1
|
Wu X, Ding C, Liu X, Ding Q, Zhang S, Wang Y, Zhao T, Liu W. Liposome of Phlorizin promote the repair of carotid atherosclerosis in rats by regulating inflammation and the Nrf2 signaling pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159613. [PMID: 40254049 DOI: 10.1016/j.bbalip.2025.159613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/12/2025] [Accepted: 04/16/2025] [Indexed: 04/22/2025]
Abstract
Carotid atherosclerosis (CAS) is a complex cardiovascular disease linked to inflammatory response and oxidative stress. This study aimed to develop and assess the therapeutic efficacy of Phlorizin liposomes (Phlorizin-Lips) in repairing CAS in rats. Phlorizin-Lips were prepared using the film dispersion method and evaluated for controlled release, antioxidant properties, and biocompatibility. The methodology included preparing Phlorizin-Lips, conducting in vitro and in vivo experiments, observing histopathological changes in carotid arteries in a rat model, and detecting inflammatory markers and antioxidant gene expression in arterial endothelial cells using immunoblotting and ELISA. Results showed that Phlorizin-Lips significantly lowered inflammatory markers TNF-α and IL-1β in endothelial cells while upregulating Nrf2 and its downstream antioxidant genes, enhancing the cells' antioxidant capacity and reducing oxidative damage by activating the Nrf2 signaling pathway. Additionally, Phlorizin-Lips reduced carotid plaque formation, improved vascular endothelial function, and promoted CAS repair. This study underscores Phlorizin's potential as a therapeutic agent for CAS and highlights the Nrf2 pathway's role in regulating inflammation and oxidative stress. Future research will explore the clinical potential of Phlorizin-Lips.
Collapse
Affiliation(s)
- Xiaoyu Wu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China; College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Xinglong Liu
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Qiteng Ding
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yue Wang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Ting Zhao
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
2
|
Errigo A, Dore MP, Portoghese M, Pes GM. The Cholesterol Paradox in Long-Livers from a Sardinia Longevity Hot Spot (Blue Zone). Nutrients 2025; 17:765. [PMID: 40077635 PMCID: PMC11901585 DOI: 10.3390/nu17050765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Background/Objectives: Hypercholesterolemia is commonly viewed as a risk factor for coronary heart disease; however, several studies have reported an inverse relationship between cholesterol levels and cardiovascular mortality, particularly in older adults. This "cholesterol paradox" challenges the conventional understanding of lipid metabolism. Despite often being dismissed as a result of reverse causality, the precise causes of this paradox remain poorly understood. This study aimed to investigate the potential existence of the cholesterol paradox in a long-lived population from central Sardinia, Italy. Methods: We recruited 168 baseline nonagenarians (81 males, 87 females) from the longevity Blue Zone area in 2018 and followed them until December 2024. The lipid profile was determined for all participants according to current guidelines, and its impact on survival was analyzed with Kaplan-Meier curves and Cox proportional hazards regression models. Results: The median total cholesterol was 199.5 (range 89-314) mg/dL in males and 202.5 (range 89-324) mg/dL in females. Survival time was significantly longer in participants with LDL cholesterol (LDL-C) above 130 mg/dL compared to that in nonagenarians with LDL-C lower than 130 mg/dL (3.82 ± 1.88 years vs. 2.79 ± 1.56 years, p < 0.0001). Cox regression analysis revealed a significant reduction in the hazard ratio (HR) for mortality in participants with mild hypercholesterolemia (LDL-C ≥ 130 mg/dL) compared to that in those with normal cholesterol (OR 0.600, 95%CI 0.405-0.891). Conclusions: In the long-lived population examined, the cholesterol paradox was unlikely to be a reflection of reverse causality. Our results challenge the common view that longevity is invariably associated with low cholesterol levels. Furthermore, moderate hypercholesterolemia does not preclude the oldest adult from attaining advanced ages, contrary to common belief.
Collapse
Affiliation(s)
- Alessandra Errigo
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Clinica Medica, Viale San Pietro 8, 07100 Sassari, Italy; (A.E.); (M.P.D.)
| | - Maria Pina Dore
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Clinica Medica, Viale San Pietro 8, 07100 Sassari, Italy; (A.E.); (M.P.D.)
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Michele Portoghese
- Cardiovascular Surgery Unit, AOU Sassari, Via Enrico de Nicola 14, 07100 Sassari, Italy;
| | - Giovanni Mario Pes
- Dipartimento di Medicina, Chirurgia e Farmacia, University of Sassari, Clinica Medica, Viale San Pietro 8, 07100 Sassari, Italy; (A.E.); (M.P.D.)
- Sardinia Blue Zone Longevity Observatory, 08040 Ogliastra, Italy
| |
Collapse
|
3
|
Kumar R, Krishnaperumal G, Vellapandian C. Innovative mRNA Vaccine Approaches in Targeting Atherosclerosis: A New Era in Cardiovascular Therapy. Cureus 2024; 16:e74141. [PMID: 39712846 PMCID: PMC11662511 DOI: 10.7759/cureus.74141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024] Open
Abstract
Atherosclerosis, a major cause of cardiovascular disease (CVD), involves plaque buildup in arteries driven by inflammation, endothelial dysfunction, and lipid metabolism disturbances. Current therapies aim to reduce cholesterol through statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, prevent blood clots with antiplatelet drugs like aspirin, and control inflammation, alongside lifestyle modifications. However, these approaches often fall short due to patient non-compliance and residual risks. This review explores emerging mRNA vaccine strategies targeting the complex mechanisms of atherosclerosis. These vaccines could produce therapeutic proteins to modulate inflammation by encoding sequences that inhibit pro-inflammatory cytokines such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), stabilizing plaques. Key targets include interleukin-10 (IL-10) for plaque stability, PCSK9 for cholesterol regulation, and vascular endothelial growth factor (VEGF) for endothelial repair. Addressing these unmet needs, mRNA-based approaches offer the potential for more effective and personalized treatments for atherosclerosis. However, challenges remain, including difficulty replicating human atherosclerosis in preclinical models, regulatory concerns about long-term safety, and ensuring accessibility in low-resource settings. In addition, large and diverse clinical trials are needed to confirm the efficacy of these vaccines in reducing cardiovascular events.
