1
|
de Lima RMS, Leão LKR, Martins LC, Passos ADCF, Batista EDJO, Herculano AM, Oliveira KRHM. Unveiling new perspectives about the onset of neurological and cognitive deficits in cerebral malaria: exploring cellular and neurochemical mechanisms. Front Cell Infect Microbiol 2025; 15:1506282. [PMID: 39981376 PMCID: PMC11839640 DOI: 10.3389/fcimb.2025.1506282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/02/2025] [Indexed: 02/22/2025] Open
Abstract
Cerebral malaria is the most severe and lethal complication caused by Plasmodium falciparum infection, leading to critical neurological impairments and long-term cognitive, behavioral, and neurological sequelae in survivors, particularly affecting children under the age of five. Various hypotheses have been proposed to explain the neurological syndrome associated to cerebral malaria condition, including vascular occlusion and sequestration, cytokine storm or inflammatory response, or a combination of these mechanisms and despite extensive research and a growing range of scientific information, the precise pathophysiological mechanism remains poorly understood. In this sense, this review aims to explore the neurological impairment in cerebral malaria and elucidate novel mechanisms to explain the severity of this disease. Recent evidence implicates glutamate and glutamatergic pathways in the onset of cerebral malaria, alongside the impairments in the metabolic activity of other molecules such as dopamine and kynurenic acid. These neurotransmitters pathways may play a crucial role in the pathogenesis of cerebral malaria, potentially interacting with other molecular players. By enhancing our understanding in the pathophysiology of cerebral malaria, this article seeks to explore new hypotheses regarding the involvement of neurotransmitters and their interactions with other molecular targets, thereby contributing to the overall pathology of cerebral malaria.
Collapse
Affiliation(s)
- Renato M. S. de Lima
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Luana K. R. Leão
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Luana C. Martins
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Adelaide da C. Fonseca Passos
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | | | - Anderson M. Herculano
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Karen R. H. M. Oliveira
- Laboratory of Experimental Neuropharmacology, Biological Science Institute, Federal University of Pará, Belém, Brazil
| |
Collapse
|
2
|
Quadros Gomes AR, Castro ALG, Ferreira GG, Brígido HPC, Varela ELP, Vale VV, Carneiro LA, Dolabela MF, Percario S. Impact on parasitemia, survival time and pro-inflammatory immune response in mice infected with Plasmodium berghei treated with Eleutherine plicata. Front Pharmacol 2024; 15:1484934. [PMID: 39703398 PMCID: PMC11656046 DOI: 10.3389/fphar.2024.1484934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024] Open
Abstract
In vitro studies with Plasmodium falciparum have demonstrated the antiparasitic activity of E. plicata, attributed to its naphthoquinones. This study reports on pro-inflammatory changes in mice infected with P. berghei and correlates these changes with parasitemia and survival. The ethanol extract of Eleutherine plicata (EEEp) was fractionated under reflux to obtain the dichloromethane fraction (FDMEp) and isolated compounds from E. plicata, relating these to survival time and parasitemia. Antimalarial activity was evaluated using the Peters suppressive test, with mice infected with Plasmodium berghei and treated with E. plicata, assessing parasitemia and survival over 30 days. The pro-inflammatory profile was determined by measuring interleukin-10, interferon-γ (IFN-γ), and nitric oxide levels. EEEp, FDMEp, and eleutherol showed activity on the 5th day of infection, with only FDMEp being active on the 8th day. Treatment with EEEp and FDMEp extended animal survival, reduced IFN-γ and NO levels, and increased IL-10 levels. Eleutherol significantly altered the response, with eleutherol glucuronide seemingly active by binding to lactate dehydrogenase, inhibiting hemozoin metabolism, leading to parasite death. Pro-inflammatory changes did not appear to correlate with survival and reduced parasitemia. In summary, FDMEp and eleutherol reduced parasitemia, extended survival, and modulated the inflammatory response. FDMEp and eleutherol are promising candidates for developing new antimalarial drugs.
Collapse
Affiliation(s)
- Antônio Rafael Quadros Gomes
- Postgraduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém, Brazil
- Postgraduate Program in Biodiversity and Biotechnology, Federal University of Pará, Belém, Brazil
| | - Ana Laura Gadelha Castro
- Postgraduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pará, Belém, Brazil
| | | | | | - Everton Luiz Pompeu Varela
- Postgraduate Program in Biodiversity and Biotechnology, Federal University of Pará, Belém, Brazil
- Oxidative Stress Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Valdicley Vieira Vale
- Postgraduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém, Brazil
| | | | - Maria Fâni Dolabela
- Postgraduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém, Brazil
- Postgraduate Program in Biodiversity and Biotechnology, Federal University of Pará, Belém, Brazil
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Pará, Belém, Brazil
| | - Sandro Percario
- Postgraduate Program in Biodiversity and Biotechnology, Federal University of Pará, Belém, Brazil
- Oxidative Stress Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
3
|
Rosa-Gonçalves P, de Sousa LP, Ribeiro-Gomes FL, Carvalho LJM, Daniel-Ribeiro CT. Immunomodulation through vaccination as a promising therapeutic strategy to mitigate malaria-related neurocognitive sequelae. Brain Behav Immun 2023; 109:102-104. [PMID: 36657622 DOI: 10.1016/j.bbi.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Malaria, an ancient infectious parasitic disease, is caused by protozoa of the genus Plasmodium, whose erythrocytic cycle is accompanied by fever, headache, sweating and chills and a systemic inflammation that can progress to severe forms of disease, including cerebral malaria. Approximately 25% of survivors of this syndrome develop sequelae that may include neurological, neurocognitive, behavioral alterations and poor school performance. Furthermore, some outcomes have also been recorded following episodes of non-severe malaria, which correspond to the most common clinical form of the disease worldwide. There is a body of evidence that neuroinflammation, due to systemic inflammation, plays an important role in the neuropathogenesis of malaria culminating in these cognitive dysfunctions. Preclinical studies suggest that vaccination with type 2 immune response elicitors, such as the tetanus-diphtheria (Td) vaccine, may exert a beneficial immunomodulatory effect by alleviating neuroinflammation. In this viewpoint article, vaccination is proposed as a therapy approach to revert or mitigate neurocognitive deficits associated with malaria.
