1
|
Kashani B, Zandi Z, Pourbagheri-Sigaroodi A, Yousefi AM, Ghaffari SH, Bashash D. The PI3K signaling pathway; from normal lymphopoiesis to lymphoid malignancies. Expert Rev Anticancer Ther 2024; 24:493-512. [PMID: 38690706 DOI: 10.1080/14737140.2024.2350629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION As a vital mechanism of survival, lymphopoiesis requires the collaboration of different signaling molecules to orchestrate each step of cell development and maturation. The PI3K pathway is considerably involved in the maturation of lymphatic cells and therefore, its dysregulation can immensely affect human well-being and cause some of the most prevalent malignancies. As a result, studies that investigate this pathway could pave the way for a better understanding of the lymphopoiesis mechanisms, the undesired changes that lead to cancer progression, and how to design drugs to solve this issue. AREAS COVERED The present review addresses the aforementioned aspects of the PI3K pathway and helps pave the way for future therapeutic approaches. In order to access the articles, databases such as Medicine Medline/PubMed, Scopus, Google Scholar, and Science Direct were utilized. The search formula was established by identifying main keywords including PI3K/Akt/mTOR pathway, Lymphopoiesis, Lymphoid malignancies, and inhibitors. EXPERT OPINION The PI3K pathway is crucial for lymphocyte development and differentiation, making it a potential target for therapeutic intervention in lymphoid cancers. Studies are focused on developing PI3K inhibitors to impede the progression of hematologic malignancies, highlighting the pathway's significance in lymphoma and lymphoid leukemia.
Collapse
Affiliation(s)
- Bahareh Kashani
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Mourya A, Prajapati N. Precision Deuteration in Search of Anticancer Agents: Approaches to Cancer Drug Discovery. Cancer Biother Radiopharm 2024; 39:1-18. [PMID: 37585602 DOI: 10.1089/cbr.2023.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Cancer chemotherapy has been shifted from conventional cytotoxic drug therapy to selective and target-specific therapy after the findings about DNA changes and proteins that are responsible for cancer. A large number of newer drugs were discovered as targeted therapy for particular types of neoplastic disease. The initial discovery includes the development of the first in the category, imatinib, a Bcr-Abl tyrosine kinase inhibitor (TKI) for the treatment of chronic myelocytic leukemia in 2001. But the joy did not last for long as the drug developed a point mutation within the ABL1 kinase domain of BCR-ABL1, which subsequently led to the discovery of many other TKIs. Resistance was observed for newer TKIs a few years after their launching, but the use of TKIs in life-threatening cancer therapy is considered as far better compared with the risks of disease because of its target specificity and hence less toxicity. In search of a better anticancer agent, the physiochemical properties of the lead molecule have been modified for its efficacy toward disease and delay in the development of resistance. Deuteration in the drug molecule is one of such modifications that alter the pharmacokinetic properties, generally its metabolism, as compared with its pharmacodynamic effects. Precision deuteration in many anticancer drugs has been carried out to search for better drugs for cancer. In this review, the majority of anticancer drugs and molecules for which deuteration was applied to get better anticancer molecules were discussed. This review will provide a complete guide about the benefits of deuteration in cancer chemotherapy.
Collapse
MESH Headings
- Humans
- Drug Resistance, Neoplasm/genetics
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Imatinib Mesylate/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Drug Discovery
Collapse
Affiliation(s)
- Aman Mourya
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Navnit Prajapati
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, India
| |
Collapse
|
3
|
Yin R, Lu H, Cao Y, Zhang J, Liu G, Guo Q, Kai X, Zhao J, Wei Y. The Mechanisms of miRNAs on Target Regulation and their Recent Advances in Atherosclerosis. Curr Med Chem 2024; 31:5779-5804. [PMID: 37807413 DOI: 10.2174/0109298673253678230920054220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/25/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023]
Abstract
miRNAs are crucial regulators in a variety of physiological and pathological processes, while their regulation mechanisms were usually described as negatively regulating gene expression by targeting the 3'-untranslated region(3'-UTR) of target gene miRNAs through seed sequence in tremendous studies. However, recent evidence indicated the existence of non-canonical mechanisms mediated by binding other molecules besides mRNAs. Additionally, accumulating evidence showed that functions of intracellular and intercellular miRNAs exhibited spatiotemporal patterns. Considering that detailed knowledge of the miRNA regulating mechanism is essential for understanding the roles and further clinical applications associated with their dysfunction and dysregulation, which is complicated and not fully clarified. Based on that, we summarized the recently reported regulation mechanisms of miRNAs, including recognitions, patterns of actions, and chemical modifications. And we also highlight the novel findings of miRNAs in atherosclerosis progression researches to provide new insights for non-coding RNA-based therapy in intractable diseases.
Collapse
Affiliation(s)
- Runting Yin
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Hongyu Lu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yixin Cao
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jia Zhang
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Geng Liu
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Qian Guo
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Xinyu Kai
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Jiemin Zhao
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, No. 301, Xuefu Road, Zhenjiang, 212000, China
| |
Collapse
|
4
|
Veryaskina YA, Titov SE, Kovynev IB, Pospelova TI, Fyodorova SS, Shebunyaeva YY, Sumenkova DV, Zhimulev IF. MicroRNA Expression Profile in Bone Marrow and Lymph Nodes in B-Cell Lymphomas. Int J Mol Sci 2023; 24:15082. [PMID: 37894763 PMCID: PMC10606460 DOI: 10.3390/ijms242015082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Hodgkin's lymphomas (HL) and the majority of non-Hodgkin's lymphomas (NHL) derive from different stages of B-cell differentiation. MicroRNA (miRNA) expression profiles change during lymphopoiesis. Thus, miRNA expression analysis can be used as a reliable diagnostic tool to differentiate tumors. In addition, the identification of miRNA's role in lymphopoiesis impairment is an important fundamental task. The aim of this study was to analyze unique miRNA expression profiles in different types of B-cell lymphomas. We analyzed the expression levels of miRNA-18a, -20a, -96, -182, -183, -26b, -34a, -148b, -9, -150, -451a, -23b, -141, and -128 in lymph nodes (LNs) in the following cancer samples: HL (n = 41), diffuse large B-cell lymphoma (DLBCL) (n = 51), mantle cell lymphoma (MCL) (n = 15), follicular lymphoma (FL) (n = 12), and lymphadenopathy (LA) (n = 37), as well as bone marrow (BM) samples: HL (n = 11), DLBCL (n = 42), MCL (n = 14), FL (n = 16), and non-cancerous blood diseases (NCBD) (n = 43). The real-time RT-PCR method was used for analysis. An increase in BM expression levels of miRNA-26b, -150, and -141 in MCL (p < 0.01) and a decrease in BM levels of the miR-183-96-182 cluster and miRNA-451a in DLBCL (p < 0.01) were observed in comparison to NCBD. We also obtained data on increased LN levels of the miR-183-96-182 cluster in MCL (p < 0.01) and miRNA-18a, miRNA-96, and miRNA-9 in FL (p < 0.01), as well as decreased LN expression of miRNA-150 in DLBCL (p < 0.01), and miRNA-182, miRNA-150, and miRNA-128 in HL (p < 0.01). We showed that miRNA expression profile differs between BM and LNs depending on the type of B-cell lymphoma. This can be due to the effect of the tumor microenvironment.
Collapse
Affiliation(s)
- Yuliya A. Veryaskina
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biology, SB RAS, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
- Laboratory of Gene Engineering, Institute of Cytology and Genetics, SB RAS, 630090 Novosibirsk, Russia
| | - Sergei E. Titov
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biology, SB RAS, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
- AO Vector-Best, 630117 Novosibirsk, Russia
| | - Igor B. Kovynev
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Tatiana I. Pospelova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Sofya S. Fyodorova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Yana Yu. Shebunyaeva
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Dina V. Sumenkova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (T.I.P.); (S.S.F.); (Y.Y.S.); (D.V.S.)
| | - Igor F. Zhimulev
- Department of the Structure and Function of Chromosomes, Laboratory of Molecular Genetics, Institute of Molecular and Cellular Biology, SB RAS, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
| |
Collapse
|
5
|
Akyüz N, Janjetovic S, Ghandili S, Bokemeyer C, Dierlamm J. EBV and 1q Gains Affect Gene and miRNA Expression in Burkitt Lymphoma. Viruses 2023; 15:1808. [PMID: 37766215 PMCID: PMC10537407 DOI: 10.3390/v15091808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/29/2023] Open
Abstract
Abnormalities of the long arm of chromosome 1 (1q) represent the most frequent secondary chromosomal aberrations in Burkitt lymphoma (BL) and are observed almost exclusively in EBV-negative BL cell lines (BL-CLs). To verify chromosomal abnormalities, we cytogenetically investigated EBV-negative BL patient material, and to elucidate the 1q gain impact on gene expression, we performed qPCR with six 1q-resident genes and analyzed miRNA expression in BL-CLs. We observed 1q aberrations in the form of duplications, inverted duplications, isodicentric chromosome idic(1)(q10), and the accumulation of 1q12 breakpoints, and we assigned 1q21.2-q32 as a commonly gained region in EBV-negative BL patients. We detected MCL1, ARNT, MLLT11, PDBXIP1, and FCRL5, and 64 miRNAs, showing EBV- and 1q-gain-dependent dysregulation in BL-CLs. We observed MCL1, MLLT11, PDBXIP1, and 1q-resident miRNAs, hsa-miR-9, hsa-miR-9*, hsa-miR-92b, hsa-miR-181a, and hsa-miR-181b, showing copy-number-dependent upregulation in BL-CLs with 1q gains. MLLT11, hsa-miR-181a, hsa-miR-181b, and hsa-miR-183 showed exclusive 1q-gains-dependent and FCRL5, hsa-miR-21, hsa-miR-155, hsa-miR-155*, hsa-miR-221, and hsa-miR-222 showed exclusive EBV-dependent upregulation. We confirmed previous data, e.g., regarding the EBV dependence of hsa-miR-17-92 cluster members, and obtained detailed information considering 1q gains in EBV-negative and EBV-positive BL-CLs. Altogether, our data provide evidence for a non-random involvement of 1q gains in BL and contribute to enlightening and understanding the EBV-negative and EBV-positive BL pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Judith Dierlamm
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Clinic Hamburg-Eppendorf, 20251 Hamburg, Germany; (N.A.); (S.J.); (S.G.); (C.B.)
| |
Collapse
|
6
|
Irving JR, Hiron TK, Davison LJ, Xia D, Beck S, Werling D, Williams J. Characterization of canine intestinal microRNA expression in inflammatory bowel disease and T-cell lymphoma. J Comp Pathol 2023; 204:23-29. [PMID: 37329660 DOI: 10.1016/j.jcpa.2023.03.186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/16/2023] [Accepted: 03/30/2023] [Indexed: 06/19/2023]
Abstract
Differentiating between canine inflammatory bowel disease (IBD) and intestinal T-cell lymphoma by histopathological examination of endoscopically-derived intestinal biopsies can be challenging and involves an invasive procedure requiring specialized equipment and training. A rapid, non-invasive method of diagnosis, such as blood or faecal analysis for a conserved and stable biomarker, would be a useful adjunct or replacement. Studies on dogs and humans with various types of lymphoma have shown altered microRNA (miRNA) expression patterns in blood, faeces and tissues indicating their potential use as biomarkers of disease. The present study used residual archived endoscopically-derived, formalin-fixed, paraffin-embedded (FFPE) duodenal tissue taken from pet dogs undergoing routine investigation of gastrointestinal disease. The dogs had previously been diagnosed with either normal/minimal intestinal inflammation, severe IBD or intestinal T-cell lymphoma. Next generation sequencing with qPCR validation was used to elucidate differentially expressed miRNAs between groups. Our results show that miRNA can be extracted from archived endoscopically-derived FFPE tissues from the canine duodenum and used to differentiate normal/minimally inflamed canine duodenal tissue from severe lymphoplasmacytic IBD and T-cell lymphoma.
Collapse
Affiliation(s)
- Jennifer R Irving
- Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK
| | - Thomas K Hiron
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; Department of Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK
| | - Lucy J Davison
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; Department of Clinical Science and Services, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK
| | - Dong Xia
- Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK
| | - Samuel Beck
- VPG Histology, Horner Court, 637 Gloucester Road, Horfield, Bristol BS7 0BJ, UK
| | - Dirk Werling
- Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK
| | - Jonathan Williams
- Pathobiology and Population Sciences, Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire AL9 7TA, UK.
| |
Collapse
|
7
|
Sadaf H, Ambroziak M, Binkowski R, Kluebsoongnoen J, Paszkiewicz-Kozik E, Steciuk J, Markowicz S, Walewski J, Sarnowska E, Sarnowski TJ, Konopinski R. New molecular targets in Hodgkin and Reed-Sternberg cells. Front Immunol 2023; 14:1155468. [PMID: 37266436 PMCID: PMC10230546 DOI: 10.3389/fimmu.2023.1155468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Recent discoveries shed light on molecular mechanisms responsible for classical Hodgkin lymphoma (HL) development and progression, along with features of Hodgkin - Reed and Sternberg cells (HRS). Here, we summarize current knowledge on characteristic molecular alterations in HL, as well as existing targeted therapies and potential novel treatments for this disease. We discuss the importance of cluster of differentiation molecule 30 (CD30) and the programmed cell death-1 protein (PD-1) and ligands (PD-L1/2), and other molecules involved in immune modulation in HL. We highlight emerging evidence indicating that the altered function of SWI/SNF-type chromatin remodeling complexes, PRC2, and other epigenetic modifiers, contribute to variations in chromatin status, which are typical for HL. We postulate that despite of the existence of plentiful molecular data, the understanding of HL development remains incomplete. We therefore propose research directions involving analysis of reverse signaling in the PD-1/PD-L1 mechanism, chromatin remodeling, and epigenetics-related alterations, in order to identify HL features at the molecular level. Such attempts may lead to the identification of new molecular targets, and thus will likely substantially contribute to the future development of more effective targeted therapies.
