1
|
Ardila MM, Cavadias-Barrozo A, Benavides-Céspedes I, Sarmiento-Roa JD, Mendoza JA, Muñoz-Leal S, Parra-Henao G, Herrera L. Triatomine Fauna and Natural Infection by Trypanosoma (Schizotrypanum) cruzi (Kinetoplastea: Trypanosomatidae) in the Caribbean Region of Panama, Colombia, and Venezuela: A Systematic Review. NEOTROPICAL ENTOMOLOGY 2025; 54:46. [PMID: 40106199 DOI: 10.1007/s13744-025-01254-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/31/2025] [Indexed: 03/22/2025]
Abstract
Chagas disease (CD) is a zoonosis caused by the hemoflagellate Trypanosoma cruzi, which is transmitted by insects of the subfamily Triatominae. Studies to identify the vectors involved in the transmission of T. cruzi have been conducted in the Caribbean regions of Colombia, Venezuela, and Panama. However, retrospective studies and comprehensive reviews covering these three countries are still lacking, limiting our understanding of this issue. This study used the PRISMA method to conduct a systematic review of studies on the triatomine fauna and its natural infection by T. cruzi in the Caribbean regions of Panama, Colombia, and Venezuela, using descriptors such as "Chagas disease," "Triatominae," and "Trypanosoma cruzi" applied individually for each state, department, or province of the three countries. A total of 3477 studies were identified through a search of the PubMed, Scielo, and ScienceDirect databases. After the selection process, 48 articles were included, with six additional articles obtained through indirect search methods. A total of 18,344 triatomines belonging to 14 species of seven genera were identified from these 48 articles. The most common species was Rhodnius pallescens (Barber) with 7540 individuals (41.10%). Among the total sample, 5158 triatomines (28.28%) tested positive for T. cruzi infection. Five discrete typing units (DTUs) were detected, TcI, TcII, TcIII, TcIV, and TcV, with TcI being more prevalent and widely distributed in the three countries. This study contributed significantly to the identification of knowledge gaps and priority areas for future epidemiologic research.
Collapse
Affiliation(s)
- Marlon Mauricio Ardila
- Departamento de Patología y Medicina Preventiva, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile.
| | - Adriano Cavadias-Barrozo
- Semillero de Investigación en Microbiología y Parasitología (SIMIPA), Programa de Biología, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia, Colombia
| | - Iván Benavides-Céspedes
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Jose D Sarmiento-Roa
- Semillero de Investigación de Artrópodos Neoptera, Programa de Biología, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia, Colombia
- Grupo de Investigación de Producción y Salud en Medicina Veterinaria y Zootecnia (PROSAVEZ), Facultad de Ciencias Veterinarias y Zootecnia, Fundación Universitaria San Martín, Puerto Colombia, Colombia
| | - Jairo Alfonso Mendoza
- Dipartimento Di Medicina Veterinaria, Università Degli Studi Di Bari Aldo Moro, Bari, Italy
| | - Sebastián Muñoz-Leal
- Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Gabriel Parra-Henao
- Centro de Investigación en Salud Para El Trópico (CIST), Facultad de Medicina, Universidad Cooperativa de Colombia, Santa Marta, Colombia
| | - Leidi Herrera
- Instituto de Zoología y Ecología Tropical, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela.
- Instituto de Investigaciones en Ciencias de La Salud, Universidad Nacional de Asunción, San Lorenzo, Paraguay.
| |
Collapse
|
2
|
Cruz-Saavedra L, Ospina C, Patiño LH, Villar JC, Sáenz Pérez LD, Cantillo-Barraza O, Jaimes-Dueñez J, Ballesteros N, Cáceres T, Vallejo G, Ramírez JD. Enhancing Trypanosomatid Identification and Genotyping with Oxford Nanopore Sequencing: Development and Validation of an 18S rRNA Amplicon-Based Method. J Mol Diagn 2024; 26:323-336. [PMID: 38360211 DOI: 10.1016/j.jmoldx.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Trypanosomatids, including Trypanosoma and Leishmania species, present significant medical and veterinary challenges, causing substantial economic losses, health complications, and even fatalities. Diagnosing and genotyping these species and their genotypes is often complex, involving multiple steps. This study aimed to develop an amplicon-based sequencing (ABS) method using Oxford Nanopore long-read sequencing to enhance Trypanosomatid detection and genotyping. The 18S rDNA gene was targeted for its inter-species conservation. The Trypanosomatid-ABS method effectively distinguished between 11 Trypanosoma species (including Trypanosoma evansi, Trypanosoma theileri, Trypanosoma vivax, and Trypanosoma rangeli) and 6 Trypanosoma cruzi discrete typing units (TcI to TcVI and TcBat), showing strong concordance with conventional methods (κ index of 0.729, P < 0.001). It detected co-infections between Trypanosomatid genera and T. cruzi, with a limit of detection of one parasite per mL. The method was successfully applied to human, animal, and triatomine samples. Notably, TcI predominated in chronic Chagas samples, whereas TcII and TcIV were found in the acute stage. Triatomine vectors exhibited diverse Trypanosomatid infections, with Triatoma dimidiata mainly infected with TcI and occasional TcBat co-infections, and Rhodnius prolixus showing TcI and TcII infections, along with T. rangeli co-infections and mixed TcII infections. Animals were infected with T. vivax, T. theileri, and T. evansi. The ABS method's high resolution, sensitivity, and accuracy make it a valuable tool for understanding Trypanosomatid dynamics, enhancing disease control strategies, and enabling targeted interventions.
