1
|
Xu Y, Wang T, Liang X, Yang J, Zhang Y, Bao S. Global research trends and focus on immunotherapy for endometrial cancer: a comprehensive bibliometric insight and visualization analysis (2012-2024). Front Immunol 2025; 16:1571800. [PMID: 40264788 PMCID: PMC12011754 DOI: 10.3389/fimmu.2025.1571800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Background This study conducted a novel systematic bibliometric and visualization analysis of global literature on immunotherapy for endometrial cancer (EC) to explore dynamic trends, research hotspots, and emerging topics, providing valuable references for future research. Methods Articles and reviews on EC immunotherapy published between 2012 and August 2024 were retrieved from the Web of Science Core Collection (WoSCC). Bibliometric tools, CiteSpace and VOSviewer, were used to analyze clustering patterns and research dynamics. Results A total of 861 articles were contributed by 5,331 authors from 1,392 institutions across 58 countries or regions, involving 1,823 keywords. China demonstrated outstanding performance in this field, contributing over 40% of the total publications and ranking first in publication volume. However, the total citation counts for publications from China lags that of the United States, highlighting the latter's leading position and areas for further improvement in China's research efforts. The University of Texas Medical Anderson Cancer Center and Nanjing Medical University were the two institutions with the highest number of publications. In terms of authorship, research teams led by Bosse, Tjalling, and Creutzberg, Carien L made significant contributions to advancing the field. Among individual publications, the work by Talhouk et al. achieved the highest average annual citation count of 70.88, demonstrating its profound impact. In terms of journals, Gynecologic Oncology emerged as a pivotal academic platform, publishing numerous articles and achieving the highest co-citation frequency. Additionally, Frontiers in Oncology, Frontiers in Immunology, and Frontiers in Genetics have become some of the most active and rapidly developing journals in recent years. Research hotspots are concentrated on themes such as the "Tumor Immune Microenvironment", "Immune Checkpoint Inhibitors", and "Targeted Therapy". Recent trends and frontier research focus on the combined application of immune checkpoint inhibitors with other therapies, research on the application of nanotechnology in immunotherapy, and the integration of artificial intelligence to enhance precision medicine. Additionally, efforts are increasingly directed toward advancing various immunotherapy strategies from basic research to clinical applications. Conclusions This comprehensive analysis reveals rapid advancements and significant potential in EC immunotherapy. Strengthening international collaboration and addressing barriers in the translation of research to clinical practice will drive further progress in this promising field.
Collapse
Affiliation(s)
- Yachen Xu
- Department of Gynecology and Obstetrics, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
- Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Haikou, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Medical Laboratory Center, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
| | - Tao Wang
- School of Public Health, Hainan Medical University, Haikou, China
| | - Xiaojing Liang
- Department of Gynecology and Obstetrics, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
- Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Haikou, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Medical Laboratory Center, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
| | - Jie Yang
- Department of Gynecology and Obstetrics, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
- Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Haikou, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Medical Laboratory Center, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
| | - Yuxiang Zhang
- Department of Gynecology and Obstetrics, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
- Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Haikou, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Medical Laboratory Center, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
| | - Shan Bao
- Department of Gynecology and Obstetrics, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
- Key Laboratory of Reproductive Health Diseases Research and Translation (Hainan Medical University), Ministry of Education, Haikou, China
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
- Medical Laboratory Center, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou, China
| |
Collapse
|
2
|
Mishra S, Ashish A, Rai S, Sahni C, Tiwari S, Kumar B, Singh R. The Impact of Inflammatory Cytokines on Recurrent Pregnancy Loss: A Preliminary Investigation. Reprod Sci 2025; 32:804-814. [PMID: 39843706 DOI: 10.1007/s43032-025-01786-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
Recurrent pregnancy loss (RPL), defined as two or more consecutive miscarriages before 20 weeks of gestation, affects 1-2% of couples worldwide. Pro-inflammatory cytokines, such as TNF-α, IL-1β and IL-6 play critical roles in early pregnancy, while anti-inflammatory cytokines like TGF-β and IL-10 promote immune tolerance to prevent harmful inflammatory responses that play important role in placental and fetal development. This aim of the study is to analyse the levels of inflammatory cytokines in blood serum from RPL patients and healthy women (control). The measured cytokines included TNF-α, IL-6, IL-10, TGF-β, CRP, ferritin, IL-1β and IL-4, IFN-γ and IL-17. Using an unpaired t-test and Pearson correlation, significant difference observed between the groups. The results had significantly elevated CRP levels with decreased levels of TGF-β and ferritin (p < 0.05), whereas, IL-1β and IL-4 also found raised indicating a link between systemic inflammation and recurrent miscarriages. IL-4 and CRP increase further suggest potential oxidative stress role in RPL cases. However, no significant differences observed in IL-10, IL-6, or TNF-α level between the groups. This study highlights immune dysregulation as possible contributors to early pregnancy loss, with significant increases in CRP, IL-1β, and IL-4 levels indicating an imbalanced immune response at the maternal-fetal interface. These cytokine elevations may disrupt immune tolerance, suggesting the need for further exploration into cytokine interactions in pregnancy and their potential as an investigatory biomarker and therapeutic target in RPL.
Collapse
Affiliation(s)
- Shivani Mishra
- Department of Anatomy, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ashish Ashish
- Multidisciplinary Research Unit, ICMR-DHR, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Sangeeta Rai
- Department of Obstetrics & Gynaecology, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| | - Chetan Sahni
- Department of Anatomy, All India Institute of Medical Sciences Gorakhpur, Gorakhpur, 273008, India
| | - Shivam Tiwari
- Department of Anatomy, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India
| | - Bhupendra Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Royana Singh
- Department of Anatomy, Institute of Medical Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
3
|
Greygoose E, Metharom P, Kula H, Seckin TK, Seckin TA, Ayhan A, Yu Y. The Estrogen-Immune Interface in Endometriosis. Cells 2025; 14:58. [PMID: 39791759 PMCID: PMC11720315 DOI: 10.3390/cells14010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Endometriosis is a gynecologic condition characterized by the growth of endometrium-like stroma and glandular elements outside of the uterine cavity. The involvement of hormonal dysregulation, specifically estrogen, is well established in the initiation, progression, and maintenance of the condition. Evidence also highlights the association between endometriosis and altered immune states. The human endometrium is a highly dynamic tissue that undergoes frequent remodeling in response to hormonal regulation during the menstrual cycle. Similarly, endometriosis shares this propensity, compounded by unclear pathogenic mechanisms, presenting unique challenges in defining its etiology and pathology. Here, we provide a lens to understand the interplay between estrogen and innate and adaptive immune systems throughout the menstrual cycle in the pathogenesis of endometriosis. Estrogen is closely linked to many altered inflammatory and immunomodulatory states, affecting both tissue-resident and circulatory immune cells. This review summarizes estrogenic interactions with specific myeloid and lymphoid cells, highlighting their implications in the progression of endometriosis.
