1
|
Nie G, Zhang CX, Zhang QA. The role of apricot kernels in shaping the microbial community composition during Massa Medicata Fermentata fermentation. Food Res Int 2025; 201:115653. [PMID: 39849789 DOI: 10.1016/j.foodres.2024.115653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/11/2024] [Accepted: 12/29/2024] [Indexed: 01/25/2025]
Abstract
In order to investigate the effect of apricot kernels on microbial community composition during Massa Medicata Fermentata (MMF) fermentation and to preliminarily explore whether it is related to amygdalin. In this paper, the structural characteristics of MMF and the composition of its bacterial and fungal communities during fermentation were determined. The results showed that both microscopy and infrared techniques could identify the structure of the apricot kernel in MMF and whether the kernel had been debitterized or not; the dominant bacterial phyla in MMF were Firmicutes and Proteobacteria, with the dominant bacterial genera being Staphylococcus and Bacillus, and the dominant fungal phylum was Ascomycota, with the dominant fungal genus being Aspergillus. Meanwhile, the effect of apricot kernels on the bacterial community in MMF was closely related to that of amygdalin. Apricot kernels inhibited the growth of a wide range of bacteria during the MMF fermentation but promoted the growth and reproduction of Firmicutes and Staphylococcus. In contrast, fermentation of MMF with debitterized apricot kernels significantly increased the bacterial diversity and richness while it inhibited the growth and reproduction of Firmicutes and Staphylococcus. In summary, amygdalin is a key player in regulating microbial community diversity that occurs during the fermentation process of MMF, apricot kernel was an essential component of MMF.
Collapse
Affiliation(s)
- Guangmin Nie
- School of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Chen-Xiang Zhang
- School of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Qing-An Zhang
- School of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
2
|
Fernandes Q, Billa N. Amygdalin in antineoplastic medicine and the relevance of nanotechnology. Biomed Pharmacother 2025; 182:117772. [PMID: 39700870 DOI: 10.1016/j.biopha.2024.117772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024] Open
Abstract
Amygdalin is a plant-based cyanogenic glycoside that has been the subject of both scientific interest and controversy for decades. Traditionally used in alternative medicine for its diverse biological activities, including anticancer, where amygdalin has been explored in complementary therapy. However, clinical utilization of amygdalin remains contentious due to concerns about its safety, primarily the release of hydrogen cyanide during its metabolism. Advancements in nanotechnology provides scope for the safe and targeted of amygdalin with improved bioavailability and targeted delivery of amygdalin, thereby, potentially eliminating the toxic effects. This review offers an update on the current research status surrounding amygdalin, with a focus on its molecular mechanisms of action, biological activities, and potential therapeutic applications. It also critically examines the challenges tied to its clinical use, particularly the safety concerns stemming from cyanide toxicity. Finally, the potential of nanotechnology in addressing cytotoxicity constraints is highlighted.
Collapse
Affiliation(s)
- Queenie Fernandes
- Translational Cancer Research Facility, National Centre for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Nashiru Billa
- Pharmaceutical Sciences Department, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
3
|
Hrichi S, Chaâbane-Banaoues R, Hrichi H, Belgacem S, Babba O, Flamini G, Babba H. Chemical composition and antifungal efficacy of Tunisian Prunus armeniaca L. kernels with formulation of an antidermatophyte cream based on kernel powder. Fitoterapia 2024; 179:106223. [PMID: 39341348 DOI: 10.1016/j.fitote.2024.106223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The biological activities of plant products are extremely correlated to the constituents present in each derivate. The present research aims to obtain by gas chromatography, the chemical profile of Prunus armeniaca L. kernel volatile fractions. The evaluation of the in vitro antifungal activities of the sterilized powder and volatile fractions of the plant P. armeniaca L. kernels was performed. Diffusion in a solid medium and broth microdilution methods were applied on fungi with medical importance (dermatophytes, yeasts and Aspergillus spp.). P. armeniaca L. powder based antidermatphyte cream has been formulated. Hydro-distillation generated two volatile fractions (VF1 and VF2) and chromatographic analysis showed the presence of three compounds for VF1 (98.7 % benzaldehyde, 1.0 % benzyl alcohol and 0.3 % 1,8-cineole) and two compounds for VF2 (90.3 % benzaldehyde and 9.3 % benzyl alcohol). The 2.5 % to 5 % concentrations in powder showed antifungal activities against dermatophytic strains. 1.25 to 2 mg/mL concentrations in volatile fractions were efficient against yeast strains, with a better efficiency for the VF1. The creams formulated were stable, cosmetically attractive with satisfactory pH, viscosity and spread ability. Prunus armeniaca L. kernel powders and the cream derived from them exhibit potent antifungal activities. This work presents a simple, ecological and economical means of formulating antifungal active substances and valorizing natural products.
Collapse
Affiliation(s)
- Soukaina Hrichi
- Laboratory of Medical and Molecular Parasitology-Mycology LP3M (Code LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia; Laboratory of Physico-Chemistry of Materials, Faculty of Sciences of Monastir, University of Monastir, 5000 Monastir, Tunisia.
| | - Raja Chaâbane-Banaoues
- Laboratory of Medical and Molecular Parasitology-Mycology LP3M (Code LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Haikel Hrichi
- Physics Department, Faculty of Science and Arts, Al-Baha University, AlMikhwah 65931, Al-Baha, Saudi Arabia; Laboratory of Interfaces and Advanced Materials, Faculty of Science, University of Monastir, Monastir 5000, Tunisia
| | - Sameh Belgacem
- Laboratory of Medical and Molecular Parasitology-Mycology LP3M (Code LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Oussama Babba
- Laboratory of Medical and Molecular Parasitology-Mycology LP3M (Code LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Guido Flamini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa, Italy
| | - Hamouda Babba
- Laboratory of Medical and Molecular Parasitology-Mycology LP3M (Code LR12ES08), Department of Clinical Biology B, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| |
Collapse
|
4
|
Hamid Z, Akbar A, Kamran K, Achakzai JK, Wong LS, Sadiq MB. Unlocking the Therapeutic and Antimicrobial Potential of Prunus armeniaca L. Seed Kernel Oil. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:5589506. [PMID: 39544277 PMCID: PMC11563713 DOI: 10.1155/2024/5589506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/27/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024]
Abstract
The Prunus armeniaca L. (bitter apricot) is an apricot fruit tree categorized on the basis of the bitter taste of its seed kernel. In this study, the functional, medicinal, and therapeutic potential of bitter apricot seed kernel oil (BASKO) was evaluated. The qualitative screening of BASKO was performed using standard methodologies. The chemical profile of the oil was analyzed with the help of Fourier transform infrared (FTIR) and gas chromatography and mass spectrometry (GC-MS). Results revealed the presence of different phytochemical constituents comprising steroids, flavonoids, terpenoids, alkaloids, and cardiac glycosides. The antioxidant activity of the oil was determined by a 2,2,diphenyl-1picrylhydrazyl (DPPH) radical inhibition essay. Total phenolic and flavonoid contents were 10.6 ± 1.32 mg GAE/g and 4.75 ± 0.11 mg QE/g, respectively. DPPH inhibition of 89.5% was achieved at 1000 μg/mL of BASKO, with IC50 = 90.44 μg/mL (83.47-96.67 μg/mL with 95% CI). The antimicrobial potential of the BASKO revealed the inhibition of Escherichia coli (20.3 ± 2.08 mm), Salmonella typhi (19.3 ± 2.51 mm), Klebsiella pneumoniae (16.6 ± 1.52 mm), Pseudomonas aeruginosa (17 ± 2 mm), and Staphylococcus aureus (25 ± 1.01 mm). The minimum inhibitory concentration (MIC) value was 250 μL/mL for K. pneumoniae, S. typhi, P. aeruginosa, and S. aureus, whereas 62.5 μL/mL for E. coli. Moreover, BASKO showed antifungal potential against Trichophyton tonsurans (77.3 ± 2.08%), Epidermophyton floccosum (69.6 ± 3.51%), Aspergillus niger (74.3 ± 2.56%), Aspergillus flavus (90 ± 3%), and Mucor mucedo (78.3 ± 2.51%). Antileishmanial activity of oil was evaluated against Leishmania major by MTT assay, and an IC50 value of 89.75 μg/mL was observed. The study revealed that BASKO is a good source of biologically active compounds to be used as functional, therapeutical, and antimicrobial agents in food and pharmaceutical products.
Collapse
Affiliation(s)
- Zeenat Hamid
- Department of Microbiology, University of Balochistan, Quetta, Pakistan
| | - Ali Akbar
- Department of Microbiology, University of Balochistan, Quetta, Pakistan
- Centre for Biotechnology and Microbiology, University of Swat, Charbagh 19120, Khyber Pakhtunkhwa, Pakistan
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan 11 71800, Malaysia
| | - Kashif Kamran
- Department of Zoology, University of Balochistan, Quetta, Pakistan
| | - Jahangir Khan Achakzai
- Discipline of Biochemistry, Department of Natural and Basic Sciences, University of Turbat, Kech 92600, Balochistan, Pakistan
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan 11 71800, Malaysia
| | - Muhammad Bilal Sadiq
- School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| |
Collapse
|
5
|
Sheikh ZN, Sharma V, Raina S, Bakshi P, yousuf R, Zari A, Zari TA, Hakeem KR. Phytochemical screening, HPLC fingerprinting and in vitro assessment of therapeutic potentials of different apricot cultivars against diabetes, Alzheimer's disease and cancer. Heliyon 2024; 10:e38673. [PMID: 39403526 PMCID: PMC11471488 DOI: 10.1016/j.heliyon.2024.e38673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 04/10/2025] Open
Abstract
Plant-based natural compounds are widely used to treat various ailments owing to their readily availability and minimal adverse effects. This study aimed to perform qualitative and quantitative biochemical profiling and assess the in vitro anti-diabetic, anti-Alzheimer, and anti-cancer activities of various apricot (Prunus armeniaca) cultivars. High-performance liquid chromatography (HPLC) was utilized to determine the concentrations of bioactive compounds across 10 distinct apricot cultivars. Initial phytochemical screening revealed a significant content of secondary metabolites. Subsequently, methanolic extracts from these cultivars were evaluated for their therapeutic potential against several human cancer cell lines, including prostate cancer (PC-3), lung cancer (A-549), breast cancer (MCF-7), cervical cancer (HELA), and kidney cancer (HEK). Notably, the breast cancer cell line MCF-7 showed a pronounced inhibition rate post-treatment with the apricot extracts. Correlation analysis exhibited phenols are highly correlated with flavonoids (r = 0.92), DPPH (r = 0.95), and alpha-amylase (%) inhibition (r = 0.96), and showed a significant correlation with other parameters. Principal Component Analysis (PCA) revealed that PC1 explained 43.31 % of the variance, while PC2 explained 12.88 %, together explaining 80.033 % of the total variance. PC1 was identified as the dominant axis, indicating the primary pattern of variation among the variables. Hierarchical Cluster Analysis (HCA) divided the cultivars into 2 main clusters, with cluster 2 further subdivided into various sub-clusters and sub-sub-clusters. This analysis highlighted distinct genetic similarities and differences among the apricot cultivars. Among the tested cultivars, 'Irani' and 'Tilton' were found to contain the highest levels of bioactive constituents. This research marks the first comprehensive examination of the impacts of these two apricot cultivars. The findings from this study provide a robust scientific foundation for the future isolation and purification of therapeutic compounds, potentially leading to their application in pharmaceuticals or dietary supplements. This research contributes significantly to the understanding of the pharmacological properties of apricot cultivars and establishes a basis for further investigation into their clinical benefits.