Collapse
Affiliation(s)
- Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Ospina
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan C Villar
- Fundación Cardioinfantil-Instituto de Cardiología, Bogotá, Colombia
| | | | | | - Jeiczon Jaimes-Dueñez
- Research Group in Animal Sciences-GRICA, Faculty of Veterinary Medicine and Zootechnics, Universidad Cooperativa de Colombia (UCC), Bucaramanga, Colombia
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Tatiana Cáceres
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Gustavo Vallejo
- Tropical Parasitology Research Laboratory, Faculty of Sciences, Universidad del Tolima, Ibagué, Colombia
| | - Juan D Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
3
|
Durães-Oliveira J, Palma-Marques J, Moreno C, Rodrigues A, Monteiro M, Alexandre-Pires G, da Fonseca IP, Santos-Gomes G. Chagas Disease: A Silent Threat for Dogs and Humans. Int J Mol Sci 2024; 25:3840. [PMID: 38612650 PMCID: PMC11011309 DOI: 10.3390/ijms25073840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Chagas disease (CD) is a vector-borne Neglected Zoonotic Disease (NZD) caused by a flagellate protozoan, Trypanosoma cruzi, that affects various mammalian species across America, including humans and domestic animals. However, due to an increase in population movements and new routes of transmission, T. cruzi infection is presently considered a worldwide health concern, no longer restricted to endemic countries. Dogs play a major role in the domestic cycle by acting very efficiently as reservoirs and allowing the perpetuation of parasite transmission in endemic areas. Despite the significant progress made in recent years, still there is no vaccine against human and animal disease, there are few drugs available for the treatment of human CD, and there is no standard protocol for the treatment of canine CD. In this review, we highlight human and canine Chagas Disease in its different dimensions and interconnections. Dogs, which are considered to be the most important peridomestic reservoir and sentinel for the transmission of T. cruzi infection in a community, develop CD that is clinically similar to human CD. Therefore, an integrative approach, based on the One Health concept, bringing together the advances in genomics, immunology, and epidemiology can lead to the effective development of vaccines, new treatments, and innovative control strategies to tackle CD.
Collapse
Affiliation(s)
- João Durães-Oliveira
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Joana Palma-Marques
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Cláudia Moreno
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Armanda Rodrigues
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| | - Marta Monteiro
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
- Centre for Interdisciplinary Research in Animal Health, CIISA, Faculty of Veterinary Medicine, FMV, University of Lisbon, ULisboa, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Graça Alexandre-Pires
- Centre for Interdisciplinary Research in Animal Health, CIISA, Faculty of Veterinary Medicine, FMV, University of Lisbon, ULisboa, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Isabel Pereira da Fonseca
- Centre for Interdisciplinary Research in Animal Health, CIISA, Faculty of Veterinary Medicine, FMV, University of Lisbon, ULisboa, 1649-004 Lisbon, Portugal; (G.A.-P.); (I.P.d.F.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Gabriela Santos-Gomes
- Global Health and Tropical Medicine, GHTM, Associate Laboratory in Translation and Innovation Towards Global Health, LA-REAL, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal; (J.D.-O.); (G.S.-G.)
| |
Collapse
|
4
|
Hoyos Sanchez MC, Ospina Zapata HS, Suarez BD, Ospina C, Barbosa HJ, Carranza Martinez JC, Vallejo GA, Urrea Montes D, Duitama J. A phased genome assembly of a Colombian Trypanosoma cruzi TcI strain and the evolution of gene families. Sci Rep 2024; 14:2054. [PMID: 38267502 PMCID: PMC10808112 DOI: 10.1038/s41598-024-52449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024] Open
Abstract
Chagas is an endemic disease in tropical regions of Latin America, caused by the parasite Trypanosoma cruzi. High intraspecies variability and genome complexity have been challenges to assemble high quality genomes needed for studies in evolution, population genomics, diagnosis and drug development. Here we present a chromosome-level phased assembly of a TcI T. cruzi strain (Dm25). While 29 chromosomes show a large collinearity with the assembly of the Brazil A4 strain, three chromosomes show both large heterozygosity and large divergence, compared to previous assemblies of TcI T. cruzi strains. Nucleotide and protein evolution statistics indicate that T. cruzi Marinkellei separated before the diversification of T. cruzi in the known DTUs. Interchromosomal paralogs of dispersed gene families and histones appeared before but at the same time have a more strict purifying selection, compared to other repeat families. Previously unreported large tandem arrays of protein kinases and histones were identified in this assembly. Over one million variants obtained from Illumina reads aligned to the primary assembly clearly separate the main DTUs. We expect that this new assembly will be a valuable resource for further studies on evolution and functional genomics of Trypanosomatids.
Collapse
Affiliation(s)
- Maria Camila Hoyos Sanchez
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, 79106, USA
| | | | - Brayhan Dario Suarez
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Carlos Ospina
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Hamilton Julian Barbosa
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | | | - Gustavo Adolfo Vallejo
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Daniel Urrea Montes
- Laboratorio de Investigaciones en Parasitología Tropical (LIPT), Universidad del Tolima, Ibagué, Colombia
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
5
|
Zingales B, Macedo AM. Fifteen Years after the Definition of Trypanosoma cruzi DTUs: What Have We Learned? Life (Basel) 2023; 13:2339. [PMID: 38137940 PMCID: PMC10744745 DOI: 10.3390/life13122339] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Trypanosoma cruzi, the protozoan causative of Chagas disease (ChD), exhibits striking genetic and phenotypic intraspecific diversity, along with ecoepidemiological complexity. Human-pathogen interactions lead to distinct clinical presentations of ChD. In 2009, an international consensus classified T. cruzi strains into six discrete typing units (DTUs), TcI to TcVI, later including TcBat, and proposed reproducible genotyping schemes for DTU identification. This article aims to review the impact of classifying T. cruzi strains into DTUs on our understanding of biological, ecoepidemiological, and pathogenic aspects of T. cruzi. We will explore the likely origin of DTUs and the intrinsic characteristics of each group of strains concerning genome organization, genomics, and susceptibility to drugs used in ChD treatment. We will also provide an overview of the association of DTUs with mammalian reservoirs, and summarize the geographic distribution, and the clinical implications, of prevalent specific DTUs in ChD patients. Throughout this review, we will emphasize the crucial roles of both parasite and human genetics in defining ChD pathogenesis and chemotherapy outcome.