Collapse
Affiliation(s)
- Rahul Kumar
- Pharmacy/Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Chengalpattu, IND
| | - Gowri Krishnaperumal
- Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Chengalpattu, IND
| | - Chitra Vellapandian
- Pharmacy/Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Chengalpattu, IND
| |
Collapse
|
4
|
Jia D, Zhao M, Zhang X, Cheng X, Wei Q, Lou L, Zhao Y, Jin Q, Chen M, Zhang D. Transcriptomic analysis reveals the critical role of chemokine signaling in the anti-atherosclerosis effect of Xuefu Zhuyu decoction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118245. [PMID: 38679399 DOI: 10.1016/j.jep.2024.118245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The process of atherosclerosis (AS) is complicated. Transcriptomics technology can assist in discovering the underlying mechanisms and exploring the key targets of Traditional Chinese Medicine (TCM) against atherosclerosis. AIM This study aimed to investigate targets and signaling pathways significantly related to AS and the potential intervention targets of Xuefu Zhuyu decoction by transcriptomics. MATERIALS AND METHODS AS models were established by subjecting ApoE-/-mice to an 8-week high-fat diet. Structural changes and plaque formation in the aortic root were observed using hematoxylin-eosin staining (HE staining), while Oil Red O staining was employed to visualize lipid deposition within the aortic root plaque. Movat staining and immunohistochemical staining were conducted to examine the components present in the aortic root plaque. Macrophage content within the plaque was observed through immunofluorescence. Additionally, mRNA sequencing was performed on aortic tissues to identify differentially expressed genes. Enrichment analysis was performed using GO and KEGG analysis. Visualization of the protein-protein interaction (PPI) network was achieved using Cytoscape 3.7.1 and STRING. Western blotting (WB) was employed to assess the protein expression of major differentially expressed genes in the aortic tissue. The drug freeze-dried powder of Xuefu Zhuyu decoction was prepared and the RAW264.7 cells were induced by lipopolysaccharide (LPS) to build an in vitro model. Real-time quantitative PCR was employed to measure the mRNA expression of major differential genes. RESULTS After ApoE-/- mice were fed with an 8-week high-fat diet, observable changes included the thinning of the aortic root wall, the accumulation of foam cells within the plaque, and the formation of cholesterol crystals in the model group. Treatment with Xuefu Zhuyu (XFZY) decoction for 12 weeks significantly reduced the lipid deposition and the number of macrophages (P < 0.05) and significantly increased the collagen content within the plaque (P < 0.01). Enrichment analysis revealed a high enrichment of the Cytokine-cytokine receptor interaction pathway and Chemokine signaling pathway. Noteworthy genes involved in this response included Ccl12, Ccl22, Cx3cr1, Ccr7, Ccr2, Tnfrsf25, and Gdf5. Xuefu Zhuyu decoction significantly downregulated the expression of CX3CL1 and CX3CR1 (P < 0.05) and upregulated the expression of GDF5 (P < 0.01). Compared with control group, in cell models, the mRNA expressions of Ccl12, Ccl22, and Ccr2 were significantly upregulated (P < 0.05 or P < 0.01). Xuefu Zhuyu decoction significantly downregulated the expression of Ccl12, Ccl22, Cx3cr1, Ccr7 and Ccr2 (P < 0.05 or P < 0.01). CONCLUSION Xuefu Zhuyu decoction demonstrates effective regulation of plaque components, retarding plaque progression and preserving plaque stability by modulating lipid metabolism and inflammatory responses. Subsequent transcriptome analysis identified the Cytokine-cytokine receptor interaction and Chemokine signaling pathway as potential key pathways for the therapeutic effects of Xuefu Zhuyu decoction. This insight not only provides crucial avenues for further exploration into the mechanisms underlying Xuefu Zhuyu decoction but also offers valuable perspectives and hypotheses for enhancing disease prevention and treatment strategies.
Collapse
Affiliation(s)
- Dongdong Jia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, 214151, China.
| | - Mengzhu Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Xinyue Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; Department of Research and Teaching, Beijing Hepingli Hospital, Beijing, 100010, China.
| | - Xu Cheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Qiong Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Lixia Lou
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yizhou Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Qiushuo Jin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Meng Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Dongmei Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
5
|
Jing Y, Cao RX, Lei X, Wang ZL, Huang XL, Di JR, Mi ZX, Zhao X, Wang M, Jiang MM, Yang WZ, Li X, Miao L, Zhang H, Zhang P. Structural characterization of polysaccharide from the peel of Trichosanthes kirilowii Maxim and its anti-hyperlipidemia activity by regulating gut microbiota and inhibiting cholesterol absorption. Bioorg Chem 2024; 149:107487. [PMID: 38805910 DOI: 10.1016/j.bioorg.2024.107487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
The peel of Trichosanthes kirilowii Maxim, is considered one of the primary sources for Trichosanthis pericarpium in traditional Chinese medicine, exhibiting lipid-lowering properties. The impact on hyperlipidemia mice of the crude polysaccharide from the peel of T. Kirilowii (TRP) was investigated in this study. The findings revealed that TRP exhibited a significant improvement in hepatic lipid deposition. Moreover, it significantly decreased serum levels of TC, TG, and LDL-C, while concurrently increasing HDL-C. 16S rRNA amplicon sequencing technique revealed that TRP group exhibited an increased relative abundance of Actinobacteria, a down-regulated relative abundance of Ruminiclostridium, and an up-regulated relative abundance of Ileibacterium. Therefore, TRP might play a role in anti-hyperlipidemia through regulation of the intestinal milieu and enhancement of microbial equilibrium. Consequently, targeted fractionation of TRP resulted in the isolation of a homogeneous acidic polysaccharide termed TRP-1. The TRP-1 polysaccharide, with an average molecular weight of 1.00 × 104 Da, and was primarily composed of Rha, GlcA, GalA, Glc, Gal and Ara. TRP-1 possessed a backbone consisting of alternating connections between → 6)-α-Galp-(1 → 4)-α-Rhap-(1 → 6)-α-Galp-(2 → 6)-β-Galp-(1 → 6)-α-Galp-(2 → 6)-β-Galp-(1 → units and branched chain containing → 6)-α-Glcp-(1→, 2,4)-β-Glcp-(1, and → 4)-α-GlapA-(1→. Both TRP and TRP-1 exhibited significant disruption of cholesterol micelles, highlighting their potential as lipid-lowering agents that effectively inhibit cholesterol absorption pathways.
Collapse
Affiliation(s)
- Yi Jing
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ruo-Xin Cao
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xi Lei
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ze-Ling Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiang-Long Huang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jing-Rui Di
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhuo-Xin Mi
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xin Zhao
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meng Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Miao-Miao Jiang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wen-Zhi Yang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xue Li
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Miao
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Peng Zhang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
6
|
Liu X, Wang W, Li Q, Niu H, Zhang W. Therapeutic potentials of peptide-derived nanoformulations in atherosclerosis: present status and future directions. INTERNATIONAL JOURNAL OF SMART AND NANO MATERIALS 2024; 15:610-651. [DOI: 10.1080/19475411.2024.2395270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/18/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Xue Liu
- Department of Cardiovascular Medicine, Yantaishan Hospital, Yantai, China
| | - Weijiao Wang
- Department of Otolaryngology, Yantaishan Hospital, Yantai, China
| | - Qiang Li
- Department of Cardiovascular Medicine, Yantaishan Hospital, Yantai, China
| | - Hongtao Niu
- Department of Cardiovascular Medicine, Yantaishan Hospital, Yantai, China
| | - Weili Zhang
- Department of Geriatric Medicine, Yantaishan Hospital, Yantai, China
| |
Collapse
|
7
|
Echrish J, Pasca MI, Cabrera D, Yang Y, Harper AGS. Developing a Biomimetic 3D Neointimal Layer as a Prothrombotic Substrate for a Humanized In Vitro Model of Atherothrombosis. Biomimetics (Basel) 2024; 9:372. [PMID: 38921252 PMCID: PMC11201422 DOI: 10.3390/biomimetics9060372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Acute cardiovascular events result from clots caused by the rupture and erosion of atherosclerotic plaques. This paper aimed to produce a functional biomimetic hydrogel of the neointimal layer of the atherosclerotic plaque that can support thrombogenesis upon exposure to human blood. A biomimetic hydrogel of the neointima was produced by culturing THP-1-derived foam cells within 3D collagen hydrogels in the presence or absence of atorvastatin. Prothrombin time and platelet aggregation onset were measured after exposure of the neointimal models to platelet-poor plasma and washed platelet suspensions prepared from blood of healthy, medication-free volunteers. Activity of the extrinsic coagulation pathway was measured using the fluorogenic substrate SN-17. Foam cell formation was observed following preincubation of the neointimal biomimetic hydrogels with oxidized LDL, and this was inhibited by pretreatment with atorvastatin. The neointimal biomimetic hydrogel was able to trigger platelet aggregation and blood coagulation upon exposure to human blood products. Atorvastatin pretreatment of the neointimal biomimetic layer significantly reduced its pro-aggregatory and pro-coagulant properties. In the future, this 3D neointimal biomimetic hydrogel can be incorporated as an additional layer within our current thrombus-on-a-chip model to permit the study of atherosclerosis development and the screening of anti-thrombotic drugs as an alternative to current animal models.