Collapse
Affiliation(s)
- Zahid Nabi Sheikh
- Division of Fruit Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, 180009, J&K, India
| | - Vikas Sharma
- Division of Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, 180009, J&K, India
| | - Shilpa Raina
- School of Applied Sciences, Shri Venkateshwara University, Gajraula, UP, India
| | - Prashant Bakshi
- Division of Fruit Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, 180009, J&K, India
| | - Rizwan yousuf
- Division of Statistics and Computer Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, 180009, J&K, India
| | - Ali Zari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Talal A. Zari
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Princess Dr. NajlaBint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka, 1341, Bangladesh
- University Centre for Research and Development (UCRD), Chandigarh University, Punjab, India
| |
Collapse
|
6
|
Aydın ÇM, Çelikbıçak Ö, Hayaloğlu AA. Evaluation of antioxidant, antimicrobial, and bioactive properties and peptide sequence composition of Malatya apricot kernels. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8022-8036. [PMID: 38837418 DOI: 10.1002/jsfa.13632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/17/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND This study used four different apricot (Prunus armeniaca) kernels cultivated in Malatya during two consecutive years. The varieties were Hacihaliloglu, Hasanbey, Kabaasi, and Zerdali. The physicochemical properties of the kernels were determined, and the bioactive content of the kernels was evaluated using kernel hydrolysates prepared using trypsin. RESULTS With regard to the physicochemical properties of the kernels, the dry matter ratio and protein content were the highest in the Hacihaliloglu variety; the ash ratio was the highest in the Kabaasi variety, and the free oil ratio was the highest in the Hasanbey variety. The bioactive compound content changed according to kernel variety. Angiotensin-converting enzyme inhibitors activity was found to be the highest in the Hacihaliloglu and Hasanbey varieties, which had the lowest amygdalin content, and Zerdali had the highest amygdalin content. The antioxidant and antimicrobial effects of the kernels varied, with Hasanbey and Kabaasi generally having the highest content in both analyses. Moreover, a concentration of 20 mg mL-1 of the hydrolysate was determined to have a destructive effect for the microorganisms used in this study. The storage protein of the kernels, except Hacihaliloglu, was found to be Prunin 1, with the longest matching protein chain in the kernels being R.QQQGGQLMANGLEETFCSLRLK.E. CONCLUSION The results suggest that the peptide sequences identified in the kernels could have antihypertensive, antioxidative, and Dipeptidyl peptidase IV (DPP-IV) inhibitory effects. Consequently, apricot kernels show potential for use in the production of functional food products. Of the kernels evaluated in this study, Hacihaliloglu and Hasanbey were deemed the most suitable varieties due to their higher bioactive content and lower amygdalin content. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Çağlar Mert Aydın
- Food Processing Technology, Vocational High School, Munzur University, Tunceli, Türkiye
| | - Ömür Çelikbıçak
- Chemistry Department, Faculty of Science, Hacettepe University, Ankara, Türkiye
| | - Ali Adnan Hayaloğlu
- Food Engineering Department, Faculty of Engineering, Inonu University, Malatya, Türkiye
| |
Collapse
|
7
|
El-Hajjaji MA, Fikri-Benbrahim K, Soulo N, Nouioura G, Laaroussi H, Ferreira-Santos P, Lyoussi B, Benziane Ouaritini Z. Analgesic, Antioxidant, Anti-Inflammatory, and Wound-Treating Actions of Bitter Apricot Kernel Extract. Adv Pharmacol Pharm Sci 2024; 2024:5574259. [PMID: 39246415 PMCID: PMC11380719 DOI: 10.1155/2024/5574259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/27/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
Apricot (Prunus armeniaca L.) kernels have been widely employed in phytomedicine for treating different ailments. This study aims to unveil the phytochemical composition by HPLC-ESI-MS, in vitro antioxidant activity, and examine certain pharmacological effects of the hydro-ethanolic extract from bitter apricot kernels (BAK). Obtained results indicated that the BAK extract presents a content of 4.58 ± 0.15 mg GAE/g extract of TPA and 1.68 ± 0.09 mg QUE/g extract of TFA, respectively. HPLC-ESI-MS analysis discovered the presence of 17 phenolic compounds including phenolic acids and flavonoids like 3,4-dihydroxybenzoic acid, gallic acid, caffeic acid, (+)-catechin, epicatechin, and others, with associated antioxidant power. Regarding the studied potential pharmacological effects, notable analgesic activity at a dosage of 100 mg/kg BW was recorded with 63.46% protection. In the anti-inflammatory test, significant inhibition was observed after 6 hours of treatment (77.4%) compared to untreated animals. Moreover, the daily application of ointment formulated with 10% BAK extract resulted in a remarkable healing of wounds and burns in rats. These findings underscore the increasing evidence supporting the potential use of apricot kernel extracts in treating various diseases.
Collapse
Affiliation(s)
- Mohamed Amine El-Hajjaji
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling Health and Quality of Life Faculty of Sciences Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Kawtar Fikri-Benbrahim
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
| | - Najoua Soulo
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling Health and Quality of Life Faculty of Sciences Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Ghizlane Nouioura
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling Health and Quality of Life Faculty of Sciences Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling Health and Quality of Life Faculty of Sciences Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Pedro Ferreira-Santos
- Department of Chemical Engineering Faculty of Science University of Vigo, As Lagoas, Ourense 32004, Spain
- IAA-Instituto de Agroecoloxía e Alimentación University of Vigo (Campus Auga), As Lagoas, Ourense 32004, Spain
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling Health and Quality of Life Faculty of Sciences Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| | - Zineb Benziane Ouaritini
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling Health and Quality of Life Faculty of Sciences Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco
| |
Collapse
|
8
|
Fik-Jaskółka M, Mittova V, Motsonelidze C, Vakhania M, Vicidomini C, Roviello GN. Antimicrobial Metabolites of Caucasian Medicinal Plants as Alternatives to Antibiotics. Antibiotics (Basel) 2024; 13:487. [PMID: 38927153 PMCID: PMC11200912 DOI: 10.3390/antibiotics13060487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
This review explores the potential of antimicrobial metabolites derived from Caucasian medicinal plants as alternatives to conventional antibiotics. With the rise of antibiotic resistance posing a global health threat, there is a pressing need to investigate alternative sources of antimicrobial agents. Caucasian medicinal plants have traditionally been used for their therapeutic properties, and recent research has highlighted their potential as sources of antimicrobial compounds. Representatives of 15 families of Caucasian medicinal plant extracts (24 species) have been explored for their efficacy against these pathogens. The effect of these plants on Gram-positive and Gram-negative bacteria and fungi is discussed in this paper. By harnessing the bioactive metabolites present in these plants, this study aims to contribute to the development of new antimicrobial treatments that can effectively combat bacterial infections while minimizing the risk of resistance emergence. Herein we discuss the following classes of bioactive compounds exhibiting antimicrobial activity: phenolic compounds, flavonoids, tannins, terpenes, saponins, alkaloids, and sulfur-containing compounds of Allium species. The review discusses the pharmacological properties of selected Caucasian medicinal plants, the extraction and characterization of these antimicrobial metabolites, the mechanisms of action of antibacterial and antifungal plant compounds, and their potential applications in clinical settings. Additionally, challenges and future directions in the research of antimicrobial metabolites from Caucasian medicinal plants are addressed.
Collapse
Affiliation(s)
- Marta Fik-Jaskółka
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Valentina Mittova
- Teaching University Geomedi, 4 King Solomon II Str., Tbilisi 0114, Georgia; (V.M.)
| | | | - Malkhaz Vakhania
- Teaching University Geomedi, 4 King Solomon II Str., Tbilisi 0114, Georgia; (V.M.)
| | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
9
|
Kim HJ, Hong JH. Multiplicative Effects of Essential Oils and Other Active Components on Skin Tissue and Skin Cancers. Int J Mol Sci 2024; 25:5397. [PMID: 38791435 PMCID: PMC11121510 DOI: 10.3390/ijms25105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Naturally derived essential oils and their active components are known to possess various properties, ranging from anti-oxidant, anti-inflammatory, anti-bacterial, anti-fungal, and anti-cancer activities. Numerous types of essential oils and active components have been discovered, and their permissive roles have been addressed in various fields. In this comprehensive review, we focused on the roles of essential oils and active components in skin diseases and cancers as discovered over the past three decades. In particular, we opted to highlight the effectiveness of essential oils and their active components in developing strategies against various skin diseases and skin cancers and to describe the effects of the identified essential-oil-derived major components from physiological and pathological perspectives. Overall, this review provides a basis for the development of novel therapies for skin diseases and cancers, especially melanoma.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
10
|
Joujou FM, Darra NE, Rajha HN, Sokhn ES, Alwan N. Evaluation of synergistic/antagonistic antibacterial activities of fatty oils from apricot, date, grape, and black seeds. Sci Rep 2024; 14:6532. [PMID: 38503788 PMCID: PMC10951330 DOI: 10.1038/s41598-024-54850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/17/2024] [Indexed: 03/21/2024] Open
Abstract
The increasing antimicrobial resistance requires continuous investigation of new antimicrobial agents preferably derived from natural sources. New powerful antibacterial agents can be produced by simply combining oils that are known for their antibacterial activities. In this study, apricot seed oil (ASO), date seed oil (DSO), grape seed oil (GSO), and black seed oil (BSO) alone and in binary mixtures were assessed. Fatty acid profiles of individual oils and oil mixtures showed linoleic acid, oleic acid, palmitic acid, stearic acid, and linolenic acid contents. Linoleic acid was the most abundant fatty acid in all samples except for ASO, where oleic acid was the dominant one. GSO showed the highest total phenolic content while ASO showed the lowest one. Antibacterial screening was performed against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus. Results showed antibacterial activity in all oils against tested strains except for ASO against S. aureus. Highest antibacterial activity recorded was for ASO against P. mirabilis. ASO-GSO mixture (AG) was the best mixture where it showed synergistic interactions against all strains except P. aeruginosa. In conclusion, seed oil mixtures are likely to show promising antibacterial activities against specific strains.