Collapse
Affiliation(s)
- Bianca Zingales
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Andréa M. Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| |
Collapse
|
6
|
Osorio-Méndez JF, Téllez GA, Zapata-López D, Echeverry S, Castaño JC. Sequence analysis of SWEET transporters from trypanosomatids and evaluation of its expression in Trypanosoma cruzi. Exp Parasitol 2023; 248:108496. [PMID: 36878387 DOI: 10.1016/j.exppara.2023.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/31/2023] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Trypanosoma cruzi is an obligate parasite that uses glucose as one of the main resources to maintain its survival and proliferation. In eukaryotic cells glucose transport across membranes is mediated by facilitated transport through a variety of transporters. Herein, genes from the recently described SWEET family of carbohydrate transporters were identified in trypanosomatid parasites, including the medically important species T. cruzi and Leishmania spp. The identified genes have sequences with the typical attributes of known SWEET transporters. The expression of TcSWEET, the gene for the SWEET transporter found in the T. cruzi genome, was evidenced by immunohistochemistry using a polyclonal serum raised against peptides selected from the deduced TcSWEET protein sequence. In Western blot analysis, this α-TcSWEET serum detected proteins within the theoretical molecular mass for TcSWEET (25.8 kDa) in total epimastigote lysates, suggesting its expression at this parasite stage. Additionally, this serum stained epimastigotes at localizations consistent with the cell body and the flagellum. Together, these data suggests that SWEET transporters may contribute to glucose transport in trypanosomatid parasites.
Collapse
Affiliation(s)
- Juan Felipe Osorio-Méndez
- Laboratorio de Microbiología y Biología Molecular, Programa de Medicina, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia, Colombia.
| | - Germán Alberto Téllez
- Laboratorio de Microbiología y Biología Molecular, Programa de Medicina, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia, Colombia
| | - Daniela Zapata-López
- Laboratorio de Microbiología y Biología Molecular, Programa de Medicina, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia, Colombia
| | - Sebastián Echeverry
- Laboratorio de Microbiología y Biología Molecular, Programa de Medicina, Corporación Universitaria Empresarial Alexander von Humboldt, Armenia, Colombia
| | - Jhon Carlos Castaño
- Grupo de Inmunología Molecular (Gymol), Centro de Investigaciones Biomédicas, Universidad del Quindío, Armenia, Quindío, Colombia
| |
Collapse
|
7
|
Cruz-Saavedra L, Schwabl P, Vallejo GA, Carranza JC, Muñoz M, Patino LH, Paniz-Mondolfi A, Llewellyn MS, Ramírez JD. Genome plasticity driven by aneuploidy and loss of heterozygosity in Trypanosoma cruzi. Microb Genom 2022; 8. [PMID: 35748878 PMCID: PMC9455712 DOI: 10.1099/mgen.0.000843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma cruzi the causative agent of Chagas disease shows a marked genetic diversity and divided into at least six Discrete Typing Units (DTUs). High intra genetic variability has been observed in the TcI DTU, the most widely distributed DTU, where patterns of genomic diversity can provide information on ecological and evolutionary processes driving parasite population structure and genome organization. Chromosomal aneuploidies and rearrangements across multigene families represent an evidence of T. cruzi genome plasticity. We explored genomic diversity among 18 Colombian T. cruzi I clones and 15 T. cruzi I South American strains. Our results confirm high genomic variability, heterozygosity and presence of a clade compatible with the TcIdom genotype, described for strains from humans in Colombia and Venezuela. TcI showed high structural plasticity across the geographical region studied. Differential events of whole and segmental aneuploidy (SA) along chromosomes even between clones from the same strain were found and corroborated by the depth and allelic frequency. We detected loss of heterozygosity (LOH) events in different chromosomes, however, the size and location of segments under LOH varied between clones. Genes adjacent to breakpoints were evaluated, and retrotransposon hot spot genes flanked the beginning of segmental aneuploidies. Our results suggest that T. cruzi genomes, like those of Leishmania, may have a highly unstable structure and there is now an urgent need to design experiments to explore any potential adaptive role for the plasticity observed.
Collapse
Affiliation(s)
- Lissa Cruz-Saavedra
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Philipp Schwabl
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Gustavo A Vallejo
- Laboratorio de Investigación en Parasitología Tropical, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Julio C Carranza
- Laboratorio de Investigación en Parasitología Tropical, Facultad de Ciencias, Universidad del Tolima, Ibagué, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Luz Helena Patino
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Martin S Llewellyn
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
8
|
Nakamura IB, Miguel DC, Bruscato A, Pereira MB, Campiolo D, de Almeida EA, Peloso EDF, Gadelha FR. Biological characterization of Trypanosoma cruzi epimastigotes derived from trypomastigotes isolated from Brazilian chagasic patients. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100110. [PMID: 35199071 PMCID: PMC8851099 DOI: 10.1016/j.crmicr.2022.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
T. cruzi TcII isolates from chagasic patients have distinct biological parameters. Isolates were more glucose-dependent than long-term cultivated Y strain parasites. Significant differences were observed on complex II and IV-supported respiration.
Chagas disease (CD), caused by Trypanosoma cruzi, occurs in several countries in Latin America and non-endemic countries. Heterogeneity among T. cruzi population has been the Achilles’ heel to find a better treatment for CD. In this study, we characterized the biochemical parameters and mitochondrial bioenergetics of epimastigotes differentiated from eight T. cruzi isolates (I1-I8) obtained from Brazilian CD patients. Molecular analysis of parasites DTUs grouped all of them as TcII. The profile of the growth curves in axenic cultures was distinct among them, except for I1 and I3 and I2 and I4. Doubling times, growth rates, cell body length, and resistance to benznidazole were also significantly different among them. All the isolates were more glucose-dependent than other T. cruzi strains adapted to grow in axenic culture. Mitochondrial bioenergetics analysis showed that each isolate behaved differently regarding oxygen consumption rates in non-permeabilized and in digitonin-permeabilized cells in the presence of a complex II-linked substrate. When complex IV-linked respiratory chain substrate was used to provide electrons to the mitochondrial respiratory chain (MRC), similarity among the isolates was higher. Our findings show that TcII epimastigotes derived from patients’ trypomastigotes displayed their own characteristics in vitro, highlighting the intra-TcII diversity, especially regarding the functionality of mitochondrial respiratory complexes II and IV. Understanding T. cruzi intraspecific biological features help us to move a step further on our comprehension regarding parasite's survival and adaptability offering clues to improve the development of new therapies for CD.
