertain exposure status to smallpox or for whom vaccination is contraindicated. Whole-body bioluminescence imaging was used to study the effect of brincidofovir (BCV) in normal and immune-deficient (nu/nu) mice infected with vaccinia virus, a model of smallpox. Postchallenge administration of 20 mg/kg BCV rescued normal and immune-deficient mice partially reconstituted with T cells from lethality and significantly reduced viral loads in organs. All BCV-treated mice that survived infection were protected from rechallenge without additional treatment. In immune-deficient mice, BCV extended survival. The data show that BCV controls viral replication at the site of challenge and reduces viral dissemination to internal organs, thus providing a shield for the developing adaptive immunity that clears the host of virus and builds virus-specific immunological memory.
Collapse
|
17
|
Parker S, Crump R, Foster S, Hartzler H, Hembrador E, Lanier ER, Painter G, Schriewer J, Trost LC, Buller RM. Co-administration of the broad-spectrum antiviral, brincidofovir (CMX001), with smallpox vaccine does not compromise vaccine protection in mice challenged with ectromelia virus. Antiviral Res 2014; 111:42-52. [PMID: 25128688 PMCID: PMC9533899 DOI: 10.1016/j.antiviral.2014.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 12/02/2022]
Abstract
Natural orthopoxvirus outbreaks such as vaccinia, cowpox, cattlepox and buffalopox continue to cause morbidity in the human population. Monkeypox virus remains a significant agent of morbidity and mortality in Africa. Furthermore, monkeypox virus’s broad host-range and expanding environs make it of particular concern as an emerging human pathogen. Monkeypox virus and variola virus (the etiological agent of smallpox) are both potential agents of bioterrorism. The first line response to orthopoxvirus disease is through vaccination with first-generation and second-generation vaccines, such as Dryvax and ACAM2000. Although these vaccines provide excellent protection, their widespread use is impeded by the high level of adverse events associated with vaccination using live, attenuated virus. It is possible that vaccines could be used in combination with antiviral drugs to reduce the incidence and severity of vaccine-associated adverse events, or as a preventive in individuals with uncertain exposure status or contraindication to vaccination. We have used the intranasal mousepox (ectromelia) model to evaluate the efficacy of vaccination with Dryvax or ACAM2000 in conjunction with treatment using the broad spectrum antiviral, brincidofovir (BCV, CMX001). We found that co-treatment with BCV reduced the severity of vaccination-associated lesion development. Although the immune response to vaccination was quantifiably attenuated, vaccination combined with BCV treatment did not alter the development of full protective immunity, even when administered two days following ectromelia challenge. Studies with a non-replicating vaccine, ACAM3000 (MVA), confirmed that BCV’s mechanism of attenuating the immune response following vaccination with live virus was, as expected, by limiting viral replication and not through inhibition of the immune system. These studies suggest that, in the setting of post-exposure prophylaxis, co-administration of BCV with vaccination should be considered a first response to a smallpox emergency in subjects of uncertain exposure status or as a means of reduction of the incidence and severity of vaccine-associated adverse events.
Collapse
Affiliation(s)
- Scott Parker
- Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, United States
| | - Ryan Crump
- Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, United States
| | - Scott Foster
- Chimerix Inc., 2505 Meridian Parkway, Suite 340, Durham, NC 27713, United States
| | - Hollyce Hartzler
- Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, United States
| | - Ed Hembrador
- Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, United States
| | - E Randall Lanier
- Chimerix Inc., 2505 Meridian Parkway, Suite 340, Durham, NC 27713, United States
| | - George Painter
- Chimerix Inc., 2505 Meridian Parkway, Suite 340, Durham, NC 27713, United States
| | - Jill Schriewer
- Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, United States
| | - Lawrence C Trost
- Chimerix Inc., 2505 Meridian Parkway, Suite 340, Durham, NC 27713, United States
| | - R Mark Buller
- Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO 63104, United States.