Collapse
Affiliation(s)
- Farah M Joujou
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Tarik El Jedidah, Riad El Solh, P.O. Box 115020, Beirut, 1107 2809, Lebanon
| | - Nada El Darra
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Tarik El Jedidah, Riad El Solh, P.O. Box 115020, Beirut, 1107 2809, Lebanon
| | - Hiba N Rajha
- Département de Génie Chimique et Pétrochimique, Faculté d'Ingénierie, Ecole Supérieure, d'Ingénieurs de Beyrouth (ESIB), Université Saint-Joseph de Beyrouth, CST Mkalles Mar, Rokos, Riad El Solh, Beirut, 1107 2050, Lebanon
| | - Elie Salem Sokhn
- Molecular Testing Laboratory, Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, P.O. Box 11-5020, Beirut, Lebanon.
| | - Nisreen Alwan
- Environmental and Public Health Department, College of Health Sciences, Abu Dhabi University, PO Box 59911, Abu Dhabi, UAE.
| |
Collapse
|
11
|
Tang S, Wang M, Peng Y, Liang Y, Lei J, Tao Q, Ming T, Shen Y, Zhang C, Guo J, Xu H. Armeniacae semen amarum: a review on its botany, phytochemistry, pharmacology, clinical application, toxicology and pharmacokinetics. Front Pharmacol 2024; 15:1290888. [PMID: 38323080 PMCID: PMC10844384 DOI: 10.3389/fphar.2024.1290888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
Armeniacae semen amarum-seeds of Prunus armeniaca L. (Rosaceae) (ASA), also known as Kuxingren in Chinese, is a traditional Chinese herbal drug commonly used for lung disease and intestinal disorders. It has long been used to treat coughs and asthma, as well as to lubricate the colon and reduce constipation. ASA refers to the dried ripe seed of diverse species of Rosaceae and contains a variety of phytochemical components, including glycosides, organic acids, amino acids, flavonoids, terpenes, phytosterols, phenylpropanoids, and other components. Extensive data shows that ASA exhibits various pharmacological activities, such as anticancer activity, anti-oxidation, antimicrobial activity, anti-inflammation, protection of cardiovascular, neural, respiratory and digestive systems, antidiabetic effects, and protection of the liver and kidney, and other activities. In clinical practice, ASA can be used as a single drug or in combination with other traditional Chinese medicines, forming ASA-containing formulas, to treat various afflictions. However, it is important to consider the potential adverse reactions and pharmacokinetic properties of ASA during its clinical use. Overall, with various bioactive components, diversified pharmacological actions and potent efficacies, ASA is a promising drug that merits in-depth study on its functional mechanisms to facilitate its clinical application.
Collapse
Affiliation(s)
- Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Minmin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhui Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanjing Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiarong Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanqiao Shen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuantao Zhang
- Department of Respiratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Semwal P, Painuli S, Jamloki A, Rauf A, Rahman MM, Olatunde A, Hemeg HA, Abu-Izneid T, Naz S, Punia Bangar S, Lorenzo JM, Simal-Gandara J. Himalayan Wild Fruits as a Strong Source of Nutraceuticals, Therapeutics, Food and Nutrition Security. FOOD REVIEWS INTERNATIONAL 2023; 39:6500-6536. [DOI: 10.1080/87559129.2022.2121407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Prabhakar Semwal
- Department of Life Sciences, Graphic Era Deemed to be University, Dehradun, India
| | - Sakshi Painuli
- Uttarakhand Council for Biotechnology, Premnagar Dehradun, India
| | - Abhishek Jamloki
- High Altitude Plant Physiology Research Centre (HAPPRC), H.N.B. Garhwal University, Srinagar, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber, Pakhtunkhwa, Pakistan
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Hassan A. Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Tareq Abu-Izneid
- Pharmaceutical Sciences Program, College of Pharmacy, Al Ain University, Al Ain Campus, Abu Dhabi, United Arab Emirates
| | - Saima Naz
- Department of Biotechnology, Bacha Khan University Charsadda, Khyber, Pakhtunkhwa, Pakistan
| | - Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
| | - Jose M. Lorenzo
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, South Carolina, USA
- Centro Tecnológico de la Carne de Galicia, Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
13
|
Meng T, Ding J, Shen S, Xu Y, Wang P, Song X, Li Y, Li S, Xu M, Tian Z, He Q. Xuanfei Baidu decoction in the treatment of coronavirus disease 2019 (COVID-19): Efficacy and potential mechanisms. Heliyon 2023; 9:e19163. [PMID: 37809901 PMCID: PMC10558324 DOI: 10.1016/j.heliyon.2023.e19163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/28/2023] [Accepted: 08/14/2023] [Indexed: 10/10/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread worldwide and become a major global public health concern. Although novel investigational COVID-19 antiviral candidates such as the Pfizer agent PAXLOVID™, molnupiravir, baricitinib, remdesivir, and favipiravir are currently used to treat patients with COVID-19, there is still a critical need for the development of additional treatments, as the recommended therapeutic options are frequently ineffective against SARS-CoV-2. The efficacy and safety of vaccines remain uncertain, particularly with the emergence of several variants. All 10 versions of the National Health Commission's diagnosis and treatment guidelines for COVID-19 recommend using traditional Chinese medicine. Xuanfei Baidu Decoction (XFBD) is one of the "three Chinese medicines and three Chinese prescriptions" recommended for COVID-19. This review summarizes the clinical evidence and potential mechanisms of action of XFBD for COVID-19 treatment. With XFBD, patients with COVID-19 experience improved clinical symptoms, shorter hospital stay, prevention of the progression of their symptoms from mild to moderate and severe symptoms, and reduced mortality in critically ill patients. The mechanisms of action may be associated with its direct antiviral, anti-inflammatory, immunomodulatory, antioxidative, and antimicrobial properties. High-quality clinical and experimental studies are needed to further explore the clinical efficacy and underlying mechanisms of XFBD in COVID-19 treatment.
Collapse
Affiliation(s)
- Tiantian Meng
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100071, China
| | - Jingyi Ding
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
| | - Shujie Shen
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100089, China
| | - Yingzhi Xu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010 China
| | - Peng Wang
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010, China
- Department of Traditional Chinese Medicine, Beijing Jiangong Hospital, Beijing, 100032, China
| | - Xinbin Song
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yixiang Li
- Graduate School, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Shangjin Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
| | - Minjie Xu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100010 China
| | - Ziyu Tian
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qingyong He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100032, China
| |
Collapse
|
14
|
Seyhan SA, Alkaya DB, Cesur S, Sahin A. Investigation of the antitumor effect on breast cancer cells of the electrospun amygdalin-loaded poly(l-lactic acid)/poly(ethylene glycol) nanofibers. Int J Biol Macromol 2023; 239:124201. [PMID: 37001771 DOI: 10.1016/j.ijbiomac.2023.124201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
In this study, PLA/PEG nanofibers (NFs) loaded with amygdalin (AMG) and bitter almond kernels extract were produced by electrospinning to prevent local breast cancer recurrence, and the effect of produced NFs on the MCF-7 cell line was investigated in vitro. The electrospun NFs were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), thermal analysis (DSC) and tensile strength and physical analyzes were performed. Loading of AMG to nanofibers increased fiber diameters from 827.93 ± 174.507 nm to 1855.32 ± 291.057 μm. When drug release results were analyzed, the NFs showed a controlled release profile extending up to 10 h. The encapsulation efficiency of AMG-loaded NFs was calculated at 100 ± 0,01 %, 94 ± 0,02 %, and 88 ± 0,02 %. When in vitro cytotoxicity results were analyzed, showed that all NFs are effective in inducing cytotoxicity against MCF-7 breast cancer cells. Importantly, 20 mg AMG-loaded NFs displayed effectively higher cytotoxic effects against breast cancer cells relative to the other NFs. Considering all the results, AMG-loaded NFs can give sustained release of drugs at the local sites. Therefore, AMG-loaded nanofibers can reduce the risk of local recurrence of cancer after surgery and can be directly implanted into solid tumor cells for treatment.
Collapse
|
15
|
Pawar KR, Nema PK. Apricot kernel characterization, oil extraction, and its utilization: a review. Food Sci Biotechnol 2023; 32:249-263. [PMID: 36778095 PMCID: PMC9905367 DOI: 10.1007/s10068-022-01228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023] Open
Abstract
Apricot (Prunus armeniaca L.) kernels, one of the economical stone fruit kernels, are utilized worldwide for edible, cosmetic, and medicinal purposes. Oil from the apricot kernel is valued by the richness of unsaturated fatty acids, the high proportion of oleic acids, phenols, and tocopherol content. Oil yield with quality from apricot kernel varies with region, variety, and adopted method of oil extraction. This review discusses apricot kernel characterization, different conventional and novel methods of oil extraction, their merits and demerits as reported in the literature. Novel technologies such as microwave-assisted oil extraction, ultrasound-assisted oil extraction, enzyme-assisted oil extraction, and supercritical fluid oil extraction have emerged as the most promising extraction methods that allow efficient oil recovery in very environment-friendly ways. Knowledge of the extraction technique aids in giving higher oil recovery with minimal nutritional losses while retaining the original organoleptic properties. Graphical abstract
Collapse
Affiliation(s)
- Krantidip R. Pawar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana 131028 India
| | - Prabhat K. Nema
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana 131028 India
| |
Collapse
|
16
|
Potential of Impatiens balsamina Leaf Extract against Quorum Sensing in Pseudomonas aeruginosa PA01. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria control gene expression by quorum sensing (QS) mechanism owing to producing small signal molecules associated with population density. Both gram-positive and gram-negative bacteria use QS to manage various physiological characteristics, including bioluminescence, virulence gene expression, biofilm formation, and antibiotic resistance. Impatience balsamina is a flowering, perennial and annual herb indigenous to southern Asia in India. All parts of Impatience balsamina have a therapeutic effect on different diseases. This study evaluated the anti-quorum sensing activity of leaf extract of Impatience balsamina by examining its action on Violacein production by Chromobacterium violaceum, a biosensor strain, and Biofilm, Pyocyanin, Protease, and Chitinase production by the reference strain Pseudomonas aeruginosa PA 01. Minimum inhibitory concentration (MIC) for Pseudomonas aeruginosa PA 01was 3.125mg/ml. A concentration of 1.563mg/ml (sub-MIC) showed inhibition of 100% on Las A protease, 78.42% on chitinase, 30.75% on biofilm, and 93.33% on pyocyanin production by Pseudomonas aeruginosa PA 01. This article displayed the quorum quenching activity of Impatience balsamina by hindering the quorum-sensing controlled characteristics of bacteria without killing it, which reduces the proneness of drug resistance in bacteria, a globally accepted emerging problem in the medical field.
Collapse
|
17
|
Farag MA, Bahaa Eldin A, Khalifa I. Valorization and extraction optimization of Prunus seeds for food and functional food applications: A review with further perspectives. Food Chem 2022; 388:132955. [DOI: 10.1016/j.foodchem.2022.132955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 01/06/2023]
|
18
|
Kitic D, Miladinovic B, Randjelovic M, Szopa A, Sharifi-Rad J, Calina D, Seidel V. Anticancer Potential and Other Pharmacological Properties of Prunus armeniaca L.: An Updated Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:1885. [PMID: 35890519 PMCID: PMC9325146 DOI: 10.3390/plants11141885] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/14/2022] [Accepted: 07/19/2022] [Indexed: 05/02/2023]
Abstract
Prunus armeniaca L. (Rosaceae)-syn. Amygdalus armeniaca (L.) Dumort., Armeniaca armeniaca (L.) Huth, Armeniaca vulgaris Lam is commonly known as the apricot tree. The plant is thought to originate from the northern, north-western, and north-eastern provinces of China, although some data show that it may also come from Korea or Japan. The apricot fruit is used medicinally to treat a variety of ailments, including use as an antipyretic, antiseptic, anti-inflammatory, emetic, and ophthalmic remedy. The Chinese and Korean pharmacopeias describe the apricot seed as an herbal medicinal product. Various parts of the apricot plant are used worldwide for their anticancer properties, either as a primary remedy in traditional medicine or as a complementary or alternative medicine. The purpose of this review was to provide comprehensive and up-to-date information on ethnobotanical data, bioactive phytochemicals, anticancer potential, pharmacological applications, and toxicology of the genus Prunus armeniaca, thus providing new perspectives on future research directions. Included data were obtained from online databases such as PubMed/Medline, Google Scholar, Science direct, and Wiley Online Library. Multiple anticancer mechanisms have been identified in in vitro and in vivo studies, the most important mechanisms being apoptosis, antiproliferation, and cytotoxicity. The anticancer properties are probably mediated by the contained bioactive compounds, which can activate various anticancer mechanisms and signaling pathways such as tumor suppressor proteins that reduce the proliferation of tumor cells. Other pharmacological properties resulting from the analysis of experimental studies include neuroprotective, cardioprotective, antioxidant, immunostimulatory, antihyperlipidemic, antibacterial, and antifungal effects. In addition, data were provided on the toxicity of amygdalin, a compound found in apricot kernel seeds, which limits the long-term use of complementary/alternative products derived from P. armeniaca. This updated review showed that bioactive compounds derived from P. armeniaca are promising compounds for future research due to their important pharmacological properties, especially anticancer. A detailed analysis of the chemical structure of these compounds and their cytotoxicity should be carried out in future research. In addition, translational pharmacological studies are required for the correct determination of pharmacologically active doses in humans.