Collapse
Affiliation(s)
| | | | - David Cabrera
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK; (D.C.); (Y.Y.)
| | - Ying Yang
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK; (D.C.); (Y.Y.)
| | | |
Collapse
|
8
|
Lindenhahn P, Richter J, Pepelanova I, Seeger B, Volk HA, Hinkel R, Hiebl B, Scheper T, Hinrichs JB, Becker LS, Haverich A, Kaufeld T. A Novel Artificial Coronary Plaque to Model Coronary Heart Disease. Biomimetics (Basel) 2024; 9:197. [PMID: 38667208 PMCID: PMC11048636 DOI: 10.3390/biomimetics9040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Experimental coronary artery interventions are currently being performed on non-diseased blood vessels in healthy animals. To provide a more realistic pathoanatomical scenario for investigations on novel interventional and surgical therapies, we aimed to fabricate a stenotic lesion, mimicking the morphology and structure of a human atherosclerotic plaque. METHODS In an interdisciplinary setting, we engineered a casting mold to create an atherosclerotic plaque with the dimensions to fit in a porcine coronary artery. Oscillatory rheology experiments took place along with long-term stability tests assessed by microscopic examination and weight monitoring. For the implantability in future in vivo setups, we performed a cytotoxicity assessment, inserted the plaque in resected pig hearts, and performed diagnostic imaging to visualize the plaque in its final position. RESULTS The most promising composition consists of gelatin, cholesterol, phospholipids, hydroxyapatite, and fine-grained calcium carbonate. It can be inserted in the coronary artery of human-sized pig hearts, producing a local partial stenosis and interacting like the atherosclerotic plaque by stretching and shrinking with the vessel wall and surrounding tissue. CONCLUSION This artificial atherosclerotic plaque model works as a simulating tool for future medical testing and could be crucial for further specified research on coronary artery disease and is going to help to provide information about the optimal interventional and surgical care of the disease.
Collapse
Affiliation(s)
- Philipp Lindenhahn
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30559 Hannover, Germany; (A.H.); (T.K.)
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hanover, 30559 Hannover, Germany
| | - Jannik Richter
- Institute of Technical Chemistry, Leibniz University of Hannover, 30167 Hannover, Germany; (J.R.); (T.S.)
| | - Iliyana Pepelanova
- Institute of Technical Chemistry, Leibniz University of Hannover, 30167 Hannover, Germany; (J.R.); (T.S.)
| | - Bettina Seeger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine, 30559 Hannover, Germany;
| | - Holger A. Volk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hanover, 30559 Hannover, Germany
| | - Rabea Hinkel
- Department of Laboratory Animal Science, Leibnitz-Institut für Primatenforschung, Deutsches Primatenzentrum GmbH, Kellnerweg 4, 37077 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine, 30559 Hannover, Germany;
| | - Bernhard Hiebl
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behavior, University of Veterinary Medicine, 30559 Hannover, Germany;
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University of Hannover, 30167 Hannover, Germany; (J.R.); (T.S.)
| | - Jan B. Hinrichs
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (J.B.H.); (L.S.B.)
| | - Lena S. Becker
- Department of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (J.B.H.); (L.S.B.)
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30559 Hannover, Germany; (A.H.); (T.K.)
| | - Tim Kaufeld
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30559 Hannover, Germany; (A.H.); (T.K.)
| |
Collapse
|
9
|
Yang CH, Ho YH, Tang HY, Lo CJ. NMR-Based Analysis of Plasma Lipoprotein Subclass and Lipid Composition Demonstrate the Different Dietary Effects in ApoE-Deficient Mice. Molecules 2024; 29:988. [PMID: 38474500 DOI: 10.3390/molecules29050988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Plasma lipid levels are commonly measured using traditional methods such as triglycerides (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and cholesterol (CH). However, the use of newer technologies, such as nuclear magnetic resonance (NMR) with post-analysis platforms, has made it easier to assess lipoprotein profiles in research. In this study involving ApoE-deficient mice that were fed high-fat diets, significant changes were observed in TG, CH, free cholesterol (FC), and phospholipid (PL) levels within the LDL fraction. The varied proportions of TG in wild-type mice and CH, FC, and PL in ApoE-/- mice were strikingly different in very low-density lipoproteins (VLDL), LDL, intermediate-density lipoprotein (IDL), and HDL. This comprehensive analysis expands our understanding of lipoprotein subfractions and the impacts of the APOE protein and high-fat diet in mouse models. The new testing method allows for a complete assessment of plasma lipids and their correlation with genetic background and diet in mice.
Collapse
Affiliation(s)
- Cheng-Hung Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Yu-Hsuan Ho
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Hsiang-Yu Tang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Chi-Jen Lo
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan City 33302, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
| |
Collapse
|
10
|
Almoraie NM, Shatwan IM. The Potential Effects of Dietary Antioxidants in Obesity: A Comprehensive Review of the Literature. Healthcare (Basel) 2024; 12:416. [PMID: 38391792 PMCID: PMC10887832 DOI: 10.3390/healthcare12040416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Obesity has become a global health concern, with its prevalence steadily increasing in recent decades. It is associated with numerous health complications, including cardiovascular diseases, diabetes, and certain types of cancer. The aetiology of obesity is multifactorial, involving genetic, environmental, and lifestyle factors. In recent years, oxidative stress has emerged as a potential contributor to obesity and its related metabolic disorders. Dietary antioxidants, which can counteract oxidative stress, have gained significant attention for their potential role in preventing and managing obesity. This comprehensive review aims to explore the impact of dietary antioxidants on obesity and its associated metabolic dysregulations, discussing the underlying mechanisms and highlighting the potential therapeutic implications.
