1
|
Bhoopathi P, Kumar A, Pradhan AK, Maji S, Mannangatti P, Windle JJ, Subler MA, Zhang D, Vudatha V, Trevino JG, Madan E, Atfi A, Sarkar D, Gogna R, Das SK, Emdad L, Fisher PB. Cytoplasmic-delivery of polyinosine-polycytidylic acid inhibits pancreatic cancer progression increasing survival by activating Stat1-CCL2-mediated immunity. J Immunother Cancer 2023; 11:e007624. [PMID: 37935566 PMCID: PMC10649894 DOI: 10.1136/jitc-2023-007624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer without effective therapies and with poor prognosis, causing 7% of all cancer-related fatalities in the USA. Considering the lack of effective therapies for this aggressive cancer, there is an urgent need to define newer and more effective therapeutic strategies. Polyinosine-polycytidylic acid (pIC) is a synthetic double-stranded RNA (dsRNA) which directly activates dendritic cells and natural killer cells inhibiting tumor growth. When pIC is delivered into the cytoplasm using polyethyleneimine (PEI), pIC-PEI, programmed-cell death is induced in PDAC. Transfection of [pIC]PEI into PDAC cells inhibits growth, promotes toxic autophagy and also induces apoptosis in vitro and in vivo in animal models. METHODS The KPC transgenic mouse model that recapitulates PDAC development in patients was used to interrogate the role of an intact immune system in vivo in PDAC in response to [pIC]PEI. Antitumor efficacy and survival were monitored endpoints. Comprehensive analysis of the tumor microenvironment (TME) and immune cells, cytokines and chemokines in the spleen, and macrophage polarization were analyzed. RESULTS Cytosolic delivery of [pIC]PEI induces apoptosis and provokes strong antitumor immunity in vivo in immune competent mice with PDAC. The mechanism underlying the immune stimulatory properties of [pIC]PEI involves Stat1 activation resulting in CCL2 and MMP13 stimulation thereby provoking macrophage polarization. [pIC]PEI induces apoptosis via the AKT-XIAP pathway, as well as macrophage differentiation and T-cell activation via the IFNγ-Stat1-CCL2 signaling pathways in PDAC. In transgenic tumor mouse models, [pIC]PEI promotes robust and profound antitumor activity implying that stimulating the immune system contributes to biological activity. The [pIC]PEI anti-PDAC effects are enhanced when used in combination with a standard of care (SOC) treatment, that is, gemcitabine. CONCLUSIONS In summary, [pIC]PEI treatment is non-toxic toward normal pancreatic cells while displaying strong cytotoxic and potent immune activating activities in PDAC, making it an attractive therapeutic when used alone or in conjunction with SOC therapeutic agents, potentially providing a safe and effective treatment protocol with translational potential for the effective therapy of PDAC.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Amit Kumar
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Anjan K Pradhan
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Santanu Maji
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Padmanabhan Mannangatti
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Jolene J Windle
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Mark A Subler
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Dongyu Zhang
- Surgery, Division of Surgical Oncology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Vignesh Vudatha
- Surgery, Division of Surgical Oncology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Jose G Trevino
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- Surgery, Division of Surgical Oncology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Esha Madan
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- Surgery, Division of Surgical Oncology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Azeddine Atfi
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- Biochemistry and Molecular Biology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Rajan Gogna
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
2
|
Gaida MM. [The ambiguous role of the inflammatory micromilieu in solid tumors]. DER PATHOLOGE 2021; 41:118-123. [PMID: 33104890 DOI: 10.1007/s00292-020-00837-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Besides host defense against infections, the main function of the immune system is to eliminate tumor cells. Therefore, nearly, all solid tumors have a heterogeneous fibro-inflammatory microenvironment, which consists of myofibroblastic cells, extracellular matrix components, and infiltrates from various types of immune cell. In particular, pancreatic ductal adenocarcinoma is a prototype of a tumor with a pronounced inflammatory microenvironment, in which the majority of the tumor mass consists of nonneoplastic stromal and immune cells. Our own data and data from the literature indicate a protective role of tumor-infiltrating T cells for the host. On the other hand, we were able to show that a defined T cell subpopulation paradoxically promotes the progression of the tumor. Our investigations now focus on these cells, known as "Th17," in the tumor microenvironment. OBJECTIVES To elucidate the mechanisms of the infiltrated immune cells and their mediators in the tumor microenvironment. MATERIALS AND METHODS Human pancreatic cancer tissue was used for (immune) histological staining and morphometric analysis and the results were correlated with clinical parameters and with diffusion-weighted magnetic resonance imaging images. The molecular mechanisms were analyzed in cell culture approaches using human tumor cells and human immune cells. With molecular biological methods and functional assays cell growth, invasion and colony formation were assessed. The in vivo correlation of the results and functional interventions were tested in murine and avian (xenograft) models. RESULTS AND CONCLUSION Tumor-infiltrating immune cells of type Th17 and their mediators promoted the progression of the tumor depending on density, activation status, and cytokine profile. On molecular level, we identified a Th17-mediated increase of tumor cell migration and invasion, an increased neoangiogenesis, as well as a reorganization of the tumor stroma and microarchitecture. The data show that the progression of pancreatic cancer, depends on the status of activation and the cytokine profile of the infiltrated T cells.
Collapse
Affiliation(s)
- Matthias M Gaida
- Institut für Pathologie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Langenbeckstr. 1, 55131, Mainz, Deutschland.
| |
Collapse
|
3
|
The Microarchitecture of Pancreatic Cancer as Measured by Diffusion-Weighted Magnetic Resonance Imaging Is Altered by T Cells with a Tumor Promoting Th17 Phenotype. Int J Mol Sci 2020; 21:ijms21010346. [PMID: 31948053 PMCID: PMC6982276 DOI: 10.3390/ijms21010346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/17/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DW-MRI) is a diagnostic tool that is increasingly used for the detection and characterization of focal masses in the abdomen, among these, pancreatic ductal adenocarcinoma (PDAC). DW-MRI reflects the microarchitecture of the tissue, and changes in diffusion, which are reflected by changes in the apparent diffusion coefficient (ADC), are mainly attributed to variations in cellular density, glandular formation, and fibrosis. When analyzing the T cell infiltrates, we found an association of a tumor-promoting subpopulation, characterized by the expression of interleukin (IL) 21 and IL26, with high ADC values. Moreover, the presence of IL21+ and IL26+ positive T cells was associated with poor prognosis. Pancreatic cancers—but not healthy pancreatic tissue—expressed receptors for IL21 and IL26, a finding that could be confirmed in pancreatic cell lines. The functionality of these receptors was demonstrated in pancreatic tumor cell lines, which showed phosphorylation of ERK1/2 and STAT3 pathways in response to the respective recombinant interleukins. Moreover, in vitro data showed an increased colony formation of tumor cells. In summary, our data showed an association of IL21+ and IL26+ immune cell infiltration, increased ADC, and aggressive tumor disease, most likely due to the activation of the key cancer signaling pathways ERK1/2 and STAT3 and formation of tumor colonies.