| |
Collapse
|
18
|
Bissa M, Pacchioni SM, Zanotto C, De Giuli Morghen C, Illiano E, Granucci F, Zanoni I, Broggi A, Radaelli A. Systemically administered DNA and fowlpox recombinants expressing four vaccinia virus genes although immunogenic do not protect mice against the highly pathogenic IHD-J vaccinia strain. Virus Res 2013; 178:374-82. [PMID: 24050999 PMCID: PMC9533858 DOI: 10.1016/j.virusres.2013.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/05/2013] [Accepted: 09/09/2013] [Indexed: 11/30/2022]
Abstract
The first-generation smallpox vaccine was based on live vaccinia virus (VV) and it successfully eradicated the disease worldwide. Therefore, it was not administered any more after 1980, as smallpox no longer existed as a natural infection. However, emerging threats by terrorist organisations has prompted new programmes for second-generation vaccine development based on attenuated VV strains, which have been shown to cause rare but serious adverse events in immunocompromised patients. Considering the closely related animal poxviruses that might also be used as bioweapons, and the increasing number of unvaccinated young people and AIDS-affected immunocompromised subjects, a safer and more effective smallpox vaccine is still required. New avipoxvirus-based vectors should improve the safety of conventional vaccines, and protect from newly emerging zoonotic orthopoxvirus diseases and from the threat of deliberate release of variola or monkeypox virus in a bioterrorist attack. In this study, DNA and fowlpox recombinants expressing the L1R, A27L, A33R and B5R genes were constructed and evaluated in a pre-clinical trial in mouse, following six prime/boost immunisation regimens, to compare their immunogenicity and protective efficacy against a challenge with the lethal VV IHD-J strain. Although higher numbers of VV-specific IFNγ-producing T lymphocytes were observed in the protected mice, the cytotoxic T-lymphocyte response and the presence of neutralising antibodies did not always correlate with protection. In spite of previous successful results in mice, rabbits and monkeys, where SIV/HIV transgenes were expressed by the fowlpox vector, the immune response elicited by these recombinants was low, and most of the mice were not protected.
Collapse
Affiliation(s)
- Massimiliano Bissa
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Guimarães AP, Ramalho TC, França TCC. Preventing the return of smallpox: molecular modeling studies on thymidylate kinase fromVariola virus. J Biomol Struct Dyn 2013; 32:1601-12. [PMID: 23998201 PMCID: PMC9491126 DOI: 10.1080/07391102.2013.830578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Smallpox was one of the most devastating diseases in the human history and still represents a serious menace today due to its potential use by bioterrorists. Considering this threat and the non-existence of effective chemotherapy, we propose the enzyme thymidylate kinase from Variola virus (VarTMPK) as a potential target to the drug design against smallpox. We first built a homology model for VarTMPK and performed molecular docking studies on it in order to investigate the interactions with inhibitors of Vaccinia virus TMPK (VacTMPK). Subsequently, molecular dynamics (MD) simulations of these compounds inside VarTMPK and human TMPK (HssTMPK) were carried out in order to select the most promising and selective compounds as leads for the design of potential VarTMPK inhibitors. Results of the docking and MD simulations corroborated to each other, suggesting selectivity towards VarTMPK and, also, a good correlation with the experimental data.
Collapse
|
20
|
Townsend MB, Keckler MS, Patel N, Davies DH, Felgner P, Damon IK, Karem KL. Humoral immunity to smallpox vaccines and monkeypox virus challenge: proteomic assessment and clinical correlations. J Virol 2013; 87:900-11. [PMID: 23135728 PMCID: PMC3554095 DOI: 10.1128/jvi.02089-12] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/25/2012] [Indexed: 11/20/2022] Open
Abstract
Despite the eradication of smallpox, orthopoxviruses (OPV) remain public health concerns. Efforts to develop new therapeutics and vaccines for smallpox continue through their evaluation in animal models despite limited understanding of the specific correlates of protective immunity. Recent monkeypox virus challenge studies have established the black-tailed prairie dog (Cynomys ludovicianus) as a model of human systemic OPV infections. In this study, we assess the induction of humoral immunity in humans and prairie dogs receiving Dryvax, Acam2000, or Imvamune vaccine and characterize the proteomic profile of immune recognition using enzyme-linked immunosorbent assays (ELISA), neutralization assays, and protein microarrays. We confirm anticipated similarities of antigenic protein targets of smallpox vaccine-induced responses in humans and prairie dogs and identify several differences. Subsequent monkeypox virus intranasal infection of vaccinated prairie dogs resulted in a significant boost in humoral immunity characterized by a shift in reactivity of increased intensity to a broader range of OPV proteins. This work provides evidence of similarities between the vaccine responses in prairie dogs and humans that enhance the value of the prairie dog model system as an OPV vaccination model and offers novel findings that form a framework for examining the humoral immune response induced by systemic orthopoxvirus infection.