Collapse
Affiliation(s)
- Hummaira Sadaf
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Biotechnology, Sardar Bahadur Khan Womens’ University, Balochistan, Pakistan
| | - Maciej Ambroziak
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Robert Binkowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | | | - Ewa Paszkiewicz-Kozik
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jaroslaw Steciuk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Sergiusz Markowicz
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jan Walewski
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Elzbieta Sarnowska
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Ryszard Konopinski
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
8
|
Modulation of the long non-coding RNA Mir155hg by high, but not moderate, hydrostatic pressure in cartilage precursor cells. PLoS One 2022; 17:e0275682. [PMID: 36538560 PMCID: PMC9767356 DOI: 10.1371/journal.pone.0275682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease in older adults and is characterized by a gradual degradation of articular cartilage due to decreased cartilage matrix gene expression and increased expression of genes involved in protein degradation, apoptosis and inflammation. Due to the high water content of cartilage, one of the main physical stimuli sensed by chondrocytes is hydrostatic pressure. We previously showed that high pressure above 20 MPa induced gene expression changes in chondrocyte precursor cells similar to what is observed in OA. Micro-RNAs are small non-coding RNAs essential to many physiological and pathological process including OA. As the micro-RNA miR-155 has been found increased in OA chondrocytes, we investigated the effects of high pressure on the expression of the miR-155 host gene Mir155hg. The chondrocyte progenitor cell line ATDC5 was pressurized under hydrostatic pressure up to 25 MPa and the expression of Mir155hg or the resulting micro-RNAs were measured; pharmacological inhibitors were used to identify the signaling pathways involved in the regulation of Mir155hg. We found that Mir155hg is strongly and rapidly up-regulated by high, but not moderate, pressure in chondrocyte progenitor cells. This up-regulation likely involves the membrane channel pannexin-1 and several intracellular signaling molecules including PKC and Src. MiR-155-5p and -3p were also up-regulated by pressure though somewhat later than Mir155hg, and a set of known miR-155-5p target genes, including Ikbke, Smarca4 and Ywhae, was affected by pressure, suggesting that Mir155hg may have important roles in cartilage physiology.
Collapse
|
9
|
Yazarlou F, Kadkhoda S, Ghafouri-Fard S. Emerging role of let-7 family in the pathogenesis of hematological malignancies. Biomed Pharmacother 2021; 144:112334. [PMID: 34656064 DOI: 10.1016/j.biopha.2021.112334] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 12/30/2022] Open
Abstract
Let-7 includes a family of miRNA which are implicated in the developmental processes as well as carcinogenesis. This miRNA family has been shown to influence pathogenesis of a variety of hematological malignancies through changing expression of a number of oncogenic pathways, particularly those related with MYC. Expression of these miRNAs has been found to be different between distinct hematological malignancies or even between cytogenetically-defined subgroups of a certain malignancy. In the current review, we summarize the data regarding biogenesis, genomic locations, targets and regulatory network of this miRNA family in the context of hematological malignancies.
Collapse
Affiliation(s)
- Fatemeh Yazarlou
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Kadkhoda
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Deregulated miRNAs Contribute to Silencing of B-Cell Specific Transcription Factors and Activation of NF-κB in Classical Hodgkin Lymphoma. Cancers (Basel) 2021; 13:cancers13133131. [PMID: 34201504 PMCID: PMC8269295 DOI: 10.3390/cancers13133131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The role of transcriptionally deregulated miRNAs (microRNAs) in classical Hodgkin lymphoma (cHL) is still not fully understood. To address this issue, we have performed global miRNA expression profiling of commonly used cHL cell lines and we present a complete cHL miRNome (microRNome). Within this group, we identify miRNAs recurrently deregulated in cHL cell lines, and compare them to non-Hodgkin lymphoma cell lines and sorted normal CD77+ germinal centre B-cells. Moreover, we show that several of the recurrently overexpressed miRNAs in cHL cell lines, and also primary microdissected HRS (Hodgkin and Reed-Sternberg) cells, target known B-cell-related transcription factors and NF-κB inhibitors. These findings provide evidence that deregulated miRNAs contribute to the loss of B-cell phenotype and NF-κB activation observed in this lymphoma. Abstract A hallmark of classical Hodgkin lymphoma (cHL) is the attenuation of B-cell transcription factors leading to global transcriptional reprogramming. The role of miRNAs (microRNAs) involved in this process is poorly studied. Therefore, we performed global miRNA expression profiling using RNA-seq on commonly used cHL cell lines, non-Hodgkin lymphoma cell lines and sorted normal CD77+ germinal centre B-cells as controls and characterized the cHL miRNome (microRNome). Among the 298 miRNAs expressed in cHL, 56 were significantly overexpressed and 23 downregulated (p < 0.05) compared to the controls. Moreover, we identified five miRNAs (hsa-miR-9-5p, hsa-miR-24-3p, hsa-miR-196a-5p, hsa-miR-21-5p, hsa-miR-155-5p) as especially important in the pathogenesis of this lymphoma. Target genes of the overexpressed miRNAs in cHL were significantly enriched (p < 0.05) in gene ontologies related to transcription factor activity. Therefore, we further focused on selected interactions with the SPI1 and ELF1 transcription factors attenuated in cHL and the NF-ĸB inhibitor TNFAIP3. We confirmed the interactions between hsa-miR-27a-5p:SPI1, hsa-miR-330-3p:ELF-1, hsa-miR-450b-5p:ELF-1 and hsa-miR-23a-3p:TNFAIP3, which suggest that overexpression of these miRNAs contributes to silencing of the respective genes. Moreover, by analyzing microdissected HRS cells, we demonstrated that these miRNAs are also overexpressed in primary tumor cells. Therefore, these miRNAs play a role in silencing the B-cell phenotype in cHL.
Collapse
|
11
|
Peng W, Du J, Dai W, Lan W. Predicting miRNA-Disease Association Based on Modularity Preserving Heterogeneous Network Embedding. Front Cell Dev Biol 2021; 9:603758. [PMID: 34178973 PMCID: PMC8223753 DOI: 10.3389/fcell.2021.603758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are a category of small non-coding RNAs that profoundly impact various biological processes related to human disease. Inferring the potential miRNA-disease associations benefits the study of human diseases, such as disease prevention, disease diagnosis, and drug development. In this work, we propose a novel heterogeneous network embedding-based method called MDN-NMTF (Module-based Dynamic Neighborhood Non-negative Matrix Tri-Factorization) for predicting miRNA-disease associations. MDN-NMTF constructs a heterogeneous network of disease similarity network, miRNA similarity network and a known miRNA-disease association network. After that, it learns the latent vector representation for miRNAs and diseases in the heterogeneous network. Finally, the association probability is computed by the product of the latent miRNA and disease vectors. MDN-NMTF not only successfully integrates diverse biological information of miRNAs and diseases to predict miRNA-disease associations, but also considers the module properties of miRNAs and diseases in the course of learning vector representation, which can maximally preserve the heterogeneous network structural information and the network properties. At the same time, we also extend MDN-NMTF to a new version (called MDN-NMTF2) by using modular information to improve the miRNA-disease association prediction ability. Our methods and the other four existing methods are applied to predict miRNA-disease associations in four databases. The prediction results show that our methods can improve the miRNA-disease association prediction to a high level compared with the four existing methods.
Collapse
Affiliation(s)
- Wei Peng
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China.,Computer Technology Application Key Laboratory of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - Jielin Du
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China
| | - Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, China.,Computer Technology Application Key Laboratory of Yunnan Province, Kunming University of Science and Technology, Kunming, China
| | - Wei Lan
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, China
| |
Collapse
|
12
|
Drillis G, Goulielmaki M, Spandidos DA, Aggelaki S, Zoumpourlis V. Non-coding RNAs (miRNAs and lncRNAs) and their roles in lymphogenesis in all types of lymphomas and lymphoid malignancies. Oncol Lett 2021; 21:393. [PMID: 33777216 PMCID: PMC7988683 DOI: 10.3892/ol.2021.12654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
Contemporary developments in molecular biology have been combined with discoveries on the analysis of the role of all non-coding RNAs (ncRNAs) in human diseases, particularly in cancer, by examining their roles in cells. Currently, included among these common types of cancer, are all the lymphomas and lymphoid malignancies, which represent a diverse group of neoplasms and malignant disorders. Initial data suggest that non-coding RNAs, particularly long ncRNAs (lncRNAs), play key roles in oncogenesis and that lncRNA-mediated biology is an important key pathway to cancer progression. Other non-coding RNAs, termed microRNAs (miRNAs or miRs), are very promising cancer molecular biomarkers. They can be detected in tissues, cell lines, biopsy material and all biological fluids, such as blood. With the number of well-characterized cancer-related lncRNAs and miRNAs increasing, the study of the roles of non-coding RNAs in cancer is bringing forth new hypotheses of the biology of cancerous cells. For the first time, to the best of our knowledge, the present review provides an up-to-date summary of the recent literature referring to all diagnosed ncRNAs that mediate the pathogenesis of all types of lymphomas and lymphoid malignancies.
Collapse
Affiliation(s)
- Georgios Drillis
- 1st Internal Medicine Clinic, Medical School, Laiko University Hospital of Athens, 115 27 Athens, Greece
| | - Maria Goulielmaki
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 116 35 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Sofia Aggelaki
- Oncology Unit, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Vassilios Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 116 35 Athens, Greece
| |
Collapse
|
13
|
MicroRNA signature in classical Hodgkin lymphoma. J Appl Genet 2021; 62:281-288. [PMID: 33544339 PMCID: PMC8032569 DOI: 10.1007/s13353-021-00614-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/30/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Abstract
Classical Hodgkin lymphoma (cHL) is one of the most prevalent lymphomas with a unique cell composition compared to other lymphoma entities. Rare, malignant Hodgkin and Reed-Sternberg (HRS) cells embedded with an extensive but ineffective immune infiltration were previously characterized by a large number of genetic and epigenetic alterations. Recently, microRNA profiling studies highlighted the importance of small non-coding RNA in cHL. This review summarizes available literature data and provides a detailed comparison of four studies where cHL cell lines and microdissected HRS cells were used. Several microRNAs were found to be consistently up- (let-7-f, mir-9, mir-21, mir-23a, mir-27a, mir-155, and mir-196a) or downregulated (mir-138 and mir-150) in cHL. These deregulated microRNAs are involved in the processes crucial for cHL pathogenesis, such as impaired B cell development (mir-9, mir-150, and mir-155), NFκB hyperactivation (mir-155 and mir-196a), and immune evasion (mir-138). Therefore, the deregulation of microRNA expression can be considered a complementary mechanism to genetic alterations promoting lymphomagenesis. Moreover, the expression of let-7f, mir-9 and mir-27a is specific for cHL and can serve as a biomarker to distinguish this lymphoma from other B cell lymphomas. However, additional in-depth and high throughput analysis of microRNA expression in HRS cells is necessary to decipher the complete picture of microRNA in cHL.
Collapse
|
14
|
Peripheral Blood Cells from Patients with Hodgkin's and Diffuse Large B Cell Lymphomas May Be a Better Source of Candidate Diagnostic miRNAs Than Circulating miRNAs. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3212878. [PMID: 33628777 PMCID: PMC7880712 DOI: 10.1155/2021/3212878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/08/2021] [Accepted: 01/21/2021] [Indexed: 11/18/2022]
Abstract
Hodgkin lymphoma (HL) and diffuse large B cell lymphoma (DLBCL) represent 15% and 20%, respectively, of all lymphoma types. The aim of this study was to identify and compare circulating serum miRNA (c-miRNA) and peripheral whole blood miRNA (wb-miRNA) profiles in patients with these lymphomas. Serum samples (20 HL, 21 DLBCL, and 30 healthy controls) and whole blood samples (21 HL, 17 DLBCL patients, and 30 healthy controls) were collected at the time of diagnosis. Serum and whole blood were also collected from 18 HL/17 DLBCL and eight HL/nine DLBCL patients, respectively, after treatment. Pairwise comparisons identified 125 c-miRNAs (adjusted P value < 0.05) showing significant dysregulation between 30 healthy controls and patients; of these, 47 and 55 differentiated controls from pretherapeutic HL and DLBCL patients, respectively. In addition, 60 and 16 c-miRNAs differentiated controls from posttherapeutic HL and DLBCL, respectively. Pairwise comparisons identified 292 wb-miRNAs (adjusted P value < 0.05) showing significant dysregulation between 30 controls and patients; of these, 103 and 169 differentiated controls from pretherapeutic HL and DLBCL, respectively, and 142 and 151 wb-miRNAs differentiated controls from posttherapeutic HL and DLBCL, respectively. Thus, lymphoma-associated miRNAs may be a better source of noninvasive candidate biomarkers than miRNAs in serum. It is unclear whether miRNA alterations in lymphoma cells are similar to those observed in white blood cells.