Collapse
|
4
|
Tan C, Li Y, Huang X, Wei M, Huang Y, Tang Z, Huang H, Zhou W, Wang Y, Hu J. Extensive protein S-nitrosylation associated with human pancreatic ductal adenocarcinoma pathogenesis. Cell Death Dis 2019; 10:914. [PMID: 31801946 PMCID: PMC6892852 DOI: 10.1038/s41419-019-2144-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/18/2023]
Abstract
NO (nitric oxide)-mediated protein S-nitrosylation has been established as one major signaling mechanism underlying cancer initiation and development, but its roles in PDAC (pancreatic ductal adenocarcinoma) pathogenesis still remain largely unexplored. In this study, we identified 585 unique S-nitrosylation sites among 434 proteins in PDAC patients and PANC-1 cell line by a site-specific proteomics. Larger number of S-nitrosylated proteins were identified in PDAC tissues and PANC-1 cells than adjacent non-cancerous tissues. These S-nitrosylated proteins are significantly enriched in a multitude of biological processes associated with tumorigenesis, including carbohydrate metabolism, cytoskeleton regulation, cell cycle, focal adhesion, adherent junctions, and cell migration. Components of the pancreatic cancer pathway were extensively S-nitrosylated, such as v-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1) and Signal transducer and activator of transcription 3 (STAT3). Moreover, NOS (NO synthase) inhibitor significantly repressed STAT3 S-nitrosylation in PANC-1 cells, which caused significant increase of STAT3 phosphorylation and PANC-1 cell viability, suggesting important roles of protein S-nitrosylation in PDAC development. These results revealed extensive protein S-nitrosylation associated with PDAC pathogenesis, which provided a basis for protein modification-based cancer diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Chaochao Tan
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, 410005, China
- Clinical Laboratory of Translational Medicine Research Institute, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, 410005, China
| | - Yunfeng Li
- Department of Hepatobiliary Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Meijin Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ying Huang
- Department of Emergency, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, China
| | - Zhouqin Tang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - He Huang
- Department of Histology and Embryology, Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Department of Histology and Embryology, School of Pre-clinical Medicine, Xinjiang Medical University, Urumqi, 830011, China
| | - Wen Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiliang Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Abstract
OBJECTIVES Although there is evidence that aspirin might be able to prevent pancreatic cancer, the findings have been inconsistent. In this paper, we conducted a meta-analysis of observational studies to examine the relationship between aspirin use and the risk of pancreatic cancer. METHODS We identified potential studies by searching the MEDLINE, EMBASE, and Wangfang (Chinese database) database (from 1967 to March 2017) and by reviewing the bibliography of relevant publications. Random effects model was used to calculate odds ratio (OR) and 95% confidence interval. The Cochran Q statistic (significance level at P < .1) was used to assess heterogeneity in this study. The author adopted weighted regression method of Egger to assessed publication bias. RESULTS A total of 12 studies involving 4748 pancreatic cancer cases, were included in the meta-analysis. The study reflected that there was no signification association between aspirin use and mortality risk of pancreatic cancer. Aspirin use might reduce the incidence of pancreatic cancer. Specifically, there was a high signification association between frequent aspirin use and reduced pancreatic cancer incidence, without heterogeneity. In addition, there was a high signification association between duration of aspirin use more than 5 years and reduced pancreatic cancer incidence, without obvious heterogeneity among the original studies. CONCLUSIONS In summary, this meta-analysis suggested that the aspirin use might be negatively related to the incidence risk of pancreatic cancer. Specifically, the frequency and duration of aspirin use might play an important role in decreasing the incidence of pancreatic cancer.
Collapse
Affiliation(s)
- Jinjin Sun
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin Medical University
| | - Yanxun Li
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin Medical University
| | - Lili Liu
- Pediatric Surgery, Tianjin Children's Hospital, Tianjin, China
| | - Zhijia Jiang
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin Medical University
| | - Geng Liu
- Department of Hepatopancreatobiliary Surgery, The Second Hospital of Tianjin Medical University, Tianjin Medical University
| |
Collapse
|
6
|
Mohammed A, Janakiram NB, Suen C, Stratton N, Lightfoot S, Singh A, Pathuri G, Ritchie R, Madka V, Rao CV. Targeting cholecystokinin-2 receptor for pancreatic cancer chemoprevention. Mol Carcinog 2019; 58:1908-1918. [PMID: 31313401 DOI: 10.1002/mc.23084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 02/05/2023]
Abstract
Gastrin signaling mediated through cholecystokinin-2 receptor (CCK2R) and its downstream molecules is altered in pancreatic cancer. CCK2R antagonists, YF476 (netazepide) and JNJ-26070109, were tested systematically for their effect on pancreatic intraepithelial neoplasia (PanIN) progression to pancreatic ductal adenocarcinoma (PDAC) in KrasG12D mice. After dose selection using wild-type mice, six-week-old p48Cre/+ -LSL-KrasG12D (22-24 per group) genetically engineered mice (GEM) were fed AIN-76A diets containing 0, 250, or 500 ppm JNJ-26070109 or YF-476 for 38 weeks. At termination, pancreata were collected, weighed, and evaluated for PanINs and PDAC. Results demonstrated that control-diet-fed mice showed 69% (males) and 33% (females) incidence of PDAC. Administration of low and high dose JNJ-26070109 inhibited the incidence of PDAC by 88% and 71% (P < .004) in male mice and by 100% and 24% (P > .05) in female mice, respectively. Low and high dose YF476 inhibited the incidence of PDAC by 74% (P < .02) and 69% (P < .02) in male mice and by 45% and 33% (P > .05) in female mice, respectively. Further, transcriptome analysis showed downregulation of Cldn1, Sstr1, Apod, Gkn1, Siglech, Cyp2c44, Bnc1, Fmo2, 623169, Kcne4, Slc27a6, Cma1, Rho GTPase activating protein 18, and Gpr85 genes in JNJ-26070109-treated mice compared with untreated mice. YF476-treated mouse pancreas showed downregulation of Riks, Zpbp, Ntf3, Lrrn4, Aass, Skint3, Kcnb1, Dgkb, Ddx60, and Aspn gene expressions compared with untreated mouse pancreas. Overall, JNJ-26070109 showed better chemopreventive efficacy than YF476. However, caution is recommended when selecting doses, as the agents appeared to exhibit gender-specific effects.
Collapse
Affiliation(s)
- Altaf Mohammed
- Division of Cancer Prevention, Chemoprevention Agent Development Research Group, National Cancer Institute, Bethesda, Maryland
| | - Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, VA Medical Center, Oklahoma City, Oklahoma
| | - Chen Suen
- Division of Cancer Prevention, Chemoprevention Agent Development Research Group, National Cancer Institute, Bethesda, Maryland
| | - Nicole Stratton
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, VA Medical Center, Oklahoma City, Oklahoma
| | - Stanley Lightfoot
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, VA Medical Center, Oklahoma City, Oklahoma
| | - Anil Singh
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, VA Medical Center, Oklahoma City, Oklahoma
| | - Gopal Pathuri
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, VA Medical Center, Oklahoma City, Oklahoma
| | - Rebekah Ritchie
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, VA Medical Center, Oklahoma City, Oklahoma
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, VA Medical Center, Oklahoma City, Oklahoma
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Hem-Onc Section, Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, VA Medical Center, Oklahoma City, Oklahoma
| |
Collapse
|
7
|
Hua H, Zhang H, Kong Q, Wang J, Jiang Y. Complex roles of the old drug aspirin in cancer chemoprevention and therapy. Med Res Rev 2018; 39:114-145. [PMID: 29855050 DOI: 10.1002/med.21514] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/04/2018] [Accepted: 05/12/2018] [Indexed: 02/05/2023]
Abstract
The nonsteroidal anti-inflammatory agent aspirin is widely used for preventing and treating cardiovascular and cerebrovascular diseases. In addition, epidemiologic evidences reveal that aspirin may prevent a variety of human cancers, while data on the association between aspirin and some kinds of cancer are conflicting. Preclinical studies and clinical trials also reveal the therapeutic effect of aspirin on cancer. Although cyclooxygenase is a well-known target of aspirin, recent studies uncover other targets of aspirin and its metabolites, such as AMP-activated protein kinase, cyclin-dependent kinase, heparanase, and histone. Accumulating evidence demonstrate that aspirin may act in different cell types, such as epithelial cell, tumor cell, endothelial cell, platelet, and immune cell. Therefore, aspirin acts on diverse hallmarks of cancer, such as sustained tumor growth, metastasis, angiogenesis, inflammation, and immune evasion. In this review, we focus on recent progress in the use of aspirin for cancer chemoprevention and therapy, and integratively analyze the mechanisms underlying the anticancer effects of aspirin and its metabolites. We also discuss mechanisms of aspirin resistance and describe some derivatives of aspirin, which aim to overcome the adverse effects of aspirin.