Collapse
Affiliation(s)
- Noha M Almoraie
- Food and Nutrition Department, Faculty of Human Sciences and Design, King Abdulaziz University, Building 43, Room 233, Level 2, Jeddah 3270, Saudi Arabia
| | - Israa M Shatwan
- Food and Nutrition Department, Faculty of Human Sciences and Design, King Abdulaziz University, Building 43, Room 233, Level 2, Jeddah 3270, Saudi Arabia
| |
Collapse
|
11
|
Yang L, Yang C, Song Z, Wan M, Xia H, Yang X, Xu D, Pan D, Liu H, Wang S, Sun G. Different n-6/n-3 polyunsaturated fatty acid ratios affect postprandial metabolism in normal and hypertriglyceridemic rats. FOOD SCIENCE AND HUMAN WELLNESS 2023; 12:1157-1166. [DOI: 10.1016/j.fshw.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Rafiyan M, Sadeghmousavi S, Akbarzadeh M, Rezaei N. Experimental animal models of chronic inflammation. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100063. [PMID: 37334102 PMCID: PMC10276141 DOI: 10.1016/j.crimmu.2023.100063] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
Inflammation is a general term for a wide variety of both physiological and pathophysiological processes in the body which primarily prevents the body from diseases and helps to remove dead tissues. It has a crucial part in the body immune system. Tissue damage can recruit inflammatory cells and cytokines and induce inflammation. Inflammation can be classified as acute, sub-acute, and chronic. If it remained unresolved and lasted for prolonged periods, it would be considered as chronic inflammation (CI), which consequently exacerbates tissue damage in different organs. CI is the main pathophysiological cause of many disorders such as obesity, diabetes, arthritis, myocardial infarction, and cancer. Thus, it is critical to investigate different mechanisms involved in CI to understand its processes and to find proper anti-inflammatory therapeutic approaches for it. Animal models are one of the most useful tools for study about different diseases and mechanisms in the body, and are important in pharmacological studies to find proper treatments. In this study, we discussed the various experimental animal models that have been used to recreate CI which can help us to enhance the understanding of CI mechanisms in human and contribute to the development of potent new therapies.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Animal Model Integrated Network (AMIN), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Shaghayegh Sadeghmousavi
- Animal Model Integrated Network (AMIN), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Milad Akbarzadeh
- Animal Model Integrated Network (AMIN), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
13
|
陆 琦, 鲍 迎, 陈 旭, 王 春. [Effect of local unstable atherosclerotic plaque on plaque formation in the carotid artery and abdominal aorta of rabbits]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:117-121. [PMID: 36856219 PMCID: PMC9978728 DOI: 10.12122/j.issn.1673-4254.2023.01.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Indexed: 03/02/2023]
Abstract
OBJECTIVE To analyze the effect of local unstable atherosclerotic plaque on plaque formation in the carotid and aortic arteries of rabbits. METHODS Thirty New Zealand white rabbits were randomly divided into atherosclerosis model group, highfat diet feeding group, and normal chow feeding group (blank control group). In the model group, carotid artery balloon injury was induced after 4 weeks of high-fat diet feeding. Eight weeks later, all the rabbits were euthanized for histopathological examination of the carotid artery and abdominal aorta, and the mean intimal thickness and plaque to lumen area ratio were measured using image analysis software. Venous blood samples were collected from the rabbits for blood lipid analysis. RESULT At the ends of 4, 8 and 12 weeks, the rabbits in the model group and high-fat feeding group, but not those in the blank control group, all showed significant weight gain compared with their body weight at 0 week (P < 0.05). The mean intimal thickness was significantly greater in atherosclerosis model group than in the other two groups (P < 0.05). In atherosclerosis model group, the mean intimal thickness and plaque to lumen area ratio in the injured carotid artery were significantly greater than those in the contralateral carotid artery and abdominal aorta (P < 0.05). At the end of the 12 weeks, the levels of triglyceride (TG), total cholesterol (TC), low-density cholesterol (LDL-C), high-density cholesterol (HDL-C) and highsensitivity C-reactive protein (CRP) were all significantly higher in the model group and high-fat feeding group than in the blank control group (P < 0.05); the levels of TG, TC, LDL-C, or HDL-C did not differ significantly between the model group and high-fat feeding group (P>0.05), but the level of CRP was significantly higher in arteriosclerosis model group (P < 0.05). CONCLUSION Local unstable atherosclerotic plaque can increase the level of CRP and promote the formation of atherosclerotic plaques in the carotid artery and abdominal aorta in rabbits.
Collapse
Affiliation(s)
- 琦 陆
- 宁波大学附属人民医院心内科,浙江 宁波 315040Department of Cardiology, Affiliated People's Hospital of Ningbo University, Ningbo 315040, China
| | - 迎春 鲍
- 宁波大学附属人民医院心内科,浙江 宁波 315040Department of Cardiology, Affiliated People's Hospital of Ningbo University, Ningbo 315040, China
| | - 旭姣 陈
- 宁波市医疗中心李惠利医院东部院区特检科,浙江 宁波 315048Eastern Brach of Lihuili Hospital, Ningbo Medical Center, Ningbo 315048, China
| | - 春明 王
- 宁波大学附属人民医院心内科,浙江 宁波 315040Department of Cardiology, Affiliated People's Hospital of Ningbo University, Ningbo 315040, China
| |
Collapse
|
14
|
May L, Bartolo B, Harrison D, Guzik T, Drummond G, Figtree G, Ritchie R, Rye KA, de Haan J. Translating atherosclerosis research from bench to bedside: navigating the barriers for effective preclinical drug discovery. Clin Sci (Lond) 2022; 136:1731-1758. [PMID: 36459456 PMCID: PMC9727216 DOI: 10.1042/cs20210862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. An ongoing challenge remains the development of novel pharmacotherapies to treat CVD, particularly atherosclerosis. Effective mechanism-informed development and translation of new drugs requires a deep understanding of the known and currently unknown biological mechanisms underpinning atherosclerosis, accompanied by optimization of traditional drug discovery approaches. Current animal models do not precisely recapitulate the pathobiology underpinning human CVD. Accordingly, a fundamental limitation in early-stage drug discovery has been the lack of consensus regarding an appropriate experimental in vivo model that can mimic human atherosclerosis. However, when coupled with a clear understanding of the specific advantages and limitations of the model employed, preclinical animal models remain a crucial component for evaluating pharmacological interventions. Within this perspective, we will provide an overview of the mechanisms and modalities of atherosclerotic drugs, including those in the preclinical and early clinical development stage. Additionally, we highlight recent preclinical models that have improved our understanding of atherosclerosis and associated clinical consequences and propose model adaptations to facilitate the development of new and effective treatments.