Collapse
|
15
|
Jiang P, Veenstra RN, Seitz A, Nolte IM, Hepkema BG, Visser L, van den Berg A, Diepstra A. Interaction between ERAP Alleles and HLA Class I Types Support a Role of Antigen Presentation in Hodgkin Lymphoma Development. Cancers (Basel) 2021; 13:cancers13030414. [PMID: 33499248 PMCID: PMC7865538 DOI: 10.3390/cancers13030414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Hodgkin lymphoma (HL) is a common lymphoma in young adults derived from B cells. Emerging evidence suggests that antigen presentation by the malignant B cells is critically involved in HL pathogenesis. In fact, genetic variants of the antigen presenting Human Leukocyte Antigens (HLA) are strongly associated with HL susceptibility. Interestingly, the endoplasmic reticulum aminopeptidase (ERAP)1 and ERAP2 genes, that code for enzymes that process antigens, also appear to be associated. In this study, we show that genetic variants of ERAP genes strongly affect expression levels of ERAP1 and ERAP2. In addition, we find that certain ERAP variants interact with specific HLA class I types in HL patients. This suggests that mechanisms that determine the repertoire of antigens that are presented to the immune system, affect the chance of developing HL. Our findings therefore support a prominent role of antigen presentation in HL susceptibility. Abstract Genetic variants in the HLA region are the strongest risk factors for developing Hodgkin lymphoma (HL), suggesting an important role for antigen presentation. This is supported by another HL-associated genomic region which contains the loci of two enzymes that process endogenous proteins to peptides to be presented by HLA class I, i.e., endoplasmic reticulum aminopeptidase 1 (ERAP1) and ERAP2. We hypothesized that ERAP and HLA class I type interact in HL susceptibility, as shown previously for several autoimmune diseases. We detected ERAP1 and ERAP2 expression in tumor cells and cells in the microenvironment in primary HL tissue samples. Seven ERAP SNPs and ERAP1 haplotypes showed strong associations with RNA and protein levels of ERAP1 and ERAP2 in LCLs and HL cell lines. Analysis of HLA class I types, ERAP SNPs and ERAP haplotypes by direct genotyping or imputation from genome-wide association data in 390 HL patients revealed significant interactions between HLA-A11, rs27038 and the rs27038 associated ERAP haplotype, as well as between HLA-Cw2 and rs26618. In conclusion, our results show that ERAP and HLA class I interact in genetic susceptibility to HL, providing further evidence that antigen presentation is an important process in HL susceptibility and pathogenesis.
Collapse
Affiliation(s)
- Peijia Jiang
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
- Department of Laboratory Medicine, Shenyang Huanggu National Defense Hospital, Shenyang 110032, China
| | - Rianne N. Veenstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
| | - Annika Seitz
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
| | - Ilja M. Nolte
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands;
| | - Bouke G. Hepkema
- Department of Laboratory Medicine, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands;
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen, 9700 RB Groningen, The Netherlands; (P.J.); (R.N.V.); (A.S.); (L.V.); (A.v.d.B.)
- Correspondence:
| |
Collapse
|
16
|
Chebly A, Chouery E, Ropio J, Kourie HR, Beylot-Barry M, Merlio JP, Tomb R, Chevret E. Diagnosis and treatment of lymphomas in the era of epigenetics. Blood Rev 2020; 48:100782. [PMID: 33229141 DOI: 10.1016/j.blre.2020.100782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
Lymphomas represent a heterogeneous group of cancers characterized by clonal lymphoproliferation. Over the past decades, frequent epigenetic dysregulations have been identified in hematologic malignancies including lymphomas. Many of these impairments occur in genes with established roles and well-known functions in the regulation and maintenance of the epigenome. In hematopoietic cells, these dysfunctions can result in abnormal DNA methylation, erroneous chromatin state and/or altered miRNA expression, affecting many different cellular functions. Nowadays, it is evident that epigenetic dysregulations in lymphoid neoplasms are mainly caused by genetic alterations in genes encoding for enzymes responsible for histone or chromatin modifications. We summarize herein the recent epigenetic modifiers findings in lymphomas. We focus also on the most commonly mutated epigenetic regulators and emphasize on actual epigenetic therapies.
Collapse
Affiliation(s)
- Alain Chebly
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon
| | - Eliane Chouery
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon
| | - Joana Ropio
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Porto University, Institute of Biomedical Sciences of Abel Salazar, 4050-313 Porto, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Institute of Molecular Pathology and Immunology (Ipatimup), Cancer Biology group, 4200-465 Porto, Portugal
| | - Hampig Raphael Kourie
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon; Saint Joseph University, Faculty of Medicine, Hematology-Oncology Department, Beirut, Lebanon
| | - Marie Beylot-Barry
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Bordeaux University Hospital Center, Dermatology Department, 33000 Bordeaux, France
| | - Jean-Philippe Merlio
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Bordeaux University Hospital Center, Tumor Bank and Tumor Biology Laboratory, 33600 Pessac, France
| | - Roland Tomb
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon; Saint Joseph University, Faculty of Medicine, Dermatology Department, Beirut, Lebanon
| | - Edith Chevret
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France.
| |
Collapse
|
17
|
Zhou F, Sun Y, Gao Q, Wang H. microRNA-21 regulates the proliferation of placental cells via FOXM1 in preeclampsia. Exp Ther Med 2020; 20:1871-1878. [PMID: 32782495 DOI: 10.3892/etm.2020.8930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/04/2019] [Indexed: 12/25/2022] Open
Abstract
The present study determined the expression of microRNA (miRNA or miR)-21 and forkhead box M1 (FOXM1) in placenta and blood samples from patients with preeclampsia (PE), and investigated the relationship between miR-21 and FOXM1. A total of 32 pregnant women with PE and 28 healthy pregnant women were included in the study as the experimental and control groups, respectively. Placental tissues and peripheral blood were collected from all subjects. ELISA was performed to measure the level of FOXM1 protein in the blood. HTR8/SVneo cells overexpressing miR-21 were established by transfection with agomiR-21. Reverse transcription-quantitative PCR was performed to measure the expression of FOXM1 mRNA and miR-21 in the placenta, blood and cells, and western blotting was used to evaluate FOXM1 protein expression in the placenta. An MTT assay was also performed to assess cell viability. In addition, a dual-luciferase reporter assay was used to investigate the direct interaction between FOXM1 and miR-21. The occurrence of PE was found to be associated with reduced FOXM1 mRNA levels, and elevated FOXM1 protein expression may serve a regulatory role that when attenuated leads to the occurrence of PE. Furthermore, miR-21 may serve a regulatory role in the pathology of PE by downregulating FOXM1 expression at the transcriptional level. In HTR8/SVneo cells, the overexpression of miR-21 reduced cell viability, possibly via the reduction of FOXM1 expression. The dual-luciferase assay indicated that miR-21 directly binds to the 3'-untranslated region of FOXM1 to regulate its expression. The present study demonstrated that the expression of FOXM1 mRNA and protein is downregulated, whereas the expression of miR-21 is upregulated in the placenta and blood samples of PE patients. In conclusion, miR-21 may regulate placental cell proliferation via its effects on FOXM1 to promote the occurrence and development of PE.
Collapse
Affiliation(s)
- Fenmei Zhou
- Department of Obstetrics and Gynecology, Huaian First People's Hospital, Nanjing Medical University, Huaian, Jiangsu 223300, P.R. China
| | - Yanlan Sun
- Department of Obstetrics and Gynecology, Huaian First People's Hospital, Nanjing Medical University, Huaian, Jiangsu 223300, P.R. China
| | - Qiong Gao
- Department of Obstetrics and Gynecology, Huaian First People's Hospital, Nanjing Medical University, Huaian, Jiangsu 223300, P.R. China
| | - Hairong Wang
- Department of Obstetrics and Gynecology, Huaian First People's Hospital, Nanjing Medical University, Huaian, Jiangsu 223300, P.R. China
| |
Collapse
|
18
|
Park HJ, Lee SS. QCM sensing of miR-21 by formation of microRNA-DNA hybrid duplexes and intercalation on surface-functionalized pyrene. Analyst 2020; 144:6936-6943. [PMID: 31617512 DOI: 10.1039/c9an01645g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that serve as important biomarkers for a variety of diseases such as cancer and vascular disease. However, sensitive and accurate detection of miR-21 is very challenging in that up-regulation of miR-21 is highly associated with several types of malignant tumors. Here, quartz crystal microbalance (QCM) biosensors were developed for sensitive and specific detection of miR-21 through formation of miR-21-DNA hybrid duplexes and non-specific intercalation of surface-modified pyrene molecules. High selectivity for miR-21 over other miRNAs came from the specific hybridization between miR-21 and gold nanoparticle (AuNP)-conjugated complementary oligonucleotides of miR-21. High sensitivity was obtained through formation of intercalated complexes on the surface with subsequent gold staining signal amplification. Under optimum condition using this strategic approach, our novel QCM biosensors could detect miR-21 concentration as low as 3.6 pM in the entire linear range from 2.5 pM to 2.5 μM with a correlation coefficient of 0.989. In addition, these sensors did not work at all for other miRNAs based on their high selectivity. miR-21 in human brain total RNA and total RNA extracted from A549 cell line could also be successfully detected. Therefore, miRNA detection technology using QCM biosensors and their detection mechanisms have potential as alternatives in biological studies and clinical diagnosis.
Collapse
Affiliation(s)
- Hyeoun Ji Park
- Department of Pharmaceutical Engineering, Soonchunhyang University, 22 Soonchunhyang-ro, Shinchang-myeon, Asan-si, Chungcheongnam-do 31538, Republic of Korea.
| | | |
Collapse
|
19
|
Hernández-Walias FJ, Vázquez E, Pacheco Y, Rodríguez-Fernández JM, Pérez-Elías MJ, Dronda F, Casado JL, Moreno A, Hermida JM, Quereda C, Hernando A, Tejerina-Picado F, Asensi V, Galindo MJ, Leal M, Moreno S, Vallejo A. Risk, Diagnostic and Predictor Factors for Classical Hodgkin Lymphoma in HIV-1-Infected Individuals: Role of Plasma Exosome-Derived miR-20a and miR-21. J Clin Med 2020; 9:jcm9030760. [PMID: 32168859 PMCID: PMC7141191 DOI: 10.3390/jcm9030760] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/27/2020] [Accepted: 03/08/2020] [Indexed: 02/07/2023] Open
Abstract
The incidence of classical Hodgkin lymphoma (cHL) in the HIV-1 setting has increased 5–25-fold compared to that observed in the general population. This study aimed to determine whether selected micro RNAs (miRs) and other soluble biomarkers and cellular subsets are dysregulated in cHL and could be used as biomarkers. This was a retrospective and longitudinal matched case-control study of 111 Caucasian, HIV-1-infected adult individuals, including 37 individuals with cHL and 74 with no type of cancer. Immunovirological data, plasma exosome-derived miR-16, miR-20a, miR-21, miR-221, miR-223, miR-106a, miR-185, miR-23, miR-30d, miR-222, miR-146a and miR-324, plasma IL-6, sCD14, sCD27, sCD30, sIL-2R, TNFR1, and cell phenotyping of T and B lymphocytes and natural killer (NK) cells were analyzed. Before cHL diagnosis, miR-20a, miR-21, and sCD30 were higher in cHL (p = 0.008, p = 0.009 and p = 0.042, respectively), while miR-16 was down-regulated (p = 0.040). miR-20a and miR-21 were independently associated with cHL (p = 0.049 and p = 0.035, respectively). The combination of miR-20a and miR-21 showed a good AUC value of 0.832 with a moderate likelihood ratio positive (LR+) value of 5.6 and a slight likelihood ratio negative (LR−) value of 0.23. At cHL diagnosis, miR-20a, miR-21 and miR-324 were overexpressed in cHL (p = 0.005, p = 0.024, and p = 0.001, respectively), while miR-223, miR-16, miR-185 and miR-106a were down regulated (p = 0.042, p = 0.007, p = 0.006, and p = 0.002, respectively). In addition, sCD14, sCD27, sCD30 and IL2R levels were higher in these individuals (p = 0.038, p = 0.010, p = 0.030, p = 0.006, respectively). miR-20a was independently associated with cHL (p = 0.011). The diagnostic value of miR-20a showed good AUC value of 0.754 (p = 0.074) with a slight LR+ value of 2 and a slight LR− of 0.25. After chemotherapy, miR-20a was higher in those individuals who had an adverse outcome (p < 0.001), while sCD14 and sCD30 were higher (p < 0.001). A specific signature of miRs and cytokines associated with a subsequent cHL diagnosis was found in this study, especially miR-20a and miR-21. Also, another biomarker signature was found at cHL diagnosis, with a relevant discriminant disease value for miR-20a. Of note, miR-20a expression was higher in those individuals who had an adverse clinical outcome after chemotherapy.