Collapse
Affiliation(s)
- Hui Hua
- Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Hongying Zhang
- Collaborative Innovation Center of Biotherapy, Chengdu, China.,Laboratory of Oncogene, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qingbin Kong
- Collaborative Innovation Center of Biotherapy, Chengdu, China.,Laboratory of Oncogene, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Wang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yangfu Jiang
- Collaborative Innovation Center of Biotherapy, Chengdu, China.,Laboratory of Oncogene, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Li Q, Yang G, Feng M, Zheng S, Cao Z, Qiu J, You L, Zheng L, Hu Y, Zhang T, Zhao Y. NF-κB in pancreatic cancer: Its key role in chemoresistance. Cancer Lett 2018; 421:127-134. [PMID: 29432846 DOI: 10.1016/j.canlet.2018.02.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/18/2018] [Accepted: 02/06/2018] [Indexed: 12/15/2022]
Abstract
Pancreatic cancer is considered a lethal disease with a high mortality and an extremely low five-year survival rate. Chemotherapy plays a pivotal role in pancreatic cancer treatment both in an adjuvant setting after complete resection and in the case of unresectable metastatic disease. However, none of the available combination chemotherapy regimens has resulted in satisfactory survival outcomes. Recent studies have revealed that both constitutive and induced activation of nuclear factor kappa B (NF-κB) in pancreatic cancer cells are closely associated with cell proliferation, invasion, anti-apoptosis, inflammation, angiogenesis and chemotherapeutic resistance. Therefore, NF-κB inhibitors in combination with cytotoxic compounds have been reported as novel agents that improve chemotherapy sensitivity in pancreatic cancer. In this review, we outline recent developments in the understanding of the role of the NF-κB signaling pathway and its associated genes in the progression of pancreatic cancer and highlight some potentially effective strategies for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Quanxiao Li
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, China.
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Mengyu Feng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Suli Zheng
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jiangdong Qiu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Ya Hu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
9
|
Mohammed A, Janakiram NB, Madka V, Pathuri G, Li Q, Ritchie R, Biddick L, Kutche H, Zhang Y, Singh A, Gali H, Lightfoot S, Steele VE, Suen CS, Rao CV. Lack of chemopreventive effects of P2X7R inhibitors against pancreatic cancer. Oncotarget 2017; 8:97822-97834. [PMID: 29228654 PMCID: PMC5716694 DOI: 10.18632/oncotarget.22085] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/11/2017] [Indexed: 01/04/2023] Open
Abstract
Pancreatic cancer (PC) is an almost uniformly lethal disease with inflammation playing an important role in its progression. Sustained stimulation of purinergic receptor P2X7 drives induction of NLRP inflammasome activation. To understand the role of P2X7 receptor and inflammasome, we performed transcriptomic analysis of p48Cre/+-LSL-KrasG12D/+ mice pancreatic tumors by next generation sequencing. Results showed that P2X7R's key inflammasome components, IL-1β and caspase-1 are highly expressed (p < 0.05) in pancreatic tumors. Hence, to target P2X7R, we tested effects of two P2X7R antagonists, A438079 and AZ10606120, on pancreatic intraepithelial neoplasms (PanINs) and their progression to PC in p48Cre/+-LSL-KrasG12D/+ mice. Following dose optimization studies, for chemoprevention efficacy, six-week-old p48Cre/+-LSL-KrasG12D/+ mice (24–36/group) were fed modified AIN-76A diets containing 0, 50 or 100 ppm A438079 and AZ10606120 for 38 weeks. Pancreata were collected, weighed, and evaluated for PanINs and PDAC. Control diet-fed male mice showed 50% PDAC incidence. Dietary A438079 and AZ10606120 showed 60% PDAC incidence. A marginal increase of PanIN 3 (carcinoma in-situ) was observed in drug-treated mice. Importantly, the carcinoma spread in untreated mice was 24% compared to 43–53% in treatment groups. Reduced survival rates were observed in mice exposed to P2X7R inhibitors. Both drugs showed a decrease in caspase-3, caspase-1, p21 and Cdc25c. Dietary A438079 showed modest inhibition of P2X7R, NLRP3, and IL-33, whereas AZ10606120 had no effects. In summary, targeting the P2X7R pathway by A438079 and AZ10606120 failed to show chemopreventive effects against PC and slightly enhanced PanIN progression to PDAC. Hence, caution is needed while treating high-risk individuals with P2X7R inhibitors.
Collapse
Affiliation(s)
- Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Current address: Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,VA Medical Center, Oklahoma City, OK, USA
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gopal Pathuri
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Qian Li
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rebekah Ritchie
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Laura Biddick
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hannah Kutche
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yuting Zhang
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anil Singh
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hariprasad Gali
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stan Lightfoot
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vernon E Steele
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Chen S Suen
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, USA
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,VA Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
10
|
Gao M, Guo KM, Wei YM, Ma MM, Cai JR, Xia TT, Ye QJ. Aspirin inhibits the proliferation of human uterine leiomyoma cells by downregulation of K‑Ras‑p110α interaction. Oncol Rep 2017; 38:2507-2517. [PMID: 28849118 DOI: 10.3892/or.2017.5915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/14/2017] [Indexed: 11/06/2022] Open
Abstract
Aspirin has been confirmed as an effective antitumor drug in various cancers. However, the relationship between aspirin and uterine leiomyoma is still underexplored. Here, we explored the effects of aspirin on human uterine leiomyoma cells and provide insights into the underlying mechanisms. Cell Counting Kit-8 (CCK-8) and flow cytometry analysis showed that aspirin treatment inhibited cell proliferation and promoted cell cycle arrest at G0/G1 phase in a dose- and time‑dependent manner of human uterine leiomyoma cells. Further studies revealed that aspirin blocked the interaction between K-Ras and p110α by co-immunoprecipitation and immunofluorescence. Western blotting demonstrated K‑Ras‑p110α interaction was required for the effects of aspirin‑induced inhibition on cell growth and cell cycle transition via cell cycle regulators, including cyclin D1 and cyclin-dependent kinase 2 (CDK2). PI3K/Akt/caspase signaling pathway was involved in human uterine leiomyoma cell growth under aspirin treatment. Taken together, these results suggest that aspirin inhibited human uterine leiomyoma cell growth by regulating K‑Ras‑p110α interaction. Aspirin which targeting on interaction between K-Ras and p110α may serve as a new therapeutic drug for uterine leiomyoma treatment.
Collapse
Affiliation(s)
- Min Gao
- Department of Pharmacy, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Kai-Min Guo
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong 510623, P.R. China
| | - Ying-Mei Wei
- Department of Neurology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ming-Ming Ma
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jia-Rong Cai
- Department of Urology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Ting-Ting Xia
- Department of Infertility, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Qing-Jian Ye
- Department of Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
11
|
Wang J, Hussain SP. NO • and Pancreatic Cancer: A Complex Interaction with Therapeutic Potential. Antioxid Redox Signal 2017; 26:1000-1008. [PMID: 27510096 PMCID: PMC5467115 DOI: 10.1089/ars.2016.6809] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SIGNIFICANCE Pancreatic tumors express high level of nitric oxide synthases (NOSs) in particular inducible (iNOS/NOS2) and endothelial (eNOS/NOS3) forms. However, the role of nitric oxide (NO•) in the development and progression of pancreatic cancer is not clearly defined. Delineating the NO•-induced signaling in pancreatic cancer and its potential contribution in disease aggressiveness may provide therapeutic targets to improve survival in this lethal malignancy. Recent Advances: An increased expression of NOS2/iNOS in tumors is associated with poorer survival in early stage resected patients with pancreatic ductal adenocarcinoma (PDAC). Furthermore, genetic deletion of NOS2 enhanced survival in mice with autochthonous PDAC. Additionally, targeting NOS3/eNOS reduced the abundance of precursor lesions in mice, which trended toward improved survival. CRITICAL ISSUES The extremely poor prognosis in pancreatic cancer is due to the late diagnosis and lack of effective therapy in advanced disease. One of the most critical issues is to decipher the underlying mechanism of disease aggressiveness and therapeutic resistance for identifying potential therapeutic target and effective treatment. Given the evidence of a strong association between inflammation and pancreatic cancer and clinical evidence, which suggests an association between NOS2 and disease aggressiveness, it is critical to define the role of NO• signaling in this lethal malignancy. FUTURE DIRECTIONS Recent preclinical and clinical evidences indicate a potential therapeutic significance of targeting NO• signaling in pancreatic cancer. With the emergence of new preclinical models, including the patient-derived organoids, further preclinical evaluation using clinically tested NOS inhibitors is needed for designing future clinical investigation. Antioxid. Redox Signal. 26, 1000-1008.