Collapse
Affiliation(s)
- Dusanka Kitic
- Department of Pharmacy, Faculty of Medicine, University of Niš, Ave. Zorana Djindjica 81, 18000 Nis, Serbia; (D.K.); (B.M.); (M.R.)
| | - Bojana Miladinovic
- Department of Pharmacy, Faculty of Medicine, University of Niš, Ave. Zorana Djindjica 81, 18000 Nis, Serbia; (D.K.); (B.M.); (M.R.)
| | - Milica Randjelovic
- Department of Pharmacy, Faculty of Medicine, University of Niš, Ave. Zorana Djindjica 81, 18000 Nis, Serbia; (D.K.); (B.M.); (M.R.)
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G1 1XQ, UK
| |
Collapse
|
19
|
Rapid quantitative typing spectra model for distinguishing sweet and bitter apricot kernels. Food Sci Biotechnol 2022; 31:1123-1131. [DOI: 10.1007/s10068-022-01095-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 11/04/2022] Open
|
20
|
Kandemir K, Piskin E, Xiao J, Tomas M, Capanoglu E. Fruit Juice Industry Wastes as a Source of Bioactives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6805-6832. [PMID: 35544590 PMCID: PMC9204825 DOI: 10.1021/acs.jafc.2c00756] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 05/15/2023]
Abstract
Food processing sustainability, as well as waste minimization, are key concerns for the modern food industry. A significant amount of waste is generated by the fruit juice industry each year. In addition to the economic losses caused by the removal of these wastes, its impact on the environment is undeniable. Therefore, researchers have focused on recovering the bioactive components from fruit juice processing, in which a great number of phytochemicals still exist in the agro-industrial wastes, to help minimize the waste burden as well as provide new sources of bioactive compounds, which are believed to be protective agents against certain diseases such as cardiovascular diseases, cancer, and diabetes. Although these wastes contain non-negligible amounts of bioactive compounds, information on the utilization of these byproducts in functional ingredient/food production and their impact on the sensory quality of food products is still scarce. In this regard, this review summarizes the most recent literature on bioactive compounds present in the wastes of apple, citrus fruits, berries, stoned fruits, melons, and tropical fruit juices, together with their extraction techniques and valorization approaches. Besides, on the one hand, examples of different current food applications with the use of these wastes are provided. On the other hand, the challenges with respect to economic, sensory, and safety issues are also discussed.
Collapse
Affiliation(s)
- Kevser Kandemir
- Faculty
of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Elif Piskin
- Faculty
of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Jianbo Xiao
- Department
of Analytical Chemistry and Food Science, Faculty of Food Science
and Technology, University of Vigo-Ourense
Campus, E-32004 Ourense, Spain
- International
Research Center for Food Nutrition and Safety, Jiangsu University, 212013 Zhenjiang, China
| | - Merve Tomas
- Faculty
of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
21
|
A Novel Approach to the Authentication of Apricot Seed Cultivars Using Innovative Models Based on Image Texture Parameters. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The different cultivars of apricot seeds may differ in their properties. To ensure economical and efficient seed processing, knowledge of the cultivars’ composition and physical properties may be necessary. Therefore, the correct identification of the cultivar of the apricot seeds may be very important. The objective of this study was to develop models based on selected textures of apricot seed images to distinguish different cultivars. The images of four cultivars of apricot seeds were acquired using a flatbed scanner. For each seed, approximately 1600 textures from the image, converted to the different color channels R, G, B, L, a, b, X, Y, and Z, were calculated. The models were built separately for the individual color channels; the color spaces Lab, RGB, XYZ; and all color channels combined based on selected texture parameters using different classifiers. The average accuracy of the classification of apricot seeds reached 99% (with an accuracy of 100% for the seeds of the cultivars ‘Early Orange’, ‘Bella’, and ‘Harcot’, and 96% for ‘Taja’) in the case of the set of textures selected from the color space Lab for the model built using the Multilayer Perceptron classifier. The same classifier produced high average accuracies for the color spaces RGB (90%) and XYZ (86%). For the set of textures selected from all color channels, i.e., R, G, B, L, a, b, X, Y, and Z, the average accuracy reached 96% (Multilayer Perceptron and Random Forest classifiers). In the case of individual color channels, the highest average accuracy was up to 91% for the models built based on a set of textures selected from color channel b (Multilayer Perceptron). The results proved the possibility of distinguishing apricot seed cultivars with a high probability using a non-destructive, inexpensive, and objective procedure involving image analysis.
Collapse
|
22
|
Farag MA, Ramadan NS, Shorbagi M, Farag N, Gad HA. Profiling of Primary Metabolites and Volatiles in Apricot (Prunus armeniaca L.) Seed Kernels and Fruits in the Context of Its Different Cultivars and Soil Type as Analyzed Using Chemometric Tools. Foods 2022; 11:foods11091339. [PMID: 35564062 PMCID: PMC9104916 DOI: 10.3390/foods11091339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 12/07/2022] Open
Abstract
The goal of this study was to assess nutrient primary metabolites and aroma determinants in Prunus armeniaca L. fruits and seed kernels grown in Egypt represented by its different cultivars and agricultural conditions i.e., two different soil types (muddy versus sandy). Two techniques were employed to assess non-volatile and volatile metabolites using gas chromatography mass-spectrometry (GC-MS) post silylation, and headspace solid-phase micro-extraction (HS-SPME) coupled GC-MS, respectively. A total of 36 peaks belonging to sugars, fatty acids/esters and organic acids were identified by GC–MS in various apricot fruits and seed kernels cultivars. Glucose and sucrose were enriched in apricot fruits compared to the seed kernels. A total of 70 volatiles were identified, with lactones, alcohols and esters representing the main classes of apricot volatiles accounting for its discrete aroma. (E)-Anethole, β-ionone, γ-decanolactone and methyl palmitate were the major peaks contributing to the discrimination between various fruit cultivars and providing novel insight on apricot metabolome.
Collapse
Affiliation(s)
- Mohamed A. Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
- Correspondence:
| | - Nehal S. Ramadan
- Chemistry of Tanning Materials and Leather Technology Department, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Mohamed Shorbagi
- Department of Special Chemistry, Faculty of Science, Benha University, Benha 13511, Egypt;
| | - Nermeen Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| | - Haidy A. Gad
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| |
Collapse
|
23
|
Abou Baker DH. An ethnopharmacological review on the therapeutical properties of flavonoids and their mechanisms of actions: A comprehensive review based on up to date knowledge. Toxicol Rep 2022; 9:445-469. [PMID: 35340621 PMCID: PMC8943219 DOI: 10.1016/j.toxrep.2022.03.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/11/2022] Open
Abstract
Flavonoids -a class of low molecular weight secondary metabolites- are ubiquitous and cornucopia throughout the plant kingdom. Structurally, the main structure consists of C6-C3-C6 rings with different substitution patterns so that many sub-classes are obtained, for example: flavonols, flavonolignans, flavonoid glycosides, flavans, anthocyanidins, aurones, anthocyanidins, flavones, neoflavonoids, chalcones, isoflavones, flavones and flavanones. Flavonoids are evaluated to have drug like nature since they possess different therapeutic activities, and can act as cardioprotective, antiviral, antidiabetic, anti-inflammatory, antibacterial, anticancer, and also work against Alzheimer's disease and others. However, information on the relationship between their structure and biological activity is scarce. Therefore, the present review tries to summarize all the therapeutic activities of flavonoids, their mechanisms of action and the structure activity relationship. Latest updated ethnopharmacological review of the therapeutic effects of flavonoids. Flavonoids are attracting attention because of their therapeutic properties. Flavonoids are valuable candidates for drug development against many dangerous diseases. This overview summarizes the most important therapeutic effect and mechanism of action of flavonoids. General knowledge about the structure activity relationship of flavonoids is summarized. Substitution of chemical groups in the structure of flavonoids can significantly change their biological and chemical properties. The chemical properties of the basic flavonoid structure should be considered in a drug-based structural program.
Collapse
|
24
|
Li D, Zhang Y, Jiang R, He W. Textural properties and consumer preference of functional milk puddings fortified with apricot kernel extracts. J Texture Stud 2021; 53:255-265. [PMID: 34870858 DOI: 10.1111/jtxs.12653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022]
Abstract
Both the demand for functional foods and their consumption have increased rapidly in recent years. Apricot kernels, originated in China, are rich in dietary protein, fat, fiber, and exhibit high antimicrobial and antioxidant activities. The effects of the agar-gelatin ratio and milk volume on the texture of apricot kernel milk puddings were evaluated. Texture profile analysis indicated that increasing volumes of agar and milk contributed to the hardness and gumminess but reduced the cohesiveness of puddings. The pudding sample S2 (250 ml of milk, 200 ml of water, 60 g of raw apricot kernels, 30 g of sugar, 5 g of gelatin, and 2 g of agar) was ultimately determined as the essential texture matrix prototype for further development of puddings. The effects of the ratio of raw apricot kernels to roasted apricot kernels and cream content in puddings on consumer preference were determined by quantitative descriptive analysis and consumer testing. Both quantitative descriptive analysis and external preference mapping of all puddings (12 samples) indicated that the pudding sample P6 (250 ml of milk, 200 ml of water, 40 g of raw apricot kernels, 20 g of roasted apricot kernels, 40 g of cream, 30 g of sugar, 5 g of gelatin, and 2 g of agar) showed enhanced consumer acceptance. The properties driving preference for P6 were oral smoothness, overall flavor, degree of roast, and milky taste. P6 was ultimately selected as the prototype to incorporate apricot kernels for the development of functional milk puddings with fortified essential nutrients.