Collapse
Affiliation(s)
- Emily Greygoose
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Pat Metharom
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
| | - Hakan Kula
- Department of Obstetrics and Gynecology, Faculty of Medicine, Dokuz Eylul University, Izmir 35340, Turkey
| | - Timur K. Seckin
- Burnett School of Medicine, Texas Christian University, Fort Worth, TX 76104, USA;
| | - Tamer A. Seckin
- Department of Gynecology, Lenox Hill Hospital, and Hofstra University, New York, NY 10075, USA
| | - Ayse Ayhan
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yu Yu
- Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia
- Discipline of Obstetrics and Gynaecology, Medical School, University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
4
|
Shi L, Wei L, Lu M, Ding H, Bo L. Analysis of gene expression difference and biological process in chorionic villi of unexplained recurrent spontaneous abortion. BMC Pregnancy Childbirth 2024; 24:880. [PMID: 39734189 DOI: 10.1186/s12884-024-07099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/20/2024] [Indexed: 12/31/2024] Open
Abstract
OBJECTIVE To explore the biological relationship between the regulatory signal pathways involved in differentially expressed genes and recurrent spontaneous abortion (RSA) by analyzing the gene expression microarray data of unexplained RSA. METHODS The gene expression profile data of chorionic villi from unexplained recurrent abortion with normal karyotype and selective induced abortion were compared. Differentially expressed genes were analyzed by the "Limma" package in R Studio, and Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were carried out with "Cluster Profiler" and "org.hs.eg.db" packages. Finally, hub genes were identified through constructing the protein-protein interaction (PPI) network from the differentially expressed gene dataset in the STRING database. And the hub genes were verified by RT-PCR. The expression of TH1 and TH2 cytokines representing IL-2, IL-10 and their receptors related to hub gene immune regulation were detected by enzyme-linked immunosorbent assay (ELISA) and western blot (WB), respectively. RESULTS A total of 295 differentially expressed genes were identified in the dataset GSE22490, with a significance level of P < 0.05 and an absolute log-fold change > 1.0, which included 166 up-regulated genes and 129 down-regulated genes. Go and KEGG enrichment analysis of these differentially expressed genes (P < 0.05,FDR < 0.05) revealed significant involvement in the regulation of inflammatory and immune responses. The PPI analysis revealed that the hub genes FCGR3A, TLR2, BTK, CLEC7A and CD163 were centrally located in the network cluster which were composed of the proteins encoded by differentially expressed genes associated with RSA. The mRNA levels of FCGR3A, TLR2 and CLEC7A in the RSA group were significantly higher than those in the NC group (P < 0.05). The protein expression level of TLR2 was also significantly increased in the RSA group (P < 0.05). The level of IL-2 in the RSA group was significantly higher than that in the NC group (P < 0.05), while the protein expression level of its receptor was not different(P > 0.05). There was no significant difference in the expression levels of IL-10 and its receptor between the two groups (P > 0.05). CONCLUSION Abnormal immune response plays an important role in unexplained RSA. The imbalance in immune regulation may be one of the most important reasons behind this phenomenon. These findings provide a foundation for further research into the mechanisms underlying RSA.
Collapse
Affiliation(s)
- Linling Shi
- Obstetrics and Gynecology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lun Wei
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Meiqiu Lu
- Obstetrics and Gynecology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongmei Ding
- Obstetrics and Gynecology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Le Bo
- Reproductive Medicine Center, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
5
|
Uța C, Tîrziu A, Zimbru EL, Zimbru RI, Georgescu M, Haidar L, Panaitescu C. Alloimmune Causes of Recurrent Pregnancy Loss: Cellular Mechanisms and Overview of Therapeutic Approaches. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1896. [PMID: 39597081 PMCID: PMC11596804 DOI: 10.3390/medicina60111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Recurrent pregnancy loss (RPL) is a complex early pregnancy complication affecting 1-2% of couples and is often linked to immune dysfunction. Aberrations in T and B cell subpopulations, as well as natural killer (NK) cell activity, are particularly influential, with studies showing that abnormal NK cell activation and imbalances in T and B cell subtypes contribute to immune-mediated miscarriage risk. Successful pregnancy requires a tightly regulated balance between pro-inflammatory and anti-inflammatory immune responses. In the early stages, inflammation supports processes such as trophoblast invasion and spiral artery remodeling, but this must be tempered to prevent immune rejection of the fetus. In this review, we explore the underlying immune mechanisms of RPL, focusing on how dysregulated T, B, and NK cell function disrupts maternal tolerance. Specifically, we discuss the essential role of uterine NK cells in the early stages of vascular remodeling in the decidua and regulate the depth of invasion by extravillous trophoblasts. Furthermore, we focus on the delicate Treg dynamics that enable the maintenance of optimal immune homeostasis, where the balance, and not only the quantity of Tregs, is crucial for fostering maternal-fetal tolerance. Other T cell subpopulations, such as Th1, Th2, and Th17 cells, also contribute to immune imbalance, with Th1 and Th17 cells promoting inflammation and potentially harming fetal tolerance, while Th2 cells support immune tolerance. Finally, we show how changes in B cell subpopulations and their functions have been associated with adverse pregnancy outcomes. We further discuss current therapeutic strategies aimed at correcting these immune imbalances, including intravenous immunoglobulin (IVIg), glucocorticoids, and TNF-α inhibitors, examining their efficacy, challenges, and potential side effects. By highlighting both the therapeutic benefits and limitations of these interventions, we aim to offer a balanced perspective on clinical applications for women facing immune-related causes of RPL.
Collapse
Affiliation(s)
- Cristina Uța
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.U.); (E.-L.Z.); (R.-I.Z.); (M.G.); (C.P.)
- Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Alexandru Tîrziu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.U.); (E.-L.Z.); (R.-I.Z.); (M.G.); (C.P.)
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Elena-Larisa Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.U.); (E.-L.Z.); (R.-I.Z.); (M.G.); (C.P.)
