1
|
Khatun R, Chatterjee S, Bert C, Wadepohl M, Ott OJ, Semrau S, Fietkau R, Nürnberger A, Gaipl US, Frey B. Complex-valued neural networks to speed-up MR thermometry during hyperthermia using Fourier PD and PDUNet. Sci Rep 2025; 15:11765. [PMID: 40189690 PMCID: PMC11973158 DOI: 10.1038/s41598-025-96071-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Hyperthermia (HT) in combination with radio- and/or chemotherapy has become an accepted cancer treatment for distinct solid tumour entities. In HT, tumour tissue is exogenously heated to temperatures between 39 and 43 °C for 60 min. Temperature monitoring can be performed non-invasively using dynamic magnetic resonance imaging (MRI). However, the slow nature of MRI leads to motion artefacts in the images due to the movements of patients during image acquisition. By discarding parts of the data, the speed of the acquisition can be increased - known as undersampling. However, due to the invalidation of the Nyquist criterion, the acquired images might be blurry and can also produce aliasing artefacts. The aim of this work was, therefore, to reconstruct highly undersampled MR thermometry acquisitions with better resolution and with fewer artefacts compared to conventional methods. The use of deep learning in the medical field has emerged in recent times, and various studies have shown that deep learning has the potential to solve inverse problems such as MR image reconstruction. However, most of the published work only focuses on the magnitude images, while the phase images are ignored, which are fundamental requirements for MR thermometry. This work, for the first time, presents deep learning-based solutions for reconstructing undersampled MR thermometry data. Two different deep learning models have been employed here, the Fourier Primal-Dual network and the Fourier Primal-Dual UNet, to reconstruct highly undersampled complex images of MR thermometry. MR images of 44 patients with different sarcoma types who received HT treatment in combination with radiotherapy and/or chemotherapy were used in this study. The method reduced the temperature difference between the undersampled MRIs and the fully sampled MRIs from 1.3 to 0.6 °C in full volume and 0.49 °C to 0.06 °C in the tumour region for a theoretical acceleration factor of 10.
Collapse
Affiliation(s)
- Rupali Khatun
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Centre Erlangen-EMN, Erlangen, Germany
| | - Soumick Chatterjee
- Data and Knowledge Engineering Group, Faculty of Computer Science, Otto von Guericke University Magdeburg, Magdeburg, Germany.
- Genomics Research Centre, Human Technopole, Milan, Italy.
| | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Centre Erlangen-EMN, Erlangen, Germany
| | | | - Oliver J Ott
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Centre Erlangen-EMN, Erlangen, Germany
| | - Sabine Semrau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Centre Erlangen-EMN, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Centre Erlangen-EMN, Erlangen, Germany
| | - Andreas Nürnberger
- Data and Knowledge Engineering Group, Faculty of Computer Science, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Centre Erlangen-EMN, Erlangen, Germany
| | - Benjamin Frey
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Centre Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
2
|
Giannakopoulos II, Carluccio G, Keerthivasan MB, Koerzdoerfer G, Lakshmanan K, De Moura HL, Serrallés JEC, Lattanzi R. MR electrical properties mapping using vision transformers and canny edge detectors. Magn Reson Med 2025; 93:1117-1131. [PMID: 39415436 PMCID: PMC11955224 DOI: 10.1002/mrm.30338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024]
Abstract
PURPOSE We developed a 3D vision transformer-based neural network to reconstruct electrical properties (EP) from magnetic resonance measurements. THEORY AND METHODS Our network uses the magnitude of the transmit magnetic field of a birdcage coil, the associated transceive phase, and a Canny edge mask that identifies the object boundaries as inputs to compute the EP maps. We trained our network on a dataset of 10 000 synthetic tissue-mimicking phantoms and fine-tuned it on a dataset of 11 000 realistic head models. We assessed performance in-distribution simulated data and out-of-distribution head models, with and without synthetic lesions. We further evaluated our network in experiments for an inhomogeneous phantom and a volunteer. RESULTS The conductivity and permittivity maps had an average peak normalized absolute error (PNAE) of 1.3% and 1.7% for the synthetic phantoms, respectively. For the realistic heads, the average PNAE for the conductivity and permittivity was 1.8% and 2.7%, respectively. The location of synthetic lesions was accurately identified, with reconstructed conductivity and permittivity values within 15% and 25% of the ground-truth, respectively. The conductivity and permittivity for the phantom experiment yielded 2.7% and 2.1% average PNAEs with respect to probe-measured values, respectively. The in vivo EP reconstruction truthfully preserved the subject's anatomy with average values over the entire head similar to the expected literature values. CONCLUSION We introduced a new learning-based approach for reconstructing EP from MR measurements obtained with a birdcage coil, marking an important step towards the development of clinically-usable in vivo EP reconstruction protocols.
Collapse
Affiliation(s)
- Ilias I. Giannakopoulos
- The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | | | | | | | - Karthik Lakshmanan
- The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Hector L. De Moura
- The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - José E. Cruz Serrallés
- The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Riccardo Lattanzi
- The Bernard and Irene Schwartz Center for Biomedical Imaging and Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
3
|
Zhang X, Xu G, Zhang Q, Liu H, Nan X, Han J. A software tool for fabricating phantoms mimicking human tissues with designated dielectric properties and frequency. BIOMED ENG-BIOMED TE 2025; 70:61-70. [PMID: 39449572 DOI: 10.1515/bmt-2024-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024]
Abstract
OBJECTIVES Dielectric materials play a crucial role in assessing and refining the measurement performance of dielectric properties for specific tasks. The availability of viable and standardized dielectric materials could greatly enhance medical applications related to dielectric properties. However, obtaining reliable phantoms with designated dielectric properties across a specified frequency range remains challenging. In this study, we propose software to easily determine the components of dielectric materials in the frequency range of 16 MHz to 3 GHz. METHODS A total of 184 phantoms were fabricated and measured using open-ended coaxial probe method. The relationship among dielectric properties, frequency, and the components of dielectric materials was fitted through feedforward neural networks. Software was developed to quickly calculate the composition of dielectric materials. RESULTS We performed validation experiments including blood, muscle, skin, and lung tissue phantoms at 128 MHz, 298 MHz, 915 MHz, and 2.45 GHz. Compared with literature values, the relative errors of dielectric properties are less than 15 %. CONCLUSIONS This study establishes a reliable method for fabricating dielectric materials with designated dielectric properties and frequency through the development of the software. This research holds significant importance in enhancing medical research and applications that rely on tissue simulation using dielectric phantoms.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Biomedical Engineering, 12485 Anhui Medical University , Hefei, China
| | - Guofang Xu
- School of Biomedical Engineering, 12485 Anhui Medical University , Hefei, China
| | - Qiaotian Zhang
- School of Biomedical Engineering, 12485 Anhui Medical University , Hefei, China
| | - Henghui Liu
- School of Biomedical Engineering, 12485 Anhui Medical University , Hefei, China
| | - Xiang Nan
- Basic Medical School, 12485 Anhui Medical University , Hefei, China
| | - Jijun Han
- School of Biomedical Engineering, 12485 Anhui Medical University , Hefei, China
| |
Collapse
|
4
|
Groen JA, Herrera TD, Crezee J, Kok HP. Robust stochastic optimisation strategies for locoregional hyperthermia treatment planning using polynomial chaos expansion. Phys Med Biol 2025; 70:025024. [PMID: 39761652 DOI: 10.1088/1361-6560/ada685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Objective.Conventional temperature optimization in hyperthermia treatment planning aims to maximize tumour temperature (e.g.T90; the temperature reached in at least 90% of the tumour) while enforcing hard constraints on normal tissue temperature (max(Ttissue) ⩽45 °C). This method generally incorrectly assumes that tissue/perfusion properties are known, typically relying on average values from the literature. To enhance the reliability of temperature optimization in clinical applications, we developed new robust optimization strategies to reduce the impact of tissue/perfusion property uncertainties.Approach.Within the software package Plan2Heat, temperature calculations during optimization apply efficient superposition of precomputed distributions, represented by a temperature matrix (T-matrix). We extended this method using stochastic polynomial chaos expansion models to compute an averageT-matrix (Tavg) and a covariance matrixCto account for uncertainties in tissue/perfusion properties. Three new strategies were implemented usingTavgandCduring optimization: (1)Tavg90 maximization, hard constraint on max(Ttissue), (2)Tavg90 maximization, hard constraint on max(Ttissue) variation, and (3) combinedTavg90 maximization and variation minimization, hard constraint on max(Ttissue). Conventional and new optimization strategies were tested in a cervical cancer patient. 100 test cases were generated, randomly sampling tissue-property probability distributions. TumourT90 and hot spots (max(Ttissue) >45 °C) were evaluated for each sample.Main Results.Conventional optimization had 28 samples without hot spots, with a medianT90 of 39.7 °C. For strategies (1), (2) and (3), the number of samples without hot spots was increased to 33, 41 and 36, respectively. MedianT90 was reduced lightly, by ∼0.1 °C-0.3 °C, for strategies (1-3). Tissue volumes exceeding 45 °C and variation in max(Ttissue) were less for the novel strategies.Significance.Optimization strategies that account for tissue-property uncertainties demonstrated fewer, and reduced in volume, normal tissue hot spots, with only a marginal reduction in tumourT90. This implies a potential clinical utility in reducing the need for, or the impact of, device setting adjustments during hyperthermia treatment.
Collapse
Affiliation(s)
- Jort A Groen
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| | - Timoteo D Herrera
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| | - Johannes Crezee
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| | - H Petra Kok
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Wang X, Zhao S, Zhang A. Image-Based Monitoring of Thermal Ablation. Bioengineering (Basel) 2025; 12:78. [PMID: 39851352 PMCID: PMC11762831 DOI: 10.3390/bioengineering12010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Thermal therapy is a commonly used local treatment technique in clinical practice. Monitoring the treatment process is essential for ensuring its success. In this review, we analyze recent image-based methods for thermal therapy monitoring, focusing particularly on their feasibility for synchronous or immediate postoperative monitoring. This includes thermography and other techniques that track the physical changes in tissue during thermal ablation. Potential directions and challenges for further clinical applications are also summarized.
Collapse
Affiliation(s)
| | | | - Aili Zhang
- School of Biomedical Engineering, 400 Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China; (X.W.); (S.Z.)
| |
Collapse
|
6
|
Korganbayev S, Bianchi L, Girgi C, Vergantino E, Santucci D, Faiella E, Saccomandi P. Fiber Bragg Grating Thermometry and Post-Treatment Ablation Size Analysis of Radiofrequency Thermal Ablation on Ex Vivo Liver, Kidney and Lung. SENSORS (BASEL, SWITZERLAND) 2025; 25:245. [PMID: 39797036 PMCID: PMC11723473 DOI: 10.3390/s25010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
Radiofrequency ablation (RFA) is a minimally invasive procedure that utilizes localized heat to treat tumors by inducing localized tissue thermal damage. The present study aimed to evaluate the temperature evolution and spatial distribution, ablation size, and reproducibility of ablation zones in ex vivo liver, kidney, and lung using a commercial device, i.e., Dophi™ R150E RFA system (Surgnova, Beijing, China), and to compare the results with the manufacturer's specifications. Optical fibers embedding arrays of fiber Bragg grating (FBG) sensors, characterized by 0.1 °C accuracy and 1.2 mm spatial resolution, were employed for thermometry during the procedures. Experiments were conducted for all the organs in two different configurations: single-electrode (200 W for 12 min) and double-electrode (200 W for 9 min). Results demonstrated consistent and reproducible ablation zones across all organ types, with variations in temperature distribution and ablation size influenced by tissue characteristics and RFA settings. Higher temperatures were achieved in the liver; conversely, the lung exhibited the smallest ablation zone and the lowest maximum temperatures. The study found that using two electrodes for 9 min produced larger, more rounded ablation areas compared to a single electrode for 12 min. Our findings support the efficacy of the RFA system and highlight the need for tailored RFA parameters based on organ type and tumor properties. This research provides insights into the characterization of RFA systems for optimizing RFA techniques and underscores the importance of accurate thermometry and precise procedural planning to enhance clinical outcomes.
Collapse
Affiliation(s)
- Sanzhar Korganbayev
- Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milan, Italy; (S.K.); (L.B.); (C.G.)
| | - Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milan, Italy; (S.K.); (L.B.); (C.G.)
| | - Clara Girgi
- Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milan, Italy; (S.K.); (L.B.); (C.G.)
| | - Elva Vergantino
- Operative Research Unit of Radiology and Interventional Radiology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy; (E.V.); (D.S.); (E.F.)
- Research Unit of Radiology and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Domiziana Santucci
- Operative Research Unit of Radiology and Interventional Radiology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy; (E.V.); (D.S.); (E.F.)
- Research Unit of Radiology and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Eliodoro Faiella
- Operative Research Unit of Radiology and Interventional Radiology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy; (E.V.); (D.S.); (E.F.)
- Research Unit of Radiology and Interventional Radiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Via Giuseppe La Masa 1, 20156 Milan, Italy; (S.K.); (L.B.); (C.G.)
| |
Collapse
|
7
|
Trujillo M, Najafabadi ME, Romero A, Prakash P, Cornelis FH. Impact of Power and Time in Hepatic Microwave Ablation: Effect of Different Energy Delivery Schemes. SENSORS (BASEL, SWITZERLAND) 2024; 24:7706. [PMID: 39686243 PMCID: PMC11644961 DOI: 10.3390/s24237706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Microwave ablation often involves the use of continuous energy-delivery protocols with a fixed power and time. To achieve larger ablation zones, a range of protocols and power levels have been studied in experimental studies. The objective of the present study was to develop and experimentally evaluate the performance of a coupled computational electromagnetic-bioheat transfer model of 2.45 GHz microwave ablation under a variety of continuous and pulsed power delivery schemes. The main aim was to obtain an in-depth knowledge of the influence of energy delivery settings on ablation zone profiles and thermal damage in the peri-ablation zone. In addition to the theoretical model, we evaluated the power delivery schemes using ex vivo experiments and compared them to previously published data from in vivo experiments. The results showed slight differences in terms of the ablation zone size for different power delivery schemes under ex vivo conditions, with the applied energy level being the most important factor that determines ablation zone size; however, under in vivo conditions, applying a high-power pulse prior to and following a longer constant power application (BOOKEND 95 W protocol) presented the most favorable ablation zones. Moreover, the modeling and experimental studies identified threshold applied power and ablation times beyond which increases did not yield substantive increases in ablation zone extents.