Collapse
Affiliation(s)
- Pamela Rosa-Gonçalves
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil; Laboratório de Biologia, campus Duque de Caxias, Colégio Pedro II, Duque de Caxias, Brazil.
| | - Luciana Pereira de Sousa
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.
| | - Flávia Lima Ribeiro-Gomes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.
| | - Leonardo José Moura Carvalho
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil; Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Gul S, Ackerman HC, Daniel-Ribeiro CT, Carvalho LJM. Intravenous whole blood transfusion results in faster recovery of vascular integrity and increased survival in experimental cerebral malaria. Mem Inst Oswaldo Cruz 2023; 117:e220184. [PMID: 36700582 PMCID: PMC9870258 DOI: 10.1590/0074-02760220184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/06/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Cerebral malaria is a lethal complication of Plasmodium falciparum infections in need of better therapies. Previous work in murine experimental cerebral malaria (ECM) indicated that the combination of artemether plus intraperitoneal whole blood improved vascular integrity and increased survival compared to artemether alone. However, the effects of blood or plasma transfusion administered via the intravenous route have not previously been evaluated in ECM. OBJECTIVES To evaluate the effects of intravenous whole blood compared to intravenous plasma on hematological parameters, vascular integrity, and survival in artemether-treated ECM. METHODS Mice with late-stage ECM received artemether alone or in combination with whole blood or plasma administered via the jugular vein. The outcome measures were hematocrit and platelets; plasma angiopoietin 1, angiopoietin 2, and haptoglobin; blood-brain barrier permeability; and survival. FINDINGS Survival increased from 54% with artemether alone to 90% with the combination of artemether and intravenous whole blood. Intravenous plasma lowered survival to 18%. Intravenous transfusion provided fast and pronounced recoveries of hematocrit, platelets, angiopoietins levels and blood brain barrier integrity. MAIN CONCLUSIONS The outcome of artemether-treated ECM was improved by intravenous whole blood but worsened by intravenous plasma. Compared to prior studies of transfusion via the intraperitoneal route, intravenous administration was more efficacious.
Collapse
Affiliation(s)
- Saba Gul
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| | - Hans C Ackerman
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Laboratory of Malaria and Vector Research, Rockville, MD, USA
| | - Cláudio Tadeu Daniel-Ribeiro
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil
| | - Leonardo JM Carvalho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Malária, Rio de Janeiro, RJ, Brasil,+ Corresponding author:
| |
Collapse
|
5
|
Idro R, Ogwang R, Barragan A, Raimondo JV, Masocha W. Neuroimmunology of Common Parasitic Infections in Africa. Front Immunol 2022; 13:791488. [PMID: 35222377 PMCID: PMC8866860 DOI: 10.3389/fimmu.2022.791488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Parasitic infections of the central nervous system are an important cause of morbidity and mortality in Africa. The neurological, cognitive, and psychiatric sequelae of these infections result from a complex interplay between the parasites and the host inflammatory response. Here we review some of the diseases caused by selected parasitic organisms known to infect the nervous system including Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei spp., and Taenia solium species. For each parasite, we describe the geographical distribution, prevalence, life cycle, and typical clinical symptoms of infection and pathogenesis. We pay particular attention to how the parasites infect the brain and the interaction between each organism and the host immune system. We describe how an understanding of these processes may guide optimal diagnostic and therapeutic strategies to treat these disorders. Finally, we highlight current gaps in our understanding of disease pathophysiology and call for increased interrogation of these often-neglected disorders of the nervous system.
Collapse
Affiliation(s)
- Richard Idro
- College of Health Sciences, Makerere University, Kampala, Uganda.,Centre of Tropical Neuroscience, Kitgum, Uganda.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Rodney Ogwang
- College of Health Sciences, Makerere University, Kampala, Uganda.,Centre of Tropical Neuroscience, Kitgum, Uganda.,Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, Nairobi, Kenya
| | - Antonio Barragan
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Joseph Valentino Raimondo
- Division of Cell Biology, Department of Human Biology, Neuroscience Institute and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| |
Collapse
|
6
|
Heme oxygenase-1, carbon monoxide, and malaria – The interplay of chemistry and biology. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Jain V, Thomas T, Basak S, Sharma RK, Singh N. Sequential dysregulated plasma levels of angiopoietins (ANG-2 and ratios of ANG-2/ANG-1) are associated with malaria severity and mortality among hospital admitted cases in South Bastar Region of Chhattisgarh, Central India. Pathog Glob Health 2022; 116:47-58. [PMID: 34308785 PMCID: PMC8812749 DOI: 10.1080/20477724.2021.1953685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cerebral malaria (CM) is one of the most severe forms of P. falciparum infection, with an associated high case-fatality rate. Angiopoietins (ANG-1 and ANG-2) are important biomarkers of endothelial activation and dysfunction. This study was carried out in Maharani Hospital and associated Medical College, Jagdalpur, CG, Central India from 2010 to 2014. Based on the treatment recovery patterns, cases (n = 65) were classified as mild malaria with rapid recovery (MM-RR), n= 14; non-cerebral severe malaria with moderately fast recovery (NCSM-MFR), n= 9; CM survivors with slow recovery (CMS-SR), n= 36 and deteriorated CM non-survivors (Det-CMNS), n= 6. Plasma levels (pg/ml) of ANG-1 and ANG-2 were measured by ELISA in all the samples at the time of hospital admission and 48 hours of treatment. Levels were also measured in available samples at the third time point (time of discharge for survivors or 72 hours post-treatment in fatal cases). Data analysis was done by appropriate statistical tests using Stata 11.0 and SPSS 25.0 software. At the time of admission, ANG-2 and ratios of ANG-2/ANG-1 significantly distinguished Det-CMNS cases from MM-RR and NCSM-MFR cases with good AUC scores (0.8-0.9). Further, Det-CMNS cases could also be distinguished from MM-RR, NCSM-MFR, and CMS-SR cases by ANG-2 (AUC scores 0.9) and ratios of ANG-2/ANG-1 (AUC: 0.8-0.9) at 48 hours of treatment. Paired analysis of sequential measurement of angiopoietins revealed that compared to admission levels, the ratios of ANG-2/ANG-1 significantly declined 48 hours after treatment in MM-RR (p= 0.041), NCSM-MFR (p= 0.050), and CMS-SR (p= 0.0002) cases but not in cases of Det-CMNS (p= 0.916). In conclusion, plasma levels of ANG-2 and ratios of ANG-2/ANG-1 may serve as good biomarkers to distinguish the malaria severity at the time of hospital admission and recovery patterns upon treatment in Central India.