Collapse
Affiliation(s)
- Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - David G. Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville TN, U.S.A
| | - Tomasz Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Grant R. Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Gemma A. Figtree
- Kolling Research Institute, University of Sydney, Sydney, Australia
- Imaging and Phenotyping Laboratory, Charles Perkins Centre and Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Rebecca H. Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney 2052, Australia
| | - Judy B. de Haan
- Cardiovascular Inflammation and Redox Biology Lab, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Department Cardiometabolic Health, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria 3086, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| |
Collapse
|
15
|
Wahl L, Raschke M, Wittmann J, Regler A, Heelemann S, Brandsch C, Stangl GI, Vervuert I. Effects of atherogenic diet supplemented with fermentable carbohydrates on metabolic responses and plaque formation in coronary arteries using a Saddleback pig model. PLoS One 2022; 17:e0275214. [PMID: 36206259 PMCID: PMC9543622 DOI: 10.1371/journal.pone.0275214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Fermentable carbohydrates are gaining interest in the field of human nutrition because of their benefits in obesity-related comorbidities. The aim of this study was to investigate the influence of fermentable carbohydrates, such as pectin and inulin, in an atherogenic diet on metabolic responses and plaque formation in coronary arteries using a Saddleback pig model. Forty-eight healthy pigs aged five months were divided into four feeding groups (n = 10) and one baseline group (n = 8). Three feeding groups received an atherogenic diet (38% crisps, 10% palm fat, and 2% sugar with or without supplementation of 5% pectin or inulin), and one group received a conventional diet over 15 weeks. Feed intake, weight gain, body condition score, and back fat thickness were monitored regularly. Blood and fecal samples were collected monthly to assess the metabolites associated with high cardiovascular risk and fat content, respectively. At the end of 15 weeks, the coronary arteries of the pigs were analyzed for atherosclerotic plaque formation. Independent of supplementation, significant changes were observed in lipid metabolism, such as an increase in triglycerides, bile acids, and cholesterol in serum, in all groups fed atherogenic diets in comparison to the conventional group. Serum metabolome analysis showed differentiation of the feeding groups by diet (atherogenic versus conventional diet) but not by supplementation with pectin or inulin. Cardiovascular lesions were found in all feeding groups and in the baseline group. Supplementation of pectin or inulin in the atherogenic diet had no significant impact on cardiovascular lesion size. Saddleback pigs can develop naturally occurring plaques in coronary arteries. Therefore, this pig model offers potential for further research on the effects of dietary intervention on obesity-related comorbidities, such as cardiovascular lesions, in humans.
Collapse
Affiliation(s)
- Lisa Wahl
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, Leipzig, Germany,Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| | - Melina Raschke
- Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany,Institute of Agricultural and Nutritional Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | - Corinna Brandsch
- Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany,Institute of Agricultural and Nutritional Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Gabriele I. Stangl
- Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany,Institute of Agricultural and Nutritional Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ingrid Vervuert
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Leipzig University, Leipzig, Germany,Competence Cluster of Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany,* E-mail:
| |
Collapse
|
16
|
Jia D, Zhang X, Guo Q, Yang R, Yu H, Zhao M, Shi L, Liu M, Wu A, Zhang D. Efficacy and Underlying Mechanism of Berberine Against Atherosclerosis: A Meta-Analysis in Preclinical Animal Studies. J Cardiovasc Pharmacol 2022; 80:476-488. [PMID: 35881903 DOI: 10.1097/fjc.0000000000001308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/18/2022] [Indexed: 01/31/2023]
Abstract
Atherosclerosis is the primary cause of many cardiovascular diseases, and an increasing number of studies have shown that berberine could delay plaque formation and development. Therefore, we aimed to evaluate its effects and explore its mechanisms in this meta-analysis. We searched PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, Wanfang, and VIP databases for original preclinical studies to conduct meta-analysis. Twelve articles (16 studies; 312 ApoE -/- mice) were included, and all the studies scored 3-5 points according to SYRCLE's risk of bias tool. Berberine could significantly decrease plaque area and plaque macrophage content (plaque area, SMD = -2.02, 95% CI: -2.80 to -1.24, P = 0.000; plaque macrophage content, SMD = -4.28, 95% CI: -7.67 to -0.88, P = 0.013); lower the levels of TC, triglyceride, and low-density lipoprotein (TC, SMD = -1.47, 95% CI: -2.20 to -0.74, P = 0.000; triglyceride, SMD = -0.77, 95% CI: -1.21 to -0.33, P = 0.000; low-density lipoprotein, SMD = -0.61, 95% CI: -1.11 to -0.11, P = 0.000), and change the secretion of inflammatory cytokines (IL-1β, SMD = -2.29, 95% CI: -3.40 to -1.18, P = 0.000; interleukin-6, SMD = -1.48, 95% CI: -2.11 to -0.85, P = 0.008; tumor necrosis factor-α, SMD = -1.98, 95% CI: -3.01 to -0.94, P = 0.000; interleukin-10, SMD = 1.78, 95% CI: 0.76 to 2.80, P = 0.015), but there were no significant differences in high-density lipoprotein levels and plaque lipid content (high-density lipoprotein, SMD = 0.02, 95% CI: -0.35 to 0.40, P = 0.021; plaque lipid content, SMD = -6.85, 95% CI: -21.09 to 7.39, P = 0.007). The results were robust across a range of sensitivity analyses. Therefore, the results indicate that berberine is a promising drug for the treatment of atherosclerosis through regulating lipid metabolism, inflammation, and plaque composition. However, some potential mechanisms remain to be further elucidated.
Collapse
Affiliation(s)
- Dongdong Jia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; and
| | - XinYue Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; and
| | - Qianqian Guo
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; and
| | - Rui Yang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; and
| | - Haitao Yu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengzhu Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; and
| | - Liu Shi
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; and
| | - Menghua Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; and
| | - Aiming Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; and
| | - Dongmei Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; and
| |
Collapse
|
17
|
Vesnina A, Prosekov A, Atuchin V, Minina V, Ponasenko A. Tackling Atherosclerosis via Selected Nutrition. Int J Mol Sci 2022; 23:8233. [PMID: 35897799 PMCID: PMC9368664 DOI: 10.3390/ijms23158233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
The development and pathogenesis of atherosclerosis are significantly influenced by lifestyle, particularly nutrition. The modern level of science and technology development promote personalized nutrition as an efficient preventive measure against atherosclerosis. In this survey, the factors were revealed that contribute to the formation of an individual approach to nutrition: genetic characteristics, the state of the microbiota of the gastrointestinal tract (GIT) and environmental factors (diets, bioactive components, cardioprotectors, etc.). In the course of the work, it was found that in order to analyze the predisposition to atherosclerosis associated with nutrition, genetic features affecting the metabolism of nutrients are significant. The genetic features include the presence of single nucleotide polymorphisms (SNP) of genes and epigenetic factors. The influence of telomere length on the pathogenesis of atherosclerosis and circadian rhythms was also considered. Relatively new is the study of the relationship between chrono-nutrition and the development of metabolic diseases. That is, to obtain the relationship between nutrition and atherosclerosis, a large number of genetic markers should be considered. In this relation, the question arises: "How many genetic features need to be analyzed in order to form a personalized diet for the consumer?" Basically, companies engaged in nutrigenetic research and choosing a diet for the prevention of a number of metabolic diseases use SNP analysis of genes that accounts for lipid metabolism, vitamins, the body's antioxidant defense system, taste characteristics, etc. There is no set number of genetic markers. The main diets effective against the development of atherosclerosis were considered, and the most popular were the ketogenic, Mediterranean, and DASH-diets. The advantage of these diets is the content of foods with a low amount of carbohydrates, a high amount of vegetables, fruits and berries, as well as foods rich in antioxidants. However, due to the restrictions associated with climatic, geographical, material features, these diets are not available for a number of consumers. The way out is the use of functional products, dietary supplements. In this approach, the promising biologically active substances (BAS) that exhibit anti-atherosclerotic potential are: baicalin, resveratrol, curcumin, quercetin and other plant metabolites. Among the substances, those of animal origin are popular: squalene, coenzyme Q10, omega-3. For the prevention of atherosclerosis through personalized nutrition, it is necessary to analyze the genetic characteristics (SNP) associated with the metabolism of nutrients, to assess the state of the microbiota of the GIT. Based on the data obtained and food preferences, as well as the individual capabilities of the consumer, the optimal diet can be selected. It is topical to exclude nutrients of which their excess consumption stimulates the occurrence and pathogenesis of atherosclerosis and to enrich the diet with functional foods (FF), BAS containing the necessary anti-atherosclerotic, and stimulating microbiota of the GIT nutrients. Personalized nutrition is a topical preventive measure and there are a number of problems hindering the active use of this approach among consumers. The key factors include weak evidence of the influence of a number of genetic features, the high cost of the approach, and difficulties in the interpretation of the results. Eliminating these deficiencies will contribute to the maintenance of a healthy state of the population through nutrition.