Collapse
Affiliation(s)
- Dengyun Li
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist United International College, Zhu Hai, China
| | - Yifang Zhang
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist United International College, Zhu Hai, China
| | - Ru Jiang
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist United International College, Zhu Hai, China
| | - Wenmeng He
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist United International College, Zhu Hai, China
| |
Collapse
|
25
|
Sahingil D, Hayaloglu AA. Rheological and physicochemical properties of apricot kernel cream—An innovative cream‐like product. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Didem Sahingil
- Department of Food Engineering, Engineering Faculty Inonu University Malatya Turkey
| | - Ali Adnan Hayaloglu
- Department of Food Engineering, Engineering Faculty Inonu University Malatya Turkey
| |
Collapse
|
26
|
Dimitrov M, Iliev I, Bardarov K, Georgieva D, Todorova T. Phytochemical characterization and biological activity of apricot kernels' extract in yeast-cell based tests and hepatocellular and colorectal carcinoma cell lines. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114333. [PMID: 34146630 DOI: 10.1016/j.jep.2021.114333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 05/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bitter apricot kernels' extract contains a broad spectrum of biologically active substances with a lot of attention to amygdalin - cyanogenic glycoside. The extract has been used in the pharmaceutical industry for years as an ingredient of different pharmaceuticals with anti-inflammatory, antimicrobial, or regenerative properties. In traditional medicine, the bitter apricot kernels are known as a remedy for respiratory disorders and skin diseases. The apricot kernels and amygdalin are often prescribed by practitioners for the prevention and treatment of various medical conditions, including colorectal cancer. THE PRESENT STUDY AIMS: to evaluate the phytochemical composition and the potential antimutagenic, antirecombinogenic, and antitumor effect of apricot kernels' extract at very low concentrations in yeast cell-based tests and mammalian hepatocellular and colon carcinoma cell lines. MATERIALS AND METHODS Phytochemical analysis was performed by LC-MS profiling. Reverse-phase HPLC and UV detection were applied for the determination of amygdalin quantity in the extract. Biological activity was evaluated by Zimmermann's mutagenicity and Ty1 retrotransposition test. Cytotoxic/antiproliferative activity of apricot kernels' extract was performed on four types of cell lines - HepG2, HT-29, BALB/3T3, clone A31, and BJ using the standard MTT-dye reduction assay. RESULTS Data revealed the presence of more than 1000 compounds and 4 cyanogenic glycosides among them - Amygdalin, Deidaclin, Linamarin and Prulaurasin. The Amygdalin concentration was measured to be 57.8 μg/ml. All extract concentrations demonstrated a strong antigenotoxic, antirecombinogenic, antimutagenic, and anticarcinogenic effect in the yeast cell-based tests. High selectivity of the extract action is established among different mammalian cell lines. Normal cell line BJ is found to be resistant to the extract action. HepG2 was found to be the most sensitive to apricot kernels' action. CONCLUSION The present study provides the first phytochemical analysis of Bulgarian bitter apricot kernels. Three new cyanogenic glycosides were reported. Evidence is obtained that the apricot kernels' extract at low concentrations is not able to induce some of the events related to the initial steps of tumorigenesis. Additionally, a high selectivity of the extract action is established among different cell lines. The most sensitive cell line was found to be HepG2.
Collapse
Affiliation(s)
- Martin Dimitrov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113, Sofia, Bulgaria; Sofia University "St. Kliment Ohridski", Faculty of Biology, 8 Dragan Tsankov Blvd., 1164, Sofia, Bulgaria.
| | - Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 25, 1113, Sofia, Bulgaria.
| | - Krum Bardarov
- Sofia University St. Kliment Ohridski, Faculty of Physics, 5 James Boucher, 1164, Sofia, Bulgaria; Chromana Ltd, 12 Rojak Str. Sofia 1225, Bulgaria; InoBioTech Ltd, 78 Samokov Str., Sofia, 1113, Bulgaria.
| | - Dimitrina Georgieva
- Sofia University "St. Kliment Ohridski", Faculty of Biology, 8 Dragan Tsankov Blvd., 1164, Sofia, Bulgaria.
| | - Teodora Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113, Sofia, Bulgaria.
| |
Collapse
|
27
|
Kolesarova A, Baldovska S, Roychoudhury S. The Multiple Actions of Amygdalin on Cellular Processes with an Emphasis on Female Reproduction. Pharmaceuticals (Basel) 2021; 14:881. [PMID: 34577581 PMCID: PMC8468697 DOI: 10.3390/ph14090881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
The present review summarizes the current knowledge on the provenance and properties, metabolism and toxicity, mechanism of action, physiological, and therapeutic roles of amygdalin-a molecule present in the seeds of apricot and other plants-with an emphasis on the action of amygdalin on reproductive processes, particularly in the female. Amygdalin influences physiological processes including female reproduction at various regulatory levels via extra- and intracellular signaling pathways regulating secretory activity, cell viability, steroidogenesis, proliferation, and apoptosis. On the other hand, while being metabolized in the body, amygdalin releases significant amounts of cyanide, which may lead to acute health hazard in those individuals who may be at risk. Despite some contradictions in the available data about benefits and toxic effects of amygdalin, its potential applicability at low doses may present a promising tool for regulation of various reproductive and other physiological processes including disease management primarily in cancer phytotherapy, animal production, medicine, and biotechnology. However, further research involving carefully designed dose-response studies is required to overcome the possible side effects of amygdalin and assure its safety as a therapeutic agent.
Collapse
Affiliation(s)
- Adriana Kolesarova
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia
| | - Simona Baldovska
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia;
| | | |
Collapse
|
28
|
Kasapoğlu ED, Kahraman S, Tornuk F. Optimization of ultrasound assisted antioxidant extraction from apricot pomace using response surface methodology. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01089-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
29
|
Członka S, Kairytė A, Miedzińska K, Strąkowska A. Casein/Apricot Filler in the Production of Flame-Retardant Polyurethane Composites. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3620. [PMID: 34209539 PMCID: PMC8269618 DOI: 10.3390/ma14133620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 01/03/2023]
Abstract
Polyurethane (PUR) composites reinforced with 1, 2, and 5 wt.% of apricot filler modified with casein were synthesized in the following study. The impact of 1, 2, and 5 wt.% of casein/apricot filler on the cellular structure and physico-mechanical performances of reinforced PUR composites were determined. It was found that the incorporation of 1 and 2 wt.% of casein/apricot filler resulted in the production of PUR composites with improved selected physical, thermal, and mechanical properties, while the addition of 5 wt.% of casein/apricot filler led to some deterioration of their physico-mechanical performance. The best results were obtained for PUR composites reinforced with 2 wt.% of casein/apricot filler. Those composites were characterized by a uniform structure and a high content of closed cells. Compared with the reference foam, the incorporation of 2 wt.% of casein/apricot filler resulted in improvement in compressive strength, flexural strength, impact strength, and dynamic mechanical properties-such as glass transition temperature and storage modulus. Most importantly, PUR composites showed better fire resistance and thermal stability due to the good thermal performance of casein. The main aim of this article is to determine the influence of the natural combination of the apricot filler and casein on the mechanical properties and flammability of the obtained composites.
Collapse
Affiliation(s)
- Sylwia Członka
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland; (K.M.); (A.S.)
| | - Agnė Kairytė
- Laboratory of Thermal Insulating Materials and Acoustics, Faculty of Civil Engineering, Institute of Building Materials, Vilnius Gediminas Technical University, Linkmenu St. 28, 08217 Vilnius, Lithuania;
| | - Karolina Miedzińska
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland; (K.M.); (A.S.)
| | - Anna Strąkowska
- Institute of Polymer & Dye Technology, Lodz University of Technology, 90-924 Lodz, Poland; (K.M.); (A.S.)
| |
Collapse
|
30
|
Al-Juhaimi FY, Ghafoor K, Özcan MM, Uslu N, Babiker EE, Ahmed IAM, Alsawmahi ON. Phenolic Compounds, Antioxidant Activity and Fatty Acid Composition of Roasted Alyanak Apricot Kernel. J Oleo Sci 2021; 70:607-613. [PMID: 33840664 DOI: 10.5650/jos.ess20294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The oil recovery from Alyanak apricot kernel was 36.65% in control (unroasted) and increased to 43.77% in microwave-roasted kernels. The total phenolic contents in extracts from apricot kernel were between 0.06 (oven-roasted) and 0.20 mg GAE/100 g (microwave-roasted) while the antioxidant activity varied between 2.55 (oven-roasted) and 19.34% (microwave-roasted). Gallic acid, 3,4-dihydroxybenzoic acid, (+)-catechin and 1,2-dihydroxybenzene were detected as the key phenolic constituents in apricot kernels. Gallic acid contents varied between 0.53 (control) and 1.10 mg/100 g (microwave-roasted) and 3,4-dihydroxybenzoic acid contents were between 0.10 (control) and 0.35 mg/100 g (microwave-roasted). Among apricot oil fatty acids, palmitic acid contents ranged from 4.38 (oven-roasted) to 4.76% (microwave-roasted); oleic acid contents were between 65.73% (oven-roasted) and 66.15% (control) and linoleic acid contents varied between 26.55 (control) and 27.12% (oven-roasted).
Collapse
Affiliation(s)
- Fahad Y Al-Juhaimi
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University
| | - Kashif Ghafoor
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University
| | - Mehmet Musa Özcan
- Department of Food Engineering, Faculty of Agriculture, University of Selçuk
| | - Nurhan Uslu
- Department of Food Engineering, Faculty of Agriculture, University of Selçuk
| | - Elfadıl E Babiker
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University
| | - Isam A Mohamed Ahmed
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University
| | - Omer N Alsawmahi
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University
| |
Collapse
|
31
|
Evaluation of Protein and Antioxidant Content in Apricot Kernels as a Sustainable Additional Source of Nutrition. SUSTAINABILITY 2021. [DOI: 10.3390/su13094742] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Apricot fruits are a favorite for consumption; however, their kernels are a rich source of nutritionally interesting substances, too. Nevertheless, in processing of apricots, the kernels remain often unused. In this study, 32 cultivars of different origin were analyzed for their protein content and content of secondary metabolites (phenolics and flavonoids). The weight and taste of kernels were assessed and these data were summarized for an evaluation of the attractiveness of the studied apricot kernels. Results showed that the protein content of kernels ranged from 14.56% to 28.77% and did not depend on the origin or weight of kernel, or taste. In addition, total phenolic (63.5–1277.3 mg GAE/100 g DW) and total flavonoid (0–153.1 mg CE/100 g DW) contents and antioxidant capacity (483.4–2348.4 mg TE/100 g DW) were measured in kernels. In conclusion, the Czech hybrids LE-5959, LE-5500 and French cultivar Koolgat are prospective for kernel processing and consumption because of their high protein content and sweet taste. Hybrid LI-3-6, originating in China, showed high protein content as well but because of bitter taste could be useful rather in medicine.
Collapse
|
32
|
Deng P, Cui B, Zhu H, Phommakoun B, Zhang D, Li Y, Zhao F, Zhao Z. Accumulation Pattern of Amygdalin and Prunasin and Its Correlation with Fruit and Kernel Agronomic Characteristics during Apricot ( Prunus armeniaca L.) Kernel Development. Foods 2021; 10:foods10020397. [PMID: 33670310 PMCID: PMC7918717 DOI: 10.3390/foods10020397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/28/2021] [Accepted: 02/08/2021] [Indexed: 01/12/2023] Open
Abstract
To reveal the accumulation pattern of cyanogenic glycosides (amygdalin and prunasin) in bitter apricot kernels to further understand the metabolic mechanisms underlying differential accumulation during kernel development and ripening and explore the association between cyanogenic glycoside accumulation and the physical, chemical and biochemical indexes of fruits and kernels during fruit and kernel development, dynamic changes in physical characteristics (weight, moisture content, linear dimensions, derived parameters) and chemical and biochemical parameters (oil, amygdalin and prunasin contents, β-glucosidase activity) of fruits and kernels from ten apricot (Prunus armeniaca L.) cultivars were systematically studied at 10 day intervals, from 20 days after flowering (DAF) until maturity. High variability in most of physical, chemical and biochemical parameters was found among the evaluated apricot cultivars and at different ripening stages. Kernel oil accumulation showed similar sigmoid patterns. Amygdalin and prunasin levels were undetectable in the sweet kernel cultivars throughout kernel development. During the early stages of apricot fruit development (before 50 DAF), the prunasin level in bitter kernels first increased, then decreased markedly; while the amygdalin level was present in quite small amounts and significantly lower than the prunasin level. From 50 to 70 DAF, prunasin further declined to zero; while amygdalin increased linearly and was significantly higher than the prunasin level, then decreased or increased slowly until full maturity. The cyanogenic glycoside accumulation pattern indicated a shift from a prunasin-dominated to an amygdalin-dominated state during bitter apricot kernel development and ripening. β-glucosidase catabolic enzyme activity was high during kernel development and ripening in all tested apricot cultivars, indicating that β-glucosidase was not important for amygdalin accumulation. Correlation analysis showed a positive correlation of kernel amygdalin content with fruit dimension parameters, kernel oil content and β-glucosidase activity, but no or a weak positive correlation with kernel dimension parameters. Principal component analysis (PCA) showed that the variance accumulation contribution rate of the first three principal components totaled 84.56%, and not only revealed differences in amygdalin and prunasin contents and β-glucosidase activity among cultivars, but also distinguished different developmental stages. The results can help us understand the metabolic mechanisms underlying differential cyanogenic glycoside accumulation in apricot kernels and provide a useful reference for breeding high- or low-amygdalin-content apricot cultivars and the agronomic management, intensive processing and exploitation of bitter apricot kernels.