Collapse
Affiliation(s)
- Macarena Trujillo
- BioMIT, Electronic Engineering Department, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Mahtab Ebad Najafabadi
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA; (M.E.N.); (P.P.)
| | - Antonio Romero
- Department of Applied Mathematics, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Punit Prakash
- Department of Biomedical Engineering, George Washington University, Washington, DC 20052, USA; (M.E.N.); (P.P.)
| | - Francois H. Cornelis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
8
|
Du QW, Xiao F, Zheng L, Chen RD, Dong LN, Liu FY, Cheng ZG, Yu J, Liang P. Importance of the enhanced cooling system for more spherical ablation zones: Numerical simulation, ex vivo and in vivo validation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 257:108383. [PMID: 39260163 DOI: 10.1016/j.cmpb.2024.108383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/13/2024]
Abstract
INTRODUCTION This study aimed to investigate the efficacy of a small-gauge microwave ablation antenna (MWA) with an enhanced cooling system (ECS) for generating more spherical ablation zones. METHODS A comparison was made between two types of microwave ablation antennas, one with ECS and the other with a conventional cooling system (CCS). The finite element method was used to simulate in vivo ablation. Two types of antennas were used to create MWA zones for 5, 8, 10 min at 50, 60, and 80 W in ex vivo bovine livers (n = 6) and 5 min at 60 W in vivo porcine livers (n = 16). The overtreatment ratio, ablation aspect ratio, carbonization area, and other characteristcs of antennas were measured and compared using numerical simulation and gross pathologic examination. RESULTS In numerical simulation, the ECS antenna demonstrated a lower overtreatment ratio than the CCS antenna (1.38 vs 1.43 at 50 W 5 min, 1.19 vs 1.35 at 50 W 8 min, 1.13 vs 1.32 at 50 W 10 min, 1.28 vs 1.38 at 60 W 5 min, 1.14 vs 1.32 at 60 W 8 min, 1.10 vs 1.30 at 60 W 10 min). The experiments revealed that the ECS antenna generated ablation zones with a more significant aspect ratio (0.92 ± 0.03 vs 0.72 ± 0.01 at 50 W 5 min, 0.95 ± 0.02 vs 0.70 ± 0.01 at 50 W 8 min, 0.96 ± 0.01 vs 0.71 ± 0.04 at 50 W 10 min, 0.96 ± 0.01 vs 0.73 ± 0.02 at 60 W 5 min, 0.94 ± 0.03 vs 0.71 ± 0.03 at 60 W 8 min, 0.96 ± 0.02 vs 0.69 ± 0.04 at 60 W 10 min) and a smaller carbonization area (0.00 ± 0.00 cm2 vs 0.54 ± 0.06 cm2 at 50 W 5 min, 0.13 ± 0.03 cm2 vs 0.61 ± 0.09 cm2 at 50 W 8 min, 0.23 ± 0.05 cm2 vs 0.73 ± 0.05 m2 at 50 W 10 min, 0.00 ± 0.00 cm2 vs 1.59 ± 0.41 cm2 at 60 W 5 min, 0.23 ± 0.22 cm2 vs 2.11 ± 0.63 cm2 at 60 W 8 min, 0.57 ± 0.09 cm2 vs 2.55 ± 0.51 cm2 at 60 W 10 min). Intraoperative ultrasound images revealed a hypoechoic area instead of a hyperechoic area near the antenna. Hematoxylin-eosin staining of the dissected tissue revealed a correlation between the edge of the ablation zone and that of the hypoechoic area. CONCLUSIONS The ECS antenna can produce more spherical ablation zones with less charring and a clearer intraoperative ultrasound image of the ablation area than the CCS antenna.
Collapse
Affiliation(s)
- Qiao-Wei Du
- Department of Interventional Ultrasound, Chinese PLA General Hospital Fifth Medical Center, Beijing, 100853, China
| | - Fan Xiao
- Department of Interventional Ultrasound, Chinese PLA General Hospital Fifth Medical Center, Beijing, 100853, China
| | - Lin Zheng
- Department of Interventional Ultrasound, Chinese PLA General Hospital Fifth Medical Center, Beijing, 100853, China
| | - Ren-Dong Chen
- The Yuquan Campus, Zhejiang University, Hangzhou, Zhejiang, China
| | - Li-Nan Dong
- Department of Interventional Ultrasound, Chinese PLA General Hospital Fifth Medical Center, Beijing, 100853, China
| | - Fang-Yi Liu
- Department of Interventional Ultrasound, Chinese PLA General Hospital Fifth Medical Center, Beijing, 100853, China
| | - Zhi-Gang Cheng
- Department of Interventional Ultrasound, Chinese PLA General Hospital Fifth Medical Center, Beijing, 100853, China
| | - Jie Yu
- Department of Interventional Ultrasound, Chinese PLA General Hospital Fifth Medical Center, Beijing, 100853, China
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital Fifth Medical Center, Beijing, 100853, China.
| |
Collapse
|
9
|
Zhu M, Fang Y, Sun Y, Li S, Yu J, Xiong B, Wen C, Zhou B, Huang B, Yin H, Xu H. Sonogenetics in the Treatment of Chronic Diseases: A New Method for Cell Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407373. [PMID: 39488795 PMCID: PMC11672274 DOI: 10.1002/advs.202407373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Sonogenetics is an innovative technology that integrates ultrasound with genetic editing to precisely modulate cellular activities in a non-invasive manner. This method entails introducing and activating mechanosensitive channels on the cell membrane of specific cells using gene delivery vectors. When exposed to ultrasound, these channels can be manipulated to open or close, thereby impacting cellular functions. Sonogenetics is currently being used extensively in the treatment of various chronic diseases, including Parkinson's disease, vision restoration, and cancer therapy. This paper provides a comprehensive review of key components of sonogenetics and focuses on evaluating its prospects and potential challenges in the treatment of chronic disease.
Collapse
Affiliation(s)
- Mingrui Zhu
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Yan Fang
- Department of Ultrasound, Huashan HospitalFudan UniversityShanghai200040P. R. China
| | - Yikang Sun
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Shaoyue Li
- Department of Medical Ultrasound, Center of Minimally Invasive Treatment for TumorShanghai Tenth People's HospitalUltrasound Research and Education InstituteClinical Research Center for Interventional MedicineSchool of MedicineTongji UniversityShanghai200072P. R. China
| | - Jifeng Yu
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Bing Xiong
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Congjian Wen
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Boyang Zhou
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Bin Huang
- Zhejiang HospitalHangzhou310013P. R. China
| | - Haohao Yin
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| | - Huixiong Xu
- Department of UltrasoundInstitute of Ultrasound in Medicine and EngineeringZhongshan HospitalFudan UniversityShanghai200032P. R. China
| |
Collapse
|
10
|
Bošković N, Nikolić S, Radjenović B, Radmilović-Radjenović M. Safety and Effectiveness of Triple-Antenna Hepatic Microwave Ablation. Bioengineering (Basel) 2024; 11:1133. [PMID: 39593793 PMCID: PMC11591611 DOI: 10.3390/bioengineering11111133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Microwave ablation is becoming a standard procedure for treating tumors based on heat generation, causing an elevation in the tissue temperature level from 50 to 60 °C, causing tissue death. Microwave ablation is associated with uniform cell killing within ablation zones, multiple-antenna capability, low complication rates, and long-term survival. Several reports have demonstrated that multiple-antenna microwave ablation is a promising strategy for safely, rapidly, and effectively treating large tumors. The key advantage of multi-antenna tumor microwave ablation is the creation of a large, well-defined ablation zone without excessively long treatment times or high power that can damage healthy tissue. The strategic positioning of multiple probes provides a fully ablated volume, even in regions where individual probe damage is incomplete. Accurate modeling of the complex thermal and electromagnetic behaviors of tissue is critical for optimizing microwave ablation because material parameters and tissue responses can change significantly during the procedure. In the case of multi-antenna microwave ablation, the calculation complexity increases significantly, requiring significant computational resources and time. This study aimed to evaluate the efficacy and safety of liver percutaneous microwave ablation using the simultaneous activation of three antennas for the treatment of lesions larger than 3 cm. Based on the known results from a single-probe setup, researchers can estimate and evaluate various spatial configurations of the three-probe array to identify the optimal arrangement. Due to the synergistic effects of the combined radiation from the three antennas, the resulting ablation zone can be significantly larger, leading to better outcomes in terms of treatment time and effectiveness. The obtained results revealed that volumetric damage and the amount of damaged healthy tissue are smaller for a three-antenna configuration than for microwave ablation using a single-antenna and two-antenna configurations.
Collapse
Affiliation(s)
- Nikola Bošković
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (N.B.); (B.R.)
| | - Srdjan Nikolić
- Department of Surgery, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| | - Branislav Radjenović
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia; (N.B.); (B.R.)
| | | |
Collapse
|
11
|
Ran J, Ostoja-Starzewski M. Temperature and state-dependent electrical conductivity of soft biological tissue at hyperthermic temperatures. Int J Hyperthermia 2024; 41:2422509. [PMID: 39522956 PMCID: PMC11634043 DOI: 10.1080/02656736.2024.2422509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Objective: We present a physics-based, temperature and state-dependent electrical conductivity model for soft biological tissue under thermal therapies with a quantified damage parameter that represents the state of soft biological tissue (degree of denaturation). Most existing models consider electrical conductivity to be only temperature-dependent and evaluate tissue damage during post-processing after temperature calculation. Our model allows tissue damage to be coupled into the thermal model for a more accurate description of both RF ablation and electrosurgery. Methods: We model the denaturation process with an Arrhenius-type differential equation for chemical kinetics and a modified Stogryn equation for electrical conductivity under state transition. We present experimental data from two types of heating procedures at 128 kHz to validate and showcase the capability of our model. Results: Our model is able to capture the change in electrical conductivity during heating, cooling, and reheating procedures, which distinguishes different states and shows the irreversibility of denaturation. The model also accurately captures tissue change during slow cooking at a constant temperature, highlighting a state dependence. Conclusion: By incorporating state dependence into the model for electrical properties, we are able to capture the denaturation process more accurately and distinguish different degrees of damage. Our model allows the modeling of procedures involving repeated heating or cooling, which is impossible for models without a state dependence. While being able to adapt to patient-specific needs, the model can be used to improve planning and control in future robot-assisted surgeries to reduce unnecessary damage.
Collapse
Affiliation(s)
- Junren Ran
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Martin Ostoja-Starzewski
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
12
|
Keefe DW, Christianson DT, Davis GW, Oya H, Howard MA, Petkov CI, Toor F. Modeling for neurosurgical laser interstitial thermal therapy with and without intracranial recording electrodes. CURRENT RESEARCH IN NEUROBIOLOGY 2024; 7:100139. [PMID: 39347540 PMCID: PMC11437873 DOI: 10.1016/j.crneur.2024.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 10/01/2024] Open
Abstract
Laser thermal ablation has become a prominent neurosurgical treatment approach, but in epilepsy patients it cannot currently be safely implemented with intracranial recording electrodes that are used to study interictal or epileptiform activity. There is a pressing need for computational models of laser interstitial thermal therapy (LITT) with and without intracranial electrodes to enhance the efficacy and safety of optical neurotherapies. In this paper, we aimed to build a biophysical bioheat and ray optics model to study the effects of laser heating in the brain, with and without intracranial electrodes in the vicinity of the ablation zone during the LITT procedure. COMSOL Multiphysics finite element method (FEM) solver software was used to create a bioheat thermal model of brain tissue, with and without blood flow incorporation via Penne's model, to model neural tissue response to laser heating. We report that the close placement of intracranial electrodes can increase the maximum temperature of the brain tissue volume as well as impact the necrosis region volume if the electrodes are placed too closely to the laser coupled diffuse fiber tip. The model shows that an electrode displacement of 4 mm could be considered a safe distance of intracranial electrode placement away from the LITT probe treatment area. This work, for the first time, models the impact of intracranially implanted recording electrodes during LITT, which could improve the understanding of the LITT treatment procedure on the brain's neural networks a sufficient safe distance to the implanted intracranial recording electrodes. We recommend modeling safe distances for placing the electrodes with respect to the infrared laser coupled diffuse fiber tip.