Collapse
Affiliation(s)
- Jian Wang
- Pancreatic Cancer Unit, Laboratory of Human Carcinogenesis, NIH Center for Cancer Research, National Cancer Institute , Bethesda, Maryland
| | - S Perwez Hussain
- Pancreatic Cancer Unit, Laboratory of Human Carcinogenesis, NIH Center for Cancer Research, National Cancer Institute , Bethesda, Maryland
| |
Collapse
|
12
|
Gong J, Belinsky G, Sagheer U, Zhang X, Grippo PJ, Chung C. Pigment Epithelium-derived Factor (PEDF) Blocks Wnt3a Protein-induced Autophagy in Pancreatic Intraepithelial Neoplasms. J Biol Chem 2016; 291:22074-22085. [PMID: 27557659 PMCID: PMC5063990 DOI: 10.1074/jbc.m116.729962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/01/2016] [Indexed: 02/05/2023] Open
Abstract
An increase in autophagy characterizes pancreatic carcinogenesis, but the signals that regulate this process are incompletely understood. Because canonical Wnt/β-catenin signaling is necessary for the transition from early to advanced pancreatic intraepithelial neoplasia (PanIN) lesions, we assessed whether Wnt ligands and endogenous inhibitors of Wnt signaling modulate autophagy. In this study, canonical Wnt3a ligand induced autophagy markers and vacuoles in murine PanIN cells. Furthermore, pigment epithelium-derived factor (PEDF), a secreted glycoprotein known for its anti-tumor properties, blocked Wnt3a-directed induction of autophagy proteins. Autophagy inhibition was complemented by reciprocal regulation of the oxidative stress enzymes, superoxide dismutase 2 (SOD2) and catalase. Transcriptional control of Sod2 expression was mediated by PEDF-induced NFκB nuclear translocation. PEDF-dependent SOD2 expression in PanIN lesions was recapitulated in a murine model of PanIN formation where PEDF was deleted. In human PanIN lesions, co-expression of PEDF and SOD2 was observed in the majority of early PanIN lesions (47/50, 94%), whereas PEDF and SOD2 immunolocalization in high-grade human PanIN-2/3 was uncommon (7/50, 14%). These results indicate that PEDF regulates autophagy through coordinate Wnt signaling blockade and NFκB activation.
Collapse
Affiliation(s)
| | | | - Usman Sagheer
- the Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| | - Xuchen Zhang
- the Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516 Pathology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Paul J Grippo
- the Department of Medicine, University of Illinois School of Medicine, Chicago, Illinois 60612, and
| | - Chuhan Chung
- From the Departments of Medicine and the Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut 06516
| |
Collapse
|
13
|
Abstract
Pancreatic cancer is the fourth leading cause of cancer related deaths in the United States with a 5-year survival rate of less than 10%. The Division of Cancer Prevention of the National Cancer Institute sponsored the Pancreatic Cancer Chemoprevention Translational Workshop on September 10 to 11, 2015. The goal of the workshop was to obtain information regarding the current state of the science and future scientific areas that should be prioritized for pancreatic cancer prevention research, including early detection and intervention for high-risk precancerous lesions. The workshop addressed the molecular/genetic landscape of pancreatic cancer and precursor lesions, high-risk populations and criteria to identify a high-risk population for potential chemoprevention trials, identification of chemopreventative/immunopreventative agents, and use of potential biomarkers and imaging for assessing short-term efficacy of a preventative agent. The field of chemoprevention for pancreatic cancer is emerging, and this workshop was organized to begin to address these important issues and promote multi-institutional efforts in this area. The meeting participants recommended the development of an National Cancer Institute working group to coordinate efforts, provide a framework, and identify opportunities for chemoprevention of pancreatic cancer.
Collapse
|
14
|
Jiang MJ, Dai JJ, Gu DN, Huang Q, Tian L. Aspirin in pancreatic cancer: chemopreventive effects and therapeutic potentials. Biochim Biophys Acta Rev Cancer 2016; 1866:163-176. [PMID: 27567928 DOI: 10.1016/j.bbcan.2016.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer is one of the most aggressive malignancies with dismal prognosis. Recently, aspirin has been found to be an effective chemopreventive agent for many solid tumors. However, the function of aspirin use in pancreatic cancer largely remains unknown. We herein argued that aspirin could also lower the risk of pancreatic cancer. Importantly, aspirin assumes pleiotropic effects by targeting multiple molecules. It could further target the unique tumor biology of pancreatic cancer and modify the cancer microenvironment, thus showing remarkable therapeutic potentials. Besides, aspirin could reverse the chemoradiation resistance by repressing tumor repopulation and exert synergistic potentials with metformin on pancreatic cancer chemoprevention. Moreover, aspirin secondarily benefits pancreatic cancer patients through modestly reducing cancer pain and the risk of venous thromboembolism. Furthermore, new aspirin derivatives and delivery systems might help to improve risk-to-benefit ratio. In brief, aspirin is a promising chemopreventive agent and exerts significant therapeutic potentials in pancreatic cancer.
Collapse
Affiliation(s)
- Ming-Jie Jiang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Juan-Juan Dai
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Dian-Na Gu
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Qian Huang
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Comprehensive Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ling Tian
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| |
Collapse
|
15
|
Rao CV, Janakiram NB, Madka V, Kumar G, Scott EJ, Pathuri G, Bryant T, Kutche H, Zhang Y, Biddick L, Gali H, Zhao YD, Lightfoot S, Mohammed A. Small-Molecule Inhibition of GCNT3 Disrupts Mucin Biosynthesis and Malignant Cellular Behaviors in Pancreatic Cancer. Cancer Res 2016; 76:1965-74. [PMID: 26880801 DOI: 10.1158/0008-5472.can-15-2820] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/18/2016] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is an aggressive neoplasm with almost uniform lethality and a 5-year survival rate of 7%. Several overexpressed mucins that impede drug delivery to pancreatic tumors have been therapeutically targeted, but enzymes involved in mucin biosynthesis have yet to be preclinically evaluated as potential targets. We used survival data from human patients with pancreatic cancer, next-generation sequencing of genetically engineered Kras-driven mouse pancreatic tumors and human pancreatic cancer cells to identify the novel core mucin-synthesizing enzyme GCNT3 (core 2 β-1,6 N-acetylglucosaminyltransferase). In mouse pancreatic cancer tumors, GCNT3 upregulation (103-fold; P < 0.0001) was correlated with increased expression of mucins (5 to 87-fold; P < 0.04-0.0003). Aberrant GCNT3 expression was also associated with increased mucin production, aggressive tumorigenesis, and reduced patient survival, and CRISPR-mediated knockout of GCNT3 in pancreatic cancer cells reduced proliferation and spheroid formation. Using in silico small molecular docking simulation approaches, we identified talniflumate as a novel inhibitor that selectively binds to GCNT3. In particular, docking predictions suggested that three notable hydrogen bonds between talniflumate and GCNT3 contribute to a docking affinity of -8.3 kcal/mol. Furthermore, talniflumate alone and in combination with low-dose gefitinib reduced GCNT3 expression, leading to the disrupted production of mucins in vivo and in vitro Collectively, our findings suggest that targeting mucin biosynthesis through GCNT3 may improve drug responsiveness, warranting further development and investigation in preclinical models of pancreatic tumorigenesis. Cancer Res; 76(7); 1965-74. ©2016 AACR.