Collapse
Affiliation(s)
- Ping Deng
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest A&F University, Shaanxi Province, Yangling 712100, China; (P.D.); (B.C.); (H.Z.); (B.P.); (D.Z.); (Y.L.)
- College of Biology and Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Bei Cui
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest A&F University, Shaanxi Province, Yangling 712100, China; (P.D.); (B.C.); (H.Z.); (B.P.); (D.Z.); (Y.L.)
| | - Hailan Zhu
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest A&F University, Shaanxi Province, Yangling 712100, China; (P.D.); (B.C.); (H.Z.); (B.P.); (D.Z.); (Y.L.)
| | - Buangurn Phommakoun
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest A&F University, Shaanxi Province, Yangling 712100, China; (P.D.); (B.C.); (H.Z.); (B.P.); (D.Z.); (Y.L.)
| | - Dan Zhang
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest A&F University, Shaanxi Province, Yangling 712100, China; (P.D.); (B.C.); (H.Z.); (B.P.); (D.Z.); (Y.L.)
| | - Yiming Li
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest A&F University, Shaanxi Province, Yangling 712100, China; (P.D.); (B.C.); (H.Z.); (B.P.); (D.Z.); (Y.L.)
| | - Fei Zhao
- Beijing Agricultural Technology Extension Station, Beijing 100029, China;
| | - Zhong Zhao
- Key Comprehensive Laboratory of Forestry, College of Forestry, Northwest A&F University, Shaanxi Province, Yangling 712100, China; (P.D.); (B.C.); (H.Z.); (B.P.); (D.Z.); (Y.L.)
- Correspondence:
| |
Collapse
|
33
|
Assessment of Nutritional, Technological, and Commercial Apricot Quality Criteria of the Moroccan Cultivar “Maoui” Compared to Introduced Spanish Cultivars “Canino” and “Delpatriarca” towards Suitable Valorization. J FOOD QUALITY 2021. [DOI: 10.1155/2021/6679128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Apricot is among the most important fruits in Morocco. This study aimed to determine the main physical, physicochemical, and biochemical quality criteria of three principal apricot cultivars in Morocco, namely, “Maoui,” “Canino,” and “Delpatriarca.” Different physicochemical and biochemical methods have been improved and adapted for the assessment of the apricot’s quality. Fruit of “Canino” has shown a good organoleptic quality due to interesting biometrics, richness of carotenoids (up to 113.67 μg of β-carotene g−1 of fresh weight (FW)), and an important content of soluble solids (SS) that reached 17.20 °Bx. “Delpatriarca” is rich in organic acids (27.35 g/kg FW for total acids) while “Maoui” has high water content (83.77%) and a SS content of 16.03 °Bx. The association of the total acidity and soluble solids determination with the use of the HPLC for determining the organic acids was very practical and effective in determining the organoleptic quality of the fruit. High correlations were detected between several attributes. In addition, an important relationship between total carotenoids concentration and color parameters (L
a
b
) demonstrated that these parameters are good for apricot quality and ripening indices. The obtained results also revealed the presence of a high variability among the quality criteria of the three apricot cultivars. These characteristics could be useful for promoting the consumption of the “Maoui” as fresh fruits and the use of “Canino” and “Delpatriarca” for industry derivatives products. The results could also be useful for new apricot breeding program among different eco-geographical groups of the Mediterranean region.
Collapse
|
34
|
Afonso S, Oliveira IV, Meyer AS, Aires A, Saavedra MJ, Gonçalves B. Phenolic Profile and Bioactive Potential of Stems and Seed Kernels of Sweet Cherry Fruit. Antioxidants (Basel) 2020; 9:antiox9121295. [PMID: 33348687 PMCID: PMC7766571 DOI: 10.3390/antiox9121295] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Every year, large quantities of stems and pits are generated during sweet cherry processing, without any substantial use. Although stems are widely recognized by traditional medicine, detailed and feasible information about their bioactive composition or biological value is still scarce, as well as the characterization of kernels. Therefore, we conducted a study in which bioactivity potential of extracts from stems and kernels of four sweet cherry cultivars (Early Bigi (grown under net cover (C) and without net cover (NC)), Burlat, Lapins, and Van) were examined. The assays included antioxidant (by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and β-carotene-linoleic acid bleaching assays), and antibacterial activities against important Gram negative and Gram positive bacterial human isolates. Profile and individual phenolic composition of each extract were determined by High-performance liquid chromatography (HPLC) analysis. Extracts from stems of cv. Lapins and kernels of Early Bigi NC presented high levels of total phenolics, flavonoids, ortho-diphenols and saponins. Excepting for cv. Early Bigi NC, major phenolic compounds identified in stems and kernels were sakuranetin and catechin, respectively. In cv. Early Bigi NC the most abundant compounds were ellagic acid for stems and protocatechuic acid for kernels. In all extracts, antioxidant activities showed a positive correlation with the increments in phenolic compounds. Antimicrobial activity assays showed that only stem’s extracts were capable of inhibiting the growth of Gram positive isolates. This new data is intended to provide new possibilities of valorization of these by-products and their valuable properties.
Collapse
Affiliation(s)
- Sílvia Afonso
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences—CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (I.V.O.); (A.A.); (M.J.S.); (B.G.)
- Correspondence:
| | - Ivo Vaz Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences—CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (I.V.O.); (A.A.); (M.J.S.); (B.G.)
| | - Anne S. Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DTU Building 221, DK-2800 Kgs. Lyngby, Denmark;
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences—CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (I.V.O.); (A.A.); (M.J.S.); (B.G.)
| | - Maria José Saavedra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences—CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (I.V.O.); (A.A.); (M.J.S.); (B.G.)
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences—CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (I.V.O.); (A.A.); (M.J.S.); (B.G.)
| |
Collapse
|
35
|
Gu X, Gao T, Hou Y, Li D, Fu L. Identification and characterization of two novel α-glucosidase inhibitory peptides from almond (Armeniaca sibirica) oil manufacture residue. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Transdermal Delivery Systems of Natural Products Applied to Skin Therapy and Care. Molecules 2020; 25:molecules25215051. [PMID: 33143260 PMCID: PMC7662758 DOI: 10.3390/molecules25215051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 12/15/2022] Open
Abstract
Natural products are favored because of their non-toxicity, low irritants, and market reacceptance. We collected examples, according to ancient wisdom, of natural products to be applied in transdermal delivery. A transdermal delivery system, including different types of agents, such as ointments, patches, and gels, has long been used for skin concerns. In recent years, many novel transdermal applications, such as nanoemulsions, liposomes, lipid nanoparticles, and microneedles, have been reported. Nanosized drug delivery systems are widely applied in natural product deliveries. Nanosized materials notably enhance bioavailability and solubility, and are reported to improve the transdermal permeation of many substances compared with conventional topical formulations. Natural products have been made into nanosized biomaterials in order to enhance the penetration effect. Before introducing the novel transdermal applications of natural products, we present traditional methods within this article. The descriptions of novel transdermal applications are classified into three parts: liposomes, emulsions, and lipid nanoparticles. Each section describes cases that are related to promising natural product transdermal use. Finally, we summarize the outcomes of various studies on novel transdermal agents applied to skin treatments.
Collapse
|
37
|
Hrichi S, Rigano F, Chaabane-Banaoues R, Oulad El Majdoub Y, Mangraviti D, Di Marco D, Babba H, Dugo P, Mondello L, Mighri Z, Cacciola F. Identification of Fatty Acid, Lipid and Polyphenol Compounds from Prunus armeniaca L. Kernel Extracts. Foods 2020; 9:E896. [PMID: 32650361 PMCID: PMC7404456 DOI: 10.3390/foods9070896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/15/2022] Open
Abstract
Apart from its essential oil, Prunus armeniaca L. kernel extract has received only scarce attention. The present study aimed to describe the lipid and polyphenolic composition of the dichloromethane, chloroform, ethyl acetate, and ethanol extracts on the basis of hot extraction, performing analysis by gas chromatography and high-performance liquid chromatography coupled with mass spectrometry. A total of 6 diacylglycerols (DAGs) and 18 triacylglycerols (TAGs) were detected as being present in all extracts, with the predominance of OLL (dilinoleyl-olein), OOL (dioleoyl-linolein), and OOO (triolein), with percentages ranging from 19.0-32.8%, 20.3-23.6%, and 12.1-20.1%, respectively. In further detail, the extraction with ethyl acetate (medium polarity solvent) gave the highest signal for all peaks, followed by chloroform and dichloromethane (more apolar solvent), while the extraction with ethanol (polar solvent) was the least efficient. Ethanol showed very poor signal for the most saturated TAGs, while dichloromethane showed the lowest percentages of DAGs. Accordingly, the screening of the total fatty acid composition revealed the lowest percentage of linoleic acid (C18:2n6) in the dichloromethane extract, which instead contained the highest amount (greater than 60%) of oleic acid (C18:1n9). Polyphenolic compounds with pharmacological effects (anti-tumor, anti-coagulant, and inflammatory), such as coumarin derivative and amygdalin, occurred at a higher amount in ethyl acetate and ethanol extracts.
Collapse
Affiliation(s)
- Soukaina Hrichi
- Laboratory of Physico-Chemistry of Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia; (S.H.); (Z.M.)
| | - Francesca Rigano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (Y.O.E.M.); (D.M.); (P.D.); (L.M.)
| | - Raja Chaabane-Banaoues
- Laboratory of Medical and molecular Parasitology-Mycology (LP3M), Faculty of Pharmacy of Monastir, Department of Clinical Biology, University of Monastir, Monastir 5000, Tunisia; (R.C.-B.); (H.B.)
| | - Yassine Oulad El Majdoub
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (Y.O.E.M.); (D.M.); (P.D.); (L.M.)
| | - Domenica Mangraviti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (Y.O.E.M.); (D.M.); (P.D.); (L.M.)
| | - Davide Di Marco
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
| | - Hamouda Babba
- Laboratory of Medical and molecular Parasitology-Mycology (LP3M), Faculty of Pharmacy of Monastir, Department of Clinical Biology, University of Monastir, Monastir 5000, Tunisia; (R.C.-B.); (H.B.)
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (Y.O.E.M.); (D.M.); (P.D.); (L.M.)
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (Y.O.E.M.); (D.M.); (P.D.); (L.M.)