Collapse
Affiliation(s)
- Francisco J. Hernández-Walias
- Laboratory of Immunovirology, Infectious Diseases Department, Health Research Institute Ramon y Cajal (IRyCIS), Ramon y Cajal University Hospital, 28034 Madrid, Spain; (F.J.H.-W.); (E.V.); (M.J.P.-E.); (F.D.); (J.L.C.); (A.M.); (J.M.H.); (C.Q.); (S.M.)
| | - Esther Vázquez
- Laboratory of Immunovirology, Infectious Diseases Department, Health Research Institute Ramon y Cajal (IRyCIS), Ramon y Cajal University Hospital, 28034 Madrid, Spain; (F.J.H.-W.); (E.V.); (M.J.P.-E.); (F.D.); (J.L.C.); (A.M.); (J.M.H.); (C.Q.); (S.M.)
| | - Yolanda Pacheco
- Biomedicine Institute of Seville (IBiS), University Hospital Virgen del Rocío, 41013 Seville, Spain; (Y.P.); (M.L.)
| | | | - María J. Pérez-Elías
- Laboratory of Immunovirology, Infectious Diseases Department, Health Research Institute Ramon y Cajal (IRyCIS), Ramon y Cajal University Hospital, 28034 Madrid, Spain; (F.J.H.-W.); (E.V.); (M.J.P.-E.); (F.D.); (J.L.C.); (A.M.); (J.M.H.); (C.Q.); (S.M.)
| | - Fernando Dronda
- Laboratory of Immunovirology, Infectious Diseases Department, Health Research Institute Ramon y Cajal (IRyCIS), Ramon y Cajal University Hospital, 28034 Madrid, Spain; (F.J.H.-W.); (E.V.); (M.J.P.-E.); (F.D.); (J.L.C.); (A.M.); (J.M.H.); (C.Q.); (S.M.)
| | - José L. Casado
- Laboratory of Immunovirology, Infectious Diseases Department, Health Research Institute Ramon y Cajal (IRyCIS), Ramon y Cajal University Hospital, 28034 Madrid, Spain; (F.J.H.-W.); (E.V.); (M.J.P.-E.); (F.D.); (J.L.C.); (A.M.); (J.M.H.); (C.Q.); (S.M.)
| | - Ana Moreno
- Laboratory of Immunovirology, Infectious Diseases Department, Health Research Institute Ramon y Cajal (IRyCIS), Ramon y Cajal University Hospital, 28034 Madrid, Spain; (F.J.H.-W.); (E.V.); (M.J.P.-E.); (F.D.); (J.L.C.); (A.M.); (J.M.H.); (C.Q.); (S.M.)
| | - José M. Hermida
- Laboratory of Immunovirology, Infectious Diseases Department, Health Research Institute Ramon y Cajal (IRyCIS), Ramon y Cajal University Hospital, 28034 Madrid, Spain; (F.J.H.-W.); (E.V.); (M.J.P.-E.); (F.D.); (J.L.C.); (A.M.); (J.M.H.); (C.Q.); (S.M.)
| | - Carmen Quereda
- Laboratory of Immunovirology, Infectious Diseases Department, Health Research Institute Ramon y Cajal (IRyCIS), Ramon y Cajal University Hospital, 28034 Madrid, Spain; (F.J.H.-W.); (E.V.); (M.J.P.-E.); (F.D.); (J.L.C.); (A.M.); (J.M.H.); (C.Q.); (S.M.)
| | - Asunción Hernando
- Department of Medicine, 12 de Octubre University Hospital, Universidad European University of Madrid, Instituto de Investigación Hospital 12 de Octubre (imas12), 28041 Madrid, Spain;
| | | | - Víctor Asensi
- Infectious Diseases Department, Central University Hospital of Asturias, University Medical School, 33011 Oviedo, Spain;
- Group of Translational Research in Infectious Diseases, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | | | - Manuel Leal
- Biomedicine Institute of Seville (IBiS), University Hospital Virgen del Rocío, 41013 Seville, Spain; (Y.P.); (M.L.)
- Department of Internal Medicine and Infectious Diseases, Viamed Hospital, Santa Ángela de la Cruz, 41014 Seville, Spain
| | - Santiago Moreno
- Laboratory of Immunovirology, Infectious Diseases Department, Health Research Institute Ramon y Cajal (IRyCIS), Ramon y Cajal University Hospital, 28034 Madrid, Spain; (F.J.H.-W.); (E.V.); (M.J.P.-E.); (F.D.); (J.L.C.); (A.M.); (J.M.H.); (C.Q.); (S.M.)
| | - Alejandro Vallejo
- Laboratory of Immunovirology, Infectious Diseases Department, Health Research Institute Ramon y Cajal (IRyCIS), Ramon y Cajal University Hospital, 28034 Madrid, Spain; (F.J.H.-W.); (E.V.); (M.J.P.-E.); (F.D.); (J.L.C.); (A.M.); (J.M.H.); (C.Q.); (S.M.)
- Correspondence:
| |
Collapse
|
20
|
Abbasi Pashaki P, Rahim F, Habibi Roudkenar M, Razavi-Toosi S, Ebrahimi A. MicroRNA Tough Decoy Knockdowns miR-195 and Represses Hypertrophy in Chondrocytes. Appl Biochem Biotechnol 2020; 191:1056-1071. [PMID: 31956957 DOI: 10.1007/s12010-020-03229-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/08/2020] [Indexed: 12/12/2022]
Abstract
Cartilage hypertrophy is a condition in which the cells are completely differentiated, and new morphological changes and mineralization prevent proper cellular functions. The occurrence of hypertrophy during differentiation fails current regenerative strategies for treatment. Strategies to minimize hypertrophy in chondrocytes are categorized into two levels of protein and gene. Among these strategies, one way to affect multiple pathways involved in the development of hypertrophy is to manage microRNA activity in cells. Recent miRNA profiling studies have shown that miR-195-5p upregulates through the transition from chondrogenic to hypertrophic state. Bioinformatics assessment of microRNA targets also indicates that several genes repressed by miR-195-5p play important roles in processes related to hypertrophy. The aim of this study was to develop a microRNA Tough Decoy to suppress miR-195-5p and investigate whether it can prevent a hypertrophic state in chondrocytes. The Tough Decoy (TUD) was designed and evaluated bioinformatically and then cloned into the pLVX-Puro plasmid. The TUD function was validated by Dual-Luciferase assay and qRT-PCR. After delivering TUD to C28/I2 chondrocytes cultured in a hypertrophic medium, hypertrophic differentiation was assessed by histochemical staining, quantitative RT-PCR of hypertrophy marker genes, and alkaline phosphatase activity. Results showed that the TUD could inhibit miRNA efficiently and downregulate hypertrophic markers such as RUNX2, alkaline phosphatase, and collagen 10 significantly compared with the control group. Alcian blue and alizarin red staining also demonstrated the optimal effect of gene constructs on tissue properties and mineralization of the TUD group. Delivering the miR-195-5p Tough Decoy to the cartilage cells can prevent the occurrence of hypertrophy in chondrocytes and could be considered as a candidate for the treatment of other diseases such as osteoarthritis.
Collapse
Affiliation(s)
| | - Fakher Rahim
- Thalassemia and Hemoglobinopathy Research Centre, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehryar Habibi Roudkenar
- Department of Medical Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Smt Razavi-Toosi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ammar Ebrahimi
- Department of Medical Biotechnology, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran. .,Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
21
|
Lei H, Liu W, Si J, Wang J, Zhang T. Analyzing the regulation of miRNAs on protein-protein interaction network in Hodgkin lymphoma. BMC Bioinformatics 2019; 20:449. [PMID: 31477006 PMCID: PMC6720096 DOI: 10.1186/s12859-019-3041-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/21/2019] [Indexed: 12/28/2022] Open
Abstract
Background Hodgkin Lymphoma (HL) is a type of aggressive malignancy in lymphoma that has high incidence in young adults and elderly patients. Identification of reliable diagnostic markers and efficient therapeutic targets are especially important for the diagnosis and treatment of HL. Although many HL-related molecules have been identified, our understanding on the molecular mechanisms underlying the disease is still far from complete due to its complex and heterogeneous characteristics. In such situation, exploring the molecular mechanisms underlying HL via systems biology approaches provides a promising option. In this study, we try to elucidate the molecular mechanisms related to the disease and identify potential pharmaceutical targets from a network-based perspective. Results We constructed a series of network models. Based on the analysis of these networks, we attempted to identify the biomarkers and elucidate the molecular mechanisms underlying HL. Initially, we built three different but related protein networks, i.e., background network, HL-basic network and HL-specific network. By analyzing these three networks, we investigated the connection characteristic of the HL-related proteins. Subsequently, we explored the miRNA regulation on HL-specific network and analyzed three kinds of simple regulation patterns, i.e., co-regulation of protein pairs, as well as the direct and indirect regulation of triple proteins. Finally, we constructed a simplified protein network combined with the regulation of miRNAs on proteins to better understand the relation between HL-related proteins and miRNAs. Conclusions We find that the HL-related proteins are more likely to connect with each other compared to other proteins. Moreover, the HL-specific network can be further divided into five sub-networks and 49 proteins as the backbone of HL-specific network make up and connect these 5 sub-networks. Thus, they may be closely associated with HL. In addition, we find that the co-regulation of protein pairs is the main regulatory pattern of miRNAs on the protein network in the HL-specific network. According to the regulation of miRNA on protein network, we have identified 5 core miRNAs as the potential biomarkers for diagnostic of HL. Finally, several protein pathways have been identified to closely associated with HL, which provides deep insights into underlying mechanism of HL. Electronic supplementary material The online version of this article (10.1186/s12859-019-3041-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huimin Lei
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China.,School of Continuation Education, Tianjin Medical University, Tianjin, China
| | - Wenxu Liu
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Jiarui Si
- School of Basic Medicine, Tianjin Medical University, Tianjin, China
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Tao Zhang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
22
|
Labi V, Schoeler K, Melamed D. miR-17∼92 in lymphocyte development and lymphomagenesis. Cancer Lett 2019; 446:73-80. [PMID: 30660648 DOI: 10.1016/j.canlet.2018.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/06/2018] [Accepted: 12/31/2018] [Indexed: 01/07/2023]
Abstract
microRNAs (miRNAs) down-modulate the levels of proteins by sequence-specific binding to their respective target mRNAs, causing translational repression or mRNA degradation. The miR-17∼92 cluster encodes for six miRNAs whose target recognition specificities are determined by their distinct sequence. In mice, the four miRNA families generated from the miR-17∼92 cluster coordinate to allow for proper lymphocyte development and effective adaptive immune responses following infection or immunization. Lymphocyte development and homeostasis rely on tight regulation of PI3K signaling to avoid autoimmunity or immunodeficiency, and the miR-17∼92 miRNAs appear as key mediators to appropriately tune PI3K activity. On the other hand, in lymphoid tumors overexpression of the miR-17∼92 miRNAs is a common oncogenic event. In this review, we touch on what we have learned so far about the miR-17∼92 miRNAs, particularly with respect to their role in lymphocyte development, homeostasis and pathology.
Collapse
Affiliation(s)
- Verena Labi
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, 6020, Austria.
| | - Katia Schoeler
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, 6020, Austria
| | - Doron Melamed
- Department of Immunology, Technion-Israel Institute of Technology, Haifa, 31096, Israel.
| |
Collapse
|
23
|
Integrating random walk and binary regression to identify novel miRNA-disease association. BMC Bioinformatics 2019; 20:59. [PMID: 30691413 PMCID: PMC6350368 DOI: 10.1186/s12859-019-2640-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023] Open
Abstract
Background In the last few decades, cumulative experimental researches have witnessed and verified the important roles of microRNAs (miRNAs) in the development of human complex diseases. Benefitting from the rapid growth both in the availability of miRNA-related data and the development of various analysis methodologies, up until recently, some computational models have been developed to predict human disease related miRNAs, efficiently and quickly. Results In this work, we proposed a computational model of Random Walk and Binary Regression-based MiRNA-Disease Association prediction (RWBRMDA). RWBRMDA extracted features for each miRNA from random walk with restart on the integrated miRNA similarity network for binary logistic regression to predict potential miRNA-disease associations. RWBRMDA obtained AUC of 0.8076 in the leave-one-out cross validation. Additionally, we carried out three different patterns of case studies on four human complex diseases. Specifically, Esophageal cancer and Prostate cancer were conducted as one kind of case study based on known miRNA-disease associations in HMDD v2.0 database. Out of the top 50 predicted miRNAs, 94 and 90% were respectively confirmed by recent experimental reports. To simulate new disease without known related miRNAs, the information of known Breast cancer related miRNAs was removed. As a result, 98% of the top 50 predicted miRNAs for Breast cancer were confirmed. Lymphoma, the verified ratio of which was 88%, was used to assess the prediction robustness of RWBRMDA based on the association records in HMDD v1.0 database. Conclusions We anticipated that RWBRMDA could benefit the future experimental investigations about the relation between human disease and miRNAs by generating promising and testable top-ranked miRNAs, and significantly reducing the effort and cost of identification works. Electronic supplementary material The online version of this article (10.1186/s12859-019-2640-9) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Zaheer U, Faheem M, Qadri I, Begum N, Yassine HM, Al Thani AA, Mathew S. Expression profile of MicroRNA: An Emerging Hallmark of Cancer. Curr Pharm Des 2019; 25:642-653. [PMID: 30914015 DOI: 10.2174/1386207322666190325122821] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/22/2019] [Indexed: 12/28/2022]
Abstract
MicroRNA (miRNAs), a class of small, endogenous non-coding RNA molecules of about 21-24 nucleotides in length, have unraveled a new modulatory network of RNAs that form an additional level of posttranscriptional gene regulation by targeting messenger RNAs (mRNAs). These miRNAs possess the ability to regulate gene expression by modulating the stability of mRNAs, controlling their translation rates, and consequently regulating protein synthesis. Substantial experimental evidence established the involvement of miRNAs in most biological processes like growth, differentiation, development, and metabolism in mammals including humans. An aberrant expression of miRNAs has been implicated in several pathologies, including cancer. The association of miRNAs with tumor growth, development, and metastasis depicts their potential as effective diagnostic and prognostic biomarkers. Furthermore, exploitation of the role of different miRNAs as oncogenes or tumor suppressors has aided in designing several miRNA-based therapeutic approaches for treating cancer patients whose clinical trials are underway. In this review, we aim to summarize the biogenesis of miRNAs and the dysregulations in these pathways that result in various pathologies and in some cases, resistance to drug treatment. We provide a detailed review of the miRNA expression signatures in different cancers along with their diagnostic and prognostic utility. Furthermore, we elaborate on the potential employment of miRNAs to enhance cancer cell apoptosis, regress tumor progression and even overcome miRNA-induced drug resistance.