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Răzvan-Ionuț Zimbru
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.U.); (E.-L.Z.); (R.-I.Z.); (M.G.); (C.P.)
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
- Research Center for Gene and Cellular Therapies in the Treatment of Cancer—OncoGen, Timis County Emergency Clinical Hospital “Pius Brinzeu”, 156 Liviu Rebreanu Bd., 300723 Timisoara, Romania
| | - Marius Georgescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.U.); (E.-L.Z.); (R.-I.Z.); (M.G.); (C.P.)
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Laura Haidar
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.U.); (E.-L.Z.); (R.-I.Z.); (M.G.); (C.P.)
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| | - Carmen Panaitescu
- Center of Immuno-Physiology and Biotechnologies, Department of Functional Sciences, “Victor Babeș” University of Medicine and Pharmacy, 2 Eftimie Murgu Square, 300041 Timisoara, Romania; (C.U.); (E.-L.Z.); (R.-I.Z.); (M.G.); (C.P.)
- Department of Functional Sciences, Physiology Discipline, Faculty of Medicine, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2 Eftimie Murgu Square, 300041 Timişoara, Romania
| |
Collapse
|
6
|
Yang L, Su Y, Cai S, Ma H, Yang J, Xu M, Li Y, Huang C, Zeng Y, Li Q, Feng M, Li H, Diao L. Regional Analysis of the Immune Microenvironment in Human Endometrium. Am J Reprod Immunol 2024; 92:e13921. [PMID: 39225584 DOI: 10.1111/aji.13921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/10/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
PROBLEM Endometrial immune cells are essential for maintaining homeostasis and the endometrial receptivity to embryo implantation. Understanding regional variations in endometrial immune cell populations is crucial for comprehending normal endometrial function and the pathophysiology of endometrial disorders. Despite previous studies focusing on the overall immune cell composition and function in the endometrium, regional variations in premenopausal women remain unclear. METHOD OF STUDY Endometrial biopsies were obtained from four regions (anterior, posterior, left lateral, and right lateral) of premenopausal women undergoing hysteroscopy with no abnormalities. A 15-color human endometrial immune cell-focused flow cytometry panel was used for analysis. High-dimensional flow cytometry combined with a clustering algorithm was employed to unravel the complexity of endometrial immune cells. Additionally, multiplex immunofluorescent was performed for further validation. RESULTS Our findings revealed no significant variation in the distribution and abundance of immune cells across different regions under normal conditions during the proliferative phase. Each region harbored similar immune cell subtypes, indicating a consistent immune microenvironment. However, when comparing normal regions to areas with focal hemorrhage, significant differences were observed. An increase in CD8+ T cells highlights the impact of localized abnormalities on the immune microenvironment. CONCLUSIONS Our study demonstrates that the endometrial immune cell landscape is consistent across different anatomical regions during the proliferative phase in premenopausal women. This finding has important implications for understanding normal endometrial function and the pathophysiology of endometrial disorders.
Collapse
Affiliation(s)
- Lingtao Yang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, China
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yiyi Su
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Songchen Cai
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, China
| | - Huan Ma
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| | - Jing Yang
- Department of Hematology, National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Mingjuan Xu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, China
| | - Chunyu Huang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, China
| | - Qiyuan Li
- Department of Hematology, National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiamen, China
| | - Mingqian Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hanjie Li
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China
- Guangdong Engineering Technology Research Center of Reproductive Immunology for Peri-implantation, Shenzhen, China
| |
Collapse
|
7
|
Mertelsmann AM, Bowers SF, Wright D, Maganga JK, Mazigo HD, Ndhlovu LC, Changalucha JM, Downs JA. Effects of Schistosoma haematobium infection and treatment on the systemic and mucosal immune phenotype, gene expression and microbiome: A systematic review. PLoS Negl Trop Dis 2024; 18:e0012456. [PMID: 39250522 PMCID: PMC11412685 DOI: 10.1371/journal.pntd.0012456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/19/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Urogenital schistosomiasis caused by Schistosoma haematobium affects approximately 110 million people globally, with the majority of cases in low- and middle-income countries. Schistosome infections have been shown to impact the host immune system, gene expression, and microbiome composition. Studies have demonstrated variations in pathology between schistosome subspecies. In the case of S. haematobium, infection has been associated with HIV acquisition and bladder cancer. However, the underlying pathophysiology has been understudied compared to other schistosome species. This systematic review comprehensively investigates and assimilates the effects of S. haematobium infection on systemic and local host mucosal immunity, cellular gene expression and microbiome. METHODS We conducted a systematic review assessing the reported effects of S. haematobium infections and anthelmintic treatment on the immune system, gene expression and microbiome in humans and animal models. This review followed PRISMA guidelines and was registered prospectively in PROSPERO (CRD42022372607). Randomized clinical trials, cohort, cross-sectional, case-control, experimental ex vivo, and animal studies were included. Two reviewers performed screening independently. RESULTS We screened 3,177 studies and included 94. S. haematobium was reported to lead to: (i) a mixed immune response with a predominant type 2 immune phenotype, increased T and B regulatory cells, and select pro-inflammatory cytokines; (ii) distinct molecular alterations that would compromise epithelial integrity, such as increased metalloproteinase expression, and promote immunological changes and cellular transformation, specifically upregulation of genes p53 and Bcl-2; and (iii) microbiome dysbiosis in the urinary, intestinal, and genital tracts. CONCLUSION S. haematobium induces distinct alterations in the host's immune system, molecular profile, and microbiome. This leads to a diverse range of inflammatory and anti-inflammatory responses and impaired integrity of the local mucosal epithelial barrier, elevating the risks of secondary infections. Further, S. haematobium promotes cellular transformation with oncogenic potential and disrupts the microbiome, further influencing the immune system and genetic makeup. Understanding the pathophysiology of these interactions can improve outcomes for the sequelae of this devastating parasitic infection.