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
- Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- BeSep s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Zine Mighri
- Laboratory of Physico-Chemistry of Materials, Faculty of Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia; (S.H.); (Z.M.)
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98168 Messina, Italy;
| |
Collapse
|
38
|
Influence of Solvent on the Component Composition and Antioxidant Properties of Apricot Cake (Prunus armeniaca L.) Extracts. J CHEM-NY 2020. [DOI: 10.1155/2020/2913454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Antioxidants of natural origin which are based on agroprocessing waste appear as substance with high performance properties. They have complicated structure and contain a complex of biologically active compounds. This is why research of the above is particularly relevant in current competitive market. When working with plant raw materials and isolation of valuable compounds, the urgent issue is the choice of the method (extraction method) and extractant, which will ensure a maximum release of chemically active compounds. Known solvents such as methanol, ethanol, hexane, diethyl ether, and mixtures thereof are usually used for recovery. The purpose of this research was to study the effect of selected nonpolar solvents on the phytochemical composition and the antioxidant capacity of Prunus armeniaca L. Extracts were obtained using ethanol, silicone, propan-2-ol, and mixtures of ethanol silicone and propan-2-ol with silicone. In the obtained extracts, identification of the sequestered chemically active compounds was carried out by means of chromatography, mass spectrometry, and IR and UV spectrometry, and the extracts were evaluated on antioxidant properties. Various extracts showed varying degrees of antioxidant activity in various test systems, depending on the concentration. Since various antioxidant compounds have different mechanisms of action, several methods have been used to evaluate the effectiveness of antioxidant extracts. The results showed that the test solvents play an important role in the extraction of the plant material into the component composition, as well as the antioxidant ability of Prunus armeniaca L.
Collapse
|
39
|
Albogami S, Hassan A, Ahmed N, Alnefaie A, Alattas A, Alquthami L, Alharbi A. Evaluation of the effective dose of amygdalin for the improvement of antioxidant gene expression and suppression of oxidative damage in mice. PeerJ 2020; 8:e9232. [PMID: 32509470 PMCID: PMC7246030 DOI: 10.7717/peerj.9232] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/01/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Little is known regarding the toxic and therapeutic doses of amygdalin. Treatment regimens and schedules can vary between humans and animal models, and there have been reports of cyanide toxicity due to amygdalin use. OBJECTIVE The aim of this study was to evaluate the effect of different doses of amygdalin on antioxidant gene expression and suppression of oxidative damage in mice. METHODS Forty adult male mice were divided randomly into four groups (n = 10) as follows and treated orally for two weeks: a control group treated with saline solution, a group treated with amygdalin at 200 mg/kg body weight, a group treated with amygdalin at 100 mg/kg body weight, and a group treated with amygdalin at 50 mg/kg body weight. Liver and testis samples were collected for gene expression, biochemical and histopathological analyses. RESULTS The mice treated with medium-dose amygdalin (100 mg/kg) showed upregulated mRNA expression of glutathione peroxidase (P < 0.01) and superoxide dismutase (P < 0.05) and significantly decreased lipid peroxidation (P < 0.05) in hepatic and testicular tissues compared to those in the untreated groups (controls), with mild histopathological effects. The mice treated with high-dose of amygdalin (200 mg/kg) showed downregulated mRNA expression of glutathione peroxidase and superoxide dismutase (P < 0.01) and significantly increased lipid peroxidation (P < 0.05) in both hepatic and testicular tissues compared to those in the untreated groups (controls), with an apparent effect at the histopathological level. No effects were observed in the mice treated with low-dose amygdalin (50 mg/kg) at the gene, protein and histopathological level. CONCLUSION Low-and medium-dose amygdalin did not induce toxicity in the hepatic and testicular tissues of male mice, unlike high-dose amygdalin, which had a negative effect on oxidative balance in mice. Therefore, amygdalin at a moderate dose may improve oxidative balance in mice.
Collapse
Affiliation(s)
- Sarah Albogami
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Makkah, Kingdom of Saudi Arabia
| | - Aziza Hassan
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Makkah, Kingdom of Saudi Arabia
- Department of Cell Biology, National Research Centre, Dokki, Cairo, Egypt
| | - Nibal Ahmed
- Department of Biology, Faculty of Science, Taif University, Taif, Makkah, Kingdom of Saudi Arabia
- Department of Pathology, Animal Reproduction Research Institute, Cairo, Egypt
| | - Alaa Alnefaie
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Makkah, Kingdom of Saudi Arabia
| | - Afnan Alattas
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Makkah, Kingdom of Saudi Arabia
| | - Lama Alquthami
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Makkah, Kingdom of Saudi Arabia
- General Department of Education, Taif, Makkah, Kingdom of Saudi Arabia
| | - Afaf Alharbi
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Makkah, Kingdom of Saudi Arabia
- General Department of Education, Taif, Makkah, Kingdom of Saudi Arabia
| |
Collapse
|
40
|
Liu J, Deng JL, Tian Y. Transcriptome sequencing of the apricot (Prunus armeniaca L.) and identification of differentially expressed genes involved in drought stress. PHYTOCHEMISTRY 2020; 171:112226. [PMID: 31923721 DOI: 10.1016/j.phytochem.2019.112226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Apricot (Prunus armeniaca L.) is an important fruit crop that is widely planted throughout the world. But drought affects both yield and quality of apricot. In order to study the effects of long-term drought on the molecular and physiological mechanisms of apricot, we used transcriptome sequencing and measured physiological indices. First, 322 million high-quality clean reads were obtained, and 74,892 unigenes were generated for the transcriptome. Among the assembled unigenes, 18,671 simple sequence repeats (SSRs) and 5581 differentially expressed genes (DEGs) were identified. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the DEGs revealed that starch and sucrose metabolism, plant-pathogen interaction and plant hormone signal transduction pathways are enriched. Additionally, we used quantitative real-time PCR (qRT-PCR) to confirm the RNA-seq results with 11 drought-related DEGs. Second, through the physiological analysis of apricot leaves under constant drought stress, and the results show the internal microstructure of apricot leaves changed to withstand drought stress. At the same time, plants exposed to long-term drought stress showed higher degree of membrane damage, which reduced photosynthesis in the damaged leaves. Our findings enrich the genome resources for apricot and refine our understanding of the molecular and physiological mechanisms of drought response in this fruit crop, providing insights into drought adaptation of the apricot.
Collapse
Affiliation(s)
- Jia Liu
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, PR China; Southwestern Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement, Ministry of Agriculture, Chengdu, Sichuan, 610066, PR China
| | - Jia Lin Deng
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, PR China; Southwestern Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement, Ministry of Agriculture, Chengdu, Sichuan, 610066, PR China.
| | - Yun Tian
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, 610066, PR China; Southwestern Key Laboratory of Horticultural Crops Biology and Germplasm Enhancement, Ministry of Agriculture, Chengdu, Sichuan, 610066, PR China
| |
Collapse
|
41
|
Bitter apricot ethanolic extract induces apoptosis through increasing expression of Bax/Bcl-2 ratio and caspase-3 in PANC-1 pancreatic cancer cells. Mol Biol Rep 2020; 47:1895-1904. [PMID: 32026321 DOI: 10.1007/s11033-020-05286-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Pancreatic cancer is the fourth common cause of cancer death. Surgery and chemotherapy are the common treatment strategies for pancreatic cancer patients; however, the response rate is less than 20% at advanced stages. In recent years, growing interest has been dedicated to natural products. Bitter apricot seeds possess a number of pharmacological properties including antitumor activity and amygdalin from bitter apricot seeds can induce apoptosis. In this study, we investigated the cyto/genotoxic effects of bitter apricot ethanolic extract (BAEE) and amygdalin on human pancreatic cancer PANC-1 and normal epithelial 293/KDR cells. BAEE was assessed using high-performance liquid chromatography for the confirmation of the structure. The biological impacts of BAEE and amygdalin on PANC-1 and 293/KDR cells were evaluated by MTT assay, DAPI staining, AnnexinV/PI and Real-time qPCR analysis. BAEE and amygdalin inhibited cancer cell growth in a dose- and time-dependent manner. DAPI staining and flow cytometric analysis revealed fragmented nuclei and elevated numbers of early and late apoptotic cells, respectively. Also, increased Bax/Bcl-2 ratio and upregulation of caspase-3 further confirmed the occurrence of apoptosis in PANC-1 cells, but not in non-cancerous 293/KDR cells. These results indicate that BAEE could mediate apoptosis induction in cancer cells through a mitochondria dependent pathway. These findings suggest that BAEE functions as a potent pro-apoptotic factor for human pancreatic cancer cells without a significant effect on 293/KDR cells. Though, the potent anti-cancer components of BAEE should be further identified. Moreover, in vivo investigations are required to confirm bitter apricot ethanolic extract's clinical value as an anti-tumor drug.
Collapse
|
42
|
Al Aboody MS, Mickymaray S. Anti-Fungal Efficacy and Mechanisms of Flavonoids. Antibiotics (Basel) 2020; 9:E45. [PMID: 31991883 PMCID: PMC7168129 DOI: 10.3390/antibiotics9020045] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of fungal infections is growing at an alarming pace and the pathogenesis is still not clearly understood. Recurrence of these fungal diseases is often due to their evolutionary avoidance of antifungal resistance. The development of suitable novel antimicrobial agents for fungal diseases continues to be a major problem in the current clinical field. Hence, it is urgently necessary to develop surrogate agents that are more effective than conventional available drugs. Among the remarkable innovations from earlier investigations on natural-drugs, flavonoids are a group of plant-derived substances capable of promoting many valuable effects on humans. The identification of flavonoids with possible antifungal effects at small concentrations or in synergistic combinations could help to overcome this problem. A combination of flavonoids with available drugs is an excellent approach to reduce the side effects and toxicity. This review focuses on various naturally occurring flavonoids and their antifungal activities, modes of action, and synergetic use in combination with conventional drugs.
Collapse
Affiliation(s)
| | - Suresh Mickymaray
- Department of Biology, College of Science, Al-Zulfi, Majmaah University, Riyadh Region, Majmaah 11952, Saudi Arabia;
| |
Collapse
|
43
|
Chen Y, Al-Ghamdi AA, Elshikh MS, Shah MH, Al-Dosary MA, Abbasi AM. Phytochemical profiling, antioxidant and HepG2 cancer cells' antiproliferation potential in the kernels of apricot cultivars. Saudi J Biol Sci 2020; 27:163-172. [PMID: 31889831 PMCID: PMC6933278 DOI: 10.1016/j.sjbs.2019.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/17/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023] Open
Abstract
Phytochemical composition, in vitro antioxidant and antiproliferative activity against HepG2 cells were studied in the kernels of apricot cultivars grown in the northern areas of Pakistan. Relatively, the kernel of Habbi cultivar/AP-12 depicted significant potential to scavenge DPPH and ABTS+ free radicals as well as oxygen radical absorbance capacity along with highest contents of total flavonoids, phenolics, chlorogenic and syringic acids on dry weight basis. The average concentration of quercetin ranged 0.072-1.343 mg/100 g, and of EGCG from 0.713 to 6.521 mg/100 g with maximum concentration in Hulappa/AP-3 and Kho Chali-Khatta 3/AP-17, respectively. Amygdalin content was highest (1145 mg/100 g) in the kernel of Balaani/AP-14. Highest inhibition of HepG2 cells was found in the kernel of Waflu Chuli/AP-9 (EC50 = 15.70 ± 3.77 mg/mL). The PCA showed significant contributions of polyphenols and flavonoids towards biochemical assays, while CA revealed similarities and associations among various cultivars. Our study revealed that Habbi, Waflu Chuli, Thukdeena and Balaani kernels are rich sources of bioactive compounds and possess significant antioxidant and anticancer activity and can contribute considerably in the prevention and treatment of chronic health disorders.