Collapse
Affiliation(s)
- Uzma Zaheer
- Postgraduate Department of Biotechnology, St. Xavier's College, Kolkata, India
| | - Muhammed Faheem
- Department of Biology, King Abdul Aziz University, 80216 Jeddah, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biology, King Abdul Aziz University, 80216 Jeddah, Saudi Arabia
| | - Nargis Begum
- Postgraduate Department of Biotechnology, Jamal Mohamed College, Trichy, India
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Asmaa A Al Thani
- Biomedical Research Center, Qatar University, Doha, Qatar
- Department of Biomedical Science, College of Health Science, Qatar University, Doha, Qatar
| | - Shilu Mathew
- Biomedical Research Center, Qatar University, Doha, Qatar
| |
Collapse
|
25
|
Chen X, Zhang DH, You ZH. A heterogeneous label propagation approach to explore the potential associations between miRNA and disease. J Transl Med 2018; 16:348. [PMID: 30537965 PMCID: PMC6290528 DOI: 10.1186/s12967-018-1722-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
Background Research on microRNAs (miRNAs) has attracted increasingly worldwide attention over recent years as growing experimental results have made clear that miRNA correlates with masses of critical biological processes and the occurrence, development, and diagnosis of human complex diseases. Nonetheless, the known miRNA-disease associations are still insufficient considering plenty of human miRNAs discovered now. Therefore, there is an urgent need for effective computational model predicting novel miRNA-disease association prediction to save time and money for follow-up biological experiments. Methods In this study, considering the insufficiency of the previous computational methods, we proposed the model named heterogeneous label propagation for MiRNA-disease association prediction (HLPMDA), in which a heterogeneous label was propagated on the multi-network of miRNA, disease and long non-coding RNA (lncRNA) to infer the possible miRNA-disease association. The strength of the data about lncRNA–miRNA association and lncRNA-disease association enabled HLPMDA to produce a better prediction. Results HLPMDA achieved AUCs of 0.9232, 0.8437 and 0.9218 ± 0.0004 based on global and local leave-one-out cross validation and 5-fold cross validation, respectively. Furthermore, three kinds of case studies were implemented and 47 (esophageal neoplasms), 49 (breast neoplasms) and 46 (lymphoma) of top 50 candidate miRNAs were proved by experiment reports. Conclusions All the results adequately showed that HLPMDA is a recommendable miRNA-disease association prediction method. We anticipated that HLPMDA could help the follow-up investigations by biomedical researchers. Electronic supplementary material The online version of this article (10.1186/s12967-018-1722-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China.
| | - De-Hong Zhang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, 221116, China
| | - Zhu-Hong You
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Science, Ürümqi, 830011, China.
| |
Collapse
|
26
|
Wang J, Yin K, Lv X, Yang Q, Shao M, Liu X, Sun H. MicroRNA-24-3p regulates Hodgkin's lymphoma cell proliferation, migration and invasion by targeting DEDD. Oncol Lett 2018; 17:365-371. [PMID: 30655776 PMCID: PMC6313197 DOI: 10.3892/ol.2018.9599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/09/2018] [Indexed: 01/07/2023] Open
Abstract
Hodgkin's lymphoma (HL) is a common hematologic tumor, and the incidence is increasing. At present, it is considered that miRNAs are closely related to HL. Substantial attention has been paid to the effects of miRNA on the pathophysiological process of HL. This study was focused on the potential role of miR-24-3p in HL by targeting DEDD. The reverse transcription-quantitative PCR (RT-qPCR) results demonstrated that miR-24-3p expression was highly elevated and DEDD expression reduced inversely in HL tissues compared to adjacent tissues. According to the results of CKK-8 assays, miR-24-3p was able to accelerate HL cell proliferation. In addition, the results of the Transwell assays also indicated that miR-24-3p promoted the invasion and migration abilities of HL cells. Moreover, the results demonstrated that miR-24-3p inhibited DEDD expression. Hence, the present study revealed that miR-24-3p could accelerate HL development through inhibiting DEDD.
Collapse
Affiliation(s)
- Jing Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Kai Yin
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xianping Lv
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qiankun Yang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ming Shao
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xin Liu
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hui Sun
- Department of Hematopathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
27
|
Solé C, Arnaiz E, Lawrie CH. MicroRNAs as Biomarkers of B-cell Lymphoma. Biomark Insights 2018; 13:1177271918806840. [PMID: 30349178 PMCID: PMC6195009 DOI: 10.1177/1177271918806840] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/13/2022] Open
Abstract
B-cell lymphomas represent a diverse group of neoplasms classified primarily by histopatholgy and are often challenging to accurately diagnose. Despite having been recognized less than 20 years ago, microRNAs (miRNAs) have emerged as one of the most promising class of cancer molecular biomarkers and are particularly attractive as they can be readily detected in formalin-fixed paraffin-embedded biopsy material and biological fluids such as blood. Many of the identified B-cell lymphoma miRNA biomarkers also play crucial regulatory roles in normal B-cell development. Below we consider the identity, function, and biomarker potential of miRNAs in B-cell lymphoma and most importantly the barriers that remain to be overcome if they are really to become part of routine clinical practice.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Esther Arnaiz
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain
| | - Charles H Lawrie
- Molecular Oncology Group, Biodonostia Research Institute, San Sebastián, Spain.,Nuffield Division of Clinical Laboratory Sciences, University of Oxford, Oxford, UK.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
28
|
Niu YW, Liu H, Wang GH, Yan GY. Maximal entropy random walk on heterogenous network for MIRNA-disease Association prediction. Math Biosci 2018; 306:1-9. [PMID: 30336146 DOI: 10.1016/j.mbs.2018.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/08/2018] [Accepted: 10/13/2018] [Indexed: 12/24/2022]
Abstract
The last few decades have verified the vital roles of microRNAs in the development of human diseases and witnessed the increasing interest in the prediction of potential disease-miRNA associations. Owning to the open access of many miRNA-related databases, up until recently, kinds of feasible in silico models have been proposed. In this work, we developed a computational model of Maximal Entropy Random Walk on heterogenous network for MiRNA-disease Association prediction (MERWMDA). MERWMDA integrated known disease-miRNA association, pair-wise functional relation of miRNAs and pair-wise semantic relation of diseases into a heterogenous network comprised of disease and miRNA nodes full of information. As a kind of widely-applied biased walk process with more randomness, MERW was then implemented on the heterogenous network to reveal potential disease-miRNA associations. Cross validation was further performed to evaluate the performance of MERWMDA. As a result, MERWMDA obtained AUCs of 0.8966 and 0.8491 respectively in the aspect of global and local leave-one-out cross validation. What' more, three different case study strategies on four human complex diseases were conducted to comprehensively assess the quality of the model. Specifically, one kind of case study on Esophageal cancer and Prostate cancer were conducted based on HMDD v2.0 database. 94% and 88% out of the top 50 ranked miRNAs were confirmed by recent literature, respectively. To simulate new disease without known related miRNAs, Lung cancer (confirmed ratio 94%) associated miRNAs were removed for case study. Lymphoma (verified ratio 88%) was adopted to assess the prediction robustness of MERWMDA based on HMDD v1.0 database. We anticipated that MERWMDA could offer valuable candidates for in vitro biomedical experiments in future.
Collapse
Affiliation(s)
- Ya-Wei Niu
- School of Mathematics, Shandong University, Jinan 250100, China
| | - Hua Liu
- School of Mathematics, Shandong University, Jinan 250100, China
| | - Guang-Hui Wang
- School of Mathematics, Shandong University, Jinan 250100, China.
| | - Gui-Ying Yan
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
29
|
Carvalho de Oliveira J, Molinari Roberto G, Baroni M, Bezerra Salomão K, Alejandra Pezuk J, Sol Brassesco M. MiRNA Dysregulation in Childhood Hematological Cancer. Int J Mol Sci 2018; 19:ijms19092688. [PMID: 30201877 PMCID: PMC6165337 DOI: 10.3390/ijms19092688] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 12/14/2022] Open
Abstract
For decades, cancer biology focused largely on the protein-encoding genes that have clear roles in tumor development or progression: cell-cycle control, apoptotic evasion, genome instability, drug resistance, or signaling pathways that stimulate growth, angiogenesis, or metastasis. MicroRNAs (miRNAs), however, represent one of the more abundant classes of cell modulators in multicellular organisms and largely contribute to regulating gene expression. Many of the ~2500 miRNAs discovered to date in humans regulate vital biological processes, and their aberrant expression results in pathological and malignant outcomes. In this review, we highlight what has been learned about the roles of miRNAs in some of the most common human pediatric leukemias and lymphomas, along with their value as diagnostic/prognostic factors.
Collapse
Affiliation(s)
| | - Gabriela Molinari Roberto
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Mirella Baroni
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Karina Bezerra Salomão
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, 14049-900 Ribeirão Preto, Brazil.
| | - Julia Alejandra Pezuk
- Programa de Pós-graduação em Farmácia, Anhanguera University of São Paulo, UNIAN/SP, 05145-200 São Paulo, Brazil.
| | - María Sol Brassesco
- Departamento de Biologia, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, Brazil.
| |
Collapse
|
30
|
Harquail J, LeBlanc N, Landry C, Crapoulet N, Robichaud GA. Pax-5 Inhibits NF-κB Activity in Breast Cancer Cells Through IKKε and miRNA-155 Effectors. J Mammary Gland Biol Neoplasia 2018; 23:177-187. [PMID: 30032344 DOI: 10.1007/s10911-018-9404-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/05/2018] [Indexed: 12/17/2022] Open
Abstract
Pax-5, an essential transcription factor in B cell development, is aberrantly expressed in various B cell cancer lesions and solid tumors such as breast carcinoma. We have recently shown that Pax-5 regulates NF-κB activity which lead to the modulation of breast cancer phenotypic features (EMT-MET). NF-κB is known as a central mediator in inflammation, stress response as well as being a gatekeeper of pro-tumorigenic activity. However, little is known as to how Pax-5 affects this modulation. We thus turned our attention to microRNAs as potential regulatory effectors. In this study, we set out to elucidate the regulatory network between differential Pax-5 expression and NF-κB activity which dictate breast cancer malignancy. Through next-generation sequencing (NGS) of breast cancer cells conditionally expressing Pax-5, we profile significantly upregulated microRNAs; including microRNA-155, a known regulator of pathological processes and suppressor of malignant growth. Through the conditional expression of microRNA-155 in breast cancer models, we identify and validate IKKε (IKBKE) as a downstream target and an essential effector of Pax-5-mediated suppression of NF-κB signaling. Using rescue experiments, we also confirm that Pax-5 modulates NF-κB activity via IKKε downregulation. Interestingly, we also show that microRNA-155, in turn, supresses Pax-5 expression, indicative of an auto-regulatory feedback loop. Altogether, we demonstrate that Pax-5 inhibits NF-κB signalling through the regulation of microRNA-155 and its downstream target IKKε. The elucidation of this signaling network is relevant as Pax-5 and NF-κB are potent transcriptional regulators of breast cancer aggressivity. In addition, IKKε is relevant oncogene aberrantly expressed in 30% of breast carcinomas. Further insight into the regulatory pathways of breast cancer progression will eventually identify strategic therapeutic and prognostic targets to improve cancer patient outcome.
Collapse
Affiliation(s)
- Jason Harquail
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB, E1C 8X3, Canada
| | - Nicolas LeBlanc
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB, E1C 8X3, Canada
| | - Carine Landry
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB, E1C 8X3, Canada
| | - Nicolas Crapoulet
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB, E1C 8X3, Canada
| | - Gilles A Robichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada.
- Atlantic Cancer Research Institute, Moncton, NB, E1C 8X3, Canada.
| |
Collapse
|
31
|
Teteloshvili N, Dekkema G, Boots AM, Heeringa P, Jellema P, de Jong D, Terpstra M, Brouwer E, Pawelec G, Kok K, van den Berg A, Kluiver J, Kroesen BJ. Involvement of MicroRNAs in the Aging-Related Decline of CD28 Expression by Human T Cells. Front Immunol 2018; 9:1400. [PMID: 29967621 PMCID: PMC6015875 DOI: 10.3389/fimmu.2018.01400] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/05/2018] [Indexed: 01/05/2023] Open
Abstract
Loss of CD28 is a characteristic feature of T cell aging, but the underlying mechanisms of this loss are elusive. As differential expression of microRNAs (miRNAs) has been described between CD28+ and CD28− T cells, we hypothesized that altered miRNA expression contributes to the age-associated downregulation of CD28. To avoid the confounding effects of age-associated changes in the proportions of T cells at various differentiation stages in vivo, an experimental model system was used to study changes over time in the expression of miRNA associated with the loss of CD28 expression in monoclonal T cell populations at a lower or higher number of population doublings (PDs). This approach allows identification of age-associated miRNA expression changes in a longitudinal model. Results were validated in ex vivo samples. The cumulative number of PDs but not the age of the donor of the T cell clone was correlated with decreased expression of CD28. Principal component analysis of 252 expressed miRNAs showed clustering based on low and high PDs, irrespective of the age of the clone donor. Increased expression of miR-9-5p and miR-34a-5p was seen in clones at higher PDs, and miR-9-5p expression inversely correlated with CD28 expression in ex vivo sorted T-cells from healthy subjects. We then examined the involvement of miR-9-5p, miR-34a-5p, and the members of the miR-23a~24-2 cluster, in which all are predicted to bind to the 3′UTR of CD28, in the IL-15-induced loss of CD28 in T cells. Culture of fresh naive CD28+ T cells in the presence of IL-15 resulted in a gradual loss of CD28 expression, while the expression of miR-9-5p, miR-34a-5p, and members of the miR-23a~24-2 cluster increased. Binding of miR-9-5p, miR-34a-5p, miR-24-3p, and miR-27- 3p to the 3′UTR of CD28 was studied using luciferase reporter constructs. Functional binding to the 3′UTR was shown for miR-24-3p and miR-27a-3p. Our results indicate involvement of defined miRNAs in T cells in relation to specific characteristics of T cell aging, i.e., PD and CD28 expression.