Collapse
Affiliation(s)
- Vidhan Jain
- Department of Virology and Zoonotic Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, MP, India
| | - Trilok Thomas
- Department of Virology and Zoonotic Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, MP, India
| | - Sanjay Basak
- Former District Malaria Officer, Maharani Hospital and Associated Medical College Jagdalpur, Chhattisgarh, India
| | - Ravendra Kumar Sharma
- Department of Statistics, ICMR-National Institute of Medical Statistics, ICMR Campus, New Delhi, India
| | - Neeru Singh
- Department of Virology and Zoonotic Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, MP, India
| |
Collapse
|
8
|
Ali F, Khan A, Muhammad SA, Hassan SSU. Quantitative Real-Time Analysis of Differentially Expressed Genes in Peripheral Blood Samples of Hypertension Patients. Genes (Basel) 2022; 13:genes13020187. [PMID: 35205232 PMCID: PMC8872078 DOI: 10.3390/genes13020187] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/04/2022] Open
Abstract
Hypertension (HTN) is considered one of the most important and well-established reasons for cardiovascular abnormalities, strokes, and premature mortality globally. This study was designed to explore possible differentially expressed genes (DEGs) that contribute to the pathophysiology of hypertension. To identify the DEGs of HTN, we investigated 22 publicly available cDNA Affymetrix datasets using an integrated system-level framework. Gene Ontology (GO), pathway enrichment, and transcriptional factors were analyzed to reveal biological information. From 50 DEGs, we ranked 7 hypertension-related genes (p-value < 0.05): ADM, ANGPTL4, USP8, EDN, NFIL3, MSR1, and CEBPD. The enriched terms revealed significant functional roles of HIF-1-α transcription; endothelin; GPCR-binding ligand; and signaling pathways of EGF, PIk3, and ARF6. SP1 (66.7%), KLF7 (33.3%), and STAT1 (16.7%) are transcriptional factors associated with the regulatory mechanism. The expression profiles of these DEGs as verified by qPCR showed 3-times higher fold changes (2−ΔΔCt) in ADM, ANGPTL4, USP8, and EDN1 genes compared to control, while CEBPD, MSR1 and NFIL3 were downregulated. The aberrant expression of these genes is associated with the pathophysiological development and cardiovascular abnormalities. This study will help to modulate the therapeutic strategies of hypertension.
Collapse
Affiliation(s)
- Fawad Ali
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan; (F.A.); (A.K.)
- Department of Pharmacy, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Arifullah Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan; (F.A.); (A.K.)
| | - Syed Aun Muhammad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan 60800, Pakistan
- Correspondence: (S.A.M.); (S.S.u.H.)
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (S.A.M.); (S.S.u.H.)
| |
Collapse
|
9
|
Ali F, Fang HL, Shah FA, Muhammad SA, Khan A, Li S. Reprofiling analysis of FDA approved drugs with upregulated differential expression genes found in hypertension. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
10
|
Molecular mechanisms of hematological and biochemical alterations in malaria: A review. Mol Biochem Parasitol 2021; 247:111446. [PMID: 34953384 DOI: 10.1016/j.molbiopara.2021.111446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/20/2021] [Accepted: 12/19/2021] [Indexed: 11/20/2022]
Abstract
Malaria is a dangerous disease that contributes to millions of hospital visits and hundreds of thousands of deaths, especially in children residing in sub-Saharan Africa. Although several interventions such as vector control, case detection, and treatment are already in place, there is no substantive reduction in the disease burden. Several studies in the past have reported the emergence of resistant strains of malaria parasites (MPs) and mosquitoes, and poor adherence and inaccessibility to effective antimalarial drugs as the major factors for this persistent menace of malaria infections. Moreover, victory against MP infections for many years has been hampered by an incomplete understanding of the complex nature of malaria pathogenesis. Very recent studies have identified different complex interactions and hematological alterations induced by malaria parasites. However, no studies have hybridized these alterations for a better understanding of Malaria pathogenesis. Hence, this review thoroughly discusses the molecular mechanisms of all reported hematological and biochemical alterations induced by MPs infections. Specifically, the mechanisms in which MP-infection induces anemia, thrombocytopenia, leukopenia, dyslipidemia, hypoglycemia, oxidative stress, and liver and kidney malfunctions were presented. The study also discussed how MPs evade the host's immune response and suggested strategies to limit evasion of the host's immune response to combat malaria and its complications.