Collapse
Affiliation(s)
- Daniel W. Keefe
- University of Iowa, Electrical and Computer Engineering Department, Iowa City, IA, 52242, USA
| | - David T. Christianson
- University of Iowa Hospitals and Clinics, Neurosurgery Department, Iowa City, IA, 52242, USA
| | - Greyson W. Davis
- University of Iowa, Electrical and Computer Engineering Department, Iowa City, IA, 52242, USA
| | - Hiroyuki Oya
- University of Iowa Hospitals and Clinics, Neurosurgery Department, Iowa City, IA, 52242, USA
| | - Matthew A. Howard
- University of Iowa Hospitals and Clinics, Neurosurgery Department, Iowa City, IA, 52242, USA
| | - Christopher I. Petkov
- University of Iowa Hospitals and Clinics, Neurosurgery Department, Iowa City, IA, 52242, USA
| | - Fatima Toor
- University of Iowa, Electrical and Computer Engineering Department, Iowa City, IA, 52242, USA
| |
Collapse
|
13
|
Prokhorova A, Helbig M. Experimental Validation of Realistic Measurement Setup for Quantitative UWB-Guided Hyperthermia Temperature Monitoring. SENSORS (BASEL, SWITZERLAND) 2024; 24:5902. [PMID: 39338647 PMCID: PMC11435978 DOI: 10.3390/s24185902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
Hyperthermia induces slight temperature increase of 4-8 °C inside the tumor, making it more responsive to radiation and drugs, thereby improving the outcome of the oncological treatment. To verify the level of heat in the tumor and to avoid damage of the healthy tissue, methods for non-invasive temperature monitoring are needed. Temperature estimation by means of microwave imaging is of great interest among the scientific community. In this paper, we present the results of experiments based on ultra-wideband (UWB) M-sequence technology. Our temperature estimation approach uses temperature dependency of tissue dielectric properties and relation of UWB images to the reflection coefficient on the boundary between tissue types. The realistic measurement setup for neck cancer hyperthermia considers three antenna arrangements. Data are processed with Delay and Sum beamforming and Truncated Singular Value Decomposition. Two types of experiments are presented in this paper. In the first experiment, relative permittivity of subsequently replaced tumor mimicking material is estimated, and in the second experiment, real temperature change in the tumor imitate is monitored. The results showed that the presented approach allows for qualitative as well as quantitative permittivity and temperature estimation. The frequency range for temperature estimation, preferable antenna configurations, and limitations of the method are indicated.
Collapse
Affiliation(s)
- Alexandra Prokhorova
- Biosignal Processing Group, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| | - Marko Helbig
- Biosignal Processing Group, Technische Universität Ilmenau, 98693 Ilmenau, Germany
| |
Collapse
|
14
|
Guo Y, Wang W, Li W, Li J, Zhu M, Song R, Zhu W, Wang L, Ji Z, Shi X. In vivo electrical properties of the healthy liver and the hepatic tumor in a mouse model between 1 Hz and 1 MHz during a thermal treatment. Int J Hyperthermia 2024; 41:2396122. [PMID: 39218439 DOI: 10.1080/02656736.2024.2396122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Objective: Understansding the changing patterns of in vivo electrical properties for the target tissue is crucial for the accurate temperature monitoring and the treatment efficacy in thermal therapy. Our research aims to investigate the changing patterns and the reversibility of in vivo electrical properties for both healthy livers and liver tumors in a mouse model over a frequency range of 1 Hz to 1 MHz at temperatures between 30 °C to 90 °C. Methods and materials: The mice were anesthetized and the target organ was exposed. An 808-nm near-infrared laser was employed as the heating source to heat the organ in vivo. The four-needle electrode, connected to an impedance analyzer, was utilized to obtain the impedance at varying temperatures, which were monitored by a thermocouple. Results: The findings indicated a gradual decline in impedance with an increase in temperature. Furthermore, the impedance was normalized to that at 30 °C, and the real part of the normalized impedance was defined as the k-values, which range from 0 to 1. The results demonstrated a linear correlation between k-values and temperatures (R2 > 0.9 for livers and R2 > 0.8 for tumors). Significant differences were observed between livers and tumors at 1, 10 and 50 kHz (p < 0.05). Additionally, it was demonstrated that the electrical properties could be reversed when the temperature was below or equal to 45 °C. Conclusion: We believe that these results will contribute to the advancement of radiofrequency ablation systems and the development of techniques for temperature monitoring during liver thermal treatment.
Collapse
Affiliation(s)
- Yitong Guo
- Department of Biomedical Engineering, Shaanxi Provincial key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Air Force Medical University, Xi'an, China
- Department of Ultrasound Diagnosis, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Weice Wang
- Department of Biomedical Engineering, Shaanxi Provincial key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Air Force Medical University, Xi'an, China
| | - Weichen Li
- Department of Biomedical Engineering, Shaanxi Provincial key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Air Force Medical University, Xi'an, China
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Junyao Li
- Department of Biomedical Engineering, Shaanxi Provincial key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Air Force Medical University, Xi'an, China
| | - Mingxu Zhu
- Department of Biomedical Engineering, Shaanxi Provincial key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Air Force Medical University, Xi'an, China
| | - Ruteng Song
- Department of Biomedical Engineering, Shaanxi Provincial key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Air Force Medical University, Xi'an, China
| | - Wenjing Zhu
- Department of Biomedical Engineering, Shaanxi Provincial key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Air Force Medical University, Xi'an, China
- Institute of Medical Research, Northwest Polytechnical University, Xi'an, China
| | - Lei Wang
- Institute of Medical Research, Northwest Polytechnical University, Xi'an, China
| | - Zhenyu Ji
- Department of Biomedical Engineering, Shaanxi Provincial key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Air Force Medical University, Xi'an, China
| | - Xuetao Shi
- Department of Biomedical Engineering, Shaanxi Provincial key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Air Force Medical University, Xi'an, China
| |
Collapse
|
15
|
Shu S, Yang G, Han H, Zhan T, Dang H, Xu Y. Accurate Temperature Reconstruction in Radiofrequency Ablation for Atherosclerotic Plaques Based on Inverse Heat Transfer Analysis. J Biomech Eng 2024; 146:081010. [PMID: 38491980 DOI: 10.1115/1.4065111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Radio frequency ablation has emerged as a widely accepted treatment for atherosclerotic plaques. However, monitoring the temperature field distribution in the blood vessel wall during this procedure presents challenges. This limitation increases the risk of endothelial cell damage and inflammatory responses, potentially leading to lumen restenosis. The aim of this study is to accurately reconstruct the transient temperature distribution by solving a stochastic heat transfer model with uncertain parameters using an inverse heat transfer algorithm and temperature measurement data. The nonlinear least squares optimization method, Levenberg-Marquardt (LM), was employed to solve the inverse heat transfer problem for parameter estimation. Then, to improve the convergence of the algorithm and reduce the computational resources, a method of parameter sensitivity analysis was proposed to select parameters mainly affecting the temperature field. Furthermore, the robustness and accuracy of the algorithm were verified by introducing random noise to the temperature measurements. Despite the high level of temperature measurement noise (ξ = 5%) and larger initial guess deviation, the parameter estimation results remained closely aligned with the actual values, with an overall ERMS consistently below 0.05. The absolute errors between the reconstruction temperature at the measurement points TC1, TC2, and TC3, and the actual temperature, remained within 0.33 °C, 2.4 °C, and 1.17 °C, respectively. The Levenberg-Marquardt algorithm employed in this study proficiently tackled the ill-posed issue of inversion process and obtained a strong consistency between the reconstructed temperature the actual temperature.
Collapse
Affiliation(s)
- Shuang Shu
- Institute of Bio-thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guoliang Yang
- Institute of Bio-thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hengxin Han
- Institute of Bio-thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Taijie Zhan
- Institute of Bio-thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hangyu Dang
- Institute of Bio-thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yi Xu
- Institute of Bio-thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
16
|
Wilk LS, Doppegieter M, van der Beek N, van Leeuwen TG, Aalders MCG. Modeling pulsed dye laser treatment of psoriatic plaques by combining numerical methods and image-derived lesion morphologies. Lasers Surg Med 2024; 56:508-522. [PMID: 38576388 DOI: 10.1002/lsm.23781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVES Knowledge of the physical effects of pulsed dye laser (PDL) treatment of psoriatic lesions is essential in unraveling the remedial mechanisms of this treatment and hence also in maximizing in its disease-modifying potential. Therefore, the main objective of this study was to provide estimates of these physical effects (for laser wavelengths of 585 and 595 nm), with the aim of identifying pathogenic processes that may be affected by these conditions. METHODS We modeled the laser light propagation and subsequent photothermal heating by numerically solving the transient diffusion and heat equations simultaneously. To this end, we used the finite element method in conjunction with an image-derived psoriatic lesion morphology (which was defined by segmenting blood vessels from a confocal microscopy image of a fluorescently labeled section of a 3 mm punch biopsy of a psoriatic lesion). The resulting predictions of the generated temperature field within the lesion were then used to assess the possibility of stalling or arresting some suspected pathogenic processes. RESULTS According to our results, it is conceivable that perivascular nerves are thermally denatured, as almost all locations that reach 60°C were found to be within 18 µm (at 585 nm) and 11 µm (at 595 nm) of a blood vessel wall. Furthermore, activation of TRPV1 and TRPV2 channels in perivascular neuronal and immune cells is highly likely, since a critical temperature of 43°C is generated at locations within up to 350 µm of a vessel wall (at both wavelengths) and sustained for up to 700 ms (at 585 nm) and 40 ms (at 595 nm), while a critical temperature of 52°C is reached by locations within 80 µm (at 585 nm) and 30 µm (at 595 nm) of a vessel wall and sustained for up to 100 ms (at 585 nm) and 30 ms (at 595 nm). Finally, we found that the blood vessel coagulation-inducing temperature of 70°C is sustained in the vascular epithelium for up to 19 and 5 ms at 585 and 595 nm, respectively, rendering partial or total loss of vascular functionality a distinct possibility. CONCLUSIONS The presented approach constitutes a useful tool to provide realistic estimates of the photothermal effects of PDL treatment of psoriatic plaques (as well as other selective photothermolysis-based treatments), yielding information that is essential in guiding future experimental studies toward unraveling the remedial mechanisms of these treatments.
Collapse
Affiliation(s)
- Leah S Wilk
- Amsterdam UMC, location University of Amsterdam, Biomedical Engineering and Physics, Amsterdam, The Netherlands
- Co van Ledden Hulsebosch Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
| | - Meagan Doppegieter
- Amsterdam UMC, location University of Amsterdam, Biomedical Engineering and Physics, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Nick van der Beek
- ZBC MultiCare, Independent Treatment Center for Dermatology, Hilversum, The Netherlands
| | - Ton G van Leeuwen
- Amsterdam UMC, location University of Amsterdam, Biomedical Engineering and Physics, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrythmias, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Maurice C G Aalders
- Amsterdam UMC, location University of Amsterdam, Biomedical Engineering and Physics, Amsterdam, The Netherlands
- Co van Ledden Hulsebosch Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Methodology, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Gao T, Liang L, Ding H, Wang G. Patient-specific temperature distribution prediction in laser interstitial thermal therapy: single-irradiation data-driven method. Phys Med Biol 2024; 69:105019. [PMID: 38648787 DOI: 10.1088/1361-6560/ad4194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Laser interstitial thermal therapy (LITT) is popular for treating brain tumours and epilepsy. The strict control of tissue thermal damage extent is crucial for LITT. Temperature prediction is useful for predicting thermal damage extent. Accurately predictingin vivobrain tissue temperature is challenging due to the temperature dependence and the individual variations in tissue properties. Considering these factors is essential for improving the temperature prediction accuracy.Objective. To present a method for predicting patient-specific tissue temperature distribution within a target lesion area in the brain during LITT.Approach. A magnetic resonance temperature imaging (MRTI) data-driven estimation model was constructed and combined with a modified Pennes bioheat transfer equation (PBHE) to predict patient-specific temperature distribution. In the PBHE for temperature prediction, the individual specificity and temperature dependence of thermal tissue properties and blood perfusion, as well as the individual specificity of optical tissue properties were considered. Only MRTI data during one laser irradiation were required in the method. This enables the prediction of patient-specific temperature distribution and the resulting thermal damage region for subsequent ablations.Main results. Patient-specific temperature prediction was evaluated based on clinical data acquired during LITT in the brain, using intraoperative MRTI data as the reference standard. Our method significantly improved the prediction performance of temperature distribution and thermal damage region. The average root mean square error was decreased by 69.54%, the average intraclass correlation coefficient was increased by 37.5%, the average Dice similarity coefficient was increased by 43.14% for thermal damage region prediction.Significance. The proposed method can predict temperature distribution and thermal damage region at an individual patient level during LITT, providing a promising approach to assist in patient-specific treatment planning for LITT in the brain.
Collapse
Affiliation(s)
- Tingting Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Libin Liang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hui Ding
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Guangzhi Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
18
|
Matella M, Hunter K, Balasubramanian S, Walker D. The Use of Virtual Tissue Constructs That Include Morphological Variability to Assess the Potential of Electrical Impedance Spectroscopy to Differentiate between Thyroid and Parathyroid Tissues during Surgery. SENSORS (BASEL, SWITZERLAND) 2024; 24:2198. [PMID: 38610409 PMCID: PMC11014196 DOI: 10.3390/s24072198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Electrical impedance spectroscopy (EIS) has been proposed as a promising noninvasive method to differentiate healthy thyroid from parathyroid tissues during thyroidectomy. However, previously reported similarities in the in vivo measured spectra of these tissues during a pilot study suggest that this separation may not be straightforward. We utilise computational modelling as a method to elucidate the distinguishing characteristics in the EIS signal and explore the features of the tissue that contribute to the observed electrical behaviour. Firstly, multiscale finite element models (or 'virtual tissue constructs') of thyroid and parathyroid tissues were developed and verified against in vivo tissue measurements. A global sensitivity analysis was performed to investigate the impact of physiological micro-, meso- and macroscale tissue morphological features of both tissue types on the computed macroscale EIS spectra and explore the separability of the two tissue types. Our results suggest that the presence of a surface fascia layer could obstruct tissue differentiation, but an analysis of the separability of simulated spectra without the surface fascia layer suggests that differentiation of the two tissue types should be possible if this layer is completely removed by the surgeon. Comprehensive in vivo measurements are required to fully determine the potential for EIS as a method in distinguishing between thyroid and parathyroid tissues.