Collapse
Affiliation(s)
- Nato Teteloshvili
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Gerjan Dekkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Annemieke M Boots
- Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Pytrick Jellema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Debora de Jong
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Martijn Terpstra
- Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Graham Pawelec
- Department of Internal Medicine II, Center for Medical Research, University of Tübingen, Tübingen, Germany.,Cancer Solutions Program, Health Sciences North Research Institute, Sudbury, Ontario, Canada
| | - Klaas Kok
- Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Bart-Jan Kroesen
- Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
32
|
Ahn JH, Kwak J, Lee JH, Lee SS. Efficient and accurate analysis of microRNA using a specific extension sequence. Mol Biol Rep 2018; 45:611-619. [PMID: 29846878 DOI: 10.1007/s11033-018-4200-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/23/2018] [Indexed: 01/01/2023]
Abstract
We present here on an innovative assay for detecting miRNAs using a uniquely designed specific extension sequence that provides high efficiency and accuracy. This assay consists of poly(A) tailing and reverse transcription followed by real-time PCR. In the first step of this reaction, target miRNAs are poly(A) tailed by poly(A) polymerase followed by cDNA synthesis using poly(T) adaptors. In the second step, cDNA is hybridized to the 3'-end of a specific extension sequence that contains part of a miRNA sequence; this cDNA-specific extension sequence hybrid forms the novel PCR template. The PCR template is amplified in a SYBR Green-based quantitative real-time PCR with universal forward and reverse primers. The miR-106b in human brain total RNA could be detected quantitatively in the range of seven orders of magnitude with high linearity and reproducibility. This innovative extension-based assay has several performance advantages over the poly(A) tailing method that include lower CT values, clear gel electrophoresis images, and distinct nucleotide peaks in sequencing chromatograms.
Collapse
Affiliation(s)
- Jae Hyun Ahn
- HeimBiotek, Inc., A-201 Pangyo Silicon Park, Bundang-gu, Senognam-si, Kyeonggi-do, 13486, Republic of Korea
| | - Jiwon Kwak
- Department of Pharmaceutical Engineering, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan-si, Chungcheongnam-do, 31538, Republic of Korea
| | - Jae-Hoon Lee
- HeimBiotek, Inc., A-201 Pangyo Silicon Park, Bundang-gu, Senognam-si, Kyeonggi-do, 13486, Republic of Korea
| | - Soo Suk Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan-si, Chungcheongnam-do, 31538, Republic of Korea.
| |
Collapse
|
33
|
Kim KJ, Kwak J, Lee JH, Lee SS. Real-time qRT-PCR assay for the detection of miRNAs using bi-directional extension sequences. Anal Biochem 2017; 536:32-35. [DOI: 10.1016/j.ab.2017.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 02/06/2023]
|
34
|
You ZH, Wang LP, Chen X, Zhang S, Li XF, Yan GY, Li ZW. PRMDA: personalized recommendation-based MiRNA-disease association prediction. Oncotarget 2017; 8:85568-85583. [PMID: 29156742 PMCID: PMC5689632 DOI: 10.18632/oncotarget.20996] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 08/29/2017] [Indexed: 12/23/2022] Open
Abstract
Recently, researchers have been increasingly focusing on microRNAs (miRNAs) with accumulating evidence indicating that miRNAs serve as a vital role in various biological processes and dysfunctions of miRNAs are closely related with human complex diseases. Predicting potential associations between miRNAs and diseases is attached considerable significance in the domains of biology, medicine, and bioinformatics. In this study, we developed a computational model of Personalized Recommendation-based MiRNA-Disease Association prediction (PRMDA) to predict potential related miRNA for all diseases by implementing personalized recommendation-based algorithm based on integrated similarity for diseases and miRNAs. PRMDA is a global method capable of prioritizing candidate miRNAs for all diseases simultaneously. Moreover, the model could be applied to diseases without any known associated miRNAs. PRMDA obtained AUC of 0.8315 based on leave-one-out cross validation, which demonstrated that PRMDA could be regarded as a reliable tool for miRNA-disease association prediction. Besides, we implemented PRMDA on the HMDD V1.0 and HMDD V2.0 databases for three kinds of case studies about five important human cancers in order to test the performance of the model from different perspectives. As a result, 92%, 94%, 88%, 96% and 88% out of the top 50 candidate miRNAs predicted by PRMDA for Colon Neoplasms, Esophageal Neoplasms, Lymphoma, Lung Neoplasms and Breast Neoplasms, respectively, were confirmed by experimental reports.
Collapse
Affiliation(s)
- Zhu-Hong You
- Department of Information Engineering, Xijing University, Xi’an, China
| | - Luo-Pin Wang
- International Software School, Wuhan University, Wuhan, China
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Shanwen Zhang
- Department of Information Engineering, Xijing University, Xi’an, China
| | - Xiao-Fang Li
- Department of Information Engineering, Xijing University, Xi’an, China
| | - Gui-Ying Yan
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| | - Zheng-Wei Li
- School of Computer Science and Technology, Hefei, China
| |
Collapse
|
35
|
Liu Y, Liu J, Wang L, Yang X, Liu X. MicroRNA‑195 inhibits cell proliferation, migration and invasion in laryngeal squamous cell carcinoma by targeting ROCK1. Mol Med Rep 2017; 16:7154-7162. [PMID: 28901478 DOI: 10.3892/mmr.2017.7460] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 07/20/2017] [Indexed: 11/05/2022] Open
Abstract
Laryngeal carcinoma is the second most common malignancy of the head and neck cancers. The most common type of laryngeal carcinoma comprises laryngeal squamous cell carcinoma (LSCC), which accounts for ~95% of laryngeal carcinoma cases. Despite great progress in diagnostic and therapeutic techniques over the last few decades, the prognosis for patients with LSCC remains poor. A number of studies reported that various miRNAs are dysregulated in LSCC and serve critical roles in LSCC tumorigenesis and tumor development. The present study aimed to evaluate the expression level of microRNA (miR)‑195 and its possible roles in LSCC. Briefly, miR‑195 was downregulated in LSCC tissues and cell lines. In addition, low miR‑195 expression was significantly correlated with lymph node metastasis and TNM stage of LSCC patients. Further study has demonstrated that miR‑195 overexpression suppressed cell proliferation, migration and invasion of LSCC. Moreover, rho‑associated kinase 1 (ROCK1) was identified as a direct target gene of miR‑195. Downregulation of ROCK1 exerted similar roles to that of miR‑195 overexpression in LSCC, suggesting ROCK1 was a direct downstream target of miR‑195. These findings elucidated a novel molecular mechanism for the pathogenic mechanism in LSCC carcinogenesis and progression, and may have a potential role in the treatment of patients with LSCC.
Collapse
Affiliation(s)
- Yang Liu
- Department of Otolaryngology, Head and Neck Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Jixiang Liu
- Department of Otolaryngology, Head and Neck Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Lin Wang
- Department of Otolaryngology, Head and Neck Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Xiangli Yang
- Department of Otolaryngology, Head and Neck Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Xiang Liu
- Department of Otolaryngology, Head and Neck Surgery, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| |
Collapse
|
36
|
Cordeiro A, Monzó M, Navarro A. Non-Coding RNAs in Hodgkin Lymphoma. Int J Mol Sci 2017; 18:ijms18061154. [PMID: 28555062 PMCID: PMC5485978 DOI: 10.3390/ijms18061154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/23/2017] [Accepted: 05/26/2017] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression by binding to the 3’-UTR of their target genes, can act as oncogenes or tumor suppressors. Recently, other types of non-coding RNAs—piwiRNAs and long non-coding RNAs—have also been identified. Hodgkin lymphoma (HL) is a B cell origin disease characterized by the presence of only 1% of tumor cells, known as Hodgkin and Reed-Stenberg (HRS) cells, which interact with the microenvironment to evade apoptosis. Several studies have reported specific miRNA signatures that can differentiate HL lymph nodes from reactive lymph nodes, identify histologic groups within classical HL, and distinguish HRS cells from germinal center B cells. Moreover, some signatures are associated with survival or response to chemotherapy. Most of the miRNAs in the signatures regulate genes related to apoptosis, cell cycle arrest, or signaling pathways. Here we review findings on miRNAs in HL, as well as on other non-coding RNAs.
Collapse
Affiliation(s)
- Anna Cordeiro
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, School of Medicine, University of Barcelona, C/Casanova 143, 08032 Barcelona, Spain.
| | - Mariano Monzó
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, School of Medicine, University of Barcelona, C/Casanova 143, 08032 Barcelona, Spain.
| | - Alfons Navarro
- Molecular Oncology and Embryology Laboratory, Human Anatomy and Embryology Unit, School of Medicine, University of Barcelona, C/Casanova 143, 08032 Barcelona, Spain.
| |
Collapse
|
37
|
Yuan Y, Kluiver J, Koerts J, de Jong D, Rutgers B, Abdul Razak FR, Terpstra M, Plaat BE, Nolte IM, Diepstra A, Visser L, Kok K, van den Berg A. miR-24-3p Is Overexpressed in Hodgkin Lymphoma and Protects Hodgkin and Reed-Sternberg Cells from Apoptosis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1343-1355. [PMID: 28432871 DOI: 10.1016/j.ajpath.2017.02.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 02/16/2017] [Indexed: 12/11/2022]
Abstract
miRNAs play important roles in biological processes, such as proliferation, metabolism, differentiation, and apoptosis, whereas altered expression levels contribute to diseases, such as cancers. We identified miRNAs with aberrant expression in Hodgkin lymphoma (HL) and investigated their role in pathogenesis. Small RNA sequencing revealed 84 significantly differentially expressed miRNAs in HL cell lines as compared to germinal center B cells. Three up-regulated miRNAs-miR-23a-3p, miR-24-3p, and miR-27a-3p-were derived from one primary miRNA transcript. Loss-of-function analyses for these miRNAs and their seed family members resulted in decreased growth on miR-24-3p inhibition in three HL cell lines and of miR-27a/b-3p inhibition in one HL cell line. Apoptosis analysis indicated that the effect of miR-24-3p on cell growth is at least in part caused by an increase of apoptotic cells. Argonaute 2 immunoprecipitation revealed 1142 genes consistently targeted by miRNAs in at least three of four HL cell lines. Furthermore, 52 of the 1142 genes were predicted targets of miR-24-3p. Functional annotation analysis revealed a function related to cell growth, cell death, and/or apoptosis for 15 of the 52 genes. Western blotting of the top five genes showed increased protein levels on miR-24-3p inhibition for CDKN1B/P27kip1 and MYC. In summary, we showed that miR-24-3p is up-regulated in HL and its inhibition impairs cell growth possibly via targeting CDKN1B/P27kip1 and MYC.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Institute of Clinical Pharmacology of the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jasper Koerts
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Debora de Jong
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bea Rutgers
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - F Reeny Abdul Razak
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martijn Terpstra
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Boudewijn E Plaat
- Department of Otorhinolaryngology/Head and Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Klaas Kok
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
38
|
Redox Regulating Enzymes and Connected MicroRNA Regulators Have Prognostic Value in Classical Hodgkin Lymphomas. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:2696071. [PMID: 28377796 PMCID: PMC5362709 DOI: 10.1155/2017/2696071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/09/2017] [Indexed: 12/28/2022]
Abstract
There are no previous studies assessing the microRNAs that regulate antioxidant enzymes in Hodgkin lymphomas (HLs). We determined the mRNA levels of redox regulating enzymes peroxiredoxins (PRDXs) I–III, manganese superoxide dismutase (MnSOD), nuclear factor erythroid-derived 2-like 2 (Nrf2), and Kelch-like ECH-associated protein 1 (Keap1) from a carefully collected set of 41 classical HL patients before receiving any treatments. The levels of redoxmiRs, miRNAs known to regulate the above-mentioned enzymes, were also assessed, along with CD3, CD20, and CD30 protein expression. RNAs were isolated from freshly frozen lymph node samples and the expression levels were analyzed by qPCR. mir23b correlated inversely with CD3 and CD20 expressions (p = 0.00076; r = −0.523 and p = 0.0012; r = −0.507) and miR144 with CD3, CD20, and CD30 (p = 0.030; r = −0.352, p = 0.041; r = −0.333 and p = 0.0032; r = −0.47, resp.). High MnSOD mRNA levels associated with poor HL-specific outcome in the patients with advanced disease (p = 0.045) and high miR-122 levels associated with worse HL-specific survival in the whole patient population (p = 0.015). When standardized according to the CD30 expression, high miR212 and miR510 predicted worse relapse-free survival (p = 0.049 and p = 0.0058, resp.). In conclusion, several redoxmiRs and redox regulating enzyme mRNA levels associate with aggressive disease outcome and may also produce prognostic information in classical HL.