Collapse
|
11
|
Whole blood transfusion improves vascular integrity and increases survival in artemether-treated experimental cerebral malaria. Sci Rep 2021; 11:12077. [PMID: 34103601 PMCID: PMC8187502 DOI: 10.1038/s41598-021-91499-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023] Open
Abstract
Pathological features observed in both human and experimental cerebral malaria (ECM) are endothelial dysfunction and changes in blood components. Blood transfusion has been routinely used in patients with severe malarial anemia and can also benefit comatose and acidotic malaria patients. In the present study Plasmodium berghei-infected mice were transfused intraperitoneally with 200 μL of whole blood along with 20 mg/kg of artemether. ECM mice showed severe thrombocytopenia and decreases in hematocrit. Artemether treatment markedly aggravated anemia within 24 h. Whole blood administration significantly prevented further drop in hematocrit and partially restored the platelet count. Increased levels of plasma angiopoietin-2 (Ang-2) remained high 24 h after artemether treatment but returned to normal levels 24 h after blood transfusion, indicating reversal to quiescence. Ang-1 was depleted in ECM mice and levels were not restored by any treatment. Blood transfusion prevented the aggravation of the breakdown of blood brain barrier after artemether treatment and decreased spleen congestion without affecting splenic lymphocyte populations. Critically, blood transfusion resulted in markedly improved survival of mice with ECM (75.9% compared to 50.9% receiving artemether only). These findings indicate that whole blood transfusion can be an effective adjuvant therapy for cerebral malaria.
Collapse
|
12
|
Leão L, Puty B, Dolabela MF, Povoa MM, Né YGDS, Eiró LG, Fagundes NCF, Maia LC, Lima RR. Association of cerebral malaria and TNF-α levels: a systematic review. BMC Infect Dis 2020; 20:442. [PMID: 32576141 PMCID: PMC7310527 DOI: 10.1186/s12879-020-05107-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023] Open
Abstract
Background Cerebral malaria is the most severe form of infection with Plasmodium falciparum characterized by a highly inflammatory response. This systematic review aimed to investigate the association between TNF-α levels and cerebral malaria. Methods This review followed the Preferred Reporting of Systematic Review and Meta-analyses (PRISMA) guidelines. The search was performed at PubMed, LILACS, Scopus, Web of Science, The Cochrane Library, OpenGrey and Google Scholar. We have included studies of P. falciparum-infected humans with or without cerebral malaria and TNF-α dosage level. All studies were evaluated using a risk of bias tool and the GRADE approach. Results Our results have identified 2338 studies, and 8 articles were eligible according to this systematic review inclusion criteria. Among the eight articles, five have evaluated TNF- α plasma dosage, while two have evaluated at the blood and one at the brain (post-Morten). Among them, only five studies showed higher TNF-α levels in the cerebral malaria group compared to the severe malaria group. Methodological problems were identified regarding sample size, randomization and blindness, but no risk of bias was detected. Conclusion Although the results suggested that that TNF-α level is associated with cerebral malaria, the evidence is inconsistent and imprecise. More observational studies evaluating the average TNF-alpha are needed.
Collapse
Affiliation(s)
- Luana Leão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, 01 Augusto Correa Street, Guama, Belem, PA, 66075-900, Brazil
| | - Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, 01 Augusto Correa Street, Guama, Belem, PA, 66075-900, Brazil
| | - Maria Fâni Dolabela
- Postgraduate Program in Pharmaceutical Sciences, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | | | - Yago Gecy De Sousa Né
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, 01 Augusto Correa Street, Guama, Belem, PA, 66075-900, Brazil
| | - Luciana Guimarães Eiró
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, 01 Augusto Correa Street, Guama, Belem, PA, 66075-900, Brazil
| | | | - Lucianne Cople Maia
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, 01 Augusto Correa Street, Guama, Belem, PA, 66075-900, Brazil.
| |
Collapse
|
13
|
Vanka R, Nakka VP, Kumar SP, Baruah UK, Babu PP. Molecular targets in cerebral malaria for developing novel therapeutic strategies. Brain Res Bull 2020; 157:100-107. [PMID: 32006570 DOI: 10.1016/j.brainresbull.2020.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Cerebral malaria (CM) is the severe neurological complication associated with Plasmodium falciparum infection. In clinical settings CM is predominantly characterized by fever, epileptic seizures, and asexual forms of parasite on blood smears, coma and even death. Cognitive impairment in the children and adults even after survival is one of the striking consequences of CM. Poor diagnosis often leads to inappropriate malaria therapy which in turn progress into a severe form of disease. Activation of multiple cell death pathways such as Inflammation, oxidative stress, apoptosis and disruption of blood brain barrier (BBB) plays critical role in the pathogenesis of CM and secondary brain damage. Thus, understanding such mechanisms of neuronal cell death might help to identify potential molecular targets for CM. Mitigation strategies for mortality rate and long-term cognitive deficits caused by existing anti-malarial drugs still remains a valid research question to ask. In this review, we discuss in detail about critical neuronal cell death mechanisms and the overall significance of adjunctive therapy with recent trends, which provides better insight towards establishing newer therapeutic strategies for CM.