Collapse
Affiliation(s)
- Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Gaurav Kumar
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Edgar J Scott
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Gopal Pathuri
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Taylor Bryant
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hannah Kutche
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yuting Zhang
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Laura Biddick
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hariprasad Gali
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Yan D Zhao
- Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stan Lightfoot
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
16
|
Bournet B, Buscail C, Muscari F, Cordelier P, Buscail L. Targeting KRAS for diagnosis, prognosis, and treatment of pancreatic cancer: Hopes and realities. Eur J Cancer 2016; 54:75-83. [DOI: 10.1016/j.ejca.2015.11.012] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 11/08/2015] [Accepted: 11/11/2015] [Indexed: 02/07/2023]
|
17
|
Baines A, Martin P, Rorie C. Current and Emerging Targeting Strategies for Treatment of Pancreatic Cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:277-320. [DOI: 10.1016/bs.pmbts.2016.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Rao CV, Janakiram NB, Madka V, Devarkonda V, Brewer M, Biddick L, Lightfoot S, Steele VE, Mohammed A. Simultaneous targeting of 5-LOX-COX and EGFR blocks progression of pancreatic ductal adenocarcinoma. Oncotarget 2015; 6:33290-305. [PMID: 26429877 PMCID: PMC4741766 DOI: 10.18632/oncotarget.5396] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/16/2015] [Indexed: 02/06/2023] Open
Abstract
Cyclooxygenase-2 (COX-2), 5-Lipoxygenase (5-LOX), and epidermal growth factor receptor (EGRF) are over-expressed in human pancreatic ductal adenocarcinoma (PDAC). Using next-generation sequencing (NGS) analysis, we show significant increase in COX-2, 5-LOX, and EGFR expression during PDAC progression. Targeting complementary pathways will achieve better treatment efficacy than a single agent high-dose strategy that could increase risk of side effects and tumor resistance. To target COX-2, 5-LOX, and EGFR simultaneously, we tested effects of licofelone (dual 5-LOX-COX inhibitor), and gefitinib (EGFR inhibitor), individually and in combination, on pancreatic intraepithelial neoplasms (PanINs) and their progression to PDAC using genetically engineered mice. Individually, licofelone (L) and gefitinib (G) significantly inhibited incidence of PDAC in male (72% L, 90% G, p < 0.0001) and female (90% L, 85% G, p < 0.0001) mice. The combination drug treatment produced complete inhibition of PDAC in both genders. Pancreata of mice receiving combination treatment showed significantly fewer Dclk1-positive cancer stem-like cells, inhibition of COX-2, 5-LOX, PCNA, EGFR and β-catenin expression (p < 0.05-0.0002), increased p21 expression. Significant changes in tumor immune responses and desmoplastic reaction was observed by NGS analysis in combination treatment (p < 0.05). In summary, early simultaneous targeting of 5-LOX-COX- and EGFR pathways may provide additive inhibitory effects leading to complete suppression of PDAC.
Collapse
Affiliation(s)
- Chinthalapally V. Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Naveena B. Janakiram
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vishal Devarkonda
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Misty Brewer
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Laura Biddick
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stan Lightfoot
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vernon E. Steele
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, Bethesda, MD, USA
| | - Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
19
|
Selective inhibition of the p38 alternative activation pathway in infiltrating T cells inhibits pancreatic cancer progression. Nat Med 2015; 21:1337-43. [PMID: 26479921 PMCID: PMC4636461 DOI: 10.1038/nm.3957] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/27/2015] [Indexed: 12/11/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive neoplasm characterized by a marked fibro-inflammatory microenvironment1, the presence of which can promote both cancer induction and growth2–4. Therefore, selective manipulation of local cytokines is an attractive if unrealized therapeutic approach. T cells possess a unique mechanism of activation of p38 MAPK downstream of T cell receptor (TCR) engagement by phosphorylation of Tyr-323 (pY323). This alternative p38 activation pathway is required for pro-inflammatory cytokine production5,6. Here we show in human PDAC that a high percentage of infiltrating pY323+ T cells was associated with large numbers of TNFα and IL-17-producing CD4+ tumor-infiltrating lymphocytes (TIL) and aggressive disease. The growth of murine pancreatic tumors was inhibited by genetic ablation of the alternative p38 pathway, and transfer of wild type CD4+ T cells but not those lacking the alternative pathway enhanced tumor growth in T cell-deficient mice. Strikingly, a plasma membrane-permeable peptide derived from Gadd45α, the naturally-occurring inhibitor of p38 pY323+ (ref. 7), reduced CD4+ TIL production of TNFα, IL-17A, IL-10, and secondary cytokines, halted growth of implanted tumors, and inhibited progression of spontaneous K-ras-driven adenocarcinoma in mice. Thus, TCR-mediated activation of CD4+ TIL results in alternative p38 activation and production of pro-tumorigenic factors, and can be targeted for therapeutic benefit.
Collapse
|
20
|
Yue W, Zheng X, Lin Y, Yang CS, Xu Q, Carpizo D, Huang H, DiPaola RS, Tan XL. Metformin combined with aspirin significantly inhibit pancreatic cancer cell growth in vitro and in vivo by suppressing anti-apoptotic proteins Mcl-1 and Bcl-2. Oncotarget 2015; 6:21208-24. [PMID: 26056043 PMCID: PMC4673260 DOI: 10.18632/oncotarget.4126] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/02/2015] [Indexed: 12/16/2022] Open
Abstract
Metformin and aspirin have been studied extensively as cancer preventive or therapeutic agents. However, the effects of their combination on pancreatic cancer cells have not been investigated. Herein, we evaluated the effects of metformin and aspirin, alone or in combination, on cell viability, migration, and apoptosis as well as the molecular changes in mTOR, STAT3 and apoptotic signaling pathways in PANC-1 and BxPC3 cells. Metformin and aspirin, at relatively low concentrations, demonstrated synergistically inhibitory effects on cell viability. Compared to the untreated control or individual drug, the combination of metformin and aspirin significantly inhibited cell migration and colony formation of both PANC-1 and BxPC-3 cells. Metformin combined with aspirin significantly inhibited the phosphorylation of mTOR and STAT3, and induced apoptosis as measured by caspase-3 and PARP cleavage. Remarkably, metformin combined with aspirin significantly downregulated the anti-apoptotic proteins Mcl-1 and Bcl-2, and upregulated the pro-apoptotic proteins Bim and Puma, as well as interrupted their interactions. The downregulation of Mcl-1 and Bcl-2 was independent of AMPK or STAT3 pathway but partially through mTOR signaling and proteasome degradation. In a PANC-1 xenograft mouse model, we demonstrated that the combination of metformin and aspirin significantly inhibited tumor growth and downregulated the protein expression of Mcl-1 and Bcl-2 in tumors. Taken together, the combination of metformin and aspirin significantly inhibited pancreatic cancer cell growth in vitro and in vivo by regulating the pro- and anti-apoptotic Bcl-2 family members, supporting the continued investigation of this two drug combination as chemopreventive or chemotherapeutic agents for pancreatic cancer.
Collapse
Affiliation(s)
- Wen Yue
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Xi Zheng
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yong Lin
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Biostatistics, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Chung S. Yang
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Biostatistics, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, P. R. China
| | - Darren Carpizo
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Huarong Huang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, P. R. China
- Allan H. Conney Laboratory for Anticancer Research, Guangdong University of Technology, Guangzhou, P. R. China
| | - Robert S. DiPaola
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Xiang-Lin Tan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
- Department of Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
21
|
Prabhu L, Mundade R, Korc M, Loehrer PJ, Lu T. Critical role of NF-κB in pancreatic cancer. Oncotarget 2015; 5:10969-75. [PMID: 25473891 PMCID: PMC4294354 DOI: 10.18632/oncotarget.2624] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/23/2014] [Indexed: 01/01/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, and in spite of intense efforts there are limited therapeutic options for patients with PDAC. PDACs harbor a high frequency of Kras mutations and other driver mutations that lead to altered signaling pathways and contribute to therapeutic resistance. Importantly, constitutive activation of nuclear factor κB (NF-κB) is frequently observed in PDAC. An increasing body of evidence suggests that both classical and non-classical NF-κB pathways play a crucial role in PDAC development and progression. In this review, we update the most recent advances regarding different aspects of NF-κB involvement in PDAC development and progression, emphasizing its potential as a therapeutic target and the need to discover pathway-specific cytosolic NF-κB regulators which could be used to design novel therapeutic strategies for PDAC.