Collapse
Affiliation(s)
- Anna M Mertelsmann
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
| | - Sheridan F Bowers
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
| | - Drew Wright
- Samuel J. Wood Library & C.V. Starr Biomedical Information Center, Weill Cornell Medical College, New York, New York, United States of America
| | - Jane K Maganga
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
| | - Humphrey D Mazigo
- Department of Parasitology and Entomology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Lishomwa C Ndhlovu
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, United States of America
| | - John M Changalucha
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
| | - Jennifer A Downs
- Center for Global Health, Weill Cornell Medicine, New York, New York, United States of America
- Mwanza Intervention Trials Unit/National Institute for Medical Research, Mwanza, Tanzania
- Weill Bugando School of Medicine, Mwanza, Tanzania
| |
Collapse
|
8
|
Apostolov A, Naydenov M, Kalinina A, Nikolova M, Saare M, Aleksejeva E, Milova N, Milov A, Salumets A, Baev V, Yahubyan G. Endometrial Proliferative Phase-Centered View of Transcriptome Dynamics across the Menstrual Cycle. Int J Mol Sci 2024; 25:5320. [PMID: 38791358 PMCID: PMC11121472 DOI: 10.3390/ijms25105320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
The endometrium, the inner mucosal lining of the uterus, undergoes complex molecular and cellular changes across the menstrual cycle in preparation for embryo implantation. Transcriptome-wide analyses have mainly been utilized to study endometrial receptivity, the prerequisite for successful implantation, with most studies, so far, comparing the endometrial transcriptomes between (i) secretory and proliferative endometrium or (ii) mid-secretory and early secretory endometrium. In the current study, we provide a complete transcriptome description of the endometrium across the entire menstrual cycle and, for the first time, comprehensively characterize the proliferative phase of the endometrium. Our temporal transcriptome analysis includes five time points including the mid-proliferative, late proliferative (peri-ovulatory phase), early secretory, mid-secretory, and late secretory phases. Thus, we unveil exhaustively the transitions between the consecutive proliferative and secretory phases, highlighting their unique gene expression profiles and possible distinct biological functions. The transcriptome analysis reveals many differentially expressed genes (DEGs) across the menstrual cycle, most of which are phase-specific. As an example of coordinated gene activity, the expression profile of histone-encoding genes within the HIST cluster on chromosome 6 shows an increase in cluster activity during the late proliferative and a decline during the mid-secretory phase. Moreover, numerous DEGs are shared among all phases. In conclusion, in the current study, we delineate the endometrial proliferative phase-centered view of transcriptome dynamics across the menstrual cycle. Our data analysis highlights significant transcriptomic and functional changes occurring during the late proliferative phase-an essential transition point from the proliferative phase to the secretory phase. Future studies should explore how the biology of the late proliferative phase endometrium impacts the achievement of mid-secretory endometrial receptivity or contributes to molecular aberrations leading to embryo implantation failure.
Collapse
Affiliation(s)
- Apostol Apostolov
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (A.A.); (M.S.); (E.A.); (A.S.)
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, 17177 Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, 17165 Stockholm, Sweden
| | - Mladen Naydenov
- Department of Human Anatomy and Physiology, Faculty of Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | | | - Maria Nikolova
- Center for Women’s Health, 4000 Plovdiv, Bulgaria; (M.N.); (N.M.); (A.M.)
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Merli Saare
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (A.A.); (M.S.); (E.A.); (A.S.)
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
| | - Elina Aleksejeva
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (A.A.); (M.S.); (E.A.); (A.S.)
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
| | - Nadezhda Milova
- Center for Women’s Health, 4000 Plovdiv, Bulgaria; (M.N.); (N.M.); (A.M.)
| | - Antoan Milov
- Center for Women’s Health, 4000 Plovdiv, Bulgaria; (M.N.); (N.M.); (A.M.)
| | - Andres Salumets
- Competence Centre on Health Technologies, 50411 Tartu, Estonia; (A.A.); (M.S.); (E.A.); (A.S.)
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institute, 17177 Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, 17165 Stockholm, Sweden
- Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, 50406 Tartu, Estonia
| | - Vesselin Baev
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Galina Yahubyan
- Department of Molecular Biology, Faculty of Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| |
Collapse
|
9
|
Tang B, Hao Y, Wang C, Deng Z, Kou Z, Zhou H, Zhang H, Fan F, Wang K, Wang D. Biological characteristics of pregnancy in captive Yangtze finless porpoises revealed by urinary metabolomics†. Biol Reprod 2024; 110:808-818. [PMID: 38169437 PMCID: PMC11017131 DOI: 10.1093/biolre/ioad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
The Yangtze finless porpoises (Neophocaena asiaeorientalis a.) are an endemic and critically endangered species in China. Intensive captive breeding is essential for understanding the biology of critically endangered species, especially their pregnancy characteristics, knowledge of which is crucial for effective breeding management. Urine metabolomics can reveal metabolic differences, arising from physiological changes across pregnancy stages. Therefore, we used the urinary metabolomic technology, to explore urinary metabolite changes in pregnant Yangtze finless porpoises. A total of 2281 metabolites were identified in all samples, which including organic acids and derivatives (24.45%), organoheterocyclic compounds (20.23%), benzenoids (18.05%), organic oxygen compounds (7.73%), and phenylpropanoids and polyketides (6.48%). There were 164, 387, and 522 metabolites demonstrating differential abundance during early pregnancy, mid pregnancy, and late pregnancy, respectively, from the levels observed in nonpregnancy. The levels of pregnenolone, 17α-hydroxyprogesterone, and tetrahydrocortisone were significantly higher during all pregnancy stages, indicating their important roles in fetal development. The differential metabolites between nonpregnancy and pregnancy were mainly associated with amino acid and carbohydrate metabolism. Moreover, metabolic activity varied across pregnancy stages; steroid hormone biosynthesis was predominant in early pregnancy, and amino acid biosynthesis and carbohydrate metabolism were predominant in mid pregnancy and late pregnancy, respectively. Our results provide new insights into metabolic characteristics in the Yangtze finless porpoises' urine during pregnancy, and indicate that the differential levels of urine metabolites can determine pregnancy in Yangtze finless porpoises, providing valuable information for the husbandry and management of pregnant Yangtze finless porpoises in captivity.