Collapse
Affiliation(s)
- Ravisankar Vanka
- Department of Pharmaceutics, Aditya Pharmacy College, Suramaplem, Gandepalli Mandal, East Godavari, Andhra Pradesh, 533437, India
| | - Venkata Prasuja Nakka
- Department of Biochemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, 522510, India
| | - Simhadri Praveen Kumar
- Department of Biotechnology and Bioinformatics, School of life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Uday Krishna Baruah
- Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Tamil Nadu 643001, India
| | - Phanithi Prakash Babu
- Department of Biotechnology and Bioinformatics, School of life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
14
|
Pham TT, Punsawad C, Glaharn S, De Meyer SF, Viriyavejakul P, Van den Steen PE. Release of endothelial activation markers in lungs of patients with malaria-associated acute respiratory distress syndrome. Malar J 2019; 18:395. [PMID: 31796023 PMCID: PMC6891978 DOI: 10.1186/s12936-019-3040-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/26/2019] [Indexed: 11/17/2022] Open
Abstract
Background Malaria-associated acute respiratory distress syndrome (MA-ARDS) is an understudied complication of malaria and is characterized by pulmonary inflammation and disruption of the alveolar-capillary membrane. Its pathogenesis remains poorly understood. Since endothelial activation plays an important role in other malarial complications, the expression of two endothelial activation markers, von Willebrand factor (VWF) and angiopoietin-2 (ANG-2), was investigated in the lungs of patients with MA-ARDS. Methods Post-mortem lung sections of Plasmodium falciparum-infected patients without alveolar oedema (NA), P. falciparum-infected patients with alveolar oedema (MA-ARDS), and uninfected people who died accidentally with no pathological changes to the lungs (CON) were immunohistochemically stained for VWF and ANG-2, and were evaluated with semi-quantitative analysis. Results Alveolar oedematous VWF and ANG-2 and intravascular VWF staining were significantly increased in patients with MA-ARDS versus infected and uninfected control groups. The levels of VWF in the alveolar septa and endothelial lining of large blood vessels of patients with MA-ARDS was significantly decreased compared to controls. ANG-2 expression was increased in the alveolar septa of malaria patients without alveolar oedema versus control patients, while ANG-2+ leukocytes were increased in the alveoli in both infected patient groups. Conclusions This study documents a high level of VWF and ANG-2, two endothelial activation markers in the oedematous alveoli of post-mortem lung sections of Thai patients with MA-ARDS. Decreased detection of VWF in the endothelial lining of blood vessels, in parallel with an increased presence of intravascular VWF staining suggests marked endothelial activation and Weibel–Palade body release in the lungs of patients with MA-ARDS.
Collapse
Affiliation(s)
- Thao-Thy Pham
- Laboratory of Immunoparasitology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium
| | - Chuchard Punsawad
- School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| | - Supattra Glaharn
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Parnpen Viriyavejakul
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, University of Leuven, Leuven, Belgium.
| |
Collapse
|
15
|
L-arginine supplementation and thromboxane synthase inhibition increases cerebral blood flow in experimental cerebral malaria. Sci Rep 2019; 9:13621. [PMID: 31541129 PMCID: PMC6754365 DOI: 10.1038/s41598-019-49855-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Cerebral malaria pathogenesis involves vascular dysfunction with low nitric oxide (NO) bioavailability, vasoconstriction and impaired vasodilation, leading to ischemia, tissue hypoxia and ultimately death. Cerebral blood flow (CBF) involves NO and other pathways, including arachidonic acid (AA)-derived metabolites. Here we show that mice with experimental cerebral malaria (ECM) by P. berghei ANKA showed marked decreases in CBF (as assessed by laser speckle contrast imaging - LSCI) and that administration of L-arginine supplementation (50 mg/kg) and/or of the thromboxane synthase inhibitor Ozagrel (100 mg/kg) induced immediate increases in CBF. L-arginine in combination with artesunate (32 mg/kg) induced immediate reversal of brain ischemia in the short-term (1 hour), but the effect subsided after 3 and 6 hours. Neither L-arginine nor Ozagrel reversed blood brain barrier breakdown. Mice with ECM showed brain levels of selected AA-derived metabolites with a vasoconstrictor profile, with increased levels of 8-isoprostanes, 20-HETE and 14,15-DHET, whereas mice infected with a non-ECM-inducing strain of P. berghei (NK65) showed a vasodilator profile, with normal levels of 20-HETE and 14,15-DHET and increased levels of PGE2. L-arginine is capable of partially reversing cerebral ischemia and AA metabolites may play a role in the cerebrovascular dysfunction in ECM.
Collapse
|
16
|
Ong PK, Moreira AS, Daniel-Ribeiro CT, Frangos JA, Carvalho LJM. Reversal of cerebrovascular constriction in experimental cerebral malaria by L-arginine. Sci Rep 2018; 8:15957. [PMID: 30374028 PMCID: PMC6206133 DOI: 10.1038/s41598-018-34249-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/08/2018] [Indexed: 12/15/2022] Open
Abstract
Vascular dysfunction associated with low nitric oxide (NO) biavailability and low plasma L-arginine levels is observed in both human and experimental cerebral malaria (ECM). In ECM, cerebrovascular constriction results in decreased pial blood flow and hypoxia, and administration of NO donors reverses constriction and increases survival. Supplementation of L-arginine, the substrate for NO synthesis by NO synthases, has been considered as a strategy to improve vascular health and act as adjunctive therapy in human severe malaria. We investigated the effect of L-arginine supplementation on pial vascular tonus of mice with ECM after direct superfusion on the brain surface or systemic delivery. Pial arteriolar diameters of Plasmodium berghei-infected mice with implanted cranial windows were measured using intravital microscopy methods, before and after L-arginine administration. Systemic delivery of L-arginine was performed intravenously, at 10, 50, 100 and 200 mg/kg, as bolus injection or slowly through osmotic pumps, combined or not with artesunate. Direct superfusion of L-arginine (10-7M, 10-5M and 10-3M) on the brain surface of mice with ECM resulted in immediate, consistent and dose-dependent dilation of pial arterioles. ECM mice showed marked cerebrovascular constriction that progressively worsened over a 24 h-period after subcutaneous saline bolus administration. L-arginine administration prevented the worsening in pial constriction at all the doses tested, and at 50 mg/kg and 100 mg/kg it induced temporary reversal of vasoconstriction. Slow, continuous delivery of L-arginine by osmotic pumps, or combined bolus administration of artesunate with L-arginine, also prevented worsening of pial constriction and resulted in improved survival of mice with ECM. L-arginine ameliorates pial vasoconstriction in mice with ECM.