Collapse
Affiliation(s)
- Lakshmi Prabhu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Rasika Mundade
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Murray Korc
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN USA. Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA
| | - Patrick J Loehrer
- Division of Hematology and Oncology, Indiana Cancer Pavilion, Indianapolis, IN USA
| | - Tao Lu
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN USA. Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN USA. Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
| |
Collapse
|
22
|
Quinn BA, Dash R, Sarkar S, Azab B, Bhoopathi P, Das SK, Emdad L, Wei J, Pellecchia M, Sarkar D, Fisher PB. Pancreatic Cancer Combination Therapy Using a BH3 Mimetic and a Synthetic Tetracycline. Cancer Res 2015; 75:2305-15. [PMID: 26032425 DOI: 10.1158/0008-5472.can-14-3013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Improved treatments for pancreatic cancer remain a clinical imperative. Sabutoclax, a small-molecule BH3 mimetic, inhibits the function of antiapoptotic Bcl-2 proteins. Minocycline, a synthetic tetracycline, displays antitumor activity. Here, we offer evidence of the combinatorial antitumor potency of these agents in several preclinical models of pancreatic cancer. Sabutoclax induced growth arrest and apoptosis in pancreatic cancer cells and synergized with minocycline to yield a robust mitochondria-mediated caspase-dependent cytotoxicity. This combinatorial property relied upon loss of phosphorylated Stat3 insofar as reintroduction of activated Stat3-rescued cells from toxicity. Tumor growth was inhibited potently in both immune-deficient and immune-competent models with evidence of extended survival. Overall, our results showed that the combination of sabutoclax and minocycline was highly cytotoxic to pancreatic cancer cells and safely efficacious in vivo.
Collapse
Affiliation(s)
- Bridget A Quinn
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Rupesh Dash
- Institute of Life Sciences, Bhubaneswar, Orissa, India
| | - Siddik Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Belal Azab
- The University of Jordan, Department of Biological Sciences, Amman, Jordan
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Jun Wei
- Sanford-Burnham Medical Research Institute, La Jolla, California
| | | | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.
| |
Collapse
|
23
|
Mohammed A, Janakiram NB, Pant S, Rao CV. Molecular Targeted Intervention for Pancreatic Cancer. Cancers (Basel) 2015; 7:1499-542. [PMID: 26266422 PMCID: PMC4586783 DOI: 10.3390/cancers7030850] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/24/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) remains one of the worst cancers, with almost uniform lethality. PC risk is associated with westernized diet, tobacco, alcohol, obesity, chronic pancreatitis, and family history of pancreatic cancer. New targeted agents and the use of various therapeutic combinations have yet to provide adequate treatments for patients with advanced cancer. To design better preventive and/or treatment strategies against PC, knowledge of PC pathogenesis at the molecular level is vital. With the advent of genetically modified animals, significant advances have been made in understanding the molecular biology and pathogenesis of PC. Currently, several clinical trials and preclinical evaluations are underway to investigate novel agents that target signaling defects in PC. An important consideration in evaluating novel drugs is determining whether an agent can reach the target in concentrations effective to treat the disease. Recently, we have reported evidence for chemoprevention of PC. Here, we provide a comprehensive review of current updates on molecularly targeted interventions, as well as dietary, phytochemical, immunoregulatory, and microenvironment-based approaches for the development of novel therapeutic and preventive regimens. Special attention is given to prevention and treatment in preclinical genetically engineered mouse studies and human clinical studies.
Collapse
Affiliation(s)
- Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Shubham Pant
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
24
|
Mohammed A, Janakiram NB, Madka V, Brewer M, Ritchie RL, Lightfoot S, Kumar G, Sadeghi M, Patlolla JMR, Yamada HY, Cruz-Monserrate Z, May R, Houchen CW, Steele VE, Rao CV. Targeting pancreatitis blocks tumor-initiating stem cells and pancreatic cancer progression. Oncotarget 2015; 6:15524-39. [PMID: 25906749 PMCID: PMC4558168 DOI: 10.18632/oncotarget.3499] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/07/2015] [Indexed: 12/11/2022] Open
Abstract
Recent development of genetically engineered mouse models (GEMs) for pancreatic cancer (PC) that recapitulates human disease progression has helped to identify new strategies to delay/inhibit PC development. We first found that expression of the pancreatic tumor-initiating/cancer stem cells (CSC) marker DclK1 occurs in early stage PC and in both early and late pancreatic intraepithelial neoplasia (PanIN) and that it increases as disease progresses in GEM and also in human PC. Genome-wide next generation sequencing of pancreatic ductal adenocarcinoma (PDAC) from GEM mice revealed significantly increased DclK1 along with inflammatory genes. Genetic ablation of cyclo-oxygenase-2 (COX-2) decreased DclK1 in GEM. Induction of inflammation/pancreatitis with cerulein in GEM mice increased DclK1, and the novel dual COX/5-lipoxygenase (5-LOX) inhibitor licofelone reduced it. Dietary licofelone significantly inhibited the incidence of PDAC and carcinoma in situ with significant inhibition of pancreatic CSCs. Licofelone suppressed pancreatic tumor COX-2 and 5-LOX activities and modulated miRNAs characteristic of CSC and inflammation in correlation with PDAC inhibition. These results offer a preclinical proof of concept to target the inflammation initiation to inhibit cancer stem cells early for improving the treatment of pancreatic cancers, with immediate clinical implications for repositioning dual COX/5-LOX inhibitors in human trials for high risk patients.
Collapse
Affiliation(s)
- Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Naveena B. Janakiram
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Misty Brewer
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rebekah L. Ritchie
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stan Lightfoot
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Gaurav Kumar
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael Sadeghi
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jagan Mohan R. Patlolla
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Hiroshi Y. Yamada
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zobeida Cruz-Monserrate
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Randal May
- Digestive Diseases Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Courtney W. Houchen
- Digestive Diseases Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Vernon E. Steele
- Division of Cancer Prevention, Chemoprevention Agent Development Research Group, National Cancer Institute, Bethesda, MD, USA
| | - Chinthalapally V. Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
25
|
Jansen RJ, Tan XL, Petersen GM. Gene-by-Environment Interactions in Pancreatic Cancer: Implications for Prevention. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2015; 88:115-26. [PMID: 26029010 PMCID: PMC4445433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Pancreatic cancer (PC) has been estimated to have higher incidence and correspondingly higher mortality rates in more developed regions worldwide. Overall, the age-adjusted incidence rate is 4.9/10(5) and age-adjusted mortality rate is at 4.8/10(5). We review here our current knowledge of modifiable risk factors (cigarette smoking, obesity, diet, and alcohol) for PC, genetic variants implicated by genome-wide association studies, possible genetic interactions with risk factors, and prevention strategies to provide future research directions that may further our understanding of this complex disease. Cigarette smoking is consistently associated with a two-fold increased PC risk. PC associations with dietary intake have been largely inconsistent, with the potential exception of certain unsaturated fatty acids decreasing risk and well-done red meat or meat mutagens increasing risk. There is strong evidence to support that obesity (and related measures) increase risk of PC. Only the heaviest alcohol drinkers seem to be at an increased risk of PC. Currently, key prevention strategies include avoiding tobacco and excessive alcohol consumption and adopting a healthy lifestyle. Screening technologies and PC chemoprevention are likely to become more sophisticated, but may only apply to those at high risk. Risk stratification may be improved by taking into account gene environment interactions. Research on these modifiable risk factors is key to reducing the incidence of PC and understanding who in the population can be considered high risk.