Collapse
Affiliation(s)
- Bin Tang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yujiang Hao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Chaoqun Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Zhengyu Deng
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Zhangbing Kou
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Haojie Zhou
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haobo Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Fan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Kexiong Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| | - Ding Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- National Aquatic Biological Resource Center, NABRC, Wuhan, China
| |
Collapse
|
10
|
Matsuyama S, Whiteside S, Li SY. Implantation and Decidualization in PCOS: Unraveling the Complexities of Pregnancy. Int J Mol Sci 2024; 25:1203. [PMID: 38256276 PMCID: PMC10816633 DOI: 10.3390/ijms25021203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Polycystic Ovary Syndrome (PCOS) is a prevalent endocrine disorder in women of reproductive age, affecting 5-15% globally with a large proportion undiagnosed. This review explores the multifaceted nature of PCOS and its impact on pregnancy, including challenges in fertility due to hormonal imbalances and insulin resistance. Despite restoring ovulation pharmacologically, women with PCOS face lower pregnancy rates and higher risks of implantation failure and miscarriage. Our review focuses on the complexities of hormonal and metabolic imbalances that impair endometrial receptivity and decidualization in PCOS. Disrupted estrogen signaling, reduced integrity of endometrial epithelial tight junctions, and insulin resistance impair the window of endometrial receptivity. Furthermore, progesterone resistance adversely affects decidualization. Our review also examines the roles of various immune cells and inflammatory processes in the endometrium, contributing to the condition's reproductive challenges. Lastly, we discuss the use of rodent models in understanding PCOS, particularly those induced by hormonal interventions, offering insights into the syndrome's impact on pregnancy and potential treatments. This comprehensive review underscores the need for advanced understanding and treatment strategies to address the reproductive complications associated with PCOS, emphasizing its intricate interplay of hormonal, metabolic, and immune factors.
Collapse
Affiliation(s)
| | | | - Shu-Yun Li
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.M.); (S.W.)
| |
Collapse
|
11
|
Jiang H, Zhao Z, Yu H, Lin Q, Liu Y. Evolutionary traits and functional roles of chemokines and their receptors in the male pregnancy of the Syngnathidae. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:500-510. [PMID: 38045539 PMCID: PMC10689615 DOI: 10.1007/s42995-023-00205-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/27/2023] [Indexed: 12/05/2023]
Abstract
Vertebrates have developed various modes of reproduction, some of which are found in Teleosts. Over 300 species of the Syngnathidae (seahorses, pipefishes and seadragons) exhibit male pregnancies; the males have specialized brood pouches that provide immune protection, nourishment, and oxygen regulation. Chemokines play a vital role at the mammalian maternal-fetal interface; however, their functions in fish reproduction are unclear. This study revealed the evolutionary traits and potential functions of chemokine genes in 22 oviparous, ovoviviparous, and viviparous fish species through comparative genomic analyses. Our results showed that chemokine gene copy numbers and evolutionary rates vary among species with different modes of reproduction. Syngnathidae lost cxcl13 and cxcr5, which are involved in key receptor-ligand pairs for lymphoid organ development. Notably, Syngnathidae have site-specific mutations in cxcl12b and ccl44, suggesting immune function during gestation. Moreover, transcriptome analysis revealed that chemokine gene expression varies among Syngnathidae species with different types of brood pouches, suggesting adaptive variations in chemokine functions among seahorses and their relatives. Furthermore, challenge experiments on seahorse brood pouches revealed a joint immune function of chemokine genes during male pregnancy. This study provides insights into the evolutionary diversity of chemokine genes associated with different reproductive modes in fish. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00205-x.
Collapse
Affiliation(s)
- Han Jiang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- University of Chinese Academy of Sciences, Beijing, 101400 China
| | - Zhanwei Zhao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- University of Chinese Academy of Sciences, Beijing, 101400 China
| | - Haiyan Yu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- University of Chinese Academy of Sciences, Beijing, 101400 China
| | - Yali Liu
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 China
- University of Chinese Academy of Sciences, Beijing, 101400 China
| |
Collapse
|
12
|
Piekarska K, Dratwa M, Radwan P, Radwan M, Bogunia-Kubik K, Nowak I. Pro- and anti-inflammatory cytokines and growth factors in patients undergoing in vitro fertilization procedure treated with prednisone. Front Immunol 2023; 14:1250488. [PMID: 37744353 PMCID: PMC10511889 DOI: 10.3389/fimmu.2023.1250488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Embryo implantation is a key moment in pregnancy. Abnormal production of pro- and anti-inflammatory cytokines, their receptors and other immune factors may result in embryo implantation failure and pregnancy loss. The aim of this study was to determine the profile of selected pro- and anti-inflammatory factors in the blood plasma of patients undergoing in vitro fertilization (IVF) and control women who achieved pregnancy after natural conception. The examined patients were administered steroid prednisone. We present results concern the plasma levels of IFN-ɣ, BDNF, LIF, VEGF-A, sTNFR1 and IL-10. We found that IVF patients receiving steroids differed significantly from patients who were not administered such treatment in terms of IFN-γ and IL-10 levels. Moreover, IVF patients differed in secretion of all tested factors with the fertile controls. Our results indicated that women who secrete at least 1409 pg/ml of sTNFR1 have a chance to become pregnant naturally and give birth to a child, while patients after IVF must achieve a concentration of 962.3 pg/ml sTNFR1 in blood plasma for successful pregnancy. In addition, IVF patients secreting VEGF-A above 43.28 pg/ml have a greater risk of miscarriage or a failed transfer in comparison to women secreting below this value. In conclusion, fertile women present a different profile of pro- and anti-inflammatory cytokines, and growth factors compared to patients with recurrent implantation failure (RIF).