Collapse
|
39
|
Prattichizzo F, Micolucci L, Cricca M, De Carolis S, Mensà E, Ceriello A, Procopio AD, Bonafè M, Olivieri F. Exosome-based immunomodulation during aging: A nano-perspective on inflamm-aging. Mech Ageing Dev 2017; 168:44-53. [PMID: 28259747 DOI: 10.1016/j.mad.2017.02.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 01/23/2017] [Accepted: 02/25/2017] [Indexed: 12/19/2022]
Abstract
Exosomes are nanovesicles formed by inward budding of endosomal membranes. They exert complex immunomodulatory effects on target cells, acting both as antigen-presenting vesicles and as shuttles for packets of information such as proteins, coding and non-coding RNA, and nuclear and mitochondrial DNA fragments. Albeit different, all such functions seem to be encompassed in the adaptive mechanism mediating the complex interactions of the organism with a variety of stressors, providing both for defense and for the evolution of symbiotic relationships with others organisms (gut microbiota, bacteria, and viruses). Intriguingly, the newly deciphered human virome and exosome biogenesis seem to share some physical-chemical characteristics and molecular mechanisms. Exosomes are involved in immune system recognition of self from non-self throughout life: they are therefore ideal candidate to modulate inflamm-aging, the chronic, systemic, age-related pro-inflammatory status, which influence the development/progression of the most common age-related diseases (ARDs). Not surprisingly, recent evidence has documented exosomal alteration during aging and in association with ARDs, even though data in this field are still limited. Here, we review current knowledge on exosome-based trafficking between immune cells and self/non-self cells (i.e. the virome), sketching a nano-perspective on inflamm-aging and on the mechanisms involved in health maintenance throughout life.
Collapse
Affiliation(s)
- Francesco Prattichizzo
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS) and Centre of Biomedical Investigation on Diabetes and Associated Metabolic Disorders Network (CIBERDEM), 08036 Barcelona, Spain; Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Luigina Micolucci
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Monica Cricca
- Department of Experimental, Diagnostic, and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Sabrina De Carolis
- Department of Experimental, Diagnostic, and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Emanuela Mensà
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Ceriello
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS) and Centre of Biomedical Investigation on Diabetes and Associated Metabolic Disorders Network (CIBERDEM), 08036 Barcelona, Spain; Department of Cardiovascular and Metabolic Diseases, IRCCS Multimedica, Sesto San Giovanni, Milan, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, National Institute INRCA-IRCCS, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic, and Specialty Medicine, DIMES, University of Bologna, Bologna, Italy
| | - Fabiola Olivieri
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS) and Centre of Biomedical Investigation on Diabetes and Associated Metabolic Disorders Network (CIBERDEM), 08036 Barcelona, Spain; Center of Clinical Pathology and Innovative Therapy, National Institute INRCA-IRCCS, Ancona, Italy.
| |
Collapse
|
40
|
Teteloshvili N, Smigielska-Czepiel K, Yuan Y, Seitz A, de Jong D, Rutgers B, Jellema P, van der Lei RJ, Slezak-Prochazka I, Brouwer E, Boots AMH, Kroesen BJ, van den Berg A, Kluiver J. Argonaute 2 immunoprecipitation revealed large tumor suppressor kinase 1 as a novel proapoptotic target of miR-21 in T cells. FEBS J 2017; 284:555-567. [PMID: 28075055 DOI: 10.1111/febs.14011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/09/2016] [Accepted: 01/09/2017] [Indexed: 01/13/2023]
Abstract
MicroRNA (miR)-21 is an important suppressor of T-cell apoptosis that is also overexpressed in many types of cancers. The exact mechanisms underlying the antiapoptotic effects of miR-21 are not well understood. In this study, we used the Jurkat T-cell line as a model to identify apoptosis-associated miR-21 target genes. We showed that expression of miR-21 rapidly increases upon αCD3/αCD28 activation of Jurkat cells. Inhibition of miR-21 reduced cell growth which could be explained by an increase in apoptosis. MicroRNA target gene identification by AGO2 RNA-immunoprecipitation followed by gene expression microarray (RIP-Chip) resulted in the identification of 72 predicted miR-21 target genes that were at least twofold enriched in the AGO2-IP fraction of miR-21 overexpressing cells. Of these, 71 were at least twofold more enriched in the AGO2-IP fraction of miR-21 overexpressing cells as compared to AGO2-IP fraction of control cells. The target gene for which the AGO2-IP enrichment was most prominently increased upon miR-21 overexpression was the proapoptotic protein LATS1. Luciferase reporter assays and western blot analysis confirmed targeting of LATS1 by miR-21. qRT-PCR analysis in primary T cells showed an inverse expression pattern between LATS1 transcript levels and miR-21 upon T-cell stimulation. Finally, LATS1 knockdown partially rescued the miR-21 inhibition-induced impaired cell growth. Collectively, these data identify LATS1 as a miR-21 target important for the antiapoptotic function of miR-21 in T cells and likely also in many types of cancer.
Collapse
Affiliation(s)
- Nato Teteloshvili
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands.,Groningen Research initiative on healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Katarzyna Smigielska-Czepiel
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands.,Groningen Research initiative on healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Ye Yuan
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands.,Institute of Clinical Pharmacology of the Second Affiliated Hospital, Harbin Medical University, Heilongjiang Province, China
| | - Annika Seitz
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Debora de Jong
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Bea Rutgers
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Pytrick Jellema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Roelof Jan van der Lei
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Izabella Slezak-Prochazka
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Elisabeth Brouwer
- Groningen Research initiative on healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, The Netherlands.,Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Annemieke M H Boots
- Groningen Research initiative on healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, The Netherlands.,Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Bart-Jan Kroesen
- Groningen Research initiative on healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, The Netherlands.,Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands.,Groningen Research initiative on healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
41
|
miR clusters target cellular functional complexes by defining their degree of regulatory freedom. Cancer Metastasis Rev 2017; 35:289-322. [PMID: 26970968 DOI: 10.1007/s10555-016-9617-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Using the two paralog miR-23∼27∼24 clusters as an example and combining experimental and clinical data in a systematical approach to microRNA (miR) function and dysregulation, a complex picture of their roles in cancer is drawn. Various findings appear to be contradictory to a larger extent and cannot be fully explained by the classical regulatory network models and feedback loops that are mainly considered by one-to-one regulatory interactions of the involved molecules. Here, we propose an extended model of the regulatory role of miRs that, at least, supplements the usually considered single/oligo-target regulation of certain miRs. The cellular availability of the participating miR members in this model reflects an upper hierarchy level of intracellular and extracellular environmental influences, such as neighboring cells, soluble factors, hypoxia, chemotherapeutic drugs, and irradiation, among others. The novel model is based on the understanding of cellular functional complexes, such as for apoptosis, migration, and proliferation. These complexes consist of many regulatory components that can be targeted by miR cluster members to a different extent but may affect the functional complex in different ways. We propose that the final miR-related effect is a result of the possible degree of regulatory freedom provided by the miR effects on the whole functional complex structure. This degree of regulatory freedom defines to which extent the cellular functional complex can react in response to regulatory triggers, also understood as sensitization (more regulatory response options) or de-sensitization (less regulatory response options) of the system rather than single molecules.
Collapse
|
42
|
Slezak-Prochazka I, Kluiver J, de Jong D, Smigielska-Czepiel K, Kortman G, Winkle M, Rutgers B, Koerts J, Visser L, Diepstra A, Kroesen BJ, van den Berg A. Inhibition of the miR-155 target NIAM phenocopies the growth promoting effect of miR-155 in B-cell lymphoma. Oncotarget 2016; 7:2391-400. [PMID: 26497687 PMCID: PMC4823043 DOI: 10.18632/oncotarget.6165] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 10/04/2015] [Indexed: 11/25/2022] Open
Abstract
Several studies have indicated an important role for miR-155 in the pathogenesis of B-cell lymphoma. Highly elevated levels of miR-155 were indeed observed in most B-cell lymphomas with the exception of Burkitt lymphoma (BL). However, the molecular mechanisms that underlie the oncogenic role of miR-155 in B-cell lymphoma are not well understood. To identify the miR-155 targets relevant for B-cell lymphoma, we performed RNA immunoprecipitation of Argonaute 2 in Hodgkin lymphoma (HL) cells upon miR-155 inhibition and in BL cells upon ectopic expression of miR-155. We identified 54 miR-155-specific target genes in BL cells and confirmed miR-155 targeting of DET1, NIAM, TRIM32, HOMEZ, PSIP1 and JARID2. Five of these targets are also regulated by endogenous miR-155 in HL cells. Both overexpression of miR-155 and inhibition of expression of the novel miR-155 target gene NIAM increased proliferation of BL cells. In primary B-cell lymphoma NIAM-positive cases have significant lower levels of miR-155 as compared to NIAM-negative cases, suggesting that NIAM is also regulated by miR-155 in primary B-cell lymphoma. Thus, our data indicate an oncogenic role for miR-155 in B-cell lymphoma which involves targeting the tumor suppressor NIAM.
Collapse
Affiliation(s)
- Izabella Slezak-Prochazka
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Debora de Jong
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Katarzyna Smigielska-Czepiel
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gertrud Kortman
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Melanie Winkle
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bea Rutgers
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jasper Koerts
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bart-Jan Kroesen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
43
|
van Eijndhoven MA, Zijlstra JM, Groenewegen NJ, Drees EE, van Niele S, Baglio SR, Koppers-Lalic D, van der Voorn H, Libregts SF, Wauben MH, de Menezes RX, van Weering JR, Nieuwland R, Visser L, van den Berg A, de Jong D, Pegtel DM. Plasma vesicle miRNAs for therapy response monitoring in Hodgkin lymphoma patients. JCI Insight 2016; 1:e89631. [PMID: 27882350 PMCID: PMC5111516 DOI: 10.1172/jci.insight.89631] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND. Cell-free circulating nucleic acids, including 22-nt microRNAs (miRNAs), represent noninvasive biomarkers for treatment response monitoring of cancer patients. While the majority of plasma miRNA is bound to proteins, a smaller, less well-characterized pool is associated with extracellular vesicles (EVs). Here, we addressed whether EV-associated miRNAs reflect metabolic disease in classical Hodgkin lymphoma (cHL) patients. METHODS. With standardized size-exclusion chromatography (SEC), we isolated EV-associated extracellular RNA (exRNA) fractions and protein-bound miRNA from plasma of cHL patients and healthy subjects. We performed a comprehensive small RNA sequencing analysis and validation by TaqMan qRT-PCR for candidate discovery. Fluorodeoxyglucose-PET (FDG-PET) status before treatment, directly after treatment, and during long-term follow-up was compared directly with EV miRNA levels. RESULTS. The plasma EV miRNA repertoire was more extensive compared with protein-bound miRNA that was heavily dominated by a few abundant miRNA species and was less informative of disease status. Purified EV fractions of untreated cHL patients and tumor EVs had enriched levels of miR24-3p, miR127-3p, miR21-5p, miR155-5p, and let7a-5p compared with EV fractions from healthy subjects and disease controls. Serial monitoring of EV miRNA levels in patients before treatment, directly after treatment, and during long-term follow-up revealed robust, stable decreases in miRNA levels matching a complete metabolic response, as observed with FDG-PET. Importantly, EV miRNA levels rose again in relapse patients. CONCLUSION. We conclude that cHL-related miRNA levels in circulating EVs reflect the presence of vital tumor tissue and are suitable for therapy response and relapse monitoring in individual cHL patients. FUNDING. Cancer Center Amsterdam Foundation (CCA-2013), Dutch Cancer Society (KWF-5510), Technology Foundation STW (STW Perspectief CANCER-ID). The extracellular RNA repertoire in circulating extracellular vesicles is useful indicator of therapy response and relapse in classical Hodgkin lymphoma patients.
Collapse
Affiliation(s)
| | - Josée M Zijlstra
- Department of Hematology, VU University Medical Center, Amsterdam, Netherlands
| | | | | | | | | | | | | | - Sten Fwm Libregts
- Department of Biochemistry and Cell Biology, Utrecht University, Utrecht, Netherlands
| | - Marca Hm Wauben
- Department of Biochemistry and Cell Biology, Utrecht University, Utrecht, Netherlands
| | - Renee X de Menezes
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, Netherlands
| | - Jan Rt van Weering
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, Netherlands
| | - Rienk Nieuwland
- Department of Clinical Chemistry, Academic Medical Center, Amsterdam, Netherlands
| | - Lydia Visser
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | | - D Michiel Pegtel
- Department of Pathology, Exosomes Research Group, VU University Medical Center, Amsterdam, Netherlands; ExBiome BV, Amsterdam, Netherlands
| |
Collapse
|
44
|
Wang H, Bei Y, Huang P, Zhou Q, Shi J, Sun Q, Zhong J, Li X, Kong X, Xiao J. Inhibition of miR-155 Protects Against LPS-induced Cardiac Dysfunction and Apoptosis in Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e374. [PMID: 27727247 PMCID: PMC5095684 DOI: 10.1038/mtna.2016.80] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 08/15/2016] [Indexed: 01/18/2023]
Abstract
Sepsis-induced myocardial dysfunction represents a major cause of death in intensive care units. Dysregulated microRNAs (miR)-155 has been implicated in multiple cardiovascular diseases and miR-155 can be induced by lipopolysaccharide (LPS). However, the role of miR-155 in LPS-induced cardiac dysfunction is unclear. Septic cardiac dysfunction in mice was induced by intraperitoneal injection of LPS (5 mg/kg) and miR-155 was found to be significantly increased in heart challenged with LPS. Pharmacological inhibition of miR-155 using antagomiR improved cardiac function and suppressed cardiac apoptosis induced by LPS in mice as determined by echocardiography, terminal deoxynucleotidyl transferase nick-end labeling (TUNEL) assay, and Western blot for Bax and Bcl-2, while overexpression of miR-155 using agomiR had inverse effects. Pea15a was identified as a target gene of miR-155, mediating its effects in controlling apoptosis of cardiomyocytes as evidenced by luciferase reporter assays, quantitative real time-polymerase chain reaction, Western blot, and TUNEL staining. Noteworthy, miR-155 was also found to be upregulated in the plasma of patients with septic cardiac dysfunction compared to sepsis patients without cardiac dysfunction, indicating a potential clinical relevance of miR-155. The receiver-operator characteristic curve indicated that plasma miR-155 might be a biomarker for sepsis patients developing cardiac dysfunction. Therefore, inhibition of miR-155 represents a novel therapy for septic myocardial dysfunction.