Collapse
Affiliation(s)
- Anna Vesnina
- Laboratory of Natural Nutraceuticals Biotesting, Research Department, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Victor Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
- Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
- Laboratory of Applied Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
- Department of Industrial Machinery Design, Novosibirsk State Technical University, 630073 Novosibirsk, Russia
- R&D Center “Advanced Electronic Technologies”, Tomsk State University, 634034 Tomsk, Russia
| | - Varvara Minina
- Department of Genetic and Fundamental Medicine, Kemerovo State University, 650000 Kemerovo, Russia;
| | - Anastasia Ponasenko
- Laboratory of Genome Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 650002 Kemerovo, Russia;
| |
Collapse
|
18
|
Ilyas I, Little PJ, Liu Z, Xu Y, Kamato D, Berk BC, Weng J, Xu S. Mouse models of atherosclerosis in translational research. Trends Pharmacol Sci 2022; 43:920-939. [PMID: 35902281 DOI: 10.1016/j.tips.2022.06.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 12/21/2022]
Abstract
Atherosclerotic cardiovascular disease (CVD), the major cause of premature human mortality, is a chronic and progressive metabolic and inflammatory disease in large- and medium-sized arteries. Mouse models are widely used to gain mechanistic insights into the pathogenesis of atherosclerosis and have facilitated the discovery of anti-atherosclerotic drugs. Despite promising preclinical studies, many drug candidates have not translated to clinical use because of the complexity of disease patho-mechanisms including lipid metabolic traits and inflammatory, genetic, and hemodynamic factors. We review the current preclinical utility and translation potential of traditional [apolipoprotein E (APOE)- and low-density lipoprotein (LDL) receptor (LDLR)-deficient mice] and emerging mouse models that include partial carotid ligation and AAV8-Pcsk9-D377Y injection in atherosclerosis research and drug discovery. This article represents an important resource in atherosclerosis research.
Collapse
Affiliation(s)
- Iqra Ilyas
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
| | - Zhiping Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanyong Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Pathology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Danielle Kamato
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia; Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, Australia
| | - Bradford C Berk
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China; Laboratory of Metabolics and Cardiovascular Diseases, Institute of Endocrine and Metabolic Diseases, University of Science and Technology of China, Hefei, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China; Laboratory of Metabolics and Cardiovascular Diseases, Institute of Endocrine and Metabolic Diseases, University of Science and Technology of China, Hefei, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
19
|
Synergistic Effect of Polydatin and Polygonatum sibiricum Polysaccharides in Combating Atherosclerosis via Suppressing TLR4-Mediated NF- κB Activation in ApoE-Deficient Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3885153. [PMID: 35845572 PMCID: PMC9283052 DOI: 10.1155/2022/3885153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022]
Abstract
Objective Atherosclerosis is a chronic inflammatory disease, which is closely related to hyperlipidemia, inflammatory responses, and oxidative stress. As natural products, polydatin (PD) and Polygonatum sibiricum polysaccharides (PSP) have remarkable pharmacological effects in anti-inflammatory, antioxidant stress, and lipid regulation. In this study, we sought to investigate whether the combination of polydatin and P. sibiricum polysaccharides play an anti-atherosclerotic role in alleviating inflammatory responses by inhibiting the toll-like receptor4 (TLR4)/myeloid differentiation factor88(MyD88)/nuclear factor-kappa B(NF-κB) signaling pathway. Methods Thirty-two ApoE-/- mice were fed with a high-fat diet (HFD) starting at the age of 8 weeks. Mice were randomly divided into four groups; (1) model group, (2) PD (100 mg/kg) + PSP (50 mg/kg) group, (3) TAK-242 (3 mg/kg) (TLR4 inhibitor) group, (4) PD (100 mg/kg) + PSP (50 mg/kg) + TAK-242 (3 mg/kg) group. Eight age-matched wild-type C57BL/6J mice fed an ordinary diet were used as a control group. Blood lipid levels were measured with an automatic biochemical analyzer. The lipid accumulation and histopathological changes in the aorta and liver were observed by Oil Red O and hematoxylin and eosin (H&E) staining, respectively. ELISA was performed to measure the serum levels of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Western blot analysis was performed to analyze the expression of key proteins in the TLR4/MyD88/NF-κB signaling pathway. Results Compared with the model group, the combination of PD and PSP significantly inhibit serum lipids (low-density lipoprotein cholesterol, total cholesterol, and triglyceride) and cell adhesion molecules (VCAM-1, ICAM-1). Oil Red O staining indicated that the combination of PD and PSP decrease lipid accumulation in the aorta and liver. Moreover, H&E staining suggested that the combination of PD and PSP alleviate aortic intimal hyperplasia, inflammatory cell infiltration, and hepatic steatosis. Finally, the combination of PD and PSP inhibit the expression of TLR4, MyD88, and the phosphorylation level of NF-κB p65 protein in the aorta. Conclusions Polydatin synergizes with P. sibiricum polysaccharides in preventing the development of atherosclerosis in ApoE-/- mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway.
Collapse
|
20
|
Vayssettes-Courchay C, Ragonnet C, Isabelle M, Bourguignon MP, Chimenti S. In vivo Evidence of Arterial Dynamic Properties Alteration in Atherosclerotic Rabbit. J Vasc Res 2022; 59:239-250. [PMID: 35439760 DOI: 10.1159/000523898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Atherosclerosis severely damages the arterial wall. The aim of this study was to assess in vivo, for the first time, arterial dynamic properties, reactivity, and stiffness in atherosclerotic (ATH) rabbits. METHODS The rabbits were fed with 0.3% cholesterol diet. Femoral artery (FA) or abdominal aorta (AA) diameter was recorded by echotracking, together with blood pressure. Arterial reactivity after local administration of agents and stiffness were measured as diameter or pulsatile diameter changes. RESULTS FA dilation induced by acetylcholine was reduced in the function of diet duration (9-65 weeks). With mid-term diet duration (35-45 weeks), the dilation to nitroprusside was greatly reduced; the constriction to norepinephrine was reduced but not that to serotonin, thromboxane agonist, or angiotensin II. After 17- and 28-week diet AA and FA stiffness were increased while distensibility was reduced. Arterial stiffness measured by regional pulse wave velocity was unaltered. We observed that after 28-week diet, FA exhibited a stiffened wall at the plaque level and higher distensibility at the upstream site. DISCUSSION/CONCLUSION Arterial reactivity and compliance were greatly modified by atherosclerosis, at various degrees dependent on diet duration. ATH rabbit is therefore a suitable model for in vivo investigations of treatments targeting dynamic properties of arterial wall.