Collapse
Affiliation(s)
- Yongsheng Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, Faculty of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed S. Elshikh
- Department of Botany and Microbiology, Faculty of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Munir H. Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Monerah A. Al-Dosary
- Department of Botany and Microbiology, Faculty of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| |
Collapse
|
44
|
Khan T, Ali M, Khan A, Nisar P, Jan SA, Afridi S, Shinwari ZK. Anticancer Plants: A Review of the Active Phytochemicals, Applications in Animal Models, and Regulatory Aspects. Biomolecules 2019; 10:E47. [PMID: 31892257 PMCID: PMC7022400 DOI: 10.3390/biom10010047] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 12/24/2022] Open
Abstract
The rising burden of cancer worldwide calls for an alternative treatment solution. Herbal medicine provides a very feasible alternative to western medicine against cancer. This article reviews the selected plant species with active phytochemicals, the animal models used for these studies, and their regulatory aspects. This study is based on a meticulous literature review conducted through the search of relevant keywords in databases, Web of Science, Scopus, PubMed, and Google Scholar. Twenty plants were selected based on defined selection criteria for their potent anticancer compounds. The detailed analysis of the research studies revealed that plants play an indispensable role in fighting different cancers such as breast, stomach, oral, colon, lung, hepatic, cervical, and blood cancer cell lines. The in vitro studies showed cancer cell inhibition through DNA damage and activation of apoptosis-inducing enzymes by the secondary metabolites in the plant extracts. Studies that reported in vivo activities of these plants showed remarkable results in the inhibition of cancer in animal models. Further studies should be performed on exploring more plants, their active compounds, and the mechanism of anticancer actions for use as standard herbal medicine.
Collapse
Affiliation(s)
- Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara 18800, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (P.N.); (S.A.); (Z.K.S.)
| | - Ajmal Khan
- Department of Zoology, University of Buner, Sowari 17290, Pakistan;
| | - Parveen Nisar
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (P.N.); (S.A.); (Z.K.S.)
| | - Sohail Ahmad Jan
- Department of Biotechnology, Hazara University, Mansehra 21120, Pakistan;
| | - Shakeeb Afridi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (P.N.); (S.A.); (Z.K.S.)
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan; (P.N.); (S.A.); (Z.K.S.)
- National Council for Tibb, Islamabad, Pakistan
| |
Collapse
|
45
|
Gummy gold and silver nanoparticles of apricot (Prunus armeniaca) confer high stability and biological activity. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
46
|
Kovacova V, Sarocka A, Blahova J, Sranko P, Omelka R, Galbavy D, Kolesarova A, Martiniakova M. Long-term peroral administration of bitter apricot seeds influences cortical bone microstructure of rabbits. J Anim Physiol Anim Nutr (Berl) 2019; 104:362-370. [PMID: 31724244 DOI: 10.1111/jpn.13229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/03/2019] [Accepted: 09/25/2019] [Indexed: 11/28/2022]
Abstract
Apricot seeds due to the presence of cyanogenic glycoside amygdalin belong to the popular "alternative cancer cures", although anticancer effect of amygdalin remains controversial. This in vivo study points to the effect of long-term peroral administration of bitter apricot seeds on bone microstructure of rabbits since chronic amygdalin toxicity in relation to bone parameters has not been investigated yet. Rabbits (n = 16) were randomly divided into four experimental groups of 4 animals each. Three experimental groups S1, S2 and S3 received commercial feed for rabbits mixed with crushed bitter apricot seeds at doses 60, 300 and 420 mg/kg bw during five months, respectively. The control (C) group received no apricot seeds. The long-term consumption of apricot seeds had no impact on total body weight, femoral weight and femoral length of rabbits. Also, microcomputed tomography (3D analysis) of cortical and trabecular bone tissues did not reveal any significant impact of amygdalin toxicity on relative bone volume, BMD, cortical bone thickness, bone surface, trabecular number, thickness, and their separation. On the other hand, histological (2D) analysis demonstrated evident changes in cortical bone microstructure consistent with a decreased density of secondary osteons in the middle part of substantia compacta due to a replacement of Haversian bone tissue by plexiform bone tissue, vasoconstriction in the primary osteons' vascular canals, Haversian canals, and decreased sizes of secondary osteons in rabbits from S1, S2 and S3 groups. These negative changes are associated with different vascularization and biomechanical properties of cortical bones.
Collapse
Affiliation(s)
- Veronika Kovacova
- Department of Zoology and Anthropology, Constantine the Philosopher University, Nitra, Slovak Republic
| | - Anna Sarocka
- Department of Zoology and Anthropology, Constantine the Philosopher University, Nitra, Slovak Republic
| | - Jana Blahova
- Department of Botany and Genetics, Constantine the Philosopher University, Nitra, Slovak Republic
| | - Patrik Sranko
- Department of Botany and Genetics, Constantine the Philosopher University, Nitra, Slovak Republic
| | - Radoslav Omelka
- Department of Botany and Genetics, Constantine the Philosopher University, Nitra, Slovak Republic
| | | | - Adriana Kolesarova
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Constantine the Philosopher University, Nitra, Slovak Republic
| |
Collapse
|
47
|
Koyu H, Kazan A, Nalbantsoy A, Yalcin HT, Yesil-Celiktas O. Cytotoxic, antimicrobial and nitric oxide inhibitory activities of supercritical carbon dioxide extracted Prunus persica leaves. Mol Biol Rep 2019; 47:569-581. [PMID: 31686285 DOI: 10.1007/s11033-019-05163-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/24/2019] [Indexed: 11/26/2022]
Abstract
Different parts of Prunus persica as fruits, flowers, leaves and kernels have been consumed with dietary and therapeutic purposes traditionally. During fruit production, remarkable amount of leaves which can hold important bioactive groups as phenolics, have been left unutilized. The aim of this study was to investigate cytotoxic, antimicrobial and nitric oxide inhibitory activities of supercritical carbondioxide extracts of Prunus persica leaves. Among studied cell lines, supercritical carbon dioxide extract which was processed at 150 bar, 60 °C, and 6% co-solvent ethanol, exhibited remarkable cytotoxic activity against HeLa, MPanc-96 and MCF-7 cell lines with IC50 values of 12.22 µg/ml, 28.17 µg/ml and 35.51 µg/ml respectively, whereas IC50 value of conventional solvent extract was above 50 µg/ml. Minimum inhibitory concentration values determined for antibacterial and antifungal activities against Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Enterococcus faecium and Candida albicans were found as 62.50 µg/ml. Strong nitric oxide inhibition was achieved with IC50 of 9.30 µg/ml. The promising results revealed that Prunus persica leaves may have remarkable potential as supplement both for drug and food industries. This study is the first report revealing cytotoxic, antimicrobial and nitric oxide inhibitory activity of supercritical carbon dioxide extract of Prunus persica leaves.
Collapse
Affiliation(s)
- Halil Koyu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Izmir Katip Celebi University, 35620, Izmir, Turkey.
| | - Aslihan Kazan
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
| | | | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100, Izmir, Turkey
- Biomedical Technologies Graduate Programme, Graduate School of Natural and Applied Sciences, Ege University, 35100, Izmir, Turkey
| |
Collapse
|
48
|
Malik K, Ahmad M, Zafar M, Ullah R, Mahmood HM, Parveen B, Rashid N, Sultana S, Shah SN, Lubna. An ethnobotanical study of medicinal plants used to treat skin diseases in northern Pakistan. Altern Ther Health Med 2019; 19:210. [PMID: 31409400 PMCID: PMC6693210 DOI: 10.1186/s12906-019-2605-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/19/2019] [Indexed: 12/26/2022]
Abstract
Background Skin diseases are a major health concern especially in association with human immune deficiency syndrome and acquired an immune deficiency. The aim of this study was to document the ethnomedicinal information of plants used to treat skin diseases in Northern Pakistan. This is the first quantitative ethnobotanical study of therapeutic herbs utilized by the indigenous people of Northern Pakistan for skin diseases. Methods Interviews were taken to obtain information from 180 participants. Quantitative methods including fidelity level (FL), Frequency of citation (FC), Use-value (UV), Jaccard indices (JI), Family importance value (FIV), Relative frequency of citation (RFC) and Chi-square test were applied. Medicinal plants uses are also compared with 50 national and international publications. Results In this study, we recorded 106 plant species belonged to 56 floral families for treatment of skin ailments. The dominant life form reported was herb while the preferred method of utilization was powder, along with leaf as the most used plant part. RFC ranges from 0.07 to 0.25% whereas the highest FIV was recorded for family Pteridaceae. FL values range from 36.8 to 100%. The study reported 88% of new plant reports for the treatment of skin diseases. Conclusion The present study revealed the importance of several plants used to treat skin diseases by the local communities of Northern Pakistan. The available literature supported the evidence of plant dermatological properties. Plants having high UV and RFC can be considered for further scientific analysis. There is dire need to create awareness among local, government and scientific communities for the preservation of medicinal species and ethnomedicinal knowledge in Northern Pakistan. Electronic supplementary material The online version of this article (10.1186/s12906-019-2605-6) contains supplementary material, which is available to authorized users.
Collapse
|
49
|
Orchard A, van Vuuren SF. Carrier oils in dermatology. Arch Dermatol Res 2019; 311:653-672. [PMID: 31321504 DOI: 10.1007/s00403-019-01951-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/24/2019] [Accepted: 07/04/2019] [Indexed: 10/26/2022]
Abstract
Wounds are a common medical infliction. With the increase in microbial resistance and a shift of interest towards complementary medicines, essential oils have been shown to be beneficial in suppressing microbial growth. However, in practice, essential oils are more often diluted into a base due to the risk of topical adverse effects, such as dermatitis. There is a lack of collated evidence-based information on toxicity and efficacy of carrier oils. The current information on the subject matter is restricted to generic, aroma-therapeutic books and pamphlets, based on anecdotal evidence rather than an experimental approach. Therefore, this review aimed at identifying the recommended carrier oils used in dermatology and thereafter collating the scientific evidence to support the use of carrier oils together with essential oils recommended for dermatological use. Aloe vera gel had multiple studies demonstrating the ability to enhance wound healing; however, several other carrier oils have been largely neglected. It was observed that the extracts for certain plant species had been used to justify the use of the carrier oils of the same plant species. This is an inaccurate cross assumption due to the difference in chemical composition and biological activities. Lastly, despite these carrier oils being recommended as a base for essential oils, very little data was found on the interactive profile of the carrier oil with the essential oil. This review provides a platform for further studies, especially if essential oils are to receive credence in the scientific field.
Collapse
Affiliation(s)
- Ané Orchard
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa
| | - Sandy F van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, South Africa.
| |
Collapse
|
50
|
Qin F, Yao L, Lu C, Li C, Zhou Y, Su C, Chen B, Shen Y. Phenolic composition, antioxidant and antibacterial properties, and in vitro anti-HepG2 cell activities of wild apricot (Armeniaca Sibirica L. Lam) kernel skins. Food Chem Toxicol 2019; 129:354-364. [DOI: 10.1016/j.fct.2019.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/16/2019] [Accepted: 05/04/2019] [Indexed: 02/07/2023]
|