Collapse
Affiliation(s)
- M B Townsend
- Centers for Disease Control and Prevention, Division of High Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, Atlanta, GA, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Golden JW, Hooper JW. The strategic use of novel smallpox vaccines in the post-eradication world. Expert Rev Vaccines 2012; 10:1021-35. [PMID: 21806397 PMCID: PMC9491137 DOI: 10.1586/erv.11.46] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We still face a threat of orthopoxviruses in the form of biological weapons and emerging zoonoses. Therefore, there is a need to maintain a comprehensive defense strategy to counter the low-probability, high-impact threat of smallpox, as well as the ongoing threat of naturally occurring orthopoxvirus disease. The currently licensed live-virus smallpox vaccine ACAM2000 is effective, but associated with serious and even life-threatening adverse events. The health threat posed by this vaccine, and other previously licensed vaccines, has prevented many first responders, and even many in the military, from receiving a vaccine against smallpox. At the same time, global immunity produced during the smallpox eradication campaign is waning. Here, we review novel subunit/component vaccines and how they might play roles in unconventional strategies to defend against emerging orthopoxvirus diseases throughout the world and against smallpox used as a weapon of mass destruction.
Collapse
Affiliation(s)
- Joseph W Golden
- Department of Molecular Virology, Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | | |
Collapse
|
22
|
Hermanson G, Chun S, Felgner J, Tan X, Pablo J, Nakajima-Sasaki R, Molina DM, Felgner PL, Liang X, Davies DH. Measurement of antibody responses to Modified Vaccinia virus Ankara (MVA) and Dryvax(®) using proteome microarrays and development of recombinant protein ELISAs. Vaccine 2011; 30:614-25. [PMID: 22100890 DOI: 10.1016/j.vaccine.2011.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 10/27/2011] [Accepted: 11/06/2011] [Indexed: 01/14/2023]
Abstract
Modified Vaccinia virus Ankara (MVA) is an attenuated strain of vaccinia virus that is being considered as a safer alternative to replicating vaccinia vaccine strains such as Dryvax(®) and ACAM2000. Its excellent safety profile and large genome also make it an attractive vector for the delivery of heterologous genes from other pathogens. MVA was attenuated by prolonged passage through chick embryonic fibroblasts in vitro. In human and most mammalian cells, production of infectious progeny is aborted in the late stage of infection. Despite this, MVA provides high-level gene expression and is immunogenic in humans and other animals. A key issue for vaccine developers is the ability to be able to monitor an immune response to MVA in both vaccinia naïve and previously vaccinated individuals. To this end we have used antibody profiling by proteome microarray to compare profiles before and after MVA and Dryvax vaccination to identify candidate serodiagnostic antigens. Six antigens with diagnostic utility, comprising three membrane and three non-membrane proteins from the intracellular mature virion, were purified and evaluated in ELISAs. The membrane protein WR113/D8L provided the best sensitivity and specificity of the six antigens tested for monitoring both MVA and Dryvax vaccination, whereas the A-type inclusion protein homolog, WR148, provided the best discrimination. The ratio of responses to membrane protein WR132/A13L and core protein WR070/I1L also provided good discrimination between primary and secondary responses to Dryvax, whereas membrane protein WR101/H3L and virion assembly protein WR118/D13L together provided the best sensitivity for detecting antibody in previously vaccinated individuals. These data will aid the development novel MVA-based vaccines.