Collapse
Affiliation(s)
- Rick J. Jansen
- Department of Public Health Sciences, University of Chicago Biological Sciences, Chicago, Illinois,To whom all correspondence should be addressed: Rick Jansen, PhD, Department of Public Health Sciences, University of Chicago Biological Sciences, 5841 S. Maryland Ave., Rm N101D, MC2000, Chicago, IL 60637;
| | - Xiang-Lin Tan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, New Jersey,Department of Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Gloria M. Petersen
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
26
|
Tan XL, Bhattacharyya KK, Dutta SK, Bamlet WR, Rabe KG, Wang E, Smyrk TC, Oberg AL, Petersen GM, Mukhopadhyay D. Metformin suppresses pancreatic tumor growth with inhibition of NFκB/STAT3 inflammatory signaling. Pancreas 2015; 44:636-47. [PMID: 25875801 PMCID: PMC4399019 DOI: 10.1097/mpa.0000000000000308] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To further elucidate the anticancer mechanisms of metformin against pancreatic cancer, we evaluated the inhibitory effects of metformin on pancreatic tumorigenesis in a genetically engineered mouse model and investigated its possible anti-inflammatory and antiangiogenesis effects. METHODS Six-week-old LSL-Kras;Trp53 mice (10 per group) were administered once daily intraperitoneally with saline (control) for 1 week or metformin (125 mg/kg) for 1 week (Met_1wk) or 3 weeks (Met_3wk) before tumor initiation. All mice continued with their respective injections for 6 weeks after tumor initiation. Molecular changes were evaluated through quantitative polymerase chain reaction, immunohistochemistry, and Western blotting. RESULTS At euthanasia, pancreatic tumor volume in the Met_1wk (median, 181.8 mm) and Met_3wk (median, 137.9 mm) groups was significantly lower than those in the control group (median, 481.1 mm; P = 0.001 and 0.0009, respectively). No significant difference was observed between the Met_1wk and Met_3wk groups (P = 0.51). These results were further confirmed using tumor weight and tumor burden measurements. Furthermore, metformin treatment decreased the phosphorylation of nuclear factor κB and signal transducer and activator of transcription 3 as well as the expression of specificity protein 1 transcription factor and several nuclear factor κB-regulated genes. CONCLUSIONS Metformin may inhibit pancreatic tumorigenesis by modulating multiple molecular targets in inflammatory pathways.
Collapse
Affiliation(s)
- Xiang-Lin Tan
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ
- Department of Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, Piscataway, NJ
| | | | - Shamit K. Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | - William R. Bamlet
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Kari G. Rabe
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN
| | | | - Ann L. Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Gloria M. Petersen
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
27
|
Mohammed A, Janakiram NB, Madka V, Ritchie RL, Brewer M, Biddick L, Patlolla JMR, Sadeghi M, Lightfoot S, Steele VE, Rao CV. Eflornithine (DFMO) prevents progression of pancreatic cancer by modulating ornithine decarboxylase signaling. Cancer Prev Res (Phila) 2014; 7:1198-209. [PMID: 25248858 PMCID: PMC4310684 DOI: 10.1158/1940-6207.capr-14-0176] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ornithine decarboxylase (ODC) is the key rate-limiting enzyme in the polyamine synthesis pathway and it is overexpressed in a variety of cancers. We found that polyamine synthesis and modulation of ODC signaling occurs at early stages of pancreatic precursor lesions and increases as the tumor progresses in Kras-activated p48(Cre/+)-LSL-Kras(G12D/+) mice. Interest in use of the ODC inhibitor eflornithine (DFMO) as a cancer chemopreventive agent has increased in recent years since ODC was shown to be transactivated by the c-myc oncogene and to cooperate with the ras oncogene in malignant transformation of epithelial tissues. We tested the effects of DFMO on pancreatic intraepithelial neoplasias (PanIN) and their progression to pancreatic ductal adenocarcinoma (PDAC) in genetically engineered Kras mice. The Kras(G12D/+) mice fed DFMO at 0.1% and 0.2% in the diet showed a significant inhibition (P < 0.0001) of PDAC incidence compared with mice fed control diet. Pancreatic tumor weights were decreased by 31% to 43% (P < 0.03-0.001) with both doses of DFMO. DFMO at 0.1% and 0.2% caused a significant suppression (27% and 31%; P < 0.02-0.004) of PanIN 3 lesions (carcinoma in situ). DFMO-treated pancreas exhibited modulated ODC pathway components along with decreased proliferation and increased expression of p21/p27 as compared with pancreatic tissues derived from mice fed control diet. In summary, our preclinical data indicate that DFMO has potential for chemoprevention of pancreatic cancer and should be evaluated in other PDAC models and in combination with other drugs in anticipation of future clinical trials.
Collapse
Affiliation(s)
- Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Rebekah L Ritchie
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Misty Brewer
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Laura Biddick
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jagan Mohan R Patlolla
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Michael Sadeghi
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stan Lightfoot
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Vernon E Steele
- Division of Cancer Prevention, Chemopreventive Agent Development Research Group, National Cancer Institute, Bethesda, Maryland
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
28
|
Cancer subclonal genetic architecture as a key to personalized medicine. Neoplasia 2014; 15:1410-20. [PMID: 24403863 DOI: 10.1593/neo.131972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 02/08/2023] Open
Abstract
The future of personalized oncological therapy will likely rely on evidence-based medicine to integrate all of the available evidence to delineate the most efficacious treatment option for the patient. To undertake evidence-based medicine through use of targeted therapy regimens, identification of the specific underlying causative mutation(s) driving growth and progression of a patient's tumor is imperative. Although molecular subtyping is important for planning and treatment, intraclonal genetic diversity has been recently highlighted as having significant implications for biopsy-based prognosis. Overall, delineation of the clonal architecture of a patient's cancer and how this will impact on the selection of the most efficacious therapy remain a topic of intense interest.
Collapse
|
29
|
Yue W, Yang CS, DiPaola RS, Tan XL. Repurposing of metformin and aspirin by targeting AMPK-mTOR and inflammation for pancreatic cancer prevention and treatment. Cancer Prev Res (Phila) 2014; 7:388-97. [PMID: 24520038 DOI: 10.1158/1940-6207.capr-13-0337] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Pancreatic cancer, as the fourth leading cause of cancer-related deaths, carries a poor prognosis with a median survival of 6 months and a dismal 5-year survival rate of 3% to 5%. These statistics highlight an urgent need for novel chemopreventive and therapeutic strategies for this malignancy. Metformin and aspirin have been explored as two emerging cancer chemoprevention agents for different types of cancers, including pancreatic cancer. Here, we review the effects of both metformin and aspirin on pancreatic tumorigenesis and their potential actions in pancreatic cancer. Special attention is paid to their effects on the important signaling pathways of pancreatic cancer development as well as possible mechanisms for synergy between these two agents. For metformin, the most important mechanism may involve the inhibition of mTOR signaling via AMP-activated protein kinase (AMPK)-dependent and -independent pathways. For aspirin, the major mechanism is the anti-inflammatory action through the inhibition of COX-1/COX-2 and modulation of the NFκB or STAT3 pathway. In addition, aspirin may activate AMPK, and both agents may affect Notch, Wnt/β-catenin, and other signaling pathways. The combination of metformin and aspirin will provide additive and possibly synergistic effects for the prevention and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wen Yue
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, R5566, New Brunswick, NJ 08901.