Collapse
Affiliation(s)
- Hui Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yihua Bei
- Cardiac Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
- Innovative Drug Research Center of Shanghai University, Shanghai, China
| | - Peipei Huang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiulian Zhou
- Cardiac Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
- Innovative Drug Research Center of Shanghai University, Shanghai, China
| | - Jing Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Sun
- Cardiac Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
- Innovative Drug Research Center of Shanghai University, Shanghai, China
| | - Jiuchang Zhong
- State Key Laboratory of Medical Genomics & Shanghai Institute of Hypertension, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Experimental Center of Life Sciences, School of Life Science, Shanghai University, Shanghai, China
- Innovative Drug Research Center of Shanghai University, Shanghai, China
| |
Collapse
|
45
|
Kadri F, LaPlante A, De Luca M, Doyle L, Velasco-Gonzalez C, Patterson JR, Molina PE, Nelson S, Zea A, Parsons CH, Peruzzi F. Defining Plasma MicroRNAs Associated With Cognitive Impairment In HIV-Infected Patients. J Cell Physiol 2016; 231:829-36. [PMID: 26284581 PMCID: PMC4758906 DOI: 10.1002/jcp.25131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 08/11/2015] [Indexed: 01/05/2023]
Abstract
Human Immunodeficiency Virus (HIV)-infected individuals are at increased risk for developing neurocognitive disorders and depression. These conditions collectively affect more than 50% of people living with HIV/AIDS and adversely impact adherence to HIV therapy. Thus, identification of early markers of neurocognitive impairment could lead to interventions that improve psychosocial functioning and slow or reverse disease progression through improved treatment adherence. Evidence has accumulated for the role and function of microRNAs in normal and pathological conditions. We have optimized a protocol to profile microRNAs in body fluids. Using this methodology, we have profiled plasma microRNA expression for 30 age-matched, HIV-infected (HIV(+) ) patients and identified highly sensitive and specific microRNA signatures distinguishing HIV(+) patients with cognitive impairment from those without cognitive impairment. These results justify follow-on studies to determine whether plasma microRNA signatures can be used as a screening or prognostic tool for HIV(+) patients with neurocognitive impairment. J. Cell. Physiol. 231: 829-836, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ferdous Kadri
- LSU Health Sciences Center, Medical School, Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
- Department of Microbiology, Immunology and Parasitology, New Orleans, LA 70112, USA
| | - Andrea LaPlante
- LSU Health Sciences Center, Medical School, Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | - Mariacristina De Luca
- LSU Health Sciences Center, Medical School, Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | - Lisa Doyle
- LSU Health Sciences Center, Medical School, Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | - Cruz Velasco-Gonzalez
- LSU Health Sciences Center, Medical School, Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | - Jonathan R. Patterson
- LSU Health Sciences Center, Medical School, Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | | | - Steve Nelson
- LSU Health Sciences Center, Medical School, Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | - Arnold Zea
- LSU Health Sciences Center, Medical School, Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | - Christopher H. Parsons
- LSU Health Sciences Center, Medical School, Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
| | - Francesca Peruzzi
- LSU Health Sciences Center, Medical School, Stanley S. Scott Cancer Center, New Orleans, LA 70112, USA
- Correspondence: Francesca Peruzzi, LSU Health Sciences Center, 1700 Tulane Avenue, New Orleans, LA 70112, , Tel: (504) 210-2978, Fax: (504) 210-2970
| |
Collapse
|
46
|
Huang JH, Qi YP, Wen SX, Guo P, Chen XM, Chen LS. Illumina microRNA profiles reveal the involvement of miR397a in Citrus adaptation to long-term boron toxicity via modulating secondary cell-wall biosynthesis. Sci Rep 2016; 6:22900. [PMID: 26962011 PMCID: PMC4790630 DOI: 10.1038/srep22900] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/24/2016] [Indexed: 12/25/2022] Open
Abstract
The mechanisms underlying tolerance to B-toxicity in plants are still controversial. Our previous studies indicated that B-toxicity is mainly limited to leaves in Citrus and that alternations of cell-wall structure in vascular bundles are involved in tolerance to B-toxicity. Here, miRNAs and their expression patterns were first identified in B-treated Citrus sinensis (tolerant) and C. grandis (intolerant) leaves via high-throughput sequencing. Candidate miRNAs were then verified with molecular and anatomical approaches. The results showed that 51 miRNAs in C. grandis and 20 miRNAs in C. sinensis were differentially expressed after B-toxic treatment. MiR395a and miR397a were the most significantly up-regulated miRNAs in B-toxic C. grandis leaves, but both were down-regulated in B-toxic C. sinensis leaves. Four auxin response factor genes and two laccase (LAC) genes were confirmed through 5′-RACE to be real targets of miR160a and miR397a, respectively. Up-regulation of LAC4 resulted in secondary deposition of cell-wall polysaccharides in vessel elements of C. sinensis, whereas down-regulation of both LAC17 and LAC4, led to poorly developed vessel elements in C. grandis. Our findings demonstrated that miR397a plays a pivotal role in woody Citrus tolerance to B-toxicity by targeting LAC17 and LAC4, both of which are responsible for secondary cell-wall synthesis.
Collapse
Affiliation(s)
- Jing-Hao Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou 350001, China
| | - Shou-Xing Wen
- Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Peng Guo
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Resource and Environmental Science, Fujian Agriculture and Forestry University,Fuzhou 350002, China
| | - Xiao-Min Chen
- Pomological Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Resource and Environmental Science, Fujian Agriculture and Forestry University,Fuzhou 350002, China.,Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
47
|
Micro-RNA (miRNA) profile in Hodgkin lymphoma: association between clinical and pathological variables. Med Oncol 2016; 33:34. [PMID: 26951445 DOI: 10.1007/s12032-016-0749-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 02/23/2016] [Indexed: 12/13/2022]
Abstract
miRNAs are small RNAs and control the expression of protein-encoding genes. The aim of this study was to determine the association between miRNA profile and clinical variables including age, stage, B symptom, histopathologic subtype, response to treatment, disease-free survival (DFS) and overall survival (OS) in classical Hodgkin lymphoma (cHL). A total of 377 miRNAs were studied by qPCR in 32 cases with cHL, and results were compared with 60 samples taken from cases with reactive lymphadenopathy. Biogazelle qbasePLUS 2.0 software was used to analyze the results. miR-582-3p, miR-525-3p, miR-448, miR-512-3p, miR-642a-5p, miR-876-5p, miR-532-3p, miR-654-5p, miR-128, miR-145-5p, miR-15b-5p, miR-328 and miR-660-5p were found to be decreased in cHL compared with controls. In contrast, miR-34a-5p (2.626-fold), miR-146a-5p (4.32-fold), miR-93-5p (2.347-fold), miR-20a-5p (4.930-fold), miR-339-3p (4.948-fold), miR-324-3p (4.98-fold), miR-372 (7.038-fold), miR-127-3p (8.234-fold), miR-155-5p (4.947-fold), miR-320a (17.502-fold) and miR-370 (21.479-fold) (p < 0.05) were found to be increased in cHL. There was no difference in miRNA profile according to the age, sex, stage, response to treatment, DFS and OS. However, miR-889 was found to be increased in patients with B symptom and miR-127-3p was found to be increased in nodular sclerosing subtype. Some miRNAs increase and some decrease in cHL. However, there was no clinical association between clinical variables and with the majority of the miRNA profile studied in this study. miR-889 and miR-127-3p were related to B symptom and nodular sclerosis subtype, respectively. We need more studies evaluating miRNA profile and clinical outcome in Hodgkin Lymphoma.
Collapse
|
48
|
Kang M, Xiao J, Wang J, Zhou P, Wei T, Zhao T, Wang R. MiR-24 enhances radiosensitivity in nasopharyngeal carcinoma by targeting SP1. Cancer Med 2016; 5:1163-73. [PMID: 26922862 PMCID: PMC4924375 DOI: 10.1002/cam4.660] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/10/2016] [Accepted: 01/13/2016] [Indexed: 12/19/2022] Open
Abstract
Radioresistance remains a major problem in the treatment of patients suffering from nasopharyngeal carcinoma (NPC). A better understanding of the mechanisms of radioresistance may generate new strategies to improve NPC patients' responses to therapy. This study was designed to investigate the effect of microRNA on the radiosensitivity of NPC cells. A microRNA microarray indicated that miR‐24 was downregulated in NPC cell lines and tissues. Furthermore, cell proliferation was suppressed and radiosensitivity increased when miR‐24 was ectopically expressed in NPC cells. Specificity protein 1 (SP1) was additionally verified as a direct functional target of miR‐24, which was found to be involved in cell viability as well as the radiosensitivity of NPC cells. In conclusion, the results of this study suggest that the miR‐24/SP1 pathway contributed to the reduction in radioresistance in human NPC and that it may thus represent a therapeutic target.
Collapse
Affiliation(s)
- Min Kang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P.R. China
| | - Jingjian Xiao
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P.R. China
| | - Jun Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P.R. China
| | - Pingting Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P.R. China
| | - Tingting Wei
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P.R. China
| | - Tingting Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P.R. China
| | - Rensheng Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, P.R. China
| |
Collapse
|
49
|
Chen X, Yan CC, Zhang X, You ZH, Deng L, Liu Y, Zhang Y, Dai Q. WBSMDA: Within and Between Score for MiRNA-Disease Association prediction. Sci Rep 2016; 6:21106. [PMID: 26880032 PMCID: PMC4754743 DOI: 10.1038/srep21106] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/18/2016] [Indexed: 12/18/2022] Open
Abstract
Increasing evidences have indicated that microRNAs (miRNAs) are functionally associated with the development and progression of various complex human diseases. However, the roles of miRNAs in multiple biological processes or various diseases and their underlying molecular mechanisms still have not been fully understood yet. Predicting potential miRNA-disease associations by integrating various heterogeneous biological datasets is of great significance to the biomedical research. Computational methods could obtain potential miRNA-disease associations in a short time, which significantly reduce the experimental time and cost. Considering the limitations in previous computational methods, we developed the model of Within and Between Score for MiRNA-Disease Association prediction (WBSMDA) to predict potential miRNAs associated with various complex diseases. WBSMDA could be applied to the diseases without any known related miRNAs. The AUC of 0.8031 based on Leave-one-out cross validation has demonstrated its reliable performance. WBSMDA was further applied to Colon Neoplasms, Prostate Neoplasms, and Lymphoma for the identification of their potential related miRNAs. As a result, 90%, 84%, and 80% of predicted miRNA-disease pairs in the top 50 prediction list for these three diseases have been confirmed by recent experimental literatures, respectively. It is anticipated that WBSMDA would be a useful resource for potential miRNA-disease association identification.
Collapse
Affiliation(s)
- Xing Chen
- National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing, 100190, China
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenggang Clarence Yan
- Institute of Information and Control, Hangzhou Dianzi University, Hangzhou, 310018, China
- Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Xu Zhang
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, 264209, China
| | - Zhu-Hong You
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Lixi Deng
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Liu
- School of Economics and Management, Beihang University, Beijing, 100191, China
| | - Yongdong Zhang
- Key Lab of Intelligent Information Processing of Chinese Academy of Sciences, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qionghai Dai
- Department of Automation, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
50
|
King BC, Esguerra JLS, Golec E, Eliasson L, Kemper C, Blom AM. CD46 Activation Regulates miR-150-Mediated Control of GLUT1 Expression and Cytokine Secretion in Human CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:1636-45. [PMID: 26746193 DOI: 10.4049/jimmunol.1500516] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 12/08/2015] [Indexed: 01/05/2023]
Abstract
CD46 is a cell surface complement inhibitor widely expressed in human tissues, in contrast to mice, where expression is limited to the testes. In humans, it has been identified as an important T cell costimulatory receptor, and patients deficient in CD46 or its endogenous ligands are unable to mount effective Th1 T cell responses. Stimulation of human CD4(+) T cells with CD3 and CD46 also leads to the differentiation of a "switched" Th1 population, which shuts down IFN-γ secretion and upregulates IL-10 and is thought to be important for negative feedback regulation of the Th1 response. In the present study, we show that CD46 costimulation leads to amplified microRNA (miR) expression changes in human CD4(+) T cells, with associated increases in activation more potent than those mediated by the "classic" costimulator CD28. Blockade of cell surface CD46 inhibited CD28-mediated costimulation, identifying autocrine CD46 signaling as downstream of CD28. We also identify a downregulation of miR-150 in CD46-costimulated T cells and identify the glucose transporter 1 encoding transcript SLC2A1 as a target of miR-150 regulation, connecting miR-150 with modulation of glucose uptake. We also investigated microRNA expression profiles of CD46-induced switched IL-10-secreting Th1 T cells and found increased expression of miR-150, compared with IFN-γ-secreting Th1 cells. Knockdown of miR-150 led to a reduction in IL-10 but not IFN-γ. CD46 therefore controls both Th1 activation and regulation via a miR-150-dependent mechanism.
Collapse
Affiliation(s)
- Ben C King
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 205-02 Malmö, Sweden
| | - Jonathan L S Esguerra
- Islet Cell Exocytosis Unit, Lund University Diabetes Center, Department of Clinical Sciences Malmö, Lund University, 205-02 Malmö, Sweden; and
| | - Ewelina Golec
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 205-02 Malmö, Sweden
| | - Lena Eliasson
- Islet Cell Exocytosis Unit, Lund University Diabetes Center, Department of Clinical Sciences Malmö, Lund University, 205-02 Malmö, Sweden; and
| | - Claudia Kemper
- Division of Transplant Immunology and Mucosal Biology, Medical Research Council Centre for Transplantation, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, 205-02 Malmö, Sweden;
| |
Collapse
|