Collapse
Affiliation(s)
- Isabella Bagni Nakamura
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, UNICAMP, Campinas, São Paulo, 13083-862, Brazil
| | - Danilo Ciccone Miguel
- Departamento de Biologia Animal, Instituto de Biologia, UNICAMP, Campinas, São Paulo, 13083-862, Brazil
| | - Andressa Bruscato
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, UNICAMP, Campinas, São Paulo, 13083-862, Brazil
| | - Mariane Barroso Pereira
- Departamento de Clínica Médica, Faculdade de Ciências Médicas, UNICAMP, Campinas, São Paulo, 13083-894, Brazil
| | - Dimas Campiolo
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, UNICAMP, Campinas, São Paulo, 13083-862, Brazil
| | - Eros Antônio de Almeida
- Departamento de Clínica Médica, Faculdade de Ciências Médicas, UNICAMP, Campinas, São Paulo, 13083-894, Brazil
| | | | - Fernanda Ramos Gadelha
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, UNICAMP, Campinas, São Paulo, 13083-862, Brazil
- Corresponding author.
| |
Collapse
|
9
|
Cantillo-Barraza O, Torres J, Hernández C, Romero Y, Zuluaga S, Correa-Cárdenas CA, Herrera G, Rodríguez O, Alvarado MT, Ramírez JD, Méndez C. The potential risk of enzootic Trypanosoma cruzi transmission inside four training and re-training military battalions (BITER) in Colombia. Parasit Vectors 2021; 14:519. [PMID: 34625109 PMCID: PMC8501693 DOI: 10.1186/s13071-021-05018-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Colombia's National Army is one of the largest military institutions in the country based on the number of serving members and its presence throughout the country. There have been reports of cases of acute or chronic cases of Chagas disease among active military personnel. These may be the result of military-associated activities performed in jungles and other endemic areas or the consequence of exposure to Trypanosoma cruzi inside military establishments/facilities located in endemic areas. The aim of the present study was to describe the circulation of T. cruzi inside facilities housing four training and re-training battalions [Battalions of Instruction, Training en Re-training (BITERs)] located in municipalities with historical reports of triatomine bugs and Chagas disease cases. An entomological and faunal survey of domestic and sylvatic environments was conducted inside each of these military facilities. METHODS Infection in working and stray dogs present in each BITER location was determined using serological and molecular tools, and T. cruzi in mammal and triatomine bug samples was determined by PCR assay. The PCR products of the vertebrate 12S rRNA gene were also obtained and subjected to Sanger sequencing to identify blood-feeding sources. Finally, we performed a geospatial analysis to evaluate the coexistence of infected triatomines and mammals with the military personal inside of each BITER installation. RESULTS In total, 86 specimens were collected: 82 Rhodnius pallescens, two Rhodnius prolixus, one Triatoma dimidiata and one Triatoma maculata. The overall T. cruzi infection rate for R. pallescens and R. prolixus was 56.1 and 100% respectively, while T. dimidiata and T. maculata were not infected. Eight feeding sources were found for the infected triatomines, with opossum and humans being the most frequent sources of feeding (85.7%). Infection was most common in the common opossum Didelphis marsupialis, with infection levels of 77.7%. Sylvatic TcI was the most frequent genotype, found in 80% of triatomines and 75% of D. marsupialis. Of the samples collected from dogs (n = 52), five (9.6%; 95% confidence interval: 3.20-21.03) were seropositive based on two independent tests. Four of these dogs were creole and one was a working dog. The spatial analysis revealed a sympatry between infected vectors and mammals with the military population. CONCLUSIONS We have shown a potential risk of spillover of sylvatic T. cruzi transmission to humans by oral and vectorial transmission in two BITER installations in Colombia. The results indicate that installations where 100,000 active military personnel carry out training activities should be prioritized for epidemiological surveillance of Chagas disease.
Collapse
Affiliation(s)
- Omar Cantillo-Barraza
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia E Investigación, Dirección de Sanidad Ejército, Bogotaá, Colombia
| | - Jeffer Torres
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia E Investigación, Dirección de Sanidad Ejército, Bogotaá, Colombia
| | - Carolina Hernández
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Centro de Tecnología en Salud (CETESA), Innovaseq SAS, Bogotá, Colombia
| | - Yanira Romero
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia E Investigación, Dirección de Sanidad Ejército, Bogotaá, Colombia
| | - Sara Zuluaga
- Grupo Biología Y Control de Enfermedades Infecciosas (BCEI), Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Camilo A Correa-Cárdenas
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia E Investigación, Dirección de Sanidad Ejército, Bogotaá, Colombia
| | - Giovanny Herrera
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Omaira Rodríguez
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia E Investigación, Dirección de Sanidad Ejército, Bogotaá, Colombia
| | - María Teresa Alvarado
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia E Investigación, Dirección de Sanidad Ejército, Bogotaá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Claudia Méndez
- Grupo de Investigación en Enfermedades Tropicales del Ejército (GINETEJ), Laboratorio de Referencia E Investigación, Dirección de Sanidad Ejército, Bogotaá, Colombia.
| |
Collapse
|
10
|
Arias-Giraldo LM, Muñoz M, Hernández C, Herrera G, Velásquez-Ortiz N, Cantillo-Barraza O, Urbano P, Ramírez JD. Species-dependent variation of the gut bacterial communities across Trypanosoma cruzi insect vectors. PLoS One 2020; 15:e0240916. [PMID: 33180772 PMCID: PMC7660481 DOI: 10.1371/journal.pone.0240916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 10/05/2020] [Indexed: 11/21/2022] Open
Abstract
Triatomines (Hemiptera: Reduviidae) are the insect vectors of Trypanosoma cruzi, the causative agent of Chagas disease. The gut bacterial communities affect the development of T. cruzi inside the vector, making the characterization of its composition important in the understanding of infection development. We collected 54 triatomine bugs corresponding to four genera in different departments of Colombia. DNA extraction and PCR were performed to evaluate T. cruzi presence and to determine the discrete typing unit (DTU) of the parasite. PCR products of the bacterial 16S rRNA gene were pooled and sequenced. Resulting reads were denoised and QIIME 2 was used for the identification of amplicon sequence variants (ASVs). Diversity (alpha and beta diversity) and richness analyses, Circos plots, and principal component analysis (PCA) were also performed. The overall T. cruzi infection frequency was 75.9%, with TcI being the predominant DTU. Approximately 500,000 sequences were analyzed and 27 bacterial phyla were identified. The most abundant phyla were Proteobacteria (33.9%), Actinobacteria (32.4%), Firmicutes (19.6%), and Bacteroidetes (7.6%), which together accounted for over 90% of the gut communities identified in this study. Genera were identified for these main bacterial phyla, revealing the presence of important bacteria such as Rhodococcus, Serratia, and Wolbachia. The composition of bacterial phyla in the gut of the insects was significantly different between triatomine species, whereas no significant difference was seen between the state of T. cruzi infection. We suggest further investigation with the evaluation of additional variables and a larger sample size. To our knowledge, this study is the first characterization of the gut bacterial structure of the main triatomine genera in Colombia.