Collapse
Affiliation(s)
- Karolina Piekarska
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Marta Dratwa
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Department of Clinical Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paweł Radwan
- Department of Reproductive Medicine, Gameta Hospital, Rzgów, Poland
| | - Michał Radwan
- Department of Reproductive Medicine, Gameta Hospital, Rzgów, Poland
- Faculty of Health Sciences, The Mazovian Academy in Plock, Płock, Poland
| | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Department of Clinical Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Izabela Nowak
- Laboratory of Immunogenetics and Tissue Immunology, Department of Clinical Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| |
Collapse
|
13
|
Lapides L, Varga I, Csöbönyeiová M, Klein M, Pavlíková L, Visnyaiová K, Babál P, Mikušová R. The Neglected Uterine NK Cells/Hamperl Cells/Endometrial Stromal Granular Cell, or K Cells: A Narrative Review from History through Histology and to Medical Education. Int J Mol Sci 2023; 24:12693. [PMID: 37628873 PMCID: PMC10454298 DOI: 10.3390/ijms241612693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Reproductive immunology is at the forefront of research interests, aiming to better understand the mechanisms of immune regulation during gestation. The relationship between the immune system and the implanting embryo is profound because the embryo is semi-allogenic but not targeted by the maternal immune system, as expected in graft-versus-host reactions. The most prominent cell population at the maternal-fetal interface is the population of uterine natural killer (uNK) cells. Uterine NK cells are two-faced immunologically active cells, bearing comparison with Janus, the ancient Roman god of beginnings and endings. Their first face can be seen as natural killer cells, namely lymphocytes, which are critical for host defense against viruses and tumors. Even though uNK cells contain cytolytic molecules, their cytotoxic effect is not applied to classical target cells in vivo, playing a permissive rather than a defensive role. Their second face is crucial in maintaining physiological gestation-uNK cells show critical immunomodulatory functions with the potential to control embryo implantation and trophoblast invasion, regulate placental vascular remodeling, and promote embryonic/fetal growth. Therefore, we believe that their current designation "natural killer cells" (the first "cytotoxic" Janus's face) is misleading and inappropriate, considering their principal function is supporting and maintaining pregnancy. In this narrative review, we will focus on three lesser-known areas of knowledge about uNK cells. First, from the point of view of histology, we will comprehensively map the history of the discovery of these cells, as well as the current histological possibilities of their identification within the endometrium. To be brief, the discovery of uNK cells is generally attributed to Herwig Hamperl, one of the most influential and prominent representatives of German pathology in the 20th century, and his co-worker, Gisela Hellweg. Secondly, we will discuss the interesting aspect of terminology, since uNK cells are probably one of the human cells with the highest number of synonymous names, leading to significant discrepancies in their descriptions in scientific literature. From the first description of this cell type, they were referred to as endometrial granulocytes, granular endometrial stromal cells, or large granular lymphocytes until the end of the 1980s and the beginning of the 1990s of the last century, when the first publications appeared where the name "uterine NK cells" was used. The third area of present review is medical teaching of histology and clinical embryology. We can confirm that uNK cells are, in most textbooks, overlooked and almost forgotten cells despite their enormous importance. In the present narrative review, we summarize the lesser-known historical and terminological facts about uNK cells. We can state that within the textbooks of histology and embryology, this important cell population is still "overlooked and neglected" and is not given the same importance as in fields of clinical research and clinical practice.
Collapse
Affiliation(s)
- Lenka Lapides
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (L.L.); (M.C.); (M.K.); (R.M.)
| | - Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (L.L.); (M.C.); (M.K.); (R.M.)
| | - Mária Csöbönyeiová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (L.L.); (M.C.); (M.K.); (R.M.)
| | - Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (L.L.); (M.C.); (M.K.); (R.M.)
| | - Lada Pavlíková
- Faculty of Health Care Studies, University of Western Bohemia, 30100 Pilsen, Czech Republic;
| | - Kristína Visnyaiová
- Faculty of Medicine, Comenius University in Bratislava, Spitalska 24, 842 15 Bratislava, Slovakia;
| | - Pavel Babál
- Institute of Pathological Anatomy, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia;
| | - Renáta Mikušová
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia; (L.L.); (M.C.); (M.K.); (R.M.)
| |
Collapse
|
14
|
Fan X, Zhao Q, Li Y, Chen Z, Liao J, Chen H, Meng F, Lu GX, Lin G, Gong F. Immune profiling and RNA-seq uncover the cause of partial unexplained recurrent implantation failure. Int Immunopharmacol 2023; 121:110513. [PMID: 37336073 DOI: 10.1016/j.intimp.2023.110513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Detailed knowledge of the changes in endometrial immune cells during the window of implantation in unexplained recurrent implantation failure (RIF) patients, the functions performed by immune cells, and the interactions between them is largely lacking. This study aimed to classify RIF patients and explore the mechanism through endometrial immune profiling and RNA-seq analysis. METHODS This study enrolled a total of 172 patients, comprising 144 women with unexplained RIF and 28 fertile women. Endometrial samples were collected using endometrial scratching at the mid-luteal phase before in vitro fertilization treatment or pregnancy. Transcriptome sequencing and immunohistochemical staining of endometrial immune cells including natural killer (NK) cells, macrophages, T cells, and B cells were performed. MAIN OUTCOME MEASURE(S) Comparison of the percentage of endometrial immune cells and the RNA-seq information between RIF patients and fertile control patients. RESULT(S) The proportions of uterine CD56+ uNK cells, CD57+ NKT cells, CD68+ macrophages, and CD19+ B cells were significantly elevated in RIF patients. In addition, the number of positive CD68 glandular lumens was significantly higher in RIF patients than in the fertile group. In addition, based on this result, we classified RIF patients into three categories. CONCLUSION(S) Hyperactivation of endometrial immune cells may be associated with reduced endometrial tolerance and recurrent implantation failure, affecting pregnancy outcomes in RIF patients.
Collapse
Affiliation(s)
- Xiangxiu Fan
- An Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University Changsha, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Qi Zhao
- An Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University Changsha, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Yuan Li
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; Clinical Research Center For Reproduction and Genetics In Hunan Province, China
| | - Ziyi Chen
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; Clinical Research Center For Reproduction and Genetics In Hunan Province, China
| | - Jingnan Liao
- An Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University Changsha, China
| | - Huijun Chen
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Fei Meng
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; Clinical Research Center For Reproduction and Genetics In Hunan Province, China
| | - Guang-Xiu Lu
- An Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University Changsha, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; NHC Key Laboratory of Human Reproductive and Stem Cell Engineering, Changsha, China; Clinical Research Center For Reproduction and Genetics In Hunan Province, China
| | - Ge Lin
- An Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University Changsha, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; NHC Key Laboratory of Human Reproductive and Stem Cell Engineering, Changsha, China; Clinical Research Center For Reproduction and Genetics In Hunan Province, China
| | - Fei Gong
- An Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University Changsha, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China; Clinical Research Center For Reproduction and Genetics In Hunan Province, China.
| |
Collapse
|
15
|
Huang X, Wu L, Pei T, Liu D, Liu C, Luo B, Xiao L, Li Y, Wang R, Ouyang Y, Zhu H, Huang W. Single-cell transcriptome analysis reveals endometrial immune microenvironment in minimal/mild endometriosis. Clin Exp Immunol 2023; 212:285-295. [PMID: 36869723 PMCID: PMC10243848 DOI: 10.1093/cei/uxad029] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023] Open
Abstract
Endometriosis is a common inflammatory disorder in women of reproductive age due to an abnormal endometrial immune environment and is associated with infertility. This study aimed to systematically understand the endometrial leukocyte types, inflammatory environment, and impaired receptivity at single-cell resolution. We profiled single-cell RNA transcriptomes of 138 057 endometrial cells from endometriosis patients (n = 6) and control (n = 7), respectively, using 10x Genomics platform. We found that one cluster of epithelial cells that expressed PAEP and CXCL14 was mostly from the control during the window of implantation (WOI). This epithelial cell type is absent in the eutopic endometrium during the secretory phase. The proportion of endometrial immune cells decreased in the secretory phase in the control group, whereas the cycle variation of total immune cells, NK cells, and T cells was absent in endometriosis. Endometrial immune cells secreted more IL-10 in the secretory phase than in the proliferative phase in the control group; the opposite trend was observed in endometriosis. Proinflammatory cytokines levels in the endometrial immune cells were higher in endometriosis than in the control group. Trajectory analysis revealed that the secretory phase epithelial cells decreased in endometriosis. Ligand-receptor analysis revealed that 11 ligand-receptor pairs were upregulated between endometrial immune and epithelial cells during WOI. These results provide new insights into the endometrial immune microenvironment and impaired endometrial receptivity in infertile women with minimal/mild endometriosis.