Collapse
|
21
|
Zhang F, Liu P, He Z, Zhang L, He X, Liu F, Qi J. Crocin ameliorates atherosclerosis by promoting the reverse cholesterol transport and inhibiting the foam cell formation via regulating PPARγ/LXR-α. Cell Cycle 2022; 21:202-218. [PMID: 34978526 PMCID: PMC8837240 DOI: 10.1080/15384101.2021.2015669] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Crocin (CRO) is feasible in alleviating atherosclerosis (AS), the mechanism of which was therefore explored in the study. High-fat diet (HFD)-induced apolipoprotein E-deficient (ApoE−/−) mice and lysophosphatidic acid (LPA)-treated macrophages received CRO treatment. Treated macrophage viability was determined via MTT assay. In both murine and macrophage, the lipid level and total Cholesterol/Cholesteryl l Ester (TC/CE) levels were quantified by oil-red-O staining and ELISA, respectively. Lipid droplet, aortic plaque formation and collagen deposition were detected via Oil-red-O staining, hematoxylin–eosin staining and Masson staining, respectively. Liver X Receptor-α (LXR-α), Peroxisome Proliferator-Activated Receptor γ (PPARγ), CD68, PCSK9, CD36, ATP Binding Cassette Subfamily A Member 1 (ABCA1), phosphorylated (p)-AKT, and AKT expressions were detected via Western blot, the former three also being detected using Immunohistochemistry and the first being measured by qRT-PCR. CRO decreased HFD-induced weight gain, ameliorated the abnormal serum lipid levels of HFD-treated mice, and inhibited aortic plaque formation and lipid deposition, and increased collagen fibers, with upregulated high-density lipoprotein-cholesterol (HDL-C) and downregulated TC and low-density lipoprotein-cholesterol (LDL-C). CRO alleviated the HFD-induced upregulations of CD68, PCSK9 and CD36 as well as downregulations of PPARγ/LXR-α, ABCA1 and AKT phosphorylation. In LPA-treated macrophages, CRO alone exerted no effect on the viability yet inhibited the lipid droplets formation and downregulated TC/CE levels. Silent LXR-α reversed the effect of CRO on the lipid droplets formation and levels of lipid metabolism-related factors. CRO ameliorated AS by inhibiting foam cells formation and promoting reverse cholesterol transport via PPARγ/LXR-α.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Peng Liu
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Zhaopeng He
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Like Zhang
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Xinqi He
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Feng Liu
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Jinsheng Qi
- School of Basic Medicine, Hebei Medical University, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
22
|
Wang W, Zhao T, Geng K, Yuan G, Chen Y, Xu Y. Smoking and the Pathophysiology of Peripheral Artery Disease. Front Cardiovasc Med 2021; 8:704106. [PMID: 34513948 PMCID: PMC8429807 DOI: 10.3389/fcvm.2021.704106] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/31/2021] [Indexed: 12/15/2022] Open
Abstract
Smoking is one of the most important preventable factors causing peripheral artery disease (PAD). The purpose of this review is to comprehensively analyze and summarize the pathogenesis and clinical characteristics of smoking in PAD based on existing clinical, in vivo, and in vitro studies. Extensive searches and literature reviews have shown that a large amount of data exists on the pathological process underlying the effects of cigarette smoke and its components on PAD through various mechanisms. Cigarette smoke extracts (CSE) induce endothelial cell dysfunction, smooth muscle cell remodeling and macrophage phenotypic transformation through multiple molecular mechanisms. These pathological changes are the molecular basis for the occurrence and development of peripheral vascular diseases. With few discussions on the topic, we will summarize recent insights into the effect of smoking on regulating PAD through multiple pathways and its possible pathogenic mechanism.
Collapse
Affiliation(s)
- Weiming Wang
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Department of General Surgery (Vascular Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Tingting Zhao
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Kang Geng
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Gang Yuan
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Youhua Xu
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
23
|
Iop L. Toward the Effective Bioengineering of a Pathological Tissue for Cardiovascular Disease Modeling: Old Strategies and New Frontiers for Prevention, Diagnosis, and Therapy. Front Cardiovasc Med 2021; 7:591583. [PMID: 33748193 PMCID: PMC7969521 DOI: 10.3389/fcvm.2020.591583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular diseases (CVDs) still represent the primary cause of mortality worldwide. Preclinical modeling by recapitulating human pathophysiology is fundamental to advance the comprehension of these diseases and propose effective strategies for their prevention, diagnosis, and treatment. In silico, in vivo, and in vitro models have been applied to dissect many cardiovascular pathologies. Computational and bioinformatic simulations allow developing algorithmic disease models considering all known variables and severity degrees of disease. In vivo studies based on small or large animals have a long tradition and largely contribute to the current treatment and management of CVDs. In vitro investigation with two-dimensional cell culture demonstrates its suitability to analyze the behavior of single, diseased cellular types. The introduction of induced pluripotent stem cell technology and the application of bioengineering principles raised the bar toward in vitro three-dimensional modeling by enabling the development of pathological tissue equivalents. This review article intends to describe the advantages and disadvantages of past and present modeling approaches applied to provide insights on some of the most relevant congenital and acquired CVDs, such as rhythm disturbances, bicuspid aortic valve, cardiac infections and autoimmunity, cardiovascular fibrosis, atherosclerosis, and calcific aortic valve stenosis.
Collapse
Affiliation(s)
- Laura Iop
- Department of Cardiac Thoracic Vascular Sciences, and Public Health, University of Padua Medical School, Padua, Italy
| |
Collapse
|
24
|
Tang D, Geng F, Yu C, Zhang R. Recent Application of Zebrafish Models in Atherosclerosis Research. Front Cell Dev Biol 2021; 9:643697. [PMID: 33718384 PMCID: PMC7947229 DOI: 10.3389/fcell.2021.643697] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
Atherosclerotic cardiovascular disease is one of the leading causes of death worldwide. Establishing animal models of atherosclerosis is of great benefit for studying its complicated pathogenesis and screening and evaluating related drugs. Although researchers have generated a variety of models for atherosclerosis study in rabbits, mice and rats, the limitations of these models make it difficult to monitor the development of atherosclerosis, and these models are unsuitable for large scale screening of potential therapeutic targets. On the contrast, zebrafish can fulfill these purposes thanks to their fecundity, rapid development ex utero, embryonic transparency, and conserved lipid metabolism process. Thus, zebrafish have become a popular alternative animal model for atherosclerosis research. In this mini review, we summarize different zebrafish models used to study atherosclerosis, focusing on the latest applications of these models to the dynamic monitoring of atherosclerosis progression, mechanistic study of therapeutic intervention and drug screening, and assessment of the impacts of other risk factors.