Collapse
Affiliation(s)
- Luisa M Arias-Giraldo
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carolina Hernández
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Giovanny Herrera
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Natalia Velásquez-Ortiz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Omar Cantillo-Barraza
- Grupo de Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Medellín, Colombia
| | - Plutarco Urbano
- Grupo de Investigaciones Biológicas de la Orinoquia, Fundación Universidad del Trópico Americano (Unitropico), Yopal, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
11
|
Jaimes-Dueñez J, Jiménez-Leaño ÁP, Esteban-Mendoza M, Moreno-Salcedo LA, Triana-Chávez O, Cantillo-Barraza O. Epidemiological and clinical characteristics of Trypanosoma cruzi infection in dogs (Canis lupus familiaris) from a Chagas Disease-Endemic Urban Area in Colombia. Prev Vet Med 2020; 182:105093. [PMID: 32712412 DOI: 10.1016/j.prevetmed.2020.105093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 11/28/2022]
Abstract
In the last few years, an unusual increase in the number of acute Chagas disease outbreaks, presumably due to oral transmission, has been reported in urban areas in Santander, Colombia. Given the importance of dogs (Canis lupus familiaris) as reservoir hosts and sentinels of T. cruzi infection across different regions of America, we carried out a serological and molecular survey on T. cruzi infection in 215 dogs from the metropolitan area of Bucaramanga, Santander. Serological detection was carried out using enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence antibody test (IFAT), and indirect hemagglutination assay (IHA), while molecular detection was done using a nested PCR (nPCR), targeting the microsatellite region of T. cruzi nuclear DNA. Animals were defined as seropositive when at least two of the three serological tests were positive, and only these animals were evaluated with the nPCR. To discriminate DTU TcI from other DTUs, a multiplex PCR was performed in the T. cruzi-positive samples. Additionally, clinical and hematological traits were evaluated in these hosts. The dog sera showed a seropositivity rate of 27.9 % (60/215), of which 43.3 % (26/60) were positive for nPCR. Statistical analysis indicated that T. cruzi seropositive in dogs was associated with specific socioeconomic sectors and a lack of garbage collection in these municipalities. Hematological analyses showed that T. cruzi infection was associated with anemia and platelet alterations but not with alterations of aspartate aminotransferase (ASAT) and creatine kinase myocardial band (CK-MB). The high seroprevalence of infection and active circulation of T. cruzi I (TcI) in dogs reflect the risk of infection to humans in this area, which should be taken into consideration when Chagas disease control programs are implemented. In addition, T. cruzi infection may take a toll on dog health, which should be considered during dog care and management.
Collapse
Affiliation(s)
- Jeiczon Jaimes-Dueñez
- Grupo de Investigación en Ciencias Animales GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia UCC, Bucaramanga, Colombia; Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia.
| | - Ángela Patricia Jiménez-Leaño
- Grupo de Investigación en Ciencias Animales GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia UCC, Bucaramanga, Colombia
| | - Maria Esteban-Mendoza
- Grupo de Investigación en Ciencias Animales GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia UCC, Bucaramanga, Colombia
| | - Lucas Andres Moreno-Salcedo
- Grupo de Investigación en Ciencias Animales GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia UCC, Bucaramanga, Colombia
| | - Omar Triana-Chávez
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | - Omar Cantillo-Barraza
- Grupo Biología y Control de Enfermedades Infecciosas-BCEI, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
12
|
Detection of Trypanosoma cruzi strains circulating in Córdoba department (Colombia) isolated from triatomines (Hemiptera: Reduviidae) collected by the community. ACTA ACUST UNITED AC 2019; 39:265-277. [PMID: 31529814 DOI: 10.7705/biomedica.v39i2.3973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Indexed: 11/21/2022]
Abstract
INTRODUCTION From 2011 to 2016, 24 cases of Chagas disease were reported in Córdoba according to the national public health surveillance system (Sistema Nacional de Vigilancia en Salud Pública, Sivigila), but the information regarding Trypanosoma cruzi circulating strains and infection rates are unknown. OBJECTIVES To establish the triatomine species with which people come in contact and recognize as Chagas disease vectors, as well as to assess the infection with trypanosomes and make an exploratory approach to host feeding preferences with the participation of the local community. MATERIALS AND METHODS Triatomines sampling was conducted in 12 municipalities between 2011 and 2016; T. cruzi infection was established by k-PCR, SAT-PCR, while strain genotyping was done by mini-exon and SL-IR (spliced-leader intergenic region) sequence characterization. We also screened for blood sources. RESULTS Local community members collected the majority of triatomines and we identified three species: Rhodnius pallescens, Panstrongylus geniculatus, and Eratyrus cuspidatus. The overall T. cruzi infection rate in collected triatomines was 66.6% and we detected the TcIDOM and TcI sylvatic strains. Community-based insect collection allowed reporting the presence of P. geniculatus in two new disperse rural settlements, T. cruzi infection of P. geniculatus in Córdoba, and the first report of triatomines infected with T. cruzi in Montería municipality. CONCLUSIONS These results revealed the presence of triatomines infected with T. cruzi inside dwellings in five municipalities of Córdoba. The dominant circulating T. cruzi strain was TcIDOM, a genotype associated with human Chagas disease and cardiomyopathies in Colombia. Our results highlight the importance of local community participation in entomological surveillance tasks.