| | | | | | | |
Collapse
|
30
|
Mohammed A, Janakiram NB, Brewer M, Ritchie RL, Marya A, Lightfoot S, Steele VE, Rao CV. Antidiabetic Drug Metformin Prevents Progression of Pancreatic Cancer by Targeting in Part Cancer Stem Cells and mTOR Signaling. Transl Oncol 2013; 6:649-59. [PMID: 24466367 PMCID: PMC3890699 DOI: 10.1593/tlo.13556] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 12/12/2022] Open
Abstract
Epidemiologic studies have shown that diabetes mellitus is associated positively with increased risk of pancreatic ductal adenocarcinoma (PDAC), and recent meta-analysis studies showed that metformin, reduces the risk of pancreatic cancer (PC). We tested the effects of metformin on pancreatic intraepithelial neoplasia (PanIN) and their progression to PDAC in p48Cre/+.LSL-KrasG12D/+ transgenic mice. Mice fed control diet showed 80% and 62% incidence of PDAC in males and females, respectively. Male mice showed 20% and 26%, and female mice showed 7% and 0% PDAC incidence with 1000- and 2000-ppm metformin treatments, respectively. Both doses of metformin decreased pancreatic tumor weights by 34% to 49% (P < 0.03-0.001). The drug treatment caused suppression of PanIN 3 (carcinoma in situ) lesions by 28% to 39% (P < .002) and significant inhibition of carcinoma spread in the pancreas. The pancreatic tissue and/or serum of mice fed metformin showed a significant inhibition of mammalian target of rapamycin (mTOR), extracellular signal-regulated kinases (ERK), phosphorylated extracellular signal-regulated kinases (pErk), and insulin-like growth factor 1 (IGF-1) with an increase in phosphorylated 5' adenosine monophosphate kinase (pAMPK), tuberous sclerosis complex 1 (TSC1, TSC2), C-protein and an autophagy related protein 2 (ATG2). The cancer stem cell (CSC) markers were significantly decreased (P < 0.04-0.0002) in the pancreatic tissue. These results suggest that biologic effects of metformin are mediated through decreased CSC markers cluster of differentiation 44 (CD44 and CD133), aldehyde dehydrogenase isoform 1 (ALDH1), and epithelial cell adhesion molecule (EPCAM) and modulation of the mTOR signaling pathway. Our preclinical data indicate that metformin has significant potential for use in clinical trials for PC chemoprevention.
Collapse
Affiliation(s)
- Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Misty Brewer
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Rebekah L Ritchie
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Anuj Marya
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Stan Lightfoot
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Vernon E Steele
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology-Oncology Section, Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
31
|
Hocker JR, Mohammed A, Aston CE, Brewer M, Lightfoot SA, Rao CV, Hanas JS. Mass profiling of serum to distinguish mice with pancreatic cancer induced by a transgenic Kras mutation. Int J Cancer 2013; 133:2662-71. [PMID: 23712558 PMCID: PMC3787968 DOI: 10.1002/ijc.28285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/06/2013] [Indexed: 01/06/2023]
Abstract
Mass spectrometry (MS) has the unique ability to profile, in an easily accessible body tissue (peripheral blood/serum,) the sizes and relative amounts of a wide variety of biomolecules in a single platform setting. Using electrospray ionization (ESI)-MS, we distinguished individual serum from wild-type control mice from serum of mice containing an oncogenic Kras mutation, which leads to development of pancreatic ductal adenocarcinoma (PDAC) similar to that observed in humans. Identification of differences in significant ESI-MS sera mass peaks between Kras-activated mice and control mice was performed using t tests and a "nested leave one out" cross-validation procedure. Peak distributions in serum of control mice from mice with Kras-mutant-dependent PDAC were distinguished from those of pancreatic intraepithelial neoplasia (PanIN) lesions (p = 0.00024). In addition, Kras mutant mice with PDAC were distinguished from Kras mutant mice with PanIN alone (p = 0.0057). Test specificity, a measure of the false positives, was greater for the control vs. Kras mutated mice, and the test sensitivity, a measure of false negatives, was greater for the PDAC vs. PanIN containing mice. Receiver-operating characteristic (ROC) curve discriminatory values were 0.85 for both comparisons. These studies indicate ESI-MS serum mass profiling can detect physiological changes associated with pancreatic cancer initiation and development in a GEM (genetic engineered mouse) model that mimics pancreatic cancer development in humans. Such technology has the potential to aid in early detection of pancreatic cancer and in developing therapeutic drug interventions.
Collapse
Affiliation(s)
- James R Hocker
- Department of Biochemistry and Molecular Biology, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | | | | | | | | | | |
Collapse
|
32
|
Overcoming intratumor heterogeneity of polygenic cancer drug resistance with improved biomarker integration. Neoplasia 2013; 14:1278-89. [PMID: 23308059 DOI: 10.1593/neo.122096] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 12/11/2012] [Accepted: 12/11/2012] [Indexed: 12/14/2022] Open
Abstract
Improvements in technology and resources are helping to advance our understanding of cancer-initiating events as well as factors involved with tumor progression, adaptation, and evasion of therapy. Tumors are well known to contain diverse cell populations and intratumor heterogeneity affords neoplasms with a diverse set of biologic characteristics that can be used to evolve and adapt. Intratumor heterogeneity has emerged as a major hindrance to improving cancer patient care. Polygenic cancer drug resistance necessitates reconsidering drug designs to include polypharmacology in pursuit of novel combinatorial agents having multitarget activity to overcome the diverse and compensatory signaling pathways in which cancer cells use to survive and evade therapy. Advances will require integration of different biomarkers such as genomics and imaging to provide for more adequate elucidation of the spatially varying location, type, and extent of diverse intratumor signaling molecules to provide for a rationale-based personalized cancer medicine strategy.
Collapse
|
33
|
Mohammed A, Janakiram NB, Brewer M, Duff A, Lightfoot S, Brush RS, Anderson RE, Rao CV. Endogenous n-3 polyunsaturated fatty acids delay progression of pancreatic ductal adenocarcinoma in Fat-1-p48(Cre/+)-LSL-Kras(G12D/+) mice. Neoplasia 2012; 14:1249-59. [PMID: 23308056 PMCID: PMC3540949 DOI: 10.1593/neo.121508] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 01/24/2023]
Abstract
Preclinical studies suggest that diets rich in omega-3 polyunsaturated fatty acids (n-3 PUFAs) may be beneficial for prevention of pancreatic cancer. Nutritional intervention studies are often complex, and there is no clear evidence, without potential confounding factors, on whether conversion of n-6 PUFAs to n-3 PUFAs in pancreatic tissues would provide protection. Experiments were designed using n-3 fatty acid desaturase (Fat-1) transgenic mice, which can convert n-6 PUFA to n-3 FAs endogenously, to determine the impact of n-3 PUFAs on pancreatic intraepithelial neoplasms (PanINs) and their progression to pancreatic ductal adenocarcinoma (PDAC). Six-week-old female p48(Cre/+)-LSL-Kras(G12D/+) and compound Fat-1-p48(Cre/+)-LSL-Kras(G12D/+) mice were fed (AIN-76A) diets containing 10% safflower oil for 35 weeks. Pancreata were evaluated histopathologically for PanINs and PDAC. Results showed a dramatic reduction in incidence of PDAC (84%; P < .02) in Fat-1-p48(Cre/+)-LSL-Kras(G12D/+) mice compared to p48(Cre/+)-LSL-Kras(G12D/+) mice. Importantly, significant reductions of pancreatic ducts with carcinoma (90%; P < .0001) and PanIN 3 (~50%; P < .001) lesions were observed in the compound transgenic mice. The levels of n-3 PUFA were much higher (>85%; P < .05-0.01) in pancreas of compound transgenic mice than in those of p48(Cre/+)-LSL-Kras(G12D/+) mice. Molecular analysis of the pancreas showed a significant down-regulation of proliferating cell nuclear antigen, cyclooxygenase-2, 5-lipoxygenase (5-LOX), 5-LOX-activating protein, Bcl-2, and cyclin D1 expression levels in Fat-1-p48(Cre/+)-LSL-Kras(G12D/+) mice compared to p48(Cre/+)-LSL-Kras(G12D/+) mice. These data highlight the promise of dietary n-3 FAs for chemoprevention of pancreatic cancer in high-risk individuals.
Collapse
Affiliation(s)
- Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | | | | | |
Collapse
|