Collapse
Affiliation(s)
- Peng Kai Ong
- La Jolla Bioengineering Institute, La Jolla, CA, USA
| | - Aline S Moreira
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | | | - Leonardo J M Carvalho
- La Jolla Bioengineering Institute, La Jolla, CA, USA. .,Laboratory of Malaria Research, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil.
| |
Collapse
|
17
|
Gamma Interferon Mediates Experimental Cerebral Malaria by Signaling within Both the Hematopoietic and Nonhematopoietic Compartments. Infect Immun 2017; 85:IAI.01035-16. [PMID: 28874445 PMCID: PMC5649021 DOI: 10.1128/iai.01035-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 08/23/2017] [Indexed: 12/18/2022] Open
Abstract
Experimental cerebral malaria (ECM) is a gamma interferon (IFN-γ)-dependent syndrome. However, whether IFN-γ promotes ECM through direct and synergistic targeting of multiple cell populations or by acting primarily on a specific responsive cell type is currently unknown. Here, using a panel of cell- and compartment-specific IFN-γ receptor 2 (IFN-γR2)-deficient mice, we show that IFN-γ causes ECM by signaling within both the hematopoietic and nonhematopoietic compartments. Mechanistically, hematopoietic and nonhematopoietic compartment-specific IFN-γR signaling exerts additive effects in orchestrating intracerebral inflammation, leading to the development of ECM. Surprisingly, mice with specific deletion of IFN-γR2 expression on myeloid cells, T cells, or neurons were completely susceptible to terminal ECM. Utilizing a reductionist in vitro system, we show that synergistic IFN-γ and tumor necrosis factor (TNF) stimulation promotes strong activation of brain blood vessel endothelial cells. Combined, our data show that within the hematopoietic compartment, IFN-γ causes ECM by acting redundantly or by targeting non-T cell or non-myeloid cell populations. Within the nonhematopoietic compartment, brain endothelial cells, but not neurons, may be the major target of IFN-γ leading to ECM development. Collectively, our data provide information on how IFN-γ mediates the development of cerebral pathology during malaria infection.
Collapse
|
18
|
Totino PRR, Daniel-Ribeiro CT, Ferreira-da-Cruz MDF. Evidencing the Role of Erythrocytic Apoptosis in Malarial Anemia. Front Cell Infect Microbiol 2016; 6:176. [PMID: 28018860 PMCID: PMC5145864 DOI: 10.3389/fcimb.2016.00176] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/21/2016] [Indexed: 01/06/2023] Open
Abstract
In the last decade it has become clear that, similarly to nucleated cells, enucleated red blood cells (RBCs) are susceptible to programmed apoptotic cell death. Erythrocytic apoptosis seems to play a role in physiological clearance of aged RBCs, but it may also be implicated in anemia of different etiological sources including drug therapy and infectious diseases. In malaria, severe anemia is a common complication leading to death of children and pregnant women living in malaria-endemic regions of Africa. The pathogenesis of malarial anemia is multifactorial and involves both ineffective production of RBCs by the bone marrow and premature elimination of non-parasitized RBCs, phenomena potentially associated with apoptosis. In the present overview, we discuss evidences associating erythrocytic apoptosis with the pathogenesis of severe malarial anemia, as well as with regulation of parasite clearance in malaria. Efforts to understand the role of erythrocytic apoptosis in malarial anemia can help to identify potential targets for therapeutic intervention based on apoptotic pathways and consequently, mitigate the harmful impact of malaria in global public health.
Collapse
Affiliation(s)
- Paulo R R Totino
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz Rio de Janeiro, Brazil
| | - Cláudio T Daniel-Ribeiro
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz Rio de Janeiro, Brazil
| | | |
Collapse
|
19
|
Exported Epoxide Hydrolases Modulate Erythrocyte Vasoactive Lipids during Plasmodium falciparum Infection. mBio 2016; 7:mBio.01538-16. [PMID: 27795395 PMCID: PMC5082902 DOI: 10.1128/mbio.01538-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Erythrocytes are reservoirs of important epoxide-containing lipid signaling molecules, including epoxyeicosatrienoic acids (EETs). EETs function as vasodilators and anti-inflammatory modulators in the bloodstream. Bioactive EETs are hydrolyzed to less active diols (dihydroxyeicosatrienoic acids) by epoxide hydrolases (EHs). The malaria parasite Plasmodium falciparum infects host red blood cells (RBCs) and exports hundreds of proteins into the RBC compartment. In this study, we show that two parasite epoxide hydrolases, P. falciparum epoxide hydrolases 1 (PfEH1) and 2 (PfEH2), both with noncanonical serine nucleophiles, are exported to the periphery of infected RBCs. PfEH1 and PfEH2 were successfully expressed in Escherichia coli, and they hydrolyzed physiologically relevant erythrocyte EETs. Mutations in active site residues of PfEH1 ablated the ability of the enzyme to hydrolyze an epoxide substrate. Overexpression of PfEH1 or PfEH2 in parasite-infected RBCs resulted in a significant alteration in the epoxide fatty acids stored in RBC phospholipids. We hypothesize that the parasite disruption of epoxide-containing signaling lipids leads to perturbed vascular function, creating favorable conditions for binding and sequestration of infected RBCs to the microvascular endothelium. The malaria parasite exports hundreds of proteins into the erythrocyte compartment. However, for most of these proteins, their physiological function is unknown. In this study, we investigate two “hypothetical” proteins of the α/β-hydrolase fold family that share sequence similarity with epoxide hydrolases (EHs)—enzymes that destroy bioactive epoxides. Altering EH expression in parasite-infected erythrocytes resulted in a significant change in the epoxide fatty acids stored in the host cell. We propose that these EH enzymes may help the parasite to manipulate host blood vessel opening and inflame the vessel walls as they pass through the circulation system. Understanding how the malaria parasite interacts with its host RBCs will aid in our ability to combat this deadly disease.