Collapse
|
13
|
Silva CSD, Carbajal-de-la-Fuente AL, Almeida CE, Gonçalves TCM, Santos-Mallet JRD. Morphobiological, morphometric and ultrastructural characterization of sylvatic Trypanosoma cruzi isolates from Rio de Janeiro state, Brazil. BRAZ J BIOL 2019; 79:294-303. [DOI: 10.1590/1519-6984.181719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/17/2017] [Indexed: 11/22/2022] Open
Abstract
Abstract Triatoma vitticeps is a triatomine with geographic distribution restrict to Brazil, which exhibits high prevalence of Trypanosoma cruzi natural infection. Of special epidemiologic concern, this species often invades households in the states of Rio de Janeiro, Minas Gerais and Espírito Santo. The objective of this study was to evaluate morphological and ultrastructural parameters on three T. cruzi isolates obtained from wild T. vitticeps specimens. The growth and cell differentiation of the parasite was evaluated through epimastigote and trypomastigote forms obtained in the growth curves for three distinct isolates. The maximum growth showed differences at the 20th day of the curve. Our in vitro results show a heterogeneity, regarding these features for samples cultivated under the same conditions. Morphometric analyzes based on the shape of epimastigotes and trypomastigotes corroborated such differentiation. These results highlight the need of better understanding the meaning of this diversity under an eco-epidemiological perspective.
Collapse
Affiliation(s)
- C. Santos da Silva
- Fundação Oswaldo Cruz, Brasil; Universidade Federal Rural do Rio de Janeiro, Brasil
| | | | | | | | | |
Collapse
|
14
|
Kaufer A, Ellis J, Stark D, Barratt J. The evolution of trypanosomatid taxonomy. Parasit Vectors 2017; 10:287. [PMID: 28595622 PMCID: PMC5463341 DOI: 10.1186/s13071-017-2204-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022] Open
Abstract
Trypanosomatids are protozoan parasites of the class Kinetoplastida predominately restricted to invertebrate hosts (i.e. possess a monoxenous life-cycle). However, several genera are pathogenic to humans, animals and plants, and have an invertebrate vector that facilitates their transmission (i.e. possess a dixenous life-cycle). Phytomonas is one dixenous genus that includes several plant pathogens transmitted by phytophagous insects. Trypanosoma and Leishmania are dixenous genera that infect vertebrates, including humans, and are transmitted by hematophagous invertebrates. Traditionally, monoxenous trypanosomatids such as Leptomonas were distinguished from morphologically similar dixenous species based on their restriction to an invertebrate host. Nonetheless, this criterion is somewhat flawed as exemplified by Leptomonas seymouri which reportedly infects vertebrates opportunistically. Similarly, Novymonas and Zelonia are presumably monoxenous genera yet sit comfortably in the dixenous clade occupied by Leishmania. The isolation of Leishmania macropodum from a biting midge (Forcipomyia spp.) rather than a phlebotomine sand fly calls into question the exclusivity of the Leishmania-sand fly relationship, and its suitability for defining the Leishmania genus. It is now accepted that classic genus-defining characteristics based on parasite morphology and host range are insufficient to form the sole basis of trypanosomatid taxonomy as this has led to several instances of paraphyly. While improvements have been made, resolution of evolutionary relationships within the Trypanosomatidae is confounded by our incomplete knowledge of its true diversity. The known trypanosomatids probably represent a fraction of those that exist and isolation of new species will help resolve relationships in this group with greater accuracy. This review incites a dialogue on how our understanding of the relationships between certain trypanosomatids has shifted, and discusses new knowledge that informs the present taxonomy of these important parasites.
Collapse
Affiliation(s)
- Alexa Kaufer
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Damien Stark
- Department of Microbiology, St Vincent’s Hospital Sydney, Darlinghurst, NSW 2010 Australia
| | - Joel Barratt
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| |
Collapse
|
15
|
Ecology of Trypanosoma cruzi I genotypes across Rhodnius prolixus captured in Attalea butyracea palms. INFECTION GENETICS AND EVOLUTION 2017; 49:146-150. [DOI: 10.1016/j.meegid.2017.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/10/2017] [Accepted: 01/14/2017] [Indexed: 11/18/2022]
|
16
|
Jaimes-Dueñez J, Triana-Chávez O, Cantillo-Barraza O, Hernández C, Ramírez JD, Góngora-Orjuela A. Molecular and serological detection of Trypanosoma cruzi in dogs (Canis lupus familiaris) suggests potential transmission risk in areas of recent acute Chagas disease outbreaks in Colombia. Prev Vet Med 2017; 141:1-6. [PMID: 28532988 DOI: 10.1016/j.prevetmed.2017.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 02/22/2017] [Accepted: 03/28/2017] [Indexed: 02/07/2023]
Abstract
Chagas disease is a zoonotic infection widely distributed in tropical and subtropical regions of America, including more than 50% of the Colombian territory. In the last years, an increase of outbreaks of acute Chagas disease has been observed in the east of the country due to environmental changes and mammal movements toward human settlements. Given the importance of dogs (Canis lupus familiaris) as reservoir hosts and sentinels of Trypanosoma cruzi infection across different regions of America, in this study we reported a serological and molecular detection of T. cruzi infection in 242 dogs from an endemic area of Meta department (East of Colombia), with recent emergence of acute Chagas disease outbreaks. The distribution of T. cruzi infection in dogs was not homogeneous, ranging from 0-41.4% and 0-5.1% in different sampling sectors, through serological (ELISA/IFAT) and molecular methods (conventional and real time PCR), respectively. Statistical analysis indicated that dog infection was associated with specific sampling sectors. Our results show a moderate seroprevalence of infection and active circulation of T. cruzi in dogs from this zone, which suggest areas with potential risk of infection to human that must be taken into consideration when Chagas disease control programs need to be implemented.