Collapse
|
23
|
Keckler MS, Carroll DS, Gallardo-Romero NF, Lash RR, Salzer JS, Weiss SL, Patel N, Clemmons CJ, Smith SK, Hutson CL, Karem KL, Damon IK. Establishment of the black-tailed prairie dog (Cynomys ludovicianus) as a novel animal model for comparing smallpox vaccines administered preexposure in both high- and low-dose monkeypox virus challenges. J Virol 2011; 85:7683-98. [PMID: 21632764 PMCID: PMC3147922 DOI: 10.1128/jvi.02174-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 05/21/2011] [Indexed: 11/20/2022] Open
Abstract
The 2003 monkeypox virus (MPXV) outbreak and subsequent laboratory studies demonstrated that the black-tailed prairie dog is susceptible to MPXV infection and that the ensuing rash illness is similar to human systemic orthopoxvirus (OPXV) infection, including a 7- to 9-day incubation period and, likely, in some cases a respiratory route of infection; these features distinguish this model from others. The need for safe and efficacious vaccines for OPVX in areas where it is endemic or epidemic is important to protect an increasingly OPXV-naïve population. In this study, we tested current and investigational smallpox vaccines for safety, induction of anti-OPXV antibodies, and protection against mortality and morbidity in two MPXV challenges. None of the smallpox vaccines caused illness in this model, and all vaccinated animals showed anti-OPXV antibody responses and neutralizing antibody. We tested vaccine efficacy by challenging the animals with 10(5) or 10(6) PFU Congo Basin MPXV 30 days postvaccination and evaluating morbidity and mortality. Our results demonstrated that vaccination with either Dryvax or Acambis2000 protected the animals from death with no rash illness. Vaccination with IMVAMUNE also protected the animals from death, albeit with (modified) rash illness. Based on the results of this study, we believe prairie dogs offer a novel and potentially useful small animal model for the safety and efficacy testing of smallpox vaccines in pre- and postexposure vaccine testing, which is important for public health planning.
Collapse
Affiliation(s)
- M S Keckler
- Centers for Disease Control and Prevention, Division of High-Consequence Pathogens and Pathology, Poxvirus and Rabies Branch, 1600 Clifton Road, Mailstop G-06, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gordon SN, Cecchinato V, Andresen V, Heraud JM, Hryniewicz A, Parks RW, Venzon D, Chung HK, Karpova T, McNally J, Silvera P, Reimann KA, Matsui H, Kanehara T, Shinmura Y, Yokote H, Franchini G. Smallpox vaccine safety is dependent on T cells and not B cells. J Infect Dis 2011; 203:1043-53. [PMID: 21450994 PMCID: PMC3068024 DOI: 10.1093/infdis/jiq162] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/03/2010] [Indexed: 11/13/2022] Open
Abstract
The licensed smallpox vaccine, ACAM2000, is a cell culture derivative of Dryvax. Both ACAM2000 and Dryvax are administered by skin scarification and can cause progressive vaccinia, with skin lesions that disseminate to distal sites. We have investigated the immunologic basis of the containment of vaccinia in the skin with the goal to identify safer vaccines for smallpox. Macaques were depleted systemically of T or B cells and vaccinated with either Dryvax or an attenuated vaccinia vaccine, LC16m8. B cell depletion did not affect the size of skin lesions induced by either vaccine. However, while depletion of both CD4(+) and CD8(+) T cells had no adverse effects on LC16m8-vaccinated animals, it caused progressive vaccinia in macaques immunized with Dryvax. As both Dryvax and LC16m8 vaccines protect healthy macaques from a lethal monkeypox intravenous challenge, our data identify LC16m8 as a safer and effective alternative to ACAM2000 and Dryvax vaccines for immunocompromised individuals.
Collapse
Affiliation(s)
| | | | | | - Jean-Michel Heraud
- World Health Organization-National Influenza Laboratory, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | | | | | | | - Tatiana Karpova
- Fluorescence Imaging Facility, Laboratory of Receptor Biology, Gene Expression and Metabolism
| | - James McNally
- National Cancer Institute, Bethesda, and Southern Research Institute, Frederick
| | - Peter Silvera
- National Cancer Institute, Bethesda, and Southern Research Institute, Frederick
| | - Keith A. Reimann
- Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Hajime Matsui
- The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), Kumamoto, Japan
| | - Tomomi Kanehara
- The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), Kumamoto, Japan
| | - Yasuhiko Shinmura
- The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), Kumamoto, Japan
| | - Hiroyuki Yokote
- The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), Kumamoto, Japan
| | | |
Collapse
|
25
|
Chen N, Bellone CJ, Schriewer J, Owens G, Fredrickson T, Parker S, Buller RML. Poxvirus interleukin-4 expression overcomes inherent resistance and vaccine-induced immunity: pathogenesis, prophylaxis, and antiviral therapy. Virology 2010; 409:328-37. [PMID: 21071055 DOI: 10.1016/j.virol.2010.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/14/2010] [Accepted: 10/12/2010] [Indexed: 10/18/2022]
Abstract
In 2001, Jackson et al. reported that murine IL-4 expression by a recombinant ectromelia virus caused enhanced morbidity and lethality in resistant C57BL/6 mice as well as overcame protective immune memory responses. To achieve a more thorough understanding of this phenomenon and to assess a variety of countermeasures, we constructed a series of ECTV recombinants encoding murine IL-4 under the control of promoters of different strengths and temporal regulation. We showed that the ECTV-IL-4 recombinant expressing the highest level of IL-4 was uniformly lethal for C57BL/6 mice even when previously immunized. The lethality of the ECTV-IL-4 recombinants resulted from virus-expressed IL-4 signaling through the IL-4 receptor but was not due to IL-4 toxicity. A number of treatment approaches were evaluated against the most virulent IL-4 encoding virus. The most efficacious therapy was a combination of two antiviral drugs (CMX001(®) and ST-246(®)) that have different mechanisms of action.