Collapse
Affiliation(s)
- Dandan Tang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Fang Geng
- School of Life Sciences, Fudan University, Shanghai, China
| | - Chunxiao Yu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ruilin Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Cai Y, Xu L, Xu C, Wang Y, Fan C. Hsa_circ_0001445 inhibits ox-LDL-induced HUVECs inflammation, oxidative stress and apoptosis by regulating miRNA-640. Perfusion 2020; 37:86-94. [PMID: 33300444 DOI: 10.1177/0267659120979472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The role of Hsa_circ_0001445 in oxidation Low Lipoprotein (ox-LDL) induced HUVEC inflammatory damage remains poorly characterized. The present study investigated the performance of the circRNA Hsa_circ_0001445 on ox-LDL-induced HUVEC inflammatory damage. ox-LDL was employed to treat HUVECs and the expression of Hsa_circ_0001445 in cells were detected by qRT-PCR. Then, the overexpression plasmid of circ_0001445 was transfected into HUVECs. The Cell Counting Kit-8 assay was performed to detect cell viability, and the expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 in treatment cells were measured using ELISAs. Furthermore, the oxidative stress kit was used to detect the levels of malondialdehyde, superoxide dismutase and glutathione peroxidase in treatment cells. Flow cytometry assay was applied to measure cell apoptosis, and the expressions of apoptosis-related protein were measured by western blot. The luciferase reporter assay was applied to confirm the target binding between Hsa_circ_0001445 and micro-RNA-640 (miRNA-640). Next, miRNA-640 mimic was transfected into ox-LDL-induced HUVECs, and then cell proliferation, expression level of inflammatory factors, oxidative stress and apoptosis level in treatment cells were assessed, with the expression of related proteins measured. The results revealed that the expression of Hsa_circ_0001445 was obviously downregulated in ox-LDL-induced HUVECs. Overexpression of Hsa_circ_0001445 promoted cell proliferation, inhibited ox-LDL-induced HUVEC inflammatory response, downregulate the expression of TNF-α, IL-1β and IL-16, overexpression of Hsa_circ_0001445 inhibited cell apoptosis. miRNA-640 was confirmed as a direct target of Hsa_circ_0001445, and miRNA-640 mimic reversed the effects of Hsa_circ_0001445 overexpression on ox-LDL-induced HUVECs. Our findings concluded that Hsa_circ_0001445 inhibits ox-LDL-induced HUVEC inflammation, oxidative stress and apoptosis by regulating miRNA-640.
Collapse
Affiliation(s)
- Yinlian Cai
- Department of Cardiology, The Second Affiliated of Fujian Medical University, Quanzhou City, Fujian Province, People's Republic of China
| | - Ling Xu
- Department of Cardiology, The Second Affiliated of Fujian Medical University, Quanzhou City, Fujian Province, People's Republic of China
| | - Chaoxiang Xu
- Department of Cardiology, The Second Affiliated of Fujian Medical University, Quanzhou City, Fujian Province, People's Republic of China
| | - Yaoguo Wang
- Department of Cardiology, The Second Affiliated of Fujian Medical University, Quanzhou City, Fujian Province, People's Republic of China
| | - Chenghui Fan
- Department of Cardiology, Shanghai East Hospital, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
26
|
Puchenkova OA, Nadezhdin SV, Soldatov VO, Zhuchenko MA, Korshunova DS, Kubekina MV, Korshunov EN, Korokina LV, Golubinskaya PA, Kulikov AL, Gureev VV, Pokrovskiy VM, Patrakhanov EA, Lebedev PR, Denisyuk TA, Belyaeva VS, Movchan EA, Lepetukha EI, Pokrovskiy MV. STUDY OF ANTIATHEROSCLEROTIC AND ENDOTHELIOPROTECTIVE ACTIVITY OF PEPTIDE AGONISTS OF EPOR/CD131 HETERORECEPTOR. PHARMACY & PHARMACOLOGY 2020. [DOI: 10.19163/2307-9266-2020-8-2-100-111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Introduction. The drugs affecting a mitochondrial dysfunction, oxidative stresses, apoptosis and inflammation of the vascular wall, have a high potential for the prevention and treatment of atherosclerotic lesions. In this regard, the use of EPOR/CD131 heteroreceptor agonists which have a similar spectrum of pharmacological effects, is one of the promising strategies in the treatment of cardiovascular diseases.Materials and Methods. The study was carried out on 68 C57Bl/6J male mice. Atherosclerosis was simulated in transgenic animals with an endotheliospecific knockdown of the Polg gene by simulating a balloon injury and keeping on a Western diet. Then, the studied drugs were injected once every 3 days at the dose of 20 μg/kg for 27 days. On the 28-th day, the animals were euthanized and the area of atherosclerotic plaques was assessed. The gene expression associated with the processes of inflammation, antioxidant protection, apoptosis, and angiogenesis was also determined in the aortic tissues. In addition, the endothelium protective effect of peptides on primary cultures of endothelial cells of wild and transgenic Polg-D257A mice was studied.Results. No statistically significant effect of drugs on the area of lipid infiltration have been found. However, the studied peptides have significantly reduced the expression of proinflammatory genes (iNos, Icam1, Vcam1, Sele, Il6, Tnfa), the genes associated with angiogenesis (Vegfa, Kdr, and Hif1a), the expression of proapoptic factors; they decreased the Bax/Bcl-2 ratio by more than 1.5 times. In addition, when supplemented with H2 O2 in vitro, peptides dose-dependently increased endothelial cell survival.Conclusion. The erythropoietin-based peptides can be used to improve the functional state of the vascular wall against the background of atherosclerotic lesions and have a depressing effect on pathobiological processes associated with a mitochondrial dysfunction. In addition, the studied peptides have a significant endothelial protective effect in the induction of oxidative stress in vitro.
Collapse
Affiliation(s)
| | | | - Vladislav O. Soldatov
- Federal Publicly Funded Institution of Science “Institute of Gene Biology of the Russian Academy of Sciences”
| | - Maxim A. Zhuchenko
- Russian Research Center “Kurchatov Institute” – State Science Research Institute of Genetics
| | - Diana S. Korshunova
- Federal Publicly Funded Institution of Science “Institute of Gene Biology of the Russian Academy of Sciences”
| | - Marina V. Kubekina
- Federal Publicly Funded Institution of Science “Institute of Gene Biology of the Russian Academy of Sciences”
| | - Evgeny N. Korshunov
- Federal Publicly Funded Institution of Science “Institute of Gene Biology of the Russian Academy of Sciences”
| | | | - Polina A. Golubinskaya
- Clinical diagnostic laboratory, Budgetary institution of public healthcare of the Voronezh Region “Voronezh Regional Clinical Ophthalmological Hospital”
| | | | | | | | | | | | - Tatyana A. Denisyuk
- Federal State Budgetary Educational Institution of Higher Education “Kursk State Medical University”
| | | | | | | | | |
Collapse
|