Collapse
Affiliation(s)
- Jeiczon Jaimes-Dueñez
- Grupo de Investigación en Reproducción y Genética Animal GIRGA, Programa de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de Los Llanos, Villavicencio, Colombia; Grupo de Biología y Control de Enfermedades Infecciosas BCEI, Programa de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia.
| | - Omar Triana-Chávez
- Grupo de Biología y Control de Enfermedades Infecciosas BCEI, Programa de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | - Omar Cantillo-Barraza
- Grupo de Biología y Control de Enfermedades Infecciosas BCEI, Programa de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | - Carolina Hernández
- Grupo de Investigaciones Microbiológicas - UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas - UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Agustín Góngora-Orjuela
- Grupo de Investigación en Reproducción y Genética Animal GIRGA, Programa de Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de Los Llanos, Villavicencio, Colombia
| |
Collapse
|
17
|
Identifying Trypanosoma cruzi discreet typing units in triatomines collected in different natural regions of Perú. BIOMEDICA 2017; 37:167-179. [PMID: 29161488 DOI: 10.7705/biomedica.v37i0.3559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 07/14/2017] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Trypanosoma cruzi has been divided by international consensus into six discrete typing units (DTU): TcI, TcII, TcIII, TcIV, TcV y TcVI. The factors determining the dynamics of T. cruzi genotypes vector transmission of Chagas' disease in the different geographical regions of Perú are still unknown. OBJECTIVE To detect and type T. cruzi DTUs from the faeces of seven species of triatomines (Panstrongylus chinai, P. geniculatus, P. herreri, Rhodnius robustus, R. pictipes, Triatoma carrioni and T. infestans) captured in eight departments from different natural regions of Perú. MATERIALS AND METHODS We examined 197 insects for detecting trypanosomes. DNA was extracted from each insect intestinal contents and PCR amplification of kDNA, SL-IR, 24Sα rRNA and 18Sα RNA was performed for detecting T. cruzi DTUs. RESULTS Five T. rangeli and 113 T. cruzi infections were detected; 95 of the latter were identified as TcI (two in P. chinai, one in P. geniculatus, 68 in P. herreri, four in R. pictipes, seven in R. robustus, one in T. carrioni, 12 in T. infestans), five as TcII (four in P. herreri, one in T. infestans), four as TcIII (three in P. herreri, one in R. robustus) and four TcIV infections in P. herreri. CONCLUSIONS This is the first study which has attempted a large-scale characterization of T. cruzi found in the intestine of epidemiologically important vectors in Perú, thus providing basic information that will facilitate a better understanding of the dynamics of T. cruzi vector transmission in Perú.
Collapse
|
18
|
Hernández C, Salazar C, Brochero H, Teherán A, Buitrago LS, Vera M, Soto H, Florez-Rivadeneira Z, Ardila S, Parra-Henao G, Ramírez JD. Untangling the transmission dynamics of primary and secondary vectors of Trypanosoma cruzi in Colombia: parasite infection, feeding sources and discrete typing units. Parasit Vectors 2016; 9:620. [PMID: 27903288 PMCID: PMC5131512 DOI: 10.1186/s13071-016-1907-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi is the causative agent of Chagas disease. Due to its genetic diversity has been classified into six Discrete Typing Units (DTUs) in association with transmission cycles. In Colombia, natural T. cruzi infection has been detected in 15 triatomine species. There is scarce information regarding the infection rates, DTUs and feeding preferences of secondary vectors. Therefore, the aim of this study was to determine T. cruzi infection rates, parasite DTU, ecotopes, insect stages, geographical location and bug feeding preferences across six different triatomine species. METHODS A total of 245 insects were collected in seven departments of Colombia. We conducted molecular detection and genotyping of T. cruzi with subsequent identification of food sources. The frequency of infection, DTUs, TcI genotypes and feeding sources were plotted across the six species studied. A logistic regression model risk was estimated with insects positive for T. cruzi according to demographic and eco-epidemiological characteristics. RESULTS We collected 85 specimens of Panstrongylus geniculatus, 77 Rhodnius prolixus, 37 R. pallescens, 34 Triatoma maculata, 8 R. pictipes and 4 T. dimidiata. The overall T. cruzi infection rate was 61.2% and presented statistical associations with the departments Meta (OR: 2.65; 95% CI: 1.69-4.17) and Guajira (OR: 2.13; 95% CI: 1.16-3.94); peridomestic ecotope (OR: 2.52: 95% CI: 1.62-3.93); the vector species P. geniculatus (OR: 2.40; 95% CI: 1.51-3.82) and T. maculata (OR: 2.09; 95% CI: 1.02-4.29); females (OR: 2.05; 95% CI: 1.39-3.04) and feeding on opossum (OR: 3.15; 95% CI: 1.85-11.69) and human blood (OR: 1.55; 95% CI: 1.07-2.24). Regarding the DTUs, we observed TcI (67.3%), TcII (6.7%), TcIII (8.7%), TcIV (4.0%) and TcV (6.0%). Across the samples typed as TcI, we detected TcIDom (19%) and sylvatic TcI (75%). The frequencies of feeding sources were 59.4% (human blood); 11.2% (hen); 9.6% (bat); 5.6% (opossum); 5.1% (mouse); 4.1% (dog); 3.0% (rodent); 1.0% (armadillo); and 1.0% (cow). CONCLUSIONS New scenarios of T. cruzi transmission caused by secondary and sylvatic vectors are considered. The findings of sylvatic DTUs from bugs collected in domestic and peridomestic ecotopes confirms the emerging transmission scenarios in Colombia.