Collapse
Affiliation(s)
- Xin Huang
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, Sichuan, China
| | - Lukanxuan Wu
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, Sichuan, China
| | - Tianjiao Pei
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, Sichuan, China
| | - Dong Liu
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
| | - Chang Liu
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
| | - Bin Luo
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
| | - Li Xiao
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
| | - Yujing Li
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, Sichuan, China
| | - Ruiying Wang
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, Sichuan, China
| | - Yunwei Ouyang
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
| | - Huili Zhu
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
| | - Wei Huang
- Division of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Chengdu, Sichuan, China
- NHC Key Laboratory of Chronobiology (Sichuan University), Chengdu, Sichuan, China
| |
Collapse
|
16
|
Ganeva R, Parvanov D, Vidolova N, Ruseva M, Handzhiyska M, Arsov K, Decheva I, Metodiev D, Moskova-Doumanova V, Stamenov G. Endometrial immune cell ratios and implantation success in patients with recurrent implantation failure. J Reprod Immunol 2023; 156:103816. [PMID: 36739733 DOI: 10.1016/j.jri.2023.103816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
The objective of this study was to compare the endometrial immune cells quantities and ratios during the mid-luteal phase between women with recurrent implantation failure (RIF) with successful and unsuccessful embryo implantation. For this purpose, endometrial biopsies from 116 women aged between 29 and 46 with history of RIF undergoing Assisted Reproductive Technology (ART) without endometrial pathologies were immunohistochemically stained for CD3 + T-cells, CD4 + T-helpers, CD8 + T-killers, CD14 + monocytes, CD68 + macrophages, CD56 + NK cells and CD79α+ B-cells. Endometrial immune cells quantities and ratios were compared based on the embryo implantation outcome in the subsequent embryo transfer cycle. Spearman correlation analysis and Mann-Whitney U test were used to analyse the obtained data. Patients who experienced successful implantation at the subsequent cycle had significantly lower percentage of CD3 + T cells, and higher ratios of CD4 + /CD8 + , CD4 + /CD3 + and CD68 + /CD3 + than the patients who experienced another failure in implantation. In addition, the ratios of CD3 + /CD14 + , CD79α+ /CD14 + and CD56 + /CD14 + were significantly lower in the successful implantation group than that in the unsuccessful one. A cut off value of CD68 + /CD3 + ratio higher than 0.85 (AUC 0.67, 95% CI 0.56-0.79), CD4 + /CD3 + ratio higher than 0.19 (AUC 0.67, 95% CI 0.56-0.79) and CD4 + /CD8 + ratio higher than 0.43 (AUC 0.62, 95% CI 0.50-0.73) could be predictive factors for successful implantation in RIF patients. Knowledge on the immune cell composition could assist in the evaluation of the endometrial receptivity in RIF patients.
Collapse
Affiliation(s)
- Rumiana Ganeva
- Research & Development Department, Nadezhda Women's Health Hospital, Sofia, Bulgaria; Department of Cell and developmental biology, Faculty of Biology, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria.
| | - Dimitar Parvanov
- Research & Development Department, Nadezhda Women's Health Hospital, Sofia, Bulgaria.
| | - Nina Vidolova
- Research & Development Department, Nadezhda Women's Health Hospital, Sofia, Bulgaria.
| | - Margarita Ruseva
- Research & Development Department, Nadezhda Women's Health Hospital, Sofia, Bulgaria.
| | - Maria Handzhiyska
- Research & Development Department, Nadezhda Women's Health Hospital, Sofia, Bulgaria.
| | - Katarina Arsov
- Research & Development Department, Nadezhda Women's Health Hospital, Sofia, Bulgaria.
| | - Ivon Decheva
- Research & Development Department, Nadezhda Women's Health Hospital, Sofia, Bulgaria.
| | - Dimitar Metodiev
- Pathology Department, Nadezhda Women's Health Hospital, Sofia, Bulgaria.
| | - Veselina Moskova-Doumanova
- Department of Cell and developmental biology, Faculty of Biology, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria.
| | - Georgi Stamenov
- Obstetrics and Gynecology Department, Nadezhda Women's Health Hospital, Sofia, Bulgaria.
| |
Collapse
|
17
|
Wu HM, Chen LH, Hsu LT, Lai CH. Immune Tolerance of Embryo Implantation and Pregnancy: The Role of Human Decidual Stromal Cell- and Embryonic-Derived Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms232113382. [PMID: 36362169 PMCID: PMC9658721 DOI: 10.3390/ijms232113382] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Embryo–endometrial communication plays a critical role in embryo implantation and the establishment of a successful pregnancy. Successful pregnancy outcomes involve maternal immune modulation during embryo implantation. The endometrium is usually primed and immunomodulated by steroid hormones and embryo signals for subsequent embryo implantation and the maintenance of pregnancy. The roles of extracellular vesicles (EVs) and microRNAs for the embryo–maternal interactions have been elucidated recently. New evidence shows that endometrial EVs and trophectoderm-originated EV cargo, including microRNAs, proteins, and lipids in the physiological microenvironment, regulate maternal immunomodulation for embryo implantation and subsequent pregnancy. On the other hand, trophoblast-derived EVs also control the cross-communication between the trophoblasts and immune cells. The exploration of EV functions and mechanisms in the processes of embryo implantation and pregnancy will shed light on a practical tool for the diagnostic or therapeutic approaches to reproductive medicine and infertility.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Le-Tien Hsu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Chyong-Huey Lai
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 333, Taiwan
- Gynecologic Cancer Research Center, Linkou Medical Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-328-1200 (ext. 8254)
| |
Collapse
|
18
|
van der Woude H, Hally KE, Currie MJ, Gasser O, Henry CE. Importance of the endometrial immune environment in endometrial cancer and associated therapies. Front Oncol 2022; 12:975201. [PMID: 36072799 PMCID: PMC9441707 DOI: 10.3389/fonc.2022.975201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Endometrial cancer is rising in prevalence. The standard treatment modality of hysterectomy is becoming increasingly inadequate due primarily to the direct link between endometrial cancer and high BMI which increases surgical risks. This is an immunogenic cancer, with unique molecular subtypes associated with differential immune infiltration. Despite the immunogenicity of endometrial cancer, there is limited pre-clinical and clinical evidence of the function of immune cells in both the normal and cancerous endometrium. Immune checkpoint inhibitors for endometrial cancer are the most well studied type of immune therapy but these are not currently used as standard-of-care and importantly, they represent only one method of immune manipulation. There is limited evidence regarding the use of other immunotherapies as surgical adjuvants or alternatives. Levonorgestrel-loaded intra-uterine systems can also be effective for early-stage disease, but with varying success. There is currently no known reason as to what predisposes some patients to respond while others do not. As hormones can directly influence immune cell function, it is worth investigating the immune compartment in this context. This review assesses the immunological components of the endometrium and describes how the immune microenvironment changes with hormones, obesity, and in progression to malignancy. It also describes the importance of investigating novel pathways for immunotherapy.