Collapse
Affiliation(s)
- Nanhai Chen
- Genelux Corporation, San Diego Science Center, 3030 Bunker Hill Street, Suite 310, San Diego, CA 92109, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Nalca A, Livingston VA, Garza NL, Zumbrun EE, Frick OM, Chapman JL, Hartings JM. Experimental infection of cynomolgus macaques (Macaca fascicularis) with aerosolized monkeypox virus. PLoS One 2010; 5:e12880. [PMID: 20862223 PMCID: PMC2942837 DOI: 10.1371/journal.pone.0012880] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 08/11/2010] [Indexed: 11/18/2022] Open
Abstract
Monkeypox virus (MPXV) infection in humans results in clinical symptoms very similar to ordinary smallpox. Aerosol is a route of secondary transmission for monkeypox, and a primary route of smallpox transmission in humans. Therefore, an animal model for aerosol exposure to MPXV is needed to test medical countermeasures. To characterize the pathogenesis in cynomolgus macaques (Macaca fascicularis), groups of macaques were exposed to four different doses of aerosolized MPXV. Blood was collected the day before, and every other day after exposure and assessed for complete blood count (CBC), clinical chemistry analysis, and quantitative PCR. Macaques showed mild anorexia, depression, and fever on day 6 post-exposure. Lymphadenopathy, which differentiates monkeypox from smallpox, was observed in exposed macaques around day 6 post-exposure. CBC and clinical chemistries showed abnormalities similar to human monkeypox cases. Whole blood and throat swab viral loads peaked around day 10, and in survivors, gradually decreased until day 28 post-exposure. Survival was not dose dependent. As such, doses of 4 × 10(4) PFU, 1 × 10(5) PFU, or 1 × 10(6) PFU resulted in lethality for 70% of the animals, whereas a dose of 4 × 10(5) PFU resulted in 85% lethality. Overall, cynomolgus macaques exposed to aerosolized MPXV develop a clinical disease that resembles that of human monkeypox. These findings provide a strong foundation for the use of aerosolized MPXV exposure of cynomolgus macaques as an animal model to test medical countermeasures against orthopoxviruses.
Collapse
Affiliation(s)
- Aysegul Nalca
- Center for Aerobiological Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Potent and broadly reactive HIV-2 neutralizing antibodies elicited by a vaccinia virus vector prime-C2V3C3 polypeptide boost immunization strategy. J Virol 2010; 84:12429-36. [PMID: 20844029 DOI: 10.1128/jvi.01102-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2) infection affects about 1 to 2 million individuals, the majority living in West Africa, Europe, and India. As for HIV-1, new strategies for the prevention of HIV-2 infection are needed. Our aim was to produce new vaccine immunogens that elicit the production of broadly reactive HIV-2 neutralizing antibodies (NAbs). Native and truncated envelope proteins from the reference HIV-2ALI isolate were expressed in vaccinia virus or in bacteria. This source isolate was used due to its unique phenotype combining CD4 independence and CCR5 usage. NAbs were not elicited in BALB/c mice by single immunization with a truncated and fully glycosylated envelope gp125 (gp125t) or a recombinant polypeptide comprising the C2, V3, and C3 envelope regions (rpC2-C3). A strong and broad NAb response was, however, elicited in mice primed with gp125t expressed in vaccinia virus and boosted with rpC2-C3. Serum from these animals potently neutralized (median 50% neutralizing titer, 3,200) six of six highly divergent primary HIV-2 isolates. Coreceptor usage and the V3 sequence of NAb-sensitive isolates were similar to that of the vaccinating immunogen (HIV-2ALI). In contrast, NAbs were not reactive on three X4 isolates that displayed major changes in V3 loop sequence and structure. Collectively, our findings demonstrate that broadly reactive HIV-2 NAbs can be elicited by using a vaccinia virus vector-prime/rpC2-C3-boost immunization strategy and suggest a potential relationship between escape to neutralization and cell tropism.