Collapse
Affiliation(s)
- Carolina Hernández
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, 111221 Colombia
- Estudiante Doctoral, Doctorado Ciencias biomédicas y biológicas, Universidad el Rosario, Bogotá, Colombia
| | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences and Mathematics, Universidad del Rosario, Carrera. 24 No. 63C-69, Bogotá, DC 111221 Colombia
| | - Helena Brochero
- Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Aníbal Teherán
- Grupo de Investigación COMPLEXUS, Fundación Universitaria Juan N. Corpas, Bogotá, Colombia
| | | | - Mauricio Vera
- Ministerio de Salud y protección Social, Bogotá, Colombia
| | - Hugo Soto
- Laboratorio de Salud Pública del Cesar, Valledupar, Colombia
| | | | - Sussane Ardila
- Grupo de Entomología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Gabriel Parra-Henao
- Centro de Investigación en Salud para el Trópico, Universidad Cooperativa de Colombia, Santa Marta, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, 111221 Colombia
| |
Collapse
|
19
|
Hernández C, Cucunubá Z, Flórez C, Olivera M, Valencia C, Zambrano P, León C, Ramírez JD. Molecular Diagnosis of Chagas Disease in Colombia: Parasitic Loads and Discrete Typing Units in Patients from Acute and Chronic Phases. PLoS Negl Trop Dis 2016; 10:e0004997. [PMID: 27648938 PMCID: PMC5029947 DOI: 10.1371/journal.pntd.0004997] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/22/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The diagnosis of Chagas disease is complex due to the dynamics of parasitemia in the clinical phases of the disease. The molecular tests have been considered promissory because they detect the parasite in all clinical phases. Trypanosoma cruzi presents significant genetic variability and is classified into six Discrete Typing Units TcI-TcVI (DTUs) with the emergence of foreseen genotypes within TcI as TcIDom and TcI Sylvatic. The objective of this study was to determine the operating characteristics of molecular tests (conventional and Real Time PCR) for the detection of T. cruzi DNA, parasitic loads and DTUs in a large cohort of Colombian patients from acute and chronic phases. METHODOLOGY/PRINCIPAL FINDINGS Samples were obtained from 708 patients in all clinical phases. Standard diagnosis (direct and serological tests) and molecular tests (conventional PCR and quantitative PCR) targeting the nuclear satellite DNA region. The genotyping was performed by PCR using the intergenic region of the mini-exon gene, the 24Sa, 18S and A10 regions. The operating capabilities showed that performance of qPCR was higher compared to cPCR. Likewise, the performance of qPCR was significantly higher in acute phase compared with chronic phase. The median parasitic loads detected were 4.69 and 1.33 parasite equivalents/mL for acute and chronic phases. The main DTU identified was TcI (74.2%). TcIDom genotype was significantly more frequent in chronic phase compared to acute phase (82.1% vs 16.6%). The median parasitic load for TcIDom was significantly higher compared with TcI Sylvatic in chronic phase (2.58 vs.0.75 parasite equivalents/ml). CONCLUSIONS/SIGNIFICANCE The molecular tests are a precise tool to complement the standard diagnosis of Chagas disease, specifically in acute phase showing high discriminative power. However, it is necessary to improve the sensitivity of molecular tests in chronic phase. The frequency and parasitemia of TcIDom genotype in chronic patients highlight its possible relationship to the chronicity of the disease.
Collapse
Affiliation(s)
- Carolina Hernández
- Red Chagas Colombia, Instituto Nacional de Salud, Bogotá, Colombia
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Zulma Cucunubá
- Red Chagas Colombia, Instituto Nacional de Salud, Bogotá, Colombia
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Carolina Flórez
- Red Chagas Colombia, Instituto Nacional de Salud, Bogotá, Colombia
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Mario Olivera
- Red Chagas Colombia, Instituto Nacional de Salud, Bogotá, Colombia
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Carlos Valencia
- Red Chagas Colombia, Instituto Nacional de Salud, Bogotá, Colombia
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Pilar Zambrano
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Cielo León
- Red Chagas Colombia, Instituto Nacional de Salud, Bogotá, Colombia
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad el Rosario, Bogotá, Colombia
| |
Collapse
|
20
|
Messenger LA, Miles MA, Bern C. Between a bug and a hard place: Trypanosoma cruzi genetic diversity and the clinical outcomes of Chagas disease. Expert Rev Anti Infect Ther 2015; 13:995-1029. [PMID: 26162928 PMCID: PMC4784490 DOI: 10.1586/14787210.2015.1056158] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the last 30 years, concomitant with successful transnational disease control programs across Latin America, Chagas disease has expanded from a neglected, endemic parasitic infection of the rural poor to an urbanized chronic disease, and now a potentially emergent global health problem. Trypanosoma cruzi infection has a highly variable clinical course, ranging from complete absence of symptoms to severe and often fatal cardiovascular and/or gastrointestinal manifestations. To date, few correlates of clinical disease progression have been identified. Elucidating a putative role for T. cruzi strain diversity in Chagas disease pathogenesis is complicated by the scarcity of parasites in clinical specimens and the limitations of our contemporary genotyping techniques. This article systematically reviews the historical literature, given our current understanding of parasite genetic diversity, to evaluate the evidence for any association between T. cruzi genotype and chronic clinical outcome, risk of congenital transmission or reactivation and orally transmitted outbreaks.
Collapse
Affiliation(s)
- Louisa A Messenger
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael A Miles
- Department of Pathogen Molecular Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Caryn Bern
- Global Health Sciences, Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
21
|
León CM, Hernández C, Montilla M, Ramírez JD. Retrospective distribution of Trypanosoma cruzi I genotypes in Colombia. Mem Inst Oswaldo Cruz 2015; 110:387-93. [PMID: 25946157 PMCID: PMC4489476 DOI: 10.1590/0074-02760140402] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/25/2015] [Indexed: 12/03/2022] Open
Abstract
Trypanosoma cruzi is the aetiological agent of Chagas disease, which
affects approximately eight million people in the Americas. This parasite exhibits
genetic variability, with at least six discrete typing units broadly distributed in
the American continent. T. cruzi I (TcI) shows remarkable genetic
diversity; a genotype linked to human infections and a domestic cycle of transmission
have recently been identified, hence, this strain was named TcIDom. The aim of this
work was to describe the spatiotemporal distribution of TcI subpopulations across
humans, insect vectors and mammalian reservoirs in Colombia by means of molecular
typing targeting the spliced leader intergenic region of mini-exon gene. We analysed
101 TcI isolates and observed a distribution of sylvatic TcI in 70% and TcIDom in
30%. In humans, the ratio was sylvatic TcI in 60% and TcIDom in 40%. In mammal
reservoirs, the distribution corresponded to sylvatic TcI in 96% and TcIDom in 4%.
Among insect vectors, sylvatic TcI was observed in 48% and TcIDom in 52%. In
conclusion, the circulation of TcIDom is emerging in Colombia and this genotype is
still adapting to the domestic cycle of transmission. The epidemiological and
clinical implications of these findings are discussed herein.
Collapse
Affiliation(s)
- Cielo M León
- Red Chagas Colombia, Instituto Nacional de Salud, Bogotá, Colombia
| | | | - Marleny Montilla
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
22
|
Cruz L, Vivas A, Montilla M, Hernández C, Flórez C, Parra E, Ramírez JD. Comparative study of the biological properties of Trypanosoma cruzi I genotypes in a murine experimental model. INFECTION GENETICS AND EVOLUTION 2015; 29:110-7. [DOI: 10.1016/j.meegid.2014.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/27/2022]
|