Collapse
Affiliation(s)
- Malwina Matella
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK;
- Insigneo Institute for In Silico Medicine, Sheffield S1 3JD, UK
| | - Keith Hunter
- Liverpool Head and Neck Centre, Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 7TX, UK;
| | - Saba Balasubramanian
- Department of Oncology and Metabolism, Royal Hallamshire Hospital School of Medicine and Biomedical Sciences, University of Sheffield, Sheffield S10 2RX, UK;
| | - Dawn Walker
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK;
- Insigneo Institute for In Silico Medicine, Sheffield S1 3JD, UK
| |
Collapse
|
19
|
Rouni MA, Shalev B, Tsanidis G, Markakis I, Kraus S, Rukenstein P, Suchi D, Shalev O, Samaras T. A Validated Methodological Approach to Prove the Safety of Clinical Electromagnetic Induction Systems in Magnetic Hyperthermia. Cancers (Basel) 2024; 16:621. [PMID: 38339373 PMCID: PMC10854696 DOI: 10.3390/cancers16030621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The present study focuses on the development of a methodology for evaluating the safety of MNH systems, through the numerical prediction of the induced temperature rise in superficial skin layers due to eddy currents heating under an alternating magnetic field (AMF). The methodology is supported and validated through experimental measurements of the AMF's distribution, as well as temperature data from the torsos of six patients who participated in a clinical trial study. The simulations involved a computational model of the actual coil, a computational model of the cooling system used for the cooling of the patients during treatment, and a detailed human anatomical model from the Virtual Population family. The numerical predictions exhibit strong agreement with the experimental measurements, and the deviations are below the estimated combined uncertainties, confirming the accuracy of computational modeling. This study highlights the crucial role of simulations for translational medicine and paves the way for personalized treatment planning.
Collapse
Affiliation(s)
- Maria Anastasia Rouni
- Thessaloniki Software Solutions S.A., 55535 Thessaloniki, Greece; (G.T.); (I.M.)
- Faculty of Sciences, School of Physics, Aristotle University, 54124 Thessaloniki, Greece;
| | - Boaz Shalev
- New Phase Ltd., Petah Tikva 4934829, Israel; (B.S.); (S.K.); (P.R.); (D.S.); (O.S.)
| | - George Tsanidis
- Thessaloniki Software Solutions S.A., 55535 Thessaloniki, Greece; (G.T.); (I.M.)
| | - Ioannis Markakis
- Thessaloniki Software Solutions S.A., 55535 Thessaloniki, Greece; (G.T.); (I.M.)
| | - Sarah Kraus
- New Phase Ltd., Petah Tikva 4934829, Israel; (B.S.); (S.K.); (P.R.); (D.S.); (O.S.)
| | - Pazit Rukenstein
- New Phase Ltd., Petah Tikva 4934829, Israel; (B.S.); (S.K.); (P.R.); (D.S.); (O.S.)
| | - Doron Suchi
- New Phase Ltd., Petah Tikva 4934829, Israel; (B.S.); (S.K.); (P.R.); (D.S.); (O.S.)
| | - Ofer Shalev
- New Phase Ltd., Petah Tikva 4934829, Israel; (B.S.); (S.K.); (P.R.); (D.S.); (O.S.)
| | - Theodoros Samaras
- Faculty of Sciences, School of Physics, Aristotle University, 54124 Thessaloniki, Greece;
- Department of Physics, University of Malta, 595 38 Msida, Malta
| |
Collapse
|
20
|
Fan Y, Xu L, Liu S, Li J, Xia J, Qin X, Li Y, Gao T, Tang X. The State-of-the-Art and Perspectives of Laser Ablation for Tumor Treatment. CYBORG AND BIONIC SYSTEMS 2024; 5:0062. [PMID: 38188984 PMCID: PMC10769065 DOI: 10.34133/cbsystems.0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/21/2023] [Indexed: 01/09/2024] Open
Abstract
Tumors significantly impact individuals' physical well-being and quality of life. With the ongoing advancements in optical technology, information technology, robotic technology, etc., laser technology is being increasingly utilized in the field of tumor treatment, and laser ablation (LA) of tumors remains a prominent area of research interest. This paper presents an overview of the recent progress in tumor LA therapy, with a focus on the mechanisms and biological effects of LA, commonly used ablation lasers, image-guided LA, and robotic-assisted LA. Further insights and future prospects are discussed in relation to these aspects, and the paper proposed potential future directions for the development of tumor LA techniques.
Collapse
Affiliation(s)
- Yingwei Fan
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Liancheng Xu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Shuai Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jialu Xia
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xingping Qin
- John B. Little Center for Radiation Sciences, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Yafeng Li
- China Electronics Harvest Technology Co. Ltd., China
| | - Tianxin Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
21
|
Mak NL, Ng WH, Ooi EH, Lau EV, Pamidi N, Foo JJ, Ooi ET, Ali AFM. Enlarging the thermal coagulation volume during thermochemical ablation with alternating acid-base injection by shortening the injection interval: A computational study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107866. [PMID: 37865059 DOI: 10.1016/j.cmpb.2023.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND AND OBJECTIVES Thermochemical ablation (TCA) is a cancer treatment that utilises the heat released from the neutralisation of acid and base to raise tissue temperature to levels sufficient to induce thermal coagulation. Computational studies have demonstrated that the coagulation volume produced by sequential injection is smaller than that with simultaneous injection. By injecting the reagents in an ensuing manner, the region of contact between acid and base is limited to a thin contact layer sandwiched between the distribution of acid and base. It is hypothesised that increasing the frequency of acid-base injections into the tissue by shortening the injection interval for each reagent can increase the effective area of contact between acid and base, thereby intensifying neutralisation and the exothermic heat released into the tissue. METHODS To verify this hypothesis, a computational model was developed to simulate the thermochemical processes involved during TCA with sequential injection. Four major processes that take place during TCA were considered, i.e., the flow of acid and base, their neutralisation, the release of exothermic heat and the formation of thermal damage inside the tissue. Equimolar acid and base at 7.5 M was injected into the tissue intermittently. Six injection intervals, namely 3, 6, 15, 20, 30 and 60 s were investigated. RESULTS Shortening of the injection interval led to the enlargement of coagulation volume. If one considers only the coagulation volume as the determining factor, then a 15 s injection interval was found to be optimum. Conversely, if one places priority on safety, then a 3 s injection interval would result in the lowest amount of reagent residue inside the tissue after treatment. With a 3 s injection interval, the coagulation volume was found to be larger than that of simultaneous injection with the same treatment parameters. Not only that, the volume also surpassed that of radiofrequency ablation (RFA); a conventional thermal ablation technique commonly used for liver cancer treatment. CONCLUSION The numerical results verified the hypothesis that shortening the injection interval will lead to the formation of larger thermal coagulation zone during TCA with sequential injection. More importantly, a 3 s injection interval was found to be optimum for both efficacy (large coagulation volume) and safety (least amount of reagent residue).
Collapse
Affiliation(s)
- Nguoy L Mak
- Department of Mechanical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Wen H Ng
- Department of Mechanical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ean H Ooi
- Department of Mechanical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Ee V Lau
- Department of Mechanical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - N Pamidi
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ji J Foo
- Department of Mechanical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ean T Ooi
- School of Engineering and Information Technology, Faculty of Science and Technology, Federation University, VIC 3350, Australia
| | - Ahmad F Mohd Ali
- MSU Medical Centre, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor, Malaysia
| |
Collapse
|
22
|
Ling H, Zhang Q, Luo Q, Ouyang D, He Z, Sun J, Sun M. Dynamic immuno-nanomedicines in oncology. J Control Release 2024; 365:668-687. [PMID: 38042376 DOI: 10.1016/j.jconrel.2023.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Anti-cancer therapeutics have achieved significant advances due to the emergence of immunotherapies that rely on the identification of tumors by the patients' immune system and subsequent tumor eradication. However, tumor cells often escape immunity, leading to poor responsiveness and easy tolerance to immunotherapy. Thus, the potentiated anti-tumor immunity in patients resistant to immunotherapies remains a challenge. Reactive oxygen species-based dynamic nanotherapeutics are not new in the anti-tumor field, but their potential as immunomodulators has only been demonstrated in recent years. Dynamic nanotherapeutics can distinctly enhance anti-tumor immune response, which derives the concept of the dynamic immuno-nanomedicines (DINMs). This review describes the pivotal role of DINMs in cancer immunotherapy and provides an overview of the clinical realities of DINMs. The preclinical development of emerging DINMs is also outlined. Moreover, strategies to synergize the antitumor immunity by DINMs in combination with other immunologic agents are summarized. Last but not least, the challenges and opportunities related to DINMs-mediated immune responses are also discussed.
Collapse
Affiliation(s)
- Hao Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qinyi Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
| | - Defang Ouyang
- Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
23
|
Wang HC, Phan TN, Kao CL, Yeh CK, Lin YC. Genetically encoded mediators for sonogenetics and their applications in neuromodulation. Front Cell Neurosci 2023; 17:1326279. [PMID: 38188668 PMCID: PMC10766825 DOI: 10.3389/fncel.2023.1326279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Sonogenetics is an emerging approach that harnesses ultrasound for the manipulation of genetically modified cells. The great penetrability of ultrasound waves enables the non-invasive application of external stimuli to deep tissues, particularly advantageous for brain stimulation. Genetically encoded ultrasound mediators, a set of proteins that respond to ultrasound-induced bio-effects, play a critical role in determining the effectiveness and applications of sonogenetics. In this context, we will provide an overview of these ultrasound-responsive mediators, delve into the molecular mechanisms governing their response to ultrasound stimulation, and summarize their applications in neuromodulation.
Collapse
Affiliation(s)
- Hsien-Chu Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Thi-Nhan Phan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Ling Kao
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
24
|
Yu X, Serrallés JEC, Giannakopoulos II, Liu Z, Daniel L, Lattanzi R, Zhang Z. PIFON-EPT: MR-Based Electrical Property Tomography Using Physics-Informed Fourier Networks. IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES 2023; 9:49-60. [PMID: 39463749 PMCID: PMC11501079 DOI: 10.1109/jmmct.2023.3345798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We propose Physics-Informed Fourier Networks for Electrical Properties (EP) Tomography (PIFON-EPT), a novel deep learning-based method for EP reconstruction using noisy and/or incomplete magnetic resonance (MR) measurements. Our approach leverages the Helmholtz equation to constrain two networks, responsible for the denoising and completion of the transmit fields, and the estimation of the object's EP, respectively. We embed a random Fourier features mapping into our networks to enable efficient learning of high-frequency details encoded in the transmit fields. We demonstrated the efficacy of PIFON-EPT through several simulated experiments at 3 and 7 tesla(T) MR imaging, and showed that our method can reconstruct physically consistent EP and transmit fields. Specifically, when only 20% of the noisy measured fields were used as inputs, PIFON-EPT reconstructed the EP of a phantom with ≤ 5% error, and denoised and completed the measurements with ≤ 1% error. Additionally, we adapted PIFON-EPT to solve the generalized Helmholtz equation that accounts for gradients of EP between inhomogeneities. This yielded improved results at interfaces between different materials without explicit knowledge of boundary conditions. PIFON-EPT is the first method that can simultaneously reconstruct EP and transmit fields from incomplete noisy MR measurements, providing new opportunities for EPT research.
Collapse
Affiliation(s)
- Xinling Yu
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106 USA
| | - José E C Serrallés
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Ilias I Giannakopoulos
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, NY 10016 USA
| | - Ziyue Liu
- Department of Statistics and Applied Probability, University of California, Santa Barbara, CA 93106 USA
| | - Luca Daniel
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAIR), and with the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, NY 10016 USA
| | - Zheng Zhang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106 USA
| |
Collapse
|
25
|
De Vita E, Lo Presti D, Massaroni C, Iadicicco A, Schena E, Campopiano S. A review on radiofrequency, laser, and microwave ablations and their thermal monitoring through fiber Bragg gratings. iScience 2023; 26:108260. [PMID: 38026224 PMCID: PMC10660479 DOI: 10.1016/j.isci.2023.108260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Thermal ablation of tumors aims to apply extreme temperatures inside the target tissue to achieve substantial tumor destruction in a minimally invasive manner. Several techniques are comprised, classified according to the type of energy source. However, the lack of treatment selectivity still needs to be addressed, potentially causing two risks: i) incomplete tumor destruction and recurrence, or conversely, ii) damage of the surrounding healthy tissue. Therefore, the research herein reviewed seeks to develop sensing systems based on fiber Bragg gratings (FBGs) for thermal monitoring inside the lesion during radiofrequency, laser, and microwave ablation. This review shows that, mainly thanks to multiplexing and minimal invasiveness, FBGs provide an optimal sensing solution. Their temperature measurements are the feedback to control the ablation process and allow to investigate different treatments, compare their outcomes, and quantify the impact of factors such as proximity to thermal probe and blood vessels, perfusion, and tissue type.
Collapse
Affiliation(s)
- Elena De Vita
- Department of Engineering, University of Naples “Parthenope”, 80143 Naples, Italy
| | - Daniela Lo Presti
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Carlo Massaroni
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Agostino Iadicicco
- Department of Engineering, University of Naples “Parthenope”, 80143 Naples, Italy
| | - Emiliano Schena
- Department of Engineering, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Stefania Campopiano
- Department of Engineering, University of Naples “Parthenope”, 80143 Naples, Italy
| |
Collapse
|
26
|
Bini F, Pica A, Marinozzi F, Giusti A, Leoncini A, Trimboli P. Model-Optimizing Radiofrequency Parameters of 3D Finite Element Analysis for Ablation of Benign Thyroid Nodules. Bioengineering (Basel) 2023; 10:1210. [PMID: 37892940 PMCID: PMC10604455 DOI: 10.3390/bioengineering10101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Radiofrequency (RF) ablation represents an efficient strategy to reduce the volume of thyroid nodules. In this study, a finite element model was developed with the aim of optimizing RF parameters, e.g., input power and treatment duration, in order to achieve the target volume reduction rate (VRR) for a thyroid nodule. RF ablation is modelled as a coupled electro-thermal problem wherein the electric field is applied to induce tissue heating. The electric problem is solved with the Laplace equation, the temperature distribution is estimated with the Pennes bioheat equation, and the thermal damage is evaluated using the Arrhenius equation. The optimization model is applied to RF electrode with different active tip lengths in the interval from 5 mm to 40 mm at the 5 mm step. For each case, we also explored the influence of tumour blood perfusion rate on RF ablation outcomes. The model highlights that longer active tips are more efficient as they require lesser power and shorter treatment time to reach the target VRR. Moreover, this condition is characterized by a reduced transversal ablation zone. In addition, a higher blood perfusion increases the heat dispersion, requiring a different combination of RF power and time treatment to achieve the target VRR. The model may contribute to an improvement in patient-specific RF ablation treatment.
Collapse
Affiliation(s)
- Fabiano Bini
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (A.P.); (F.M.)
| | - Andrada Pica
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (A.P.); (F.M.)
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy; (A.P.); (F.M.)
| | - Alessandro Giusti
- Dalle Mole Institute for Artificial Intelligence (IDSIA), Università della Svizzera Italiana (USI), The University of Applied Sciences and Arts of Southern Switzerland (SUPSI), 6900 Lugano, Switzerland;
| | - Andrea Leoncini
- Servizio di Radiologia e Radiologia Interventistica, Istituto di Imaging della Svizzera Italiana (IIMSI), Ente Ospedaliero Cantonale (EOC), 6900 Lugano, Switzerland;
| | - Pierpaolo Trimboli
- Clinic of Endocrinology and Diabetology, Lugano Regional Hospital, Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| |
Collapse
|
27
|
Ahn GR, Jang YN, Lee SY, Kim WJ, Han HS, Yoo KH, Bae TH, Barn J, Seok J, Kim BJ. Full-thickness skin rejuvenation by a novel dual-length microneedle radiofrequency device: A proof-of-concept study using human skin. Lasers Surg Med 2023; 55:758-768. [PMID: 37548075 DOI: 10.1002/lsm.23707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND A novel dual-length microneedle radiofrequency (DLMR) device has been developed to achieve full-thickness skin rejuvenation by stimulating the papillary and reticular dermis simultaneously. This device's dual-level targeting concept need to be validated on human skin, although its clinical efficacy has been demonstrated in a previous study. OBJECTIVES This study evaluated the dual-depth targeting capability and the ability to induce rejuvenation in each layer of vertical skin anatomy, that is, the epidermis, papillary dermis, and reticular dermis, using full-thickness human facial skin samples. METHODS Human facial skin samples were obtained from 13 Asian patients who had facelift surgery. To validate the dual-depth targeting concept, DMLR-treated skin samples were analyzed using a digital microscope, thermal imaging, and hematoloxylin and eosin (H&E) staining immediately after DLMR application. On samples stained with H&E, Masson's tricrome, and Verhoeff-Van Gieson, histological observation and morphometric analysis were performed. Total collagen assay (TCA) and quantitative real-time polymerase chain reaction (qPCR) were used to assess changes in total collagen content and mRNA expression levels of collagen types I/III and vimentin, respectively. RESULTS The DLMR device successfully induced thermal stimulation in the papillary and reticular dermis. The thickness, stacks, and dermal-epidermal junction convolution of the epidermis treated with DLMR were significantly increased. Collagen bundles in the dermis treated with DLMR exhibited a notable increase in thickness, density, and horizontal alignment. Dermal collagen levels were significantly higher in the morphometric and TCA data, as well as in the qPCR data for dermal matrix proteins. CONCLUSIONS Our DLMR device independently and precisely targeted the papillary and reticular dermis, and it appears to be an effective modality for implementing full-thickness rejuvenation.
Collapse
Affiliation(s)
- Ga Ram Ahn
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, South Korea
- Department of Dermatology, Chung-Ang University Hospital, Seoul, South Korea
| | - You Na Jang
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, South Korea
| | - So Young Lee
- Department of Dermatology, Chung-Ang University Hospital, Seoul, South Korea
| | - Woo Ju Kim
- Department of Plastic Surgery, Chung-Ang University Gwangmyeong Hospital, Seoul, South Korea
| | - Hye Sung Han
- Department of Dermatology, Chung-Ang University Gwangmyeong Hospital, Seoul, South Korea
| | - Kwang Ho Yoo
- Department of Dermatology, Chung-Ang University Gwangmyeong Hospital, Seoul, South Korea
| | - Tae Hui Bae
- Department of Plastic Surgery, Chung-Ang University Gwangmyeong Hospital, Seoul, South Korea
| | | | - Joon Seok
- Department of Dermatology, Chung-Ang University Hospital, Seoul, South Korea
| | - Beom Joon Kim
- Department of Medicine, Graduate School, Chung-Ang University, Seoul, South Korea
- Department of Dermatology, Chung-Ang University Hospital, Seoul, South Korea
| |
Collapse
|
28
|
Bianchi L, Fiorentini S, Gianella S, Gianotti S, Iadanza C, Asadi S, Saccomandi P. Measurement of Thermal Conductivity and Thermal Diffusivity of Porcine and Bovine Kidney Tissues at Supraphysiological Temperatures up to 93 °C. SENSORS (BASEL, SWITZERLAND) 2023; 23:6865. [PMID: 37571648 PMCID: PMC10422510 DOI: 10.3390/s23156865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
This experimental study aimed to characterize the thermal properties of ex vivo porcine and bovine kidney tissues in steady-state heat transfer conditions in a wider thermal interval (23.2-92.8 °C) compared to previous investigations limited to 45 °C. Thermal properties, namely thermal conductivity (k) and thermal diffusivity (α), were measured in a temperature-controlled environment using a dual-needle probe connected to a commercial thermal property analyzer, using the transient hot-wire technique. The estimation of measurement uncertainty was performed along with the assessment of regression models describing the trend of measured quantities as a function of temperature to be used in simulations involving heat transfer in kidney tissue. A direct comparison of the thermal properties of the same tissue from two different species, i.e., porcine and bovine kidney tissues, with the same experimental transient hot-wire technique, was conducted to provide indications on the possible inter-species variabilities of k and α at different selected temperatures. Exponential fitting curves were selected to interpolate the measured values for both porcine and bovine kidney tissues, for both k and α. The results show that the k and α values of the tissues remained rather constant from room temperature up to the onset of water evaporation, and a more marked increase was observed afterward. Indeed, at the highest investigated temperatures, i.e., 90.0-92.8 °C, the average k values were subject to 1.2- and 1.3-fold increases, compared to their nominal values at room temperature, in porcine and bovine kidney tissue, respectively. Moreover, at 90.0-92.8 °C, 1.4- and 1.2-fold increases in the average values of α, compared to baseline values, were observed for porcine and bovine kidney tissue, respectively. No statistically significant differences were found between the thermal properties of porcine and bovine kidney tissues at the same selected tissue temperatures despite their anatomical and structural differences. The provided quantitative values and best-fit regression models can be used to enhance the accuracy of the prediction capability of numerical models of thermal therapies. Furthermore, this study may provide insights into the refinement of protocols for the realization of tissue-mimicking phantoms and the choice of tissue models for bioheat transfer studies in experimental laboratories.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, 20156 Milan, Italy; (L.B.); (S.F.); (S.G.); (S.G.); (C.I.); (S.A.)
| |
Collapse
|
29
|
Al-Lehaibi EAN. Mathematical Modelling with the Exact Solution of Three Different Bioheat Conduction Models of a Skin Tissue Shocked by Thermoelectrical Effect. Int J Biomater 2023; 2023:3863773. [PMID: 37492143 PMCID: PMC10365921 DOI: 10.1155/2023/3863773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
This research deals with the temperature increment and responsiveness of skin tissue to a continuous flow of surface heat induced by a constant-voltage electrical current. The exact analytical solution for the dual-phase-lag (DPL) of bioheat transfer has been obtained. It is used to confine the variables to a limited domain to solve the governing equations. The transition temperature reactions have been measured and investigated. The figures provide a comparison of the Pennes, Tzou models, and Vernotte-Cattaneo models. The numerical results demonstrate the values of the voltage, resistance, electric shock time, and dual-phase-lag time parameters which have significant influences on the distributions of the dynamic and conductive temperature rise through the skin tissue.
Collapse
Affiliation(s)
- Eman A. N. Al-Lehaibi
- Mathematics Department, Al-Lith University College, Umm Al-Qura University, Al-Lith, Saudi Arabia
| |
Collapse
|
30
|
Bianchi L, Bossi A, Pifferi A, Saccomandi P. Characterization of the Optical and Thermal Properties of Cardiac Tissue as a Function of Temperature. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083459 DOI: 10.1109/embc40787.2023.10340629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
In this work, we devised the first characterization of the optical and thermal properties of ex vivo cardiac tissue as a function of different selected temperatures, ranging from room temperature to hyperthermic and ablative temperatures. The broadband (i.e., from 650 nm to 1100 nm) estimation of the optical properties, i.e., absorption coefficient (μa) and reduced scattering coefficient $({\mu ^{\prime}}_s)$, was performed by means of time-domain diffuse optics. Besides, the measurement of the thermal properties was based on the transient hot-wire technique, employing a dual-needle probe to estimate the tissue thermal conductivity (k), thermal diffusivity (α), and volumetric heat capacity (Cv). Increasing the tissue temperature led to variations in the spectral characteristics of μa (e.g., the redshift of the 780 nm peak, the rise of a new peak at 840 nm, and the formation of a valley at 900 nm). Moreover, an increase in the values of ${\mu ^{\prime}}_s$ was assessed as tissue temperature raised (e.g., for 800 nm, at 25 °C ${\mu ^{\prime}}_s = 9.8{\text{ c}}{{\text{m}}^{{\text{ - 1}}}}$, while at 77 °C ${\mu ^{\prime}}_s = 29.1{\text{ c}}{{\text{m}}^{{\text{ - 1}}}}$). Concerning the thermal properties characterization, k was almost constant in the selected temperature interval. Conversely, α and Cv were subjected to an increase and a decrease with temperature, respectively; thus, they registered values of 0.190 mm2/s and 3.03 MJ/(m3•K) at the maximum investigated temperature (79 °C), accordingly.Clinical Relevance- The experimentally obtained optical and thermal properties of cardiac tissue are useful to improve the accuracy of simulation-based tools for thermal therapy planning. Furthermore, the measured properties can serve as a reference for the realization of tissue-mimicking phantoms for medical training and testing of medical instruments.
Collapse
|
31
|
Ambattu LA, Yeo LY. Sonomechanobiology: Vibrational stimulation of cells and its therapeutic implications. BIOPHYSICS REVIEWS 2023; 4:021301. [PMID: 38504927 PMCID: PMC10903386 DOI: 10.1063/5.0127122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2024]
Abstract
All cells possess an innate ability to respond to a range of mechanical stimuli through their complex internal machinery. This comprises various mechanosensory elements that detect these mechanical cues and diverse cytoskeletal structures that transmit the force to different parts of the cell, where they are transcribed into complex transcriptomic and signaling events that determine their response and fate. In contrast to static (or steady) mechanostimuli primarily involving constant-force loading such as compression, tension, and shear (or forces applied at very low oscillatory frequencies (≤ 1 Hz) that essentially render their effects quasi-static), dynamic mechanostimuli comprising more complex vibrational forms (e.g., time-dependent, i.e., periodic, forcing) at higher frequencies are less well understood in comparison. We review the mechanotransductive processes associated with such acoustic forcing, typically at ultrasonic frequencies (> 20 kHz), and discuss the various applications that arise from the cellular responses that are generated, particularly for regenerative therapeutics, such as exosome biogenesis, stem cell differentiation, and endothelial barrier modulation. Finally, we offer perspectives on the possible existence of a universal mechanism that is common across all forms of acoustically driven mechanostimuli that underscores the central role of the cell membrane as the key effector, and calcium as the dominant second messenger, in the mechanotransduction process.
Collapse
Affiliation(s)
- Lizebona August Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| |
Collapse
|
32
|
Rasouli R, Paun RA, Tabrizian M. Sonoprinting nanoparticles on cellular spheroids via surface acoustic waves for enhanced nanotherapeutics delivery. LAB ON A CHIP 2023; 23:2091-2105. [PMID: 36942710 DOI: 10.1039/d2lc00854h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nanotherapeutics, on their path to the target tissues, face numerous physicochemical hindrances that affect their therapeutic efficacy. Physical barriers become more pronounced in pathological tissues, such as solid tumors, where they limit the penetration of nanocarriers into deeper regions, thereby preventing the efficient delivery of drug cargo. To address this challenge, we introduce a novel approach that employs surface acoustic wave (SAW) technology to sonoprint and enhance the delivery of nanoparticles onto and into cell spheroids. Our SAW platform is designed to generate focused and unidirectional acoustic waves for creating vigorous acoustic streaming while promoting Bjerknes forces. The effect of SAW excitation on cell viability, as well as the accumulation and penetration of nanoparticles on human breast cancer (MCF 7) and mouse melanoma (YUMM 1.7) cell spheroids were investigated. The high frequency, low input voltage, and contact-free nature of the proposed SAW system ensured over 92% cell viability for both cell lines after SAW exposure. SAW sonoprinting enhanced the accumulation of 100 nm polystyrene particles on the periphery of the spheroids to near four-fold, while the penetration of nanoparticles into the core regions of the spheroids was improved up to three times. To demonstrate the effectiveness of our SAW platform on the efficacy of nanotherapeutics, the platform was used to deliver nanoliposomes encapsulated with the anti-cancer metal compound copper diethyldithiocarbamate (CuET) to MCF 7 and YUMM 1.7 cell spheroids. A three-fold increase in the cytotoxic activity of the drug was observed in spheroids under the effect of SAW, compared to controls. The capacity of SAW-based devices to be manufactured as minuscule wearable patches can offer highly controllable, localized, and continuous acoustic waves to enhance drug delivery efficiency to target tissues.
Collapse
Affiliation(s)
- Reza Rasouli
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
| | - Radu Alexandru Paun
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
33
|
Holanda AGA, Cesário BC, Silva VM, Francelino LEC, Nascimento BHM, Damasceno KFA, Ishikawa U, Farias NBS, Junior RFA, Barboza CAG, Junior CA, Antunes JMAP, Moura CEB, Queiroz GF. Use of Cold Atmospheric Plasma in the Treatment of Squamous Cell Carcinoma: in vitro Effects and Clinical Application in Feline Tumors: A Pilot Study. Top Companion Anim Med 2023; 53-54:100773. [PMID: 36990177 DOI: 10.1016/j.tcam.2023.100773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/19/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Cold atmospheric plasma (CAP) has shown promising results against squamous cell carcinoma (SCC) in both in vivo and in vitro assays, mainly in humans and mice. Its applicability for treatment of feline tumors, however, remains unknown. This study aimed to evaluate the anticancer effects of CAP on a head and neck squamous cell carcinoma (HNSCC) cell lineage and against a clinical case of cutaneous SCC in a cat. Control and treatment groups employing the HNSCC cell line (SCC-25) were used, the latter exposed to CAP for 60 seconds, 90 seconds, or 120 seconds. The cells were subjected to the MTT assay nitric oxidation assay and thermographic in vitro analyses. The clinical application was performed in one cat with cutaneous SCC (3 sites). The lesions were treated and evaluated by thermographic, histopathological, and immunohistochemical examinations (caspase-3 and TNF-alpha). Treatment of the SCC-25 cells for 90 seconds and 120 seconds resulted in a significant nitrite concentration increase. Decreased cell viability was observed after 24 hours and 48 hours, regardless of exposure time. However, the cell viability reduction observed at 72 hours was significant only in the 120 seconds treatment. In vitro, the temperature decreased for all treatment times, while the plasma induced a slight increase in mean temperature (0.7°C) in the in vivo assay. Two of the 3 clinical tumors responded to the treatment: one with a complete response and the other, partial, while the third (lower lip SCC) remained stable. Both remaining tumors displayed apoptotic areas and increased expression of caspase-3 and TNF-alpha. Adverse effects were mild and limited to erythema and crusting. The CAP exhibited an in vitro anticancer effect on the HNSCC cell line, demonstrated by a dose-dependent cell viability reduction. In vivo, the therapy appears safe and effective against feline cutaneous SCC. The treatment did not result in a clinical response for 1 of 3 lesions (proliferative lower lip tumor), however, a biological effect was still demonstrated by the higher expression of apoptosis indicators.
Collapse
Affiliation(s)
- André G A Holanda
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil.
| | - Bruna C Cesário
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Victória M Silva
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Luiz E C Francelino
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Bruno H M Nascimento
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Kássia F A Damasceno
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Uta Ishikawa
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Naisandra B S Farias
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Raimundo F A Junior
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Carlos A G Barboza
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Clodomiro A Junior
- Department of Natural Sciences, Mathematics and Statistics, Federal Rural University of the Semi-Arid, RN, Brazil
| | - João M A P Antunes
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Carlos E B Moura
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| | - Genilson F Queiroz
- Department of Animal Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, Brazil
| |
Collapse
|
34
|
Cheong JK, Ooi EH, Chiew YS, Menichetti L, Armanetti P, Franchini MC, Alchera E, Locatelli I, Canu T, Maturi M, Popov V, Alfano M. Gold nanorods assisted photothermal therapy of bladder cancer in mice: A computational study on the effects of gold nanorods distribution at the centre, periphery, and surface of bladder cancer. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 230:107363. [PMID: 36720181 DOI: 10.1016/j.cmpb.2023.107363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVES Gold nanorod-assisted photothermal therapy (GNR-PTT) is a cancer treatment whereby GNRs incorporated into the tumour act as photo-absorbers to elevate the thermal destruction effect. In the case of bladder, there are few possible routes to target the tumour with GNRs, namely peri/intra-tumoural injection and intravesical instillation of GNRs. These two approaches lead to different GNR distribution inside the tumour and can affect the treatment outcome. METHODOLOGY The present study investigates the effects of heterogeneous GNR distribution in a typical setup of GNR-PTT. Three cases were considered. Case 1 considered the GNRs at the tumour centre, while Case 2 represents a hypothetical scenario where GNRs are distributed at the tumour periphery; these two cases represent intratumoural accumulation with different degree of GNR spread inside the tumour. Case 3 is achieved when GNRs target the exposed tumoural surface that is invading the bladder wall, when they are delivered by intravesical instillation. RESULTS Results indicate that for a laser power of 0.6 W and GNR volume fraction of 0.01%, Case 2 and 3 were successful in achieving complete tumour eradication after 330 and 470 s of laser irradiation, respectively. Case 1 failed to form complete tumour damage when the GNRs are concentrated at the tumour centre but managed to produce complete tumour damage if the spread of GNRs is wider. Results from Case 2 also demonstrated a different heating profile from Case 1, suggesting that thermal ablation during GNR-PTT is dependant on the GNRs distribution inside the tumour. Case 3 shows similar results to Case 2 whereby gradual but uniform heating is observed. Cases 2 and 3 show that uniformly heating the tumour can reduce damage to the surrounding tissues. CONCLUSIONS Different GNR distribution associated with the different methods of introducing GNRs to the bladder during GNR-PTT affect the treatment outcome of bladder cancer in mice. Insufficient spreading during intratumoural injection of GNRs can render the treatment ineffective, while administered via intravesical instillation. GNR distribution achieved through intravesical instillation present some advantages over intratumoural injection and is worthy of further exploration.
Collapse
Affiliation(s)
- Jason Kk Cheong
- Ascend Technologies Ltd, Wessex House, Upper Market Street, Eastleigh, SO50 9FD, United Kingdom; Mechanical Engineering Discipline, School of Engineering and Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| | - Ean H Ooi
- Ascend Technologies Ltd, Wessex House, Upper Market Street, Eastleigh, SO50 9FD, United Kingdom; Mechanical Engineering Discipline, School of Engineering and Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia.
| | - Yeong S Chiew
- Mechanical Engineering Discipline, School of Engineering and Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Malaysia
| | - Luca Menichetti
- CNR - Istituto di Fisiologia Clinica, Sede principale, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Paolo Armanetti
- CNR - Istituto di Fisiologia Clinica, Sede principale, Via G. Moruzzi 1, 56124 Pisa, Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Elisa Alchera
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Irene Locatelli
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Tamara Canu
- Experimental Imaging Center, Preclinical Imaging Facility, IRCCS San Raffele Scientific Institute, 20132 Milan, Italy
| | - Mirko Maturi
- Department of Industrial Chemistry Toso Montanari, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Viktor Popov
- Ascend Technologies Ltd, Wessex House, Upper Market Street, Eastleigh, SO50 9FD, United Kingdom
| | - Massimo Alfano
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| |
Collapse
|
35
|
Yip WP, Kho ASK, Ooi EH, Ooi ET. An in silico assessment on the potential of using saline infusion to overcome non-confluent coagulation zone during two-probe, no-touch bipolar radiofrequency ablation of liver cancer. Med Eng Phys 2023; 112:103950. [PMID: 36842773 DOI: 10.1016/j.medengphy.2023.103950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
No-touch bipolar radiofrequency ablation (bRFA) is known to produce incomplete tumour ablation with a 'butterfly-shaped' coagulation zone when the interelectrode distance exceeds a certain threshold. Although non-confluent coagulation zone can be avoided by not implementing the no-touch mode, doing so exposes the patient to the risk of tumour track seeding. The present study investigates if prior infusion of saline into the tissue can overcome the issues of non-confluent or butterfly-shaped coagulation. A computational modelling approach based on the finite element method was carried out. A two-compartment model comprising the tumour that is surrounded by healthy liver tissue was developed. Three cases were considered; i) saline infusion into the tumour centre; ii) one-sided saline infusion outside the tumour; and iii) two-sided saline infusion outside the tumour. For each case, three different saline volumes were considered, i.e. 6, 14 and 22 ml. Saline concentration was set to 15% w/v. Numerical results showed that saline infusion into the tumour centre can overcome the butterfly-shaped coagulation only if the infusion volume is sufficient. On the other hand, one-sided infusion outside the tumour did not overcome this. Two-sided infusion outside the tumour produced confluent coagulation zone with the largest volume. Results obtained from the present study suggest that saline infusion, when carried out correctly, can be used to effectively eradicate liver cancer. This presents a practical solution to address non-confluent coagulation zone typical of that during two-probe bRFA treatment.
Collapse
Affiliation(s)
- Wai P Yip
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Antony S K Kho
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ean H Ooi
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Ean T Ooi
- School of Engineering and Information Technology, Faculty of Science and Technology, Federation University, VIC 3350, Australia
| |
Collapse
|
36
|
Temperature Dependence of Thermal Properties of Ex Vivo Porcine Heart and Lung in Hyperthermia and Ablative Temperature Ranges. Ann Biomed Eng 2023; 51:1181-1198. [PMID: 36656452 PMCID: PMC10172290 DOI: 10.1007/s10439-022-03122-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/25/2022] [Indexed: 01/20/2023]
Abstract
This work proposes the characterization of the temperature dependence of the thermal properties of heart and lung tissues from room temperature up to > 90 °C. The thermal diffusivity (α), thermal conductivity (k), and volumetric heat capacity (Cv) of ex vivo porcine hearts and deflated lungs were measured with a dual-needle sensor technique. α and k associated with heart tissue remained almost constant until ~ 70 and ~ 80 °C, accordingly. Above ~ 80 °C, a more substantial variation in these thermal properties was registered: at 94 °C, α and k respectively experienced a 2.3- and 1.5- fold increase compared to their nominal values, showing average values of 0.346 mm2/s and 0.828 W/(m·K), accordingly. Conversely, Cv was almost constant until 55 °C and decreased afterward (e.g., Cv = 2.42 MJ/(m3·K) at 94 °C). Concerning the lung tissue, both its α and k were characterized by an exponential increase with temperature, showing a marked increment at supraphysiological and ablative temperatures (at 91 °C, α and k were equal to 2.120 mm2/s and 2.721 W/(m·K), respectively, i.e., 13.7- and 13.1-fold higher compared to their baseline values). Regression analysis was performed to attain the best-fit curves interpolating the measured data, thus providing models of the temperature dependence of the investigated properties. These models can be useful for increasing the accuracy of simulation-based preplanning frameworks of interventional thermal procedures, and the realization of tissue-mimicking materials.
Collapse
|
37
|
Zhao S, Wang H, Zou J, Zhang A. A coupled thermal-electrical-structural model for balloon-based thermoplasty treatment of atherosclerosis. Int J Hyperthermia 2023; 40:2122597. [PMID: 36642421 DOI: 10.1080/02656736.2022.2122597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES The outcome of balloon-based atherosclerosis thermoplasty is closely related to the temperature/stress distribution during the treatment. For precise prediction of a required thermal lesion in the heterogeneous and thin atherosclerotic vessel, a numerical model incorporating heat-induced tissue expansion or shrinkage and the strain caused by balloon dilation is necessary. METHODS A fully coupled thermal-electrical-structural new model was established. The model features a heterogeneous structure including eccentric plaque, healthy artery and surrounding tissue. Tissue expansion/shrinkage and hyperelasticity material model were taken into consideration. Different heating strategies and plaque mechanical properties were investigated. The temperature distribution was compared with the traditional thermal-electrical coupled model. The possibility of thermoplasty treatment using balloons with different sizes was also explored. RESULTS The temperature, the electrical intensity and the stress during the thermoplasty were obtained. Lower stress was found in the heating region where tissue shrinkage occurred. The ablation depth was predicted to be ∼0.42 mm larger without coupling the biomechanical influence. The mechanical properties and input condition significantly affect the temperature and stress distribution considering the small dimensions of the tissue. Besides, with a 12.5% reduction of balloon diameter, the largest Von Mises stress decreases by 25.4%. CONCLUSIONS It is confirmed that a coupled thermal-electrical-structural model is needed for precise temperature prediction in the balloon-based thermoplasty of the heterogeneous and thin tissue. The model presented may help with future development of optimized treatment planning considering both ablation depth and minimum stress.
Collapse
Affiliation(s)
- Shiqing Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Hongying Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jincheng Zou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Aili Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
38
|
Haemmerich D, Ramajayam KK, Newton DA. Review of the Delivery Kinetics of Thermosensitive Liposomes. Cancers (Basel) 2023; 15:cancers15020398. [PMID: 36672347 PMCID: PMC9856714 DOI: 10.3390/cancers15020398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
Thermosensitive liposomes (TSL) are triggered nanoparticles that release the encapsulated drug in response to hyperthermia. Combined with localized hyperthermia, TSL enabled loco-regional drug delivery to tumors with reduced systemic toxicities. More recent TSL formulations are based on intravascular triggered release, where drug release occurs within the microvasculature. Thus, this delivery strategy does not require enhanced permeability and retention (EPR). Compared to traditional nanoparticle drug delivery systems based on EPR with passive or active tumor targeting (typically <5%ID/g tumor), TSL can achieve superior tumor drug uptake (>10%ID/g tumor). Numerous TSL formulations have been combined with various drugs and hyperthermia devices in preclinical and clinical studies over the last four decades. Here, we review how the properties of TSL dictate delivery and discuss the advantages of rapid drug release from TSL. We show the benefits of selecting a drug with rapid extraction by tissue, and with quick cellular uptake. Furthermore, the optimal characteristics of hyperthermia devices are reviewed, and impact of tumor biology and cancer cell characteristics are discussed. Thus, this review provides guidelines on how to improve drug delivery with TSL by optimizing the combination of TSL, drug, and hyperthermia method. Many of the concepts discussed are applicable to a variety of other triggered drug delivery systems.
Collapse
Affiliation(s)
- Dieter Haemmerich
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
- Correspondence:
| | - Krishna K. Ramajayam
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Danforth A. Newton
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
39
|
Kernot D, Yang J, Williams N, Thomas T, Ledger P, Arora H, van Loon R. Transient changes during microwave ablation simulation : a comparative shape analysis. Biomech Model Mechanobiol 2023; 22:271-280. [PMID: 36287313 PMCID: PMC9957862 DOI: 10.1007/s10237-022-01646-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 10/04/2022] [Indexed: 11/02/2022]
Abstract
Microwave ablation therapy is a hyperthermic treatment for killing cancerous tumours whereby microwave energy is dispersed into a target tissue region. Modelling can provide a prediction for the outcome of ablation, this paper explores changes in size and shape of temperature and Specific absorption rate fields throughout the course of simulated treatment with different probe concepts. Here, an axisymmetric geometry of a probe embedded within a tissue material is created, solving coupled electromagnetic and bioheat equations using the finite element method, utilizing hp discretisation with the NGSolve library. Results show dynamic changes across all metrics, with different responses from different probe concepts. The sleeve probe yielded the most circular specific absorption rate pattern with circularity of 0.81 initially but suffered the largest reduction throughout ablation. Similarly, reflection coefficients differ drastically from their initial values, with the sleeve probe again experiencing the largest change, suggesting that it is the most sensitive the changes in the tissue dielectric properties in these select probe designs. These collective characteristic observations highlight the need to consider dielectric property changes and probe specific responses during the design cycle.
Collapse
Affiliation(s)
- Dale Kernot
- School of Engineering and Applied Sciences, Faculty of Science and Engineering, Swansea University, Fabian Way, Swansea, Glamorgan, SA1 8EN, UK.
| | - Jimmy Yang
- Olympus Surgical Technologies Europe, Fortran road, Cardiff, Glamorgan CF3 0LT UK
| | - Nicholas Williams
- Olympus Surgical Technologies Europe, Fortran road, Cardiff, Glamorgan CF3 0LT UK
| | - Tudor Thomas
- Olympus Surgical Technologies Europe, Fortran road, Cardiff, Glamorgan CF3 0LT UK
| | - Paul Ledger
- grid.9757.c0000 0004 0415 6205School of Computing and Mathematics, Keele University, Keele, Staffordshire ST5 5BG UK
| | - Hari Arora
- grid.4827.90000 0001 0658 8800School of Engineering and Applied Sciences, Faculty of Science and Engineering, Swansea University, Fabian Way, Swansea, Glamorgan SA1 8EN UK
| | - Raoul van Loon
- grid.4827.90000 0001 0658 8800School of Engineering and Applied Sciences, Faculty of Science and Engineering, Swansea University, Fabian Way, Swansea, Glamorgan SA1 8EN UK
| |
Collapse
|
40
|
Gray M, Spiers L, Coussios C. Effects of human tissue acoustic properties, abdominal wall shape, and respiratory motion on ultrasound-mediated hyperthermia for targeted drug delivery to pancreatic tumors. Int J Hyperthermia 2022; 39:918-934. [PMID: 35853611 PMCID: PMC9612938 DOI: 10.1080/02656736.2022.2091799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Background PanDox is a Phase-1 trial of chemotherapeutic drug delivery to pancreatic tumors using ultrasound-mediated hyperthermia to release doxorubicin from thermally sensitive liposomes. This report describes trial-related hyperthermia simulations featuring: (i) new ultrasonic properties of human pancreatic tissues, (ii) abdomen deflections imposed by a water balloon, and (iii) respiration-driven organ motion. Methods Pancreas heating simulations were carried out using three patient body models. Pancreas acoustic properties were varied between values found in the literature and those determined from our human tissue study. Acoustic beam distortion was assessed with and without balloon-induced abdomen deformation. Target heating was assessed for static, normal respiratory, and jet-ventilation-controlled pancreas motion. Results Human pancreatic tumor attenuation is 63% of the literature values, so that pancreas treatments require commensurately higher input intensity to achieve adequate hyperthermia. Abdominal wall deformation decreased the peak field pressure by as much as 3.5 dB and refracted the focal spot by as much as 4.5 mm. These effects were thermally counteracted by sidelobe power deposition, so the net impact on achieving mild hyperthermia was small. Respiratory motion during moving beam hyperthermia produced localized regions overheated by more than 8.0 °C above the 4.0 °C volumetric goal. The use of jet ventilation reduced this excess to 0.7 °C and yielded temperature field uniformity that was nearly identical to having no respiratory motion. Conclusion Realistic modeling of the ultrasonic propagation environment is critical to achieving adequate mild hyperthermia without the use of real time thermometry for targeted drug delivery in pancreatic cancer patients.
Collapse
Affiliation(s)
- Michael Gray
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Laura Spiers
- NIHR Oxford Biomedical Research Centre, Oxford, UK.,Department of Oncology, University of Oxford, Oxford, UK
| | - Constantin Coussios
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
41
|
Onyekanne CE, Salifu AA, Obayemi JD, Ani CJ, Ashouri Choshali H, Nwazojie CC, Onwudiwe KC, Oparah JC, Ezenwafor TC, Ezeala CC, Odusanya OS, Rahbar N, Soboyejo WO. Laser-induced heating of polydimethylsiloxane-magnetite nanocomposites for hyperthermic inhibition of triple-negative breast cancer cell proliferation. J Biomed Mater Res B Appl Biomater 2022; 110:2727-2743. [PMID: 35799416 DOI: 10.1002/jbm.b.35124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/23/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022]
Abstract
This paper presents the results of an experimental and computational study of the effects of laser-induced heating provided by magnetite nanocomposite structures that are being developed for the localized hyperthermic treatment of triple-negative breast cancer. Magnetite nanoparticle-reinforced polydimethylsiloxane (PDMS) nanocomposites were fabricated with weight percentages of 1%, 5%, and 10% magnetite nanoparticles. The nanocomposites were exposed to incident Near Infrared (NIR) laser beams with well-controlled powers. The laser-induced heating is explored in: (i) heating liquid media (deionized water and cell growth media [Leibovitz L15+]) to characterize the photothermal properties of the nanocomposites, (ii) in vitro experiments that explore the effects of localized heating on triple-negative breast cancer cells, and (iii) experiments in which the laser beams penetrate through chicken tissue to heat up nanocomposite samples embedded at different depths beneath the chicken skin. The resulting plasmonic laser-induced heating is explained using composite theories and heat transport models. The results show that the laser/nanocomposite interactions decrease the viability of triple-negative breast cancer cells (MDA-MB-231) at temperatures in the hyperthermia domain between 41 and 44°C. Laser irradiation did not cause any observed physical damage to the chicken tissue. The potential in vivo performance of the PDMS nanocomposites was also investigated using computational finite element models of the effects of laser/magnetite nanocomposite interactions on the temperatures and thermal doses experienced by tissues that surround the nanocomposite devices. The implications of the results are then discussed for the development of implantable nanocomposite devices for localized treatment of triple-negative breast cancer tissue via hyperthermia.
Collapse
Affiliation(s)
- Chinyerem E Onyekanne
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Federal Capital Territory, Nigeria
| | - Ali A Salifu
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.,Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - John D Obayemi
- Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.,Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Chukwuemeka J Ani
- Department of Physics, Nile University of Nigeria, Abuja, Federal Capital Territory, Nigeria
| | - Habibeh Ashouri Choshali
- Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Chukwudalu C Nwazojie
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Federal Capital Territory, Nigeria
| | - Killian C Onwudiwe
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Federal Capital Territory, Nigeria
| | - Josephine C Oparah
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Federal Capital Territory, Nigeria
| | - Theresa C Ezenwafor
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Federal Capital Territory, Nigeria
| | - Chukwudi C Ezeala
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Federal Capital Territory, Nigeria
| | - Olushola S Odusanya
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Federal Capital Territory, Nigeria.,Biotechnology and Genetic Engineering Advanced Laboratory, Sheda Science and Technology Complex, Abuja, Federal Capital Territory, Nigeria
| | - Nima Rahbar
- Department of Civil and Environmental Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Winston O Soboyejo
- Department of Materials Science and Engineering, Biomaterials Lab, African University of Science and Technology, Abuja, Federal Capital Territory, Nigeria.,Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA.,Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
42
|
Mak NL, Ooi EH, Lau EV, Ooi ET, Pamidi N, Foo JJ, Mohd Ali AF. An in silico derived dosage and administration guide for effective thermochemical ablation of biological tissues with simultaneous injection of acid and base. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 227:107195. [PMID: 36323179 DOI: 10.1016/j.cmpb.2022.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVES Thermochemical ablation (TCA) is a thermal ablation technique involving the injection of acid and base, either sequentially or simultaneously, into the target tissue. TCA remains at the conceptual stage with existing studies unable to provide recommendations on the optimum injection rate, and reagent concentration and volume. Limitations in current experimental methodology have prevented proper elucidation of the thermochemical processes inside the tissue during TCA. Nevertheless, the computational TCA framework developed recently by Mak et al. [Mak et al., Computers in Biology and Medicine, 2022, 145:105494] has opened new avenues in the development of TCA. Specifically, a recommended safe dosage is imperative in driving TCA research beyond the conceptual stage. METHODS The aforesaid computational TCA framework for sequential injection was applied and adapted to simulate TCA with simultaneous injection of acid and base at equimolar and equivolume. The developed framework, which describes the flow of acid and base, their neutralisation, the rise in tissue temperature and the formation of thermal damage, was solved numerically using the finite element method. The framework will be used to investigate the effects of injection rate, reagent concentration, volume and type (weak/strong acid-base combination) on temperature rise and thermal coagulation formation. RESULTS A higher injection rate resulted in higher temperature rise and larger thermal coagulation. Reagent concentration of 7500 mol/m3 was found to be optimum in producing considerable thermal coagulation without the risk of tissue overheating. Thermal coagulation volume was found to be consistently larger than the total volume of acid and base injected into the tissue, which is beneficial as it reduces the risk of chemical burn injury. Three multivariate second-order polynomials that express the targeted coagulation volume as functions of injection rate and reagent volume, for the weak-weak, weak-strong and strong-strong acid-base combinations were also derived based on the simulated data. CONCLUSIONS A guideline for a safe and effective implementation of TCA with simultaneous injection of acid and base was recommended based on the numerical results of the computational model developed. The guideline correlates the coagulation volume with the reagent volume and injection rate, and may be used by clinicians in determining the safe dosage of reagents and optimum injection rate to achieve a desired thermal coagulation volume during TCA.
Collapse
Affiliation(s)
- Nguoy L Mak
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Ean H Ooi
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia.
| | - Ee V Lau
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Ean T Ooi
- School of Engineering and Information Technology, Faculty of Science and Technology, Federation University, VIC 3350, Australia
| | - Narendra Pamidi
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Ji J Foo
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Ahmad F Mohd Ali
- MSU Medical Centre, Management and Science University, University Drive, Off Persiaran Olahraga, Shah Alam 40100, Selangor, Malaysia
| |
Collapse
|
43
|
Gold Nanoparticles-Mediated Photothermal Therapy of Pancreas Using GATE: A New Simulation Platform. Cancers (Basel) 2022; 14:cancers14225686. [PMID: 36428778 PMCID: PMC9688087 DOI: 10.3390/cancers14225686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
This work presents the first investigation of gold nanorods (GNRs)-based photothermal therapy of the pancreas tumor using the Monte Carlo-based code implemented with Geant4 Application for Emission Tomography (GATE). The model of a human pancreas was obtained by segmenting an abdominal computed tomography (CT) scan, and its physical and chemical properties, were obtained from experimental and theoretical data. In GATE, GNRs-mediated hyperthermal therapy, simple heat diffusion as well as interstitial laser ablation were then modeled in the pancreas tumor by defining the optical parameters of this tissue when it is loaded with GNRs. Two different experimental setups on ex vivo pancreas tissue and GNRs-embedded water were devised to benchmark the developed Monte Carlo-based model for the hyperthermia in the pancreas alone and with GNRs, respectively. The influence of GNRs on heat distribution and temperature increase within the pancreas tumor was compared for two different power values (1.2 W and 2.1 W) when the tumor was exposed to 808 nm laser irradiation and with two different laser applicator diameters. Benchmark tests demonstrated the possibility of the accurate simulating of NPs-assisted thermal therapy and reproducing the experimental data with GATE software. Then, the output of the simulated GNR-mediated hyperthermia emphasized the importance of the precise evaluation of all of the parameters for optimizing the preplanning of cancer thermal therapy. Simulation results on temperature distribution in the pancreas tumor showed that the temperature enhancement caused by raising the power was increased with time in both the tumor with and without GNRs, but it was higher for the GNR-load tumor compared to tumor alone.
Collapse
|
44
|
Kovalenko N, Sovin K, Malikova T, Smirnov A, Anpilov V, Ryabushkin O. Radiofrequency impedance monitoring of the biological tissues under local heating by optical radiation. JOURNAL OF BIOPHOTONICS 2022; 15:e202200114. [PMID: 35866479 DOI: 10.1002/jbio.202200114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Development of methods for simultaneous control of state of biological tissues during optical treatment is the important tasks in laser surgery. We introduce a novel approach for the monitoring of the state of biological tissues in the process of its local heating by optical radiation. It is based on measurements of the electrical radiofrequency impedance kinetics of the sample during irradiation. The obtained data are processed using interconnected mathematical modeling of corresponding thermodynamic, optical and electrical problems. Experimental applications of this approach, represented in the paper, reveal its high sensitivity, repeatability and consistency with the model. The introduced method can be used for the selection and optimization of radiation parameters of medical laser sources as an alternative or an addition to histological techniques. Radiofrequency impedance measurement can be used directly in the course of surgical operations for monitoring the treated tissues state, including its temperature and degree of damage.
Collapse
Affiliation(s)
- Nikita Kovalenko
- Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Fryazino, Russia
| | - Kirill Sovin
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudnyy, Russia
| | - Tatiana Malikova
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudnyy, Russia
| | - Artur Smirnov
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudnyy, Russia
| | - Vladimir Anpilov
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
| | - Oleg Ryabushkin
- Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences, Fryazino, Russia
| |
Collapse
|
45
|
Wu MF, Liang JX, Li H, Ye YF, Liang WF, Wang LJ, Zhang BZ, Chen Q, Lin ZQ, Li J. Effects of neoadjuvant hyperthermic intraperitoneal chemotherapy on chemotherapy response score and recurrence in high-grade serous ovarian cancer patients with advanced disease: A multicentre retrospective cohort study. BJOG 2022; 129 Suppl 2:5-13. [PMID: 36485072 DOI: 10.1111/1471-0528.17323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate whether the combination of neoadjuvant hyperthermic intraperitoneal chemotherapy (NHIPEC) plus intravenous neoadjuvant chemotherapy (IV NACT) has superior efficacy to IV NACT alone. DESIGN Retrospective cohort study. SETTING Two tertiary referral university hospitals. POPULATION Patients with ovarian cancer who received NACT-interval debulking surgery (IDS) between 2012 and 2020. METHODS The tumour response to NACT was evaluated with the chemotherapy response score (CRS) system. Survival outcomes were compared. MAIN OUTCOME MEASURES CRS 3, progression-free survival (PFS), and overall survival (OS). RESULTS In total, 127 patients were included, and 46 received NHIPEC plus IV NACT. The addition of NHIPEC was independently associated with an increased likelihood of CRS 3 (p = 0.033). Patients who received NHIPEC + IV NACT had significantly improved PFS compared with those who received IV NACT alone (median PFS: 22 versus 16 months, p < 0.001). The use of NHIPEC was identified as an independent predictor of PFS (p < 0.0001). OS did not differ significantly between treatment groups (p = 0.062), although a trend favouring NHIPEC was noted. Incidence of grade 3-4 adverse events and the surgical complexity score of IDS were similar between the two groups. CONCLUSIONS Compared with IV NACT alone, the combination of NHIPEC and IV NACT resulted in improved tumour response and longer PFS. The addition of NHIPEC did not increase the risk of adverse effects or affect the complexity of IDS.
Collapse
Affiliation(s)
- Miao-Fang Wu
- Department of Gynaecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jin-Xiao Liang
- Department of Gynaecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Li
- Department of Gynaecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan-Fang Ye
- Clinical Research Design Division, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei-Feng Liang
- Department of Gynaecology and Obstetrics, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Li-Juan Wang
- Department of Gynaecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bing-Zhong Zhang
- Department of Gynaecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing Chen
- Department of Gynaecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhong-Qiu Lin
- Department of Gynaecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Li
- Department of Gynaecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
46
|
Wang W, Li W, Liu B, Wang L, Li K, Wang Y, Ji Z, Xu C, Shi X. Temperature dependence of dielectric properties of blood at 10 Hz-100 MHz. Front Physiol 2022; 13:1053233. [PMID: 36388092 PMCID: PMC9644111 DOI: 10.3389/fphys.2022.1053233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2023] Open
Abstract
The temperature dependence of the dielectric properties of blood is important for studying the biological effects of electromagnetic fields, electromagnetic protection, disease diagnosis, and treatment. However, owing to the limitations of measurement methods, there are still some uncertainties regarding the temperature characteristics of the dielectric properties of blood at low and medium frequencies. In this study, we designed a composite impedance measurement box with high heat transfer efficiency that allowed for a four/two-electrode measurement method. Four-electrode measurements were carried out at 10 Hz-1 MHz to overcome the influence of electrode polarization, and two-electrode measurements were carried out at 100 Hz-100 MHz to avoid the influence of distribution parameters, and the data was integrated to achieve dielectric measurements at 10 Hz-100 MHz. At the same time, the temperature of fresh blood from rabbits was controlled at 17-39°C in combination with a temperature-controlled water sink. The results showed that the temperature coefficient for the real part of the resistivity of blood remained constant from 10 Hz to 100 kHz (-2.42%/°C) and then gradually decreased to -0.26%/°C. The temperature coefficient of the imaginary part was positive and bimodal from 6.31 kHz to 100 MHz, with peaks of 5.22%/°C and 4.14%/°C at 126 kHz and 39.8 MHz, respectively. Finally, a third-order function model was developed to describe the dielectric spectra at these temperatures, in which the resistivity parameter in each dispersion zone decreased linearly with temperature and each characteristic frequency increased linearly with temperature. The model could estimate the dielectric properties at any frequency and temperature in this range, and the maximum error was less than 1.39%, thus laying the foundation for subsequent studies.
Collapse
Affiliation(s)
- Weice Wang
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi’an, China
| | - Weichen Li
- School of Life Sciences, Northwest University, Xi’an, China
| | - Benyuan Liu
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi’an, China
| | - Lei Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Kun Li
- Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao, China
| | - Yu Wang
- Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao, China
| | - Zhenyu Ji
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi’an, China
| | - Canhua Xu
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi’an, China
| | - Xuetao Shi
- Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi’an, China
| |
Collapse
|
47
|
Matković A, Kordić A, Jakovčević A, Šarolić A. Complex Permittivity of Ex-Vivo Human, Bovine and Porcine Brain Tissues in the Microwave Frequency Range. Diagnostics (Basel) 2022; 12:2580. [PMID: 36359425 PMCID: PMC9689776 DOI: 10.3390/diagnostics12112580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 08/27/2023] Open
Abstract
Accurate knowledge about the dielectric properties of biological tissues in the microwave frequency range may lead to advancement of biomedical applications based on microwave technology. However, the published data are very scarce, especially for human brain tissues. The aim of this work was to measure and report the complex permittivity of brain white matter, grey matter and cerebellum. Complex permittivity was measured on human, bovine and porcine brain tissues in the microwave frequency range from 0.5 to 18 GHz using an open-ended coaxial probe. The results present a valuable addition to the available data on the brain tissue complex permittivity. Some noticeable variations between the results lead to several conclusions. Complex permittivity variation within the same tissue type of the individual species was comparable to interspecies variation. The difference was prominent between human brains obtained from autopsies, while bovine brains obtained from healthy animals showed very similar complex permittivity. We hypothesize that the difference might have been caused by the basic pathologies of the patients, where the associated therapies could have affected the brain water content. We also examined the effect of excised tissue degradation on its complex permittivity over the course of three days, and the results suggest the gradual dehydration of the samples.
Collapse
Affiliation(s)
| | - Anton Kordić
- Department of Neurosurgery, University Hospital Centre Zagreb, HR-10000 Zagreb, Croatia
| | - Antonia Jakovčević
- Department of Pathology and Cytology, University Hospital Centre Zagreb, HR-10000 Zagreb, Croatia
| | | |
Collapse
|
48
|
陈 子, 崔 海, 芦 映, 郎 景. [Material design and temperature field simulation analysis of tumor radiofrequency ablation needle]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2022; 39:958-965. [PMID: 36310484 PMCID: PMC9927707 DOI: 10.7507/1001-5515.202202012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/01/2022] [Indexed: 06/16/2023]
Abstract
To solve the problems of small one-time ablation range and easy charring of the tissue around the electrode associated with the tumor radiofrequency ablation needle, based on the multiphysical field coupling analysis software COMSOL, the effects of needle material, the number of sub needles and the bending angle of sub needles on the ablation effect of radiofrequency ablation electrode needle were studied. The results show that compared with titanium alloy and stainless steel, nickel titanium alloy has better radiofrequency energy transmission efficiency and it is the best material for electrode needle. The number of sub needles has a great influence on the average necrosis depth and the maximum necrosis diameter. Under the same conditions, the more the number of sub needles, the larger the volume of coagulation necrosis area. The bending angle of the needle has a great effect on the maximum diameter of the coagulated necrotic area, but has little effect on the average necrotic depth. Under the same other conditions, the coagulation necrosis area formed by ablation increased with the increase of the bending angle of the sub needle. For the three needles with bending angles of 60 °, 90 ° and 120 ° analyzed in this paper, the one with bending angle of 120 ° can obtain the largest coagulation necrosis area. In general, the design of nickel titanium alloy with 120 ° bending 8-pin is the optimal. The average depth of radiofrequency ablation necrosis area is 32.40 mm, and the maximum necrosis diameter is 52.65 mm. The above optimized design parameters can provide guidance for the structure and material design of tumor radiofrequency ablation needle.
Collapse
Affiliation(s)
- 子乐 陈
- 上海理工大学 现代微创医疗器械及技术教育部工程研究中心(上海 200093)Shanghai Institute for Minimally Invasive Therapy, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - 海坡 崔
- 上海理工大学 现代微创医疗器械及技术教育部工程研究中心(上海 200093)Shanghai Institute for Minimally Invasive Therapy, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - 映希 芦
- 上海理工大学 现代微创医疗器械及技术教育部工程研究中心(上海 200093)Shanghai Institute for Minimally Invasive Therapy, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - 景成 郎
- 上海理工大学 现代微创医疗器械及技术教育部工程研究中心(上海 200093)Shanghai Institute for Minimally Invasive Therapy, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| |
Collapse
|
49
|
Hübner F, Blauth S, Leithäuser C, Schreiner R, Siedow N, Vogl TJ. Validating a simulation model for laser-induced thermotherapy using MR thermometry. Int J Hyperthermia 2022; 39:1315-1326. [PMID: 36220179 DOI: 10.1080/02656736.2022.2129102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVES We want to investigate whether temperature measurements obtained from MR thermometry are accurate and reliable enough to aid the development and validation of simulation models for Laser-induced interstitial thermotherapy (LITT). METHODS Laser-induced interstitial thermotherapy (LITT) is applied to ex-vivo porcine livers. An artificial blood vessel is used to study the cooling effect of large blood vessels in proximity to the ablation zone. The experimental setting is simulated using a model based on partial differential equations (PDEs) for temperature, radiation, and tissue damage. The simulated temperature distributions are compared to temperature data obtained from MR thermometry. RESULTS The overall agreement between measurement and simulation is good for two of our four test cases, while for the remaining cases drift problems with the thermometry data have been an issue. At higher temperatures local deviations between simulation and measurement occur in close proximity to the laser applicator and the vessel. This suggests that certain aspects of the model may need some refinement. CONCLUSION Thermometry data is well-suited for aiding the development of simulations models since it shows where refinements are necessary and enables the validation of such models.
Collapse
Affiliation(s)
- Frank Hübner
- Institute for Diagnostic and Interventional Radiology of the J.W. Goethe University Hospital, Frankfurt am Main, Germany
| | | | | | - Roland Schreiner
- Institute for Diagnostic and Interventional Radiology of the J.W. Goethe University Hospital, Frankfurt am Main, Germany
| | | | - Thomas J Vogl
- Institute for Diagnostic and Interventional Radiology of the J.W. Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
50
|
Benchakroun H, Ištuk N, Dunne E, Elahi MA, O’Halloran T, O’Halloran M, O’Loughlin D. Probe Contact Force Monitoring during Conductivity Measurements of the Left Atrial Appendage to Support the Design of Novel Diagnostic and Therapeutic Procedures. SENSORS (BASEL, SWITZERLAND) 2022; 22:7171. [PMID: 36236269 PMCID: PMC9571177 DOI: 10.3390/s22197171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The electrical properties of many biological tissues are freely available from the INRC and the IT'IS databases. However, particularly in lower frequency ranges, few studies have investigated the optimal measurement protocol or the key confounders that need to be controlled, monitored, and reported. However, preliminary work suggests that the contact force of the measurement probe on the tissue sample can affect the measurements. The aim of this paper is to investigate the conductivity change due to the probe contact force in detail. Twenty ex vivo bovine heart samples are used, and conductivity measurements are taken in the Left Atrial Appendage, a common target for medical device developments. The conductivity measurements reported in this work (between 0.14 S/m and 0.24 S/m) align with the literature. The average conductivity is observed to change by -21% as the contact force increases from 2 N to 10 N. In contrast, in conditions where the fluid concentration in the measurement area is expected to be lower, very small changes are observed (less than 2.5%). These results suggest that the LAA conductivity is affected by the contact force due to the fluid concentration in the tissue. This work suggests that contact force should be controlled for in all future experiments.
Collapse
Affiliation(s)
- Hamza Benchakroun
- Electrical and Electronic Engineering, University of Galway, H91 TK33 Galway, Ireland
- Translational Medical Device Laboratory, University of Galway, H91 TK33 Galway, Ireland
| | - Niko Ištuk
- Electrical and Electronic Engineering, University of Galway, H91 TK33 Galway, Ireland
- Translational Medical Device Laboratory, University of Galway, H91 TK33 Galway, Ireland
| | - Eoghan Dunne
- School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Muhammad Adnan Elahi
- Electrical and Electronic Engineering, University of Galway, H91 TK33 Galway, Ireland
- Translational Medical Device Laboratory, University of Galway, H91 TK33 Galway, Ireland
| | - Tony O’Halloran
- Aurigen Medical, Atlantic Technological University (ATU) Innovation Hub, H91 FD73 Galway, Ireland
| | - Martin O’Halloran
- Electrical and Electronic Engineering, University of Galway, H91 TK33 Galway, Ireland
- Translational Medical Device Laboratory, University of Galway, H91 TK33 Galway, Ireland
| | - Declan O’Loughlin
- Electronic and Electrical Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|