Collapse
|
20
|
Endothelin-1 Treatment Induces an Experimental Cerebral Malaria-Like Syndrome in C57BL/6 Mice Infected with Plasmodium berghei NK65. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2957-2969. [PMID: 27640146 DOI: 10.1016/j.ajpath.2016.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 06/06/2016] [Accepted: 07/11/2016] [Indexed: 12/22/2022]
Abstract
Plasmodium berghei ANKA infection of C57BL/6 mice is a widely used model of experimental cerebral malaria (ECM). By contrast, the nonneurotropic P. berghei NK65 (PbN) causes severe malarial disease in C57BL/6 mice but does not cause ECM. Previous studies suggest that endothelin-1 (ET-1) contributes to the pathogenesis of ECM. In this study, we characterize the role of ET-1 on ECM vascular dysfunction. Mice infected with 106 PbN-parasitized red blood cells were treated with either ET-1 or saline from 2 to 8 days postinfection (dpi). Plasmodium berghei ANKA-infected mice served as the positive control. ET-1-treated PbN-infected mice exhibited neurological signs, hypothermia, and behavioral alterations characteristic of ECM, dying 4 to 8 dpi. Parasitemia was not affected by ET-1 treatment. Saline-treated PbN-infected mice did not display ECM, surviving until 12 dpi. ET-1-treated PbN-infected mice displayed leukocyte adhesion to the vascular endothelia and petechial hemorrhages throughout the brain at 6 dpi. Intravital microscopic images demonstrated significant brain arteriolar vessel constriction, decreased functional capillary density, and increased blood-brain barrier permeability. These alterations were not present in either ET-1-treated uninfected or saline-treated PbN-infected mice. In summary, ET-1 treatment of PbN-infected mice induced an ECM-like syndrome, causing brain vasoconstriction, adherence of activated leukocytes in the cerebral microvasculature, and blood-brain barrier leakage, indicating that ET-1 is involved in the genesis of brain microvascular alterations that are the hallmark of ECM.
Collapse
|
21
|
Contribution of brain perfusion SPECT in the diagnosis of a case of cerebral malaria. Rev Esp Med Nucl Imagen Mol 2016. [DOI: 10.1016/j.remnie.2016.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Freeman BD, Martins YC, Akide-Ndunge OB, Bruno FP, Wang H, Tanowitz HB, Spray DC, Desruisseaux MS. Endothelin-1 Mediates Brain Microvascular Dysfunction Leading to Long-Term Cognitive Impairment in a Model of Experimental Cerebral Malaria. PLoS Pathog 2016; 12:e1005477. [PMID: 27031954 PMCID: PMC4816336 DOI: 10.1371/journal.ppat.1005477] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 02/08/2016] [Indexed: 01/29/2023] Open
Abstract
Plasmodium falciparum infection causes a wide spectrum of diseases, including cerebral malaria, a potentially life-threatening encephalopathy. Vasculopathy is thought to contribute to cerebral malaria pathogenesis. The vasoactive compound endothelin-1, a key participant in many inflammatory processes, likely mediates vascular and cognitive dysfunctions in cerebral malaria. We previously demonstrated that C57BL6 mice infected with P. berghei ANKA, our fatal experimental cerebral malaria model, sustained memory loss. Herein, we demonstrate that an endothelin type A receptor (ETA) antagonist prevented experimental cerebral malaria-induced neurocognitive impairments and improved survival. ETA antagonism prevented blood-brain barrier disruption and cerebral vasoconstriction during experimental cerebral malaria, and reduced brain endothelial activation, diminishing brain microvascular congestion. Furthermore, exogenous endothelin-1 administration to P. berghei NK65-infected mice, a model generally regarded as a non-cerebral malaria negative control for P. berghei ANKA infection, led to experimental cerebral malaria-like memory deficits. Our data indicate that endothelin-1 is critical in the development of cerebrovascular and cognitive impairments with experimental cerebral malaria. This vasoactive peptide may thus serve as a potential target for adjunctive therapy in the management of cerebral malaria. The parasite Plasmodium falciparum is the primary cause of cerebral malaria, a neurological manifestation of severe malaria. Cerebral malaria results in disturbances to the blood vessels of the brain, eventually leading to damage to the blood-brain barrier. This damage can lead to adverse, debilitating neurological complications, particularly in children and individuals with compromised immune systems. Yet there is still a considerable gap in understanding the causes of the detrimental neurological effects of P. falciparum infection. We employed a multidisciplinary approach to delineate the mechanisms by which Plasmodium infection causes these abnormalities. The vasoactive peptide endothelin-1 is implicated in a variety of neurological and inflammatory diseases. Using mouse experimental models of cerebral malaria, we demonstrated that targeting this protein resulted in stabilization of the blood vessels in the brain, decreased the influx of inflammatory cells to the brain vessels, and preserved the integrity of the blood-brain barrier, eventually leading to improved cognitive function and improved survival rates in mice with infection. It is our hope that our work will help extend understanding of the causes of cerebral malaria in humans, and may eventually lead to therapies for preservation or salvaging of neurological function in the management of this disease.
Collapse
Affiliation(s)
- Brandi D. Freeman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yuri C. Martins
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Oscar B. Akide-Ndunge
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Fernando P. Bruno
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Hua Wang
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Herbert B. Tanowitz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - David C. Spray
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Mahalia S. Desruisseaux
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Contribution of brain perfusion SPECT in the diagnosis of a case of cerebral malaria. Rev Esp Med Nucl Imagen Mol 2016; 35:253-6. [PMID: 26992642 DOI: 10.1016/j.remn.2016.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/30/2015] [Accepted: 01/27/2016] [Indexed: 11/24/2022]
Abstract
Cerebral malaria is a serious complication of infection with Plasmodium falciparum. Its pathophysiological mechanisms and clinical manifestations are still currently being studied. Structural imaging techniques such as CT and MRI provide non-specific information during the diagnostic process. However, there are hardly any references on the use and potential benefits of radioisotope procedures for this pathology. In this article we present the case of a patient diagnosed with cerebral malaria treated in our centre, subjected to progressive monitoring using SPECT perfusion.