Collapse
Affiliation(s)
- Hannah van der Woude
- Department of Obstetrics, Gynaecology and Women’s Health, University of Otago, Wellington, New Zealand
| | | | - Margaret Jane Currie
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Claire Elizabeth Henry
- Department of Obstetrics, Gynaecology and Women’s Health, University of Otago, Wellington, New Zealand
- *Correspondence: Claire Elizabeth Henry,
| |
Collapse
|
19
|
Zhu N, Yang X, Liu Q, Chen Y, Wang X, Li H, Gao H. “Iron triangle” of regulating the uterine microecology: Endometrial microbiota, immunity and endometrium. Front Immunol 2022; 13:928475. [PMID: 36016947 PMCID: PMC9396262 DOI: 10.3389/fimmu.2022.928475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
The uterus is the core place for breeding new life. The balance and imbalance of uterine microecology can directly affect or even dominate the female reproductive health. Emerging data demonstrate that endometrial microbiota, endometrium and immunity play an irreplaceable role in regulating uterine microecology, forming a dynamic iron triangle relationship. Up to nowadays, it remains unclear how the three factors affect and interact with each other, which is also a frontier topic in the emerging field of reproductive tract microecology. From this new perspective, we aim to clarify the relationship and mechanism of the interaction of these three factors, especially their pairwise interactions. Finally, the limitations and future perspectives of the current studies are summarized. In general, these three factors have a dynamic relationship of mutual dependence, promotion and restriction under the physiological or pathological conditions of uterus, among which the regulatory mechanism of microbiota and immunity plays a role of bridge. These findings can provide new insights and measures for the regulation of uterine microecology, the prevention and treatment of endometrial diseases, and the further multi-disciplinary integration between microbiology, immunology and reproductive medicine.
Collapse
Affiliation(s)
- Na Zhu
- Department of Nursing, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- School of Nursing, University of South China, Hengyang, China
| | - Xuyan Yang
- Department of Nursing, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Qiao Liu
- School of Nursing, University of South China, Hengyang, China
| | - Yahui Chen
- School of Nursing, University of South China, Hengyang, China
| | - Xiaolan Wang
- Center for Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Huanhuan Li
- Department of Gynecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hong Gao
- Department of Nursing, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Hong Gao,
| |
Collapse
|
20
|
Xie M, Li Y, Meng YZ, Xu P, Yang YG, Dong S, He J, Hu Z. Uterine Natural Killer Cells: A Rising Star in Human Pregnancy Regulation. Front Immunol 2022; 13:918550. [PMID: 35720413 PMCID: PMC9198966 DOI: 10.3389/fimmu.2022.918550] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/09/2022] [Indexed: 12/28/2022] Open
Abstract
Uterine natural killer (uNK) cells are an immune subset located in the uterus. uNK cells have distinct tissue-specific characteristics compared to their counterparts in peripheral blood and lymphoid organs. Based on their location and the pregnancy status of the host, uNK cells are classified as endometrial NK (eNK) cells or decidua NK (dNK) cells. uNK cells are important in protecting the host from pathogen invasion and contribute to a series of physiological processes that affect successful pregnancy, including uterine spiral artery remodeling, fetal development, and immunity tolerance. Abnormal alterations in uNK cell numbers and/or impaired function may cause pregnancy complications, such as recurrent miscarriage, preeclampsia, or even infertility. In this review, we introduce recent advances in human uNK cell research under normal physiological or pathological conditions, and summarize their unique influences on the process of pregnancy complications or uterine diseases. Finally, we propose the potential clinical use of uNK cells as a novel cellular immunotherapeutic approach for reproductive disorders.
Collapse
Affiliation(s)
- Min Xie
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yan Li
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yi-Zi Meng
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Peng Xu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China.,International Center of Future Science, Jilin University, Changchun, China
| | - Shuai Dong
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| | - Jin He
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China
| | - Zheng Hu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, China.,National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
21
|
Su Y, Xu J, Gao R, Liu X, Liu T, Li C, Ding Y, Chen X, He J, Liu X, Li C, Qi H, Wang Y. The Circ-CYP24A1-miR-224-PRLR Axis Impairs Cell Proliferation and Apoptosis in Recurrent Miscarriage. Front Physiol 2022; 13:778116. [PMID: 35309064 PMCID: PMC8928262 DOI: 10.3389/fphys.2022.778116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
AimRecurrent miscarriage (RM) is associated with numerous clinical factors. However, some RM occurred without specific factors. It has been revealed that some molecules such as hormones, miRNAs, and transcription factors are involved in RM by regulating proliferation, apoptosis, etc. However, the mechanism of RM has yet to be identified clearly. Circular RNAs (circRNAs) are a class of endogenous non-coding RNAs that often act as sponges for miRNAs or binds to proteins involved in biological processes. However, the functional role of circRNAs in the uterine decidua of patients with early RM is still unclear. In this study, we aimed to investigate the mechanisms of circ-CYP24A1 in RM.MethodsThe Dual-Luciferase Activity Assay was designed to analyze the bonding between circ-CYP24A1 and miR-224, and miR-224 and prolactin receptor (PRLR) mRNA 3′UTR. In situ hybridization (ISH) and immunohistochemistry (IHC) were used