Collapse
|
28
|
Parker S, Siddiqui AM, Painter G, Schriewer J, Buller RM. Ectromelia virus infections of mice as a model to support the licensure of anti-orthopoxvirus therapeutics. Viruses 2010; 2:1918-1932. [PMID: 21994714 PMCID: PMC3185751 DOI: 10.3390/v2091918] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/30/2010] [Accepted: 08/31/2010] [Indexed: 12/02/2022] Open
Abstract
The absence of herd immunity to orthopoxviruses and the concern that variola or monkeypox viruses could be used for bioterroristic activities has stimulated the development of therapeutics and safer prophylactics. One major limitation in this process is the lack of accessible human orthopoxvirus infections for clinical efficacy trials; however, drug licensure can be based on orthopoxvirus animal challenge models as described in the "Animal Efficacy Rule". One such challenge model uses ectromelia virus, an orthopoxvirus, whose natural host is the mouse and is the etiological agent of mousepox. The genetic similarity of ectromelia virus to variola and monkeypox viruses, the common features of the resulting disease, and the convenience of the mouse as a laboratory animal underscores its utility in the study of orthopoxvirus pathogenesis and in the development of therapeutics and prophylactics. In this review we outline how mousepox has been used as a model for smallpox. We also discuss mousepox in the context of mouse strain, route of infection, infectious dose, disease progression, and recovery from infection.
Collapse
Affiliation(s)
- Scott Parker
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO, 63104, USA; E-Mails: (S.P.); (A.M.S.); (J.S.)
| | - Akbar M. Siddiqui
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO, 63104, USA; E-Mails: (S.P.); (A.M.S.); (J.S.)
| | - George Painter
- Chimerix Inc., 2505 Meridian Park Way, Suite 340, Durham, NC, 27713, USA; E-Mail:
| | - Jill Schriewer
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO, 63104, USA; E-Mails: (S.P.); (A.M.S.); (J.S.)
| | - R. Mark Buller
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, 1100 S. Grand Blvd., St. Louis, MO, 63104, USA; E-Mails: (S.P.); (A.M.S.); (J.S.)
| |
Collapse
|
29
|
Nalca A, Zumbrun EE. ACAM2000: the new smallpox vaccine for United States Strategic National Stockpile. DRUG DESIGN DEVELOPMENT AND THERAPY 2010; 4:71-9. [PMID: 20531961 PMCID: PMC2880337 DOI: 10.2147/dddt.s3687] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Smallpox was eradicated more than 30 years ago, but heightened concerns over bioterrorism have brought smallpox and smallpox vaccination back to the forefront. The previously licensed smallpox vaccine in the United States, Dryvax® (Wyeth Laboratories, Inc.), was highly effective, but the supply was insufficient to vaccinate the entire current US population. Additionally, Dryvax® had a questionable safety profile since it consisted of a pool of vaccinia virus strains with varying degrees of virulence, and was grown on the skin of calves, an outdated technique that poses an unnecessary risk of contamination. The US government has therefore recently supported development of an improved live vaccinia virus smallpox vaccine. This initiative has resulted in the development of ACAM2000™ (Acambis, Inc.™), a single plaque-purified vaccinia virus derivative of Dryvax®, aseptically propagated in cell culture. Preclinical and clinical trials reported in 2008 demonstrated that ACAM2000™ has comparable immunogenicity to that of Dryvax®, and causes a similar frequency of adverse events. Furthermore, like Dryvax®, ACAM2000™ vaccination has been shown by careful cardiac screening to result in an unexpectedly high rate of myocarditis and pericarditis. ACAM2000™ received US Food and Drug Administration (FDA) approval in August 2007, and replaced Dryvax® for all smallpox vaccinations in February 2008. Currently, over 200 million doses of ACAM2000™ have been produced for the US Strategic National Stockpile. This review of ACAM2000™ addresses the production, characterization, clinical trials, and adverse events associated with this new smallpox vaccine.
Collapse
Affiliation(s)
- Aysegul Nalca
- Center for Aerobiological Sciences, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | | |
Collapse
|