Collapse
|
24
|
Endothelial-Leukocyte Interaction in Severe Malaria: Beyond the Brain. Mediators Inflamm 2015; 2015:168937. [PMID: 26491221 PMCID: PMC4605361 DOI: 10.1155/2015/168937] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/25/2015] [Accepted: 09/01/2015] [Indexed: 01/23/2023] Open
Abstract
Malaria is the most important parasitic disease worldwide, accounting for 1 million deaths each year. Severe malaria is a systemic illness characterized by dysfunction of brain tissue and of one or more peripheral organs as lungs and kidney. The most severe and most studied form of malaria is associated with cerebral complications due to capillary congestion and the adhesion of infected erythrocytes, platelets, and leukocytes to brain vasculature. Thus, leukocyte rolling and adhesion in the brain vascular bed during severe malaria is singular and distinct from other models of inflammation. The leukocyte/endothelium interaction and neutrophil accumulation are also observed in the lungs. However, lung interactions differ from brain interactions, likely due to differences in the blood-brain barrier and blood-air barrier tight junction composition of the brain and lung endothelium. Here, we review the importance of endothelial dysfunction and the mechanism of leukocyte/endothelium interaction during severe malaria. Furthermore, we hypothesize a possible use of adjunctive therapies to antimalarial drugs that target the interaction between the leukocytes and the endothelium.
Collapse
|
25
|
Canavese M, Dottorini T, Crisanti A. VEGF and LPS synergistically silence inflammatory response to Plasmodium berghei infection and protect against cerebral malaria. Pathog Glob Health 2015; 109:255-65. [PMID: 26392042 DOI: 10.1179/2047773215y.0000000018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Malaria infection induces, alongside endothelial damage and obstruction hypoxia, a potent inflammatory response similar to that observed in other systemic diseases caused by bacteria and viruses. Accordingly, it is increasingly recognised that cerebral malaria (CM), the most severe and life threatening complication of Plasmodium falciparum infection, bears a number of similarities with sepsis, an often fatal condition associated with a misregulated inflammatory response triggered by systemic microbial infections. Using a Plasmodium berghei ANKA mouse model, histology, immunohistochemistry and gene expression analysis, we showed that lipopolysaccharide S (LPS), at doses that normally induce inflammation tolerance, protects P. berghei infected mice against experimental CM (ECM). Vascular endothelial growth factor (VEGF) preserved blood vessel integrity, and the combination with LPS resulted in a strong synergistic effect. Treated mice did not develop ECM, showed a prolonged survival and failed to develop a significant inflammatory response and splenomegaly in spite of normal parasite loads. The protective role of VEGF was further confirmed by the observation that the treatment of P. berghei infected C57BL/6 and Balb/c mice with the VEGF receptor inhibitor axitinib exacerbates cerebral pathology and aggravates the course of infection. Infected mice treated with VEGF and LPS showed an induction of the anti-inflammatory genes Nrf2 and HO-1 and a suppression to basal levels of the genes IFN-γ and TNF-α. These results provide the rationale for developing new therapeutic approaches against CM and shed new light on how the inflammatory process can be modulated in the presence of systemic infectious diseases.
Collapse
|
26
|
Souza MC, Pádua TA, Torres ND, Souza Costa MF, Candéa AP, Maramaldo T, Seito LN, Penido C, Estato V, Antunes B, Silva L, Pinheiro AA, Caruso-Neves C, Tibiriçá E, Carvalho L, Henriques MG. Lipoxin A4 attenuates endothelial dysfunction during experimental cerebral malaria. Int Immunopharmacol 2015; 24:400-407. [PMID: 25576659 DOI: 10.1016/j.intimp.2014.12.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 01/23/2023]
Abstract
A breakdown of the brain-blood barrier (BBB) due to endothelial dysfunction is a primary feature of cerebral malaria (CM). Lipoxins (LX) are specialized pro-resolving mediators that attenuate endothelial dysfunction in different vascular beds. It has already been shown that LXA4 prolonged Plasmodium berghei-infected mice survival by a mechanism that depends on inhibiting IL-12 production and CD8(+)IFN-γ(+) T cells in brain tissue; however, the effects of this treatment on endothelial dysfunction induced during experimental cerebral malaria (ECM) remains to be elucidated. Herein, we investigate the role of LXA4 on endothelial dysfunction during ECM. The treatment of P. berghei-infected mice with LXA4 prevented BBB breakdown and ameliorated behavioral symptoms but did not modulate TNF-α production. In addition, microcirculation analysis showed that treatment with LXA4 significantly increased functional capillary density in brains of P. berghei-infected C57BL/6 mice. Furthermore, histological analyses of brain sections demonstrated that exogenous LXA4 reduced capillary congestion that was accompanied by reduced ICAM-1 expression in the brain tissue. In agreement, LXA4 treatment of endothelial cells stimulated by Plasmodium berghei (Pb)- or Plasmodium falciparum (Pf)-parasitized red blood cells (RBCs) inhibited ICAM-1 expression. Additionally, LXA4 treatment restored the expression of HO-1 that is reduced during ECM. As well, LXA4 treatment inhibits PbRBC and PfRBC adhesion to endothelial cells that was reversed by the use of an HO-1 inhibitor (ZnPPIX). Our results demonstrate for the first time that LXA4 ameliorates endothelial dysfunction during ECM by modulating ICAM-1 and HO-1 expression in brain tissue.
Collapse
Affiliation(s)
- Mariana C Souza
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Tatiana A Pádua
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Natália D Torres
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Maria Fernanda Souza Costa
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - André P Candéa
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Thadeu Maramaldo
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Leonardo Noboru Seito
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Carmen Penido
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Vanessa Estato
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Barbara Antunes
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Leandro Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Acácia Pinheiro
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Celso Caruso-Neves
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eduardo Tibiriçá
- Laboratory of Cardiovascular Investigation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Leonardo Carvalho
- Laboratory of Malaria Research, Instituto Oswaldo Cruz, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Maria G Henriques
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|