1
|
Fecho K, Tucker N, Beasley JM, Auerbach SS, Bizon C, Tropsha A. Elucidating the mechanistic relationships between peroxisome proliferator-activated receptors and hepatic fibrosis using the ROBOKOP knowledge graph. FRONTIERS IN TOXICOLOGY 2025; 7:1549268. [PMID: 40330554 PMCID: PMC12052891 DOI: 10.3389/ftox.2025.1549268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/14/2025] [Indexed: 05/08/2025] Open
Abstract
We developed the Reasoning Over Biomedical Objects linked in Knowledge Oriented Pathways (ROBOKOP) application as an open-source knowledge graph system to support evidence-based biomedical discovery and hypothesis generation. This study aimed to apply ROBOKOP to suggest biological mechanisms that might explain the hypothesized relationship between exposure to the herbicide and lipid-lowering drug clofibrate, an activator of peroxisome proliferator-activated receptor-α (PPARA), and hepatic fibrosis. We queried ROBOKOP to first establish that it could demonstrate a relationship between clofibrate and PPARA as a validation test and second to identify intermediary genes and biological processes or activities that might relate the activation of PPARA by clofibrate to hepatic fibrosis. Queries of ROBOKOP returned several paths relating clofibrate, PPARA, and hepatic fibrosis. One path suggested the following: clofibrate - affects / increases_ expression_ of / increases_ activity_ of / increases_ response_ to / decreases_ response_ to / is_ related_ to - PPARA - is_ actively_ involved_ in - cellular response to lipid - actively_ involves - CCL2 - is_ genetically_ associated_ with - hepatic fibrosis. This result established a relationship between clofibrate and PPARA and further suggested that PPARA is actively involved in the cellular response to lipids, which actively involves the chemokine ligand CCL2, a gene genetically associated with hepatic fibrosis; thus, we can infer that PPARA, upon activation by clofibrate, plays a role in hepatic fibrosis. We conclude that ROBOKOP can be used to derive insights into biological mechanisms that might explain relationships between environmental exposures and liver toxicity.
Collapse
Affiliation(s)
- Karamarie Fecho
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Copperline Professional Solutions, LLC, Pittsboro, NC, United States
| | - Nyssa Tucker
- UNC Eshelman School of Pharmacy and Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jon-Michael Beasley
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Scott S. Auerbach
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Chris Bizon
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Alexander Tropsha
- Renaissance Computing Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Predictive, LLC, Raleigh, NC, United States
| |
Collapse
|
2
|
Evensen KG, Rusin E, Robinson WE, Price CL, Kelly SL, Lamb DC, Goldstone JV, Poynton HC. Vertebrate endocrine disruptors induce sex-reversal in blue mussels. Sci Rep 2024; 14:23890. [PMID: 39396059 PMCID: PMC11470919 DOI: 10.1038/s41598-024-74212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
Mollusks are the second most diverse animal phylum, yet little is known about their endocrinology or how they respond to endocrine disrupting compound (EDC) pollution. Characteristic effects of endocrine disruption are reproductive impairment, skewed sex ratios, development of opposite sex characteristics, and population decline. However, whether classical vertebrate EDCs, such as steroid hormone-like chemicals and inhibitors of steroidogenesis, exert effects on mollusks is controversial. In the blue mussel, Mytilus edulis, EDC exposure is correlated with feminized sex ratios in wild and laboratory mussels, but sex reversal has not been confirmed. Here, we describe a non-destructive qPCR assay to identify the sex of M. edulis allowing identification of males and females prior to experimentation. We exposed male mussels to 17α-ethinylestradiol and female mussels to ketoconazole, EDCs that mimic vertebrate steroid hormones or inhibit their biosynthesis. Both chemicals changed the sex of individual mussels, interfered with gonadal development, and disrupted gene expression of the sex differentiation pathway. Impacts from ketoconazole treatment, including changes in steroid levels, confirmed a role for steroidogenesis and steroid-like hormones in mollusk endocrinology. The present study expands the possibilities for laboratory and field monitoring of mollusk species and provides key insights into endocrine disruption and sexual differentiation in bivalves.
Collapse
Affiliation(s)
- K Garrett Evensen
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| | - Emily Rusin
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| | - William E Robinson
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| | - Claire L Price
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - Steven L Kelly
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - David C Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea, SA2 8PP, Wales, UK
| | | | - Helen C Poynton
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
3
|
Dhar I, Lysne V, Ulvik A, Svingen GFT, Pedersen ER, Bjørnestad EØ, Olsen T, Borsholm R, Laupsa-Borge J, Ueland PM, Tell GS, Berge RK, Mellgren G, Bønaa KH, Nygård OK. Plasma methylmalonic acid predicts risk of acute myocardial infarction and mortality in patients with coronary heart disease: A prospective 2-cohort study. J Intern Med 2023; 293:508-519. [PMID: 36682040 DOI: 10.1111/joim.13610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Elevated plasma methylmalonic acid (MMA) is reported in patients with established coronary heart disease (CHD) and is considered a marker of vitamin B12 deficiency. Moreover, MMA-dependent reactions have been linked to alterations in mitochondrial energy metabolism and oxidative stress, key features in the pathophysiology of cardiovascular diseases (CVDs). OBJECTIVES We examined whether plasma MMA prospectively predicted the long-term risk of acute myocardial infarction (AMI) and mortality. METHODS AND RESULTS Using Cox modeling, we estimated hazard ratios (HRs) for endpoints according to per 1-SD increment of log-transformed plasma MMA in two independent populations: the Western Norway Coronary Angiography Cohort (WECAC) (patients evaluated for CHD; n = 4137) and the Norwegian Vitamin Trial (NORVIT) (patients hospitalized with AMI; n = 3525). In WECAC and NORVIT, 12.8% and 18.0% experienced an AMI, whereas 21.8% and 19.9% died, of whom 45.5% and 60.3% from CVD-related causes during follow-up (range 3-11 years), respectively. In WECAC, age- and gender-adjusted HRs (95% confidence interval) were 1.18 (1.09-1.28), 1.25 (1.18-1.33), and 1.28 (1.17-1.40) for future AMI, total mortality, and CVD mortality, respectively. Corresponding risk estimates were 1.19 (1.10-1.28), 1.22 (1.14-1.31), and 1.30 (1.19-1.42) in NORVIT. These estimates were only slightly attenuated after multivariable adjustments. Across both cohorts, the MMA-risk association was stronger in older adults, women, and non-smokers. CONCLUSIONS Elevated MMA was associated with an increased risk of AMI and mortality in patients with suspected or verified CHD.
Collapse
Affiliation(s)
- Indu Dhar
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway.,Mohn Nutrition Research Laboratory, University of Bergen, Bergen, Norway
| | - Vegard Lysne
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway.,Mohn Nutrition Research Laboratory, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | | | - Gard F T Svingen
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Eva R Pedersen
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Espen Ø Bjørnestad
- Department of Cardiology, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Robert Borsholm
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Johnny Laupsa-Borge
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Grethe S Tell
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Rolf K Berge
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, University of Bergen, Bergen, Norway.,Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway
| | - Kaare H Bønaa
- Department of Circulation and medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic for Heart Diseases, St. Olav's University Hospital, Trondheim, Norway
| | - Ottar K Nygård
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway.,Mohn Nutrition Research Laboratory, University of Bergen, Bergen, Norway.,Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
4
|
Potential Therapeutic Agents That Target ATP Binding Cassette A1 (ABCA1) Gene Expression. Drugs 2022; 82:1055-1075. [PMID: 35861923 DOI: 10.1007/s40265-022-01743-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
The cholesterol efflux protein ATP binding cassette protein A1 (ABCA) and apolipoprotein A1 (apo A1) are key constituents in the process of reverse-cholesterol transport (RCT), whereby excess cholesterol in the periphery is transported to the liver where it can be converted primarily to bile acids for either use in digestion or excreted. Due to their essential roles in RCT, numerous studies have been conducted in cells, mice, and humans to more thoroughly understand the pathways that regulate their expression and activity with the goal of developing therapeutics that enhance RCT to reduce the risk of cardiovascular disease. Many of the drugs and natural compounds examined target several transcription factors critical for ABCA1 expression in both macrophages and the liver. Likewise, several miRNAs target not only ABCA1 but also the same transcription factors that are critical for its high expression. However, after years of research and many preclinical and clinical trials, only a few leads have proven beneficial in this regard. In this review we discuss the various transcription factors that serve as drug targets for ABCA1 and provide an update on some important leads.
Collapse
|
5
|
Frambach SJCM, van de Wal MAE, van den Broek PHH, Smeitink JAM, Russel FGM, de Haas R, Schirris TJJ. Effects of clofibrate and KH176 on life span and motor function in mitochondrial complex I-deficient mice. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165727. [PMID: 32070771 DOI: 10.1016/j.bbadis.2020.165727] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/21/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022]
Abstract
Mitochondrial complex I (CI), the first multiprotein enzyme complex of the OXPHOS system, executes a major role in cellular ATP generation. Consequently, dysfunction of this complex has been linked to inherited metabolic disorders, including Leigh disease (LD), an often fatal disease in early life. Development of clinical effective treatments for LD remains challenging due to the complex pathophysiological nature. Treatment with the peroxisome proliferation-activated receptor (PPAR) agonist bezafibrate improved disease phenotype in several mitochondrial disease mouse models mediated via enhanced mitochondrial biogenesis and fatty acid β-oxidation. However, the therapeutic potential of this mixed PPAR (α, δ/β, γ) agonist is severely hampered by hepatotoxicity, which is possibly caused by activation of PPARγ. Here, we aimed to investigate the effects of the PPARα-specific fibrate clofibrate in mitochondrial CI-deficient (Ndufs4-/-) mice. Clofibrate increased lifespan and motor function of Ndufs4-/- mice, while only marginal hepatotoxic effects were observed. Due to the complex clinical and cellular phenotype of CI-deficiency, we also aimed to investigate the therapeutic potential of clofibrate combined with the redox modulator KH176. As described previously, single treatment with KH176 was beneficial, however, combining clofibrate with KH176 did not result in an additive effect on disease phenotype in Ndufs4-/- mice. Overall, both drugs have promising, but independent and nonadditive, properties for the pharmacological treatment of CI-deficiency-related mitochondrial diseases.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Melissa A E van de Wal
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Petra H H van den Broek
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Jan A M Smeitink
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Department of Pediatrics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Ria de Haas
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Department of Pediatrics, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen 6500 HB, the Netherlands.
| |
Collapse
|
6
|
Frambach SJCM, de Haas R, Smeitink JAM, Rongen GA, Russel FGM, Schirris TJJ. Brothers in Arms: ABCA1- and ABCG1-Mediated Cholesterol Efflux as Promising Targets in Cardiovascular Disease Treatment. Pharmacol Rev 2020; 72:152-190. [PMID: 31831519 DOI: 10.1124/pr.119.017897] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is a leading cause of cardiovascular disease worldwide, and hypercholesterolemia is a major risk factor. Preventive treatments mainly focus on the effective reduction of low-density lipoprotein cholesterol, but their therapeutic value is limited by the inability to completely normalize atherosclerotic risk, probably due to the disease complexity and multifactorial pathogenesis. Consequently, high-density lipoprotein cholesterol gained much interest, as it appeared to be cardioprotective due to its major role in reverse cholesterol transport (RCT). RCT facilitates removal of cholesterol from peripheral tissues, including atherosclerotic plaques, and its subsequent hepatic clearance into bile. Therefore, RCT is expected to limit plaque formation and progression. Cellular cholesterol efflux is initiated and propagated by the ATP-binding cassette (ABC) transporters ABCA1 and ABCG1. Their expression and function are expected to be rate-limiting for cholesterol efflux, which makes them interesting targets to stimulate RCT and lower atherosclerotic risk. This systematic review discusses the molecular mechanisms relevant for RCT and ABCA1 and ABCG1 function, followed by a critical overview of potential pharmacological strategies with small molecules to enhance cellular cholesterol efflux and RCT. These strategies include regulation of ABCA1 and ABCG1 expression, degradation, and mRNA stability. Various small molecules have been demonstrated to increase RCT, but the underlying mechanisms are often not completely understood and are rather unspecific, potentially causing adverse effects. Better understanding of these mechanisms could enable the development of safer drugs to increase RCT and provide more insight into its relation with atherosclerotic risk. SIGNIFICANCE STATEMENT: Hypercholesterolemia is an important risk factor of atherosclerosis, which is a leading pathological mechanism underlying cardiovascular disease. Cholesterol is removed from atherosclerotic plaques and subsequently cleared by the liver into bile. This transport is mediated by high-density lipoprotein particles, to which cholesterol is transferred via ATP-binding cassette transporters ABCA1 and ABCG1. Small-molecule pharmacological strategies stimulating these transporters may provide promising options for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Sanne J C M Frambach
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ria de Haas
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan A M Smeitink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerard A Rongen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tom J J Schirris
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences (S.J.C.M.F., G.A.R., F.G.M.R., T.J.J.S.), Radboud Center for Mitochondrial Medicine (S.J.C.M.F., R.d.H., J.A.M.S., F.G.M.R., T.J.J.S.), Department of Pediatrics (R.d.H., J.A.M.S.), and Department of Internal Medicine, Radboud Institute for Health Sciences (G.A.R.), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Thirunavukkarasu S, Khader SA. Advances in Cardiovascular Disease Lipid Research Can Provide Novel Insights Into Mycobacterial Pathogenesis. Front Cell Infect Microbiol 2019; 9:116. [PMID: 31058102 PMCID: PMC6482252 DOI: 10.3389/fcimb.2019.00116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/02/2019] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in industrialized nations and an emerging health problem in the developing world. Systemic inflammatory processes associated with alterations in lipid metabolism are a major contributing factor that mediates the development of CVDs, especially atherosclerosis. Therefore, the pathways promoting alterations in lipid metabolism and the interplay between varying cellular types, signaling agents, and effector molecules have been well-studied. Mycobacterial species are the causative agents of various infectious diseases in both humans and animals. Modulation of host lipid metabolism by mycobacteria plays a prominent role in its survival strategy within the host as well as in disease pathogenesis. However, there are still several knowledge gaps in the mechanistic understanding of how mycobacteria can alter host lipid metabolism. Considering the in-depth research available in the area of cardiovascular research, this review presents an overview of the parallel areas of research in host lipid-mediated immunological changes that might be extrapolated and explored to understand the underlying basis of mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Shyamala Thirunavukkarasu
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| |
Collapse
|
8
|
Zhao JF, Shyue SK, Lee TS. Excess Nitric Oxide Activates TRPV1-Ca(2+)-Calpain Signaling and Promotes PEST-dependent Degradation of Liver X Receptor α. Int J Biol Sci 2016; 12:18-29. [PMID: 26722214 PMCID: PMC4679395 DOI: 10.7150/ijbs.13549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/05/2015] [Indexed: 12/17/2022] Open
Abstract
Excess nitric oxide (NO) deregulates cholesterol metabolism in macrophage foam cells, yet the underlying molecular mechanism is incompletely understood. To investigate the mechanism, we found that in macrophages, treatment with NO donors S-nitroso-N-acetyl-D,L-penicillamine (SNAP) or diethylenetriamine/nitric oxide induced LXRα degradation and reduced the expression of the downstream target of LXRα, ATP-binding cassette transporter A1 (ABCA1), and cholesterol efflux. In addition, SNAP induced calcium (Ca2+) influx into cells, increased calpain activity and promoted the formation of calpain-LXRα complex. Pharmacological inhibition of calpain activity reversed the SNAP-induced degradation of LXRα, down-regulation of ABCA1 and impairment of cholesterol efflux in macrophages. SNAP increased the formation of calpain-LXRα complex in a Pro-Glu-Ser-Thr (PEST) motif-dependent manner. Truncation of the PEST motif in LXRα abolished the calpain-dependent proteolysis. Removal of extracellular Ca2+ by EGTA or pharmacological inhibition of TRPV1 channel activity diminished SNAP-induced increase in intracellular Ca2+, calpain activation, LXRα degradation, ABCA1 down-regulation and impaired cholesterol efflux. In conclusion, excess NO may activate calpain via TRPV1-Ca2+ signaling and promote the recognition of calpain in the PEST motif of LXRα, thereby leading to degradation of LXRα and, ultimately, downregulated ABCA1 expression and impaired ABCA1-dependent cholesterol efflux in macrophages.
Collapse
Affiliation(s)
- Jin-Feng Zhao
- 1. Department of Physiology, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Song-Kun Shyue
- 2. Cardiovascular Division, Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzong-Shyuan Lee
- 1. Department of Physiology, National Yang-Ming University, Taipei, 11221, Taiwan. ; 3. Genome Research Center, National Yang-Ming University, Taipei, 11221, Taiwan
| |
Collapse
|
9
|
Wang XL, Cui HP. Cholestyramine therapy alters bile acid metabolism in streptozotocin-induced diabetic rats. Shijie Huaren Xiaohua Zazhi 2012; 20:3575-3579. [DOI: 10.11569/wcjd.v20.i35.3575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of cholestyramine therapy on bile acid metabolism in rats with type 2 diabetes.
METHODS: Type 2 diabetes was induced in Sprague-Dawley (SD) rats by feeding a high-fat diet and intraperitoneally injecting streptozotocin (30 mg/kg). The rats were then randomly divided into diabetes mellitus group (DM group) and cholestyramine treatment group (CT group), with 10 rats in each group. Rats in the DM group and CT group were fed a high-fat diet and a high-fat diet containing 2.5% cholestyramine, respectively. Ten normal male SD rats were used as controls (Con group) and fed standard rodent chow. Four weeks later, rats of each group were euthanized, and artery blood and liver samples were taken for further analysis. The mRNA levels of LXRα, FXR, SHP, CYP7A1, CYP27A1, ABCG5 and ABCG8, which are involved in bile acid metabolism, were evaluated by RT-PCR. The expression of CYP7A1 and CYP27A1 protein was detected by Western blot.
RESULTS: Compared to the Con group, rats in the DM group had increased mRNA levels of LXRα, CYP7A1, ABCG5 and ABCG8 (all P < 0.05), and reduced mRNA levels of FXR and SHP (both P < 0.05). Compared to the DM group, the CT group had increased mRNA levels of LXRα and CYP7A1 (both P < 0.05), reduced mRNA levels of FXR and RXR (both P < 0.05), and non-significantly changed expression of ABCG5 and ABCG8 mRNAs. The mRNA level of CYP27A1 showed no significant difference among each group. Western blot analysis showed that the protein expression of CYP7A1 was increased most significantly in the Con group, followed by the DM group and CT group (all P < 0.05), and that of CYP27A1 showed no significant difference among each group.
CONCLUSION: In type 2 diabetic rats, hepatic bile acid synthesis increases possibly as a result of increased expression of CYP7A1. Cholestyramine therapy further promotes the expression of CYP7A1. The increased mRNA expression of LXRα and decreased mRNA expression of FXR are related to the increased expression of CYP7A1.
Collapse
|
10
|
Pandey NR, Renwick J, Rabaa S, Misquith A, Kouri L, Twomey E, Sparks DL. An induction in hepatic HDL secretion associated with reduced ATPase expression. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1777-87. [PMID: 19717637 DOI: 10.2353/ajpath.2009.090082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Linoleic acid-phospholipids stimulate high-density lipoprotein (HDL) net secretion from liver cells by blocking the endocytic recycling of apoA-I. Experiments were undertaken to determine whether apoA-I accumulation in the cell media is associated with membrane ATPase expression. Treatment of HepG2 cells with dilinoeoylphosphatidylcholine (DLPC) increased apoA-I secretion fourfold. DLPC also significantly reduced cell surface F1-ATPase expression and reduced cellular ATP binding cassette (ABC)A1 and ABCG1 protein levels by approximately 50%. In addition, treatment of HepG2 cells with the ABC transporter inhibitor, glyburide, stimulated the apoA-I secretory effects of both DLPC and clofibrate. Pretreatment of HepG2 cells with compounds that increased ABC transport protein levels (TO901317, N-Acetyl-L-leucyl-L-leucyl-L-norleucinal, and resveratrol) blocked the DLPC-induced stimulation in apoA-I net secretion. Furthermore, whereas HepG2 cells normally secrete nascent prebeta-HDL, DLPC treatment promoted secretion of alpha-migrating HDL particles. These data show that an linoleic acid-phospholipid induced stimulation in hepatic HDL secretion is related to the expression and function of membrane ATP metabolizing proteins.
Collapse
Affiliation(s)
- Nihar R Pandey
- Lipoprotein and Atherosclerosis Research Group, The University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Matsuki K, Tamasawa N, Yamashita M, Tanabe J, Murakami H, Matsui J, Imaizumi T, Satoh K, Suda T. Metformin restores impaired HDL-mediated cholesterol efflux due to glycation. Atherosclerosis 2009; 206:434-8. [PMID: 19376519 DOI: 10.1016/j.atherosclerosis.2009.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2008] [Revised: 03/05/2009] [Accepted: 03/05/2009] [Indexed: 01/19/2023]
Abstract
High-density lipoprotein (HDL) mediates cholesterol efflux, which is the initial and rate-limiting step of reverse cholesterol transport. The present study was undertaken to evaluate the effect, on macrophage cholesterol efflux, of functional modification of HDL by its glycation. We also investigated the effects of the glycation-inhibitors metformin (MF) and aminoguanidine (AG) on glycated HDL-mediated cholesterol efflux. Human plasma HDL (5mg protein/mL) was glycated by incubation with 3-deoxyglucosone (3-DG). Glycation was monitored by measuring carboxymethyl-lysine (CML). HDL-mediated cholesterol efflux was determined using human THP-1-derived macrophages pre-labeled with [(3)H]-cholesterol. To measure expression of potential factors related to the efflux in the macrophages, ATP-binding cassette transporter (ABC) G1 was analyzed by real-time quantitative RT-PCR and Western blot. Glycation of HDL significantly reduced the HDL-mediated cholesterol efflux from THP-1-derived macrophages (87.7+/-4.2% of control, n=9, p<0.0001). In the presence of metformin or aminoguanidine (100mM), glycated HDL-mediated cholesterol efflux was restored to 97.5+/-4.3% and 96.9+/-3.1%, respectively. Exogenous HDL reduced ABCG1 mRNA and protein expression in THP-1-derived macrophages, but glycation deprived HDL of this effect. We conclude that glycated HDL particles are ineffective as acceptors of ABCG1-mediated cholesterol efflux; and this may explain, at least in part, accelerated atherosclerosis in diabetic patients. Metformin serves as a possible candidate to restore impaired cholesterol efflux and reverse cholesterol transport.
Collapse
Affiliation(s)
- Kota Matsuki
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori 036-8562, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ma Q. Xenobiotic-activated receptors: from transcription to drug metabolism to disease. Chem Res Toxicol 2008; 21:1651-71. [PMID: 18707139 DOI: 10.1021/tx800156s] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Xenobiotic-activated receptors (XARs) are a group of ligand-activated transcription factors that are evolutionally specialized to regulate genomic programs to protect the body against innumerable chemicals from the environment. XARs share unique properties, such as promiscuous ligand binding, conserved structural motifs, common protein partners, and overlapping target genes. These unique features of XARs clearly distinguish them from receptors that are activated by endogenous chemicals to regulate energy metabolism, reproduction, and growth and differentiation. XARs regulate xenobiotic metabolism and disposition by controlling the expression and induction of drug-metabolizing enzymes and transporters. Furthermore, XARs integrate a broad range of protective mechanisms, such as antioxidative response and immune/inflammatory functions, to antagonize foreign chemicals. As the primary means of xenobiotic sensing and defense, XARs are intimately involved in drug disposition, polymorphic drug clearance, drug-drug interaction, and pathogenesis of some chemically induced cancers and chronic diseases. As a consequence, some XAR characteristics have been exploited in drug development and safety evaluation of drugs and environmental carcinogens and toxicants. In this perspective, common features and recent advances in the structures, modes of action, and implications in disease and drug development of XARs are discussed.
Collapse
Affiliation(s)
- Qiang Ma
- Toxicology and Molecular Biology Branch, Health Effects Laboratory DiVision, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia 26505, USA.
| |
Collapse
|
13
|
Luoma PV. Cytochrome P450 and gene activation--from pharmacology to cholesterol elimination and regression of atherosclerosis. Eur J Clin Pharmacol 2008; 64:841-50. [PMID: 18633604 DOI: 10.1007/s00228-008-0515-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 05/20/2008] [Indexed: 01/08/2023]
Abstract
BACKGROUND Lipoproteins are closely associated with the atherosclerotic vascular process. Elevated levels of high-density lipoprotein cholesterol (HDL-C) and apolipoprotein AI (apo AI) in plasma indicate a low probability of coronary heart disease (CHD) together with enhanced longevity, and elevated levels of low-density lipoprotein-cholesterol (LDL-C) and apo B indicate an increased risk of CHD and death. Studies linking gene activation and the induction of cytochrome P450 with elevated plasma levels of apo AI and HDL-C and lowered plasma levels of LDL-C presented a new potential approach to prevent and treat atherosclerotic disease. OBJECTIVE AND METHODS This is a review aimed at clarifying the effects of P450-enzymes and gene activation on cholesterol homeostasis, the atherosclerotic vascular process, prevention and regression of atherosclerosis and the manifestation of atherosclerotic disease, particularly CHD, the leading cause of death in the world. RESULTS P450-enzymes maintain cellular cholesterol homeostasis. They respond to cholesterol accumulation by enhancing the generation of hydroxycholesterols (oxysterols) and activating cholesterol-eliminating mechanisms. The CYP7A1, CYP27A1, CYP46A1 and CYP3A4 enzymes generate major oxysterols that enter the circulation. The oxysterols activate-via nuclear receptors-ATP-binding cassette (ABC) A1 and other genes, leading to the elimination of excess cholesterol and protecting arteries from atherosclerosis. Several drugs and nonpharmacologic compounds are ligands for the liver X receptor, pregnane X receptor and other receptors, activate P450 and other genes involved in cholesterol elimination, prevent or regress atherosclerosis and reduce cardiovascular events. CONCLUSIONS P450-enzymes are essential in the physiological maintenance of cholesterol balance. They activate mechanisms which eliminate excess cholesterol and counteract the atherosclerotic process. Several drugs and nonpharmacologic compounds induce P450 and other genes, prevent or regress atherosclerosis and reduce the occurrence of non-fatal and fatal CHD and other atherosclerotic diseases.
Collapse
Affiliation(s)
- Pauli V Luoma
- Institute of Biomedicine, Pharmacology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
14
|
van der Hoogt CC, de Haan W, Westerterp M, Hoekstra M, Dallinga-Thie GM, Romijn JA, Princen HMG, Jukema JW, Havekes LM, Rensen PCN. Fenofibrate increases HDL-cholesterol by reducing cholesteryl ester transfer protein expression. J Lipid Res 2007; 48:1763-71. [PMID: 17525476 DOI: 10.1194/jlr.m700108-jlr200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In addition to efficiently decreasing VLDL-triglycerides (TGs), fenofibrate increases HDL-cholesterol levels in humans. We investigated whether the fenofibrate-induced increase in HDL-cholesterol is dependent on the expression of the cholesteryl ester transfer protein (CETP). To this end, APOE*3-Leiden (E3L) transgenic mice without and with the human CETP transgene, under the control of its natural regulatory flanking regions, were fed a Western-type diet with or without fenofibrate. Fenofibrate (0.04% in the diet) decreased plasma TG in E3L and E3L.CETP mice (-59% and -60%; P < 0.001), caused by a strong reduction in VLDL. Whereas fenofibrate did not affect HDL-cholesterol in E3L mice, fenofibrate dose-dependently increased HDL-cholesterol in E3L.CETP mice (up to +91%). Fenofibrate did not affect the turnover of HDL-cholesteryl ester (CE), indicating that fenofibrate causes a higher steady-state HDL-cholesterol level without altering the HDL-cholesterol flux through plasma. Analysis of the hepatic gene expression profile showed that fenofibrate did not differentially affect the main players in HDL metabolism in E3L.CETP mice compared with E3L mice. However, in E3L.CETP mice, fenofibrate reduced hepatic CETP mRNA (-72%; P < 0.01) as well as the CE transfer activity in plasma (-73%; P < 0.01). We conclude that fenofibrate increases HDL-cholesterol by reducing the CETP-dependent transfer of cholesterol from HDL to (V)LDL, as related to lower hepatic CETP expression and a reduced plasma (V)LDL pool.
Collapse
Affiliation(s)
- Caroline C van der Hoogt
- Netherlands Organization for Applied Scientific Research-Quality of Life, Gaubius Laboratory, 2301 CE Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Montanaro MA, González MS, Bernasconi AM, Brenner RR. Role of liver X receptor, insulin and peroxisome proliferator activated receptor alpha on in vivo desaturase modulation of unsaturated fatty acid biosynthesis. Lipids 2007; 42:197-210. [PMID: 17393226 DOI: 10.1007/s11745-006-3006-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 12/03/2006] [Indexed: 11/29/2022]
Abstract
We examined the in vivo contribution of insulin, T090137 (T09), agonist of liver X receptor (LXR), fenofibrate, agonist of peroxisome proliferator activated receptor (PPAR-alpha) and sterol regulatory element binding protein-1c (SREBP-1c) on the unsaturated fatty acid synthesis controlled by Delta6 and Delta5 desaturases, compared with the effects on stearoylcoenzyme A desaturase-1. When possible they were checked at three levels: messenger RNA (mRNA), desaturase protein and enzymatic activity. In control rats, only fenofibrate increased the insulinemia that was maintained by the simultaneous administration of T09, but this increase has no specific effect on desaturase activity. T09 enhanced SREBP-1 in control animals and the mRNAs and activity of the three desaturases in control and type-1 diabetic rats, demonstrating a LXR/SREBP-1-mediated activation independent of insulin. However, simultaneous administration of insulin and T09 to diabetic rats led to a several-fold increase of the mRNAs of the desaturases, suggesting a strong synergic effect between insulin and LXR/retinoic X receptor (RXR). Moreover, this demonstrates the existence of an interaction between unsaturated fatty acids and cholesterol metabolism performed by the insulin/SREBP-1c system and LXR/RXR. PPAR-alpha also increased the expression and activity of the three desaturases independently of the insulinemia since it was equivalently evoked in streptozotocin diabetic rats. Besides, PPAR-alpha increased the palmitoylcoenzyme A elongase, evidencing a dual regulation in the fatty acid biosynthesis at the level of desaturases and elongases. The simultaneous administration of fenofibrate and T09 did not show additive effects on the mRNA expression and activity of the desaturases. Therefore, the results indicate a necessary sophisticated interaction of all these factors to produce the physiological effects.
Collapse
Affiliation(s)
- Mauro A Montanaro
- Instituto de Investigaciones Bioquímicas de La Plata, UNLP-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | |
Collapse
|
16
|
Luoma PV. Cytochrome P450--physiological key factor against cholesterol accumulation and the atherosclerotic vascular process. Ann Med 2007; 39:359-70. [PMID: 17701478 DOI: 10.1080/07853890701379767] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the early 1960s liver cytochrome P450 (P450) was known as an enzyme in drug metabolism. By the late 1970s, P450 induction was associated with elevation of plasma high-density lipoprotein cholesterol and apolipoprotein AI indicating a reduced risk of atherosclerotic disease. Later on, 57 human P450 genes have been identified. One P450 enzyme participates in cholesterol synthesis, and several others catabolize it to oxysterols and other metabolites. Oxysterols are physiological ligands specific for liver X receptors (LXRs) in the activation of ATP-binding cassette (ABC) transporter and other cholesterol-lowering genes. Elevation of cholesterol leads to an endogenous induction of P450 and consequently to enhanced generation of oxysterols and activation of genes coding proteins which efflux cholesterol out of cells, transport it to the liver, catabolize and excrete cholesterol into bile, and prevent absorption of cholesterol in the intestine in the processes that maintain cellular cholesterol homeostasis and protect arteries from atherosclerosis. Peroxisome proliferator-activated receptors (PPARs) co-operate with LXRs and ABC transporters in cholesterol regulation. Secretion of oxysterol is a direct pathway for cellular cholesterol elimination. Several compounds induce P450 and other genes regulating cholesterol balance and prevent or regress atherosclerosis, whereas inhibition of P450 blocks oxidative reactions, promotes cholesterol accumulation, and enhances the atherosclerotic vascular process.
Collapse
Affiliation(s)
- Pauli V Luoma
- Institute of Biomedicine, Pharmacology, University of Helsinki, Finland.
| |
Collapse
|
17
|
Siest G, Marteau JB, Maumus S, Berrahmoune H, Jeannesson E, Samara A, Batt AM, Visvikis-Siest S. Pharmacogenomics and cardiovascular drugs: need for integrated biological system with phenotypes and proteomic markers. Eur J Pharmacol 2005; 527:1-22. [PMID: 16316654 DOI: 10.1016/j.ejphar.2005.10.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 09/23/2005] [Accepted: 10/05/2005] [Indexed: 01/22/2023]
Abstract
Personalized medicine is based on a better knowledge of biological variability, considering the important part due to genetics. When trying to identify involved genes and their products in differential cardiovascular drug responses, a five-step strategy is to be followed: 1) Pharmacokinetic-related genes and phenotypes (2) Pharmacodynamic targets, genes and products (3) Cardiovascular diseases and risks depending on specific or large metabolic cycles (4) Physiological variations of previously identified genes and proteins (5) Environment influences on them. After summarizing the most well-known genes involved in drug metabolism, we will take as example of drugs, the statins, considered as very important drugs from a Public-Health standpoint, but also for economical reasons. These drugs respond differently in human depending on multiple polymorphisms. We will give examples with common ApoE polymorphisms influencing the hypolipemic effects of statins. These drugs also have pleiotropic effects and decrease inflammatory markers. This illustrates the need to separate clinical diseases phenotypes in specific metabolic pathways, which could propose other classifications, of diseases and related genes. Hypertension is also a good example of clinical phenotype which should be followed after various therapeutic approaches by genes polymorphisms and proteins markers. Gene products are under clear environmental expression variations such as age, body mass index and obesity, alcohol, tobacco and dietary interventions which are the first therapeutical actions taken in cardiovascular diseases. But at each of the five steps, within a pharmacoproteomic strategy, we also need to use available information from peptides, proteins and metabolites, which usually are the gene products. A profiling approach, i.e., dealing with genomics, but now also with proteomics, is to be used. In conclusion, the profiling, as well as the large amount of data, will more than before render necessary an organized interpretation of DNA, RNA as well as proteins variations, both at individual and population level.
Collapse
Affiliation(s)
- Gérard Siest
- Inserm U525 Equipe 4, Université Henri Poincaré Nancy I, 30 rue Lionnois Faculté de Pharmacie, 54000 Nancy, France.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
ATP binding cassette transporter A1 (ABCA1) mediates the cellular efflux of phospholipids and cholesterol to lipid-poor apolipoprotein A1 (apoA1) and plays a significant role in high density lipoprotein (HDL) metabolism. ABCA1's role in the causation of Tangier disease, characterized by absent HDL and premature atherosclerosis, has implicated this transporter and its regulators liver-X-receptoralpha (LXRalpha) and peroxisome proliferator activated receptorgamma (PPARgamma) as new candidates potentially influencing the progression of atherosclerosis. In addition to lipid regulation, these genes are involved in apoptosis and inflammation, processes thought to be central to atherosclerotic plaque progression. A Medline-based review of the literature was carried out. Tangier disease and human heterozygotes with ABCA1 mutations provide good evidence that ABCA1 is a major candidate influencing atherosclerosis. Animal and in vitro experiments suggest that ABCA1 not only mediates cholesterol and phospholipid efflux, but is also involved in the regulation of apoptosis and inflammation. The complex and beneficial interactions between apoA1 and ABCA1 seem to be pivotal for cholesterol efflux. The expression of the ABCA1 is tightly regulated. Furthermore the plaque microenvironment could potentially promote ABCA1 protein degradation thus compromising cholesterol efflux. PPAR-LXR-ABCA1 interactions are integral to cholesterol homeostasis and these nuclear receptors have proven anti-inflammatory and anti-matrix metalloproteinase activity. Therapeutic manipulation of the ABCA1 transporter is feasible using PPAR and LXR agonists. PPAR agonists like glitazones and ABCA1 protein stabilization could potentially modify the clinical progression of atherosclerotic lesions.
Collapse
Affiliation(s)
- S Soumian
- Department of Vascular Surgery, Faculty of Medicine, Imperial College, Charing Cross Hospital, London, UK.
| | | | | | | |
Collapse
|
19
|
Anderson SP, Dunn C, Laughter A, Yoon L, Swanson C, Stulnig TM, Steffensen KR, Chandraratna RAS, Gustafsson JA, Corton JC. Overlapping transcriptional programs regulated by the nuclear receptors peroxisome proliferator-activated receptor alpha, retinoid X receptor, and liver X receptor in mouse liver. Mol Pharmacol 2004; 66:1440-52. [PMID: 15371561 DOI: 10.1124/mol.104.005496] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lipid homeostasis is controlled in part by the nuclear receptors peroxisome proliferator (PP)-activated receptor alpha (PPARalpha) and liver X receptor (LXR) through regulation of genes involved in fatty acid and cholesterol metabolism. Exposure to agonists of retinoid X receptor (RXR), the obligate heterodimer partner of PPARalpha, and LXR results in responses that partially overlap with those of PP. To better understand the gene networks regulated by these nuclear receptors, transcript profiles were generated from the livers of wild-type and PPARalpha-null mice exposed to the RXR pan-agonist 3,7-dimethyl-6S,7S-methano, 7-[1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphth-7-yl]-2E,4E-heptadienoic acid (AGN194,204) or the PPAR pan-agonist WY-14,643 (WY; pirinixic acid) and compared with the profiles from the livers of wild-type and LXRalpha/LXRbeta-null mice after exposure to the LXR agonist N-(2,2,2-trifluoroethyl)-N-[4-(2,2,2-trifluoro-1-hydroxy-1-trifluoromethylethyl)phenyl] sulfonamide (T0901317). All 218 WY-regulated genes altered in wild-type mice required PPARalpha. Remarkably, approximately 80% of genes regulated by AGN194,204 required PPARalpha including cell-cycle genes, consistent with AGN-induced hepatocyte proliferation having both PPARalpha-dependent and -independent components. Overlaps of approximately 31 to 62% in the transcript profiles of WY, AGN194,204, and T0901317 required PPARalpha and LXRalpha/LXRbeta for statistical significance. Ofthe 50 overlapping genes regulated by T0901317 and WY, all but one were regulated in a similar direction. These results 1) identify new transcriptional targets of PPARalpha and RXR important in regulating lipid metabolism and liver homeostasis, 2) illustrate the importance of PPARalpha in regulation of gene expression by a prototypical PP and by an RXR agonist, and 3) provide support for an axis of PPARalpha-RXR-LXR in which agonists for each nuclear receptor regulate an overlapping set of genes in the mouse liver.
Collapse
Affiliation(s)
- Steven P Anderson
- Investigative Toxicology and Pathology Group, Safety Assessment, GlaxoSmithKline Research and Development, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Corton JC, Apte U, Anderson SP, Limaye P, Yoon L, Latendresse J, Dunn C, Everitt JI, Voss KA, Swanson C, Kimbrough C, Wong JS, Gill SS, Chandraratna RAS, Kwak MK, Kensler TW, Stulnig TM, Steffensen KR, Gustafsson JA, Mehendale HM. Mimetics of caloric restriction include agonists of lipid-activated nuclear receptors. J Biol Chem 2004; 279:46204-12. [PMID: 15302862 DOI: 10.1074/jbc.m406739200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The obesity epidemic in industrialized countries is associated with increases in cardiovascular disease (CVD) and certain types of cancer. In animal models, caloric restriction (CR) suppresses these diseases as well as chemical-induced tissue damage. These beneficial effects of CR overlap with those altered by agonists of nuclear receptors (NR) under control of the fasting-responsive transcriptional co-activator, peroxisome proliferator-activated co-activator 1alpha (PGC-1alpha). In a screen for compounds that mimic CR effects in the liver, we found statistically significant overlaps between the CR transcript profile in wild-type mice and the profiles altered by agonists of lipid-activated NR, including peroxisome proliferator-activated receptor alpha (PPARalpha), liver X receptor, and their obligate heterodimer partner, retinoid X receptor. The overlapping genes included those involved in CVD (lipid metabolism and inflammation) and cancer (cell fate). Based on this overlap, we hypothesized that some effects of CR are mediated by PPARalpha. As determined by transcript profiling, 19% of all gene expression changes in wild-type mice were dependent on PPARalpha, including Cyp4a10 and Cyp4a14, involved in fatty acid omega-oxidation, acute phase response genes, and epidermal growth factor receptor but not increases in PGC-1alpha. CR protected the livers of wild-type mice from damage induced by thioacetamide, a liver toxicant and hepatocarcinogen. CR protection was lost in PPARalpha-null mice due to inadequate tissue repair. These results demonstrate that PPARalpha mediates some of the effects of CR and indicate that a pharmacological approach to mimicking many of the beneficial effects of CR may be possible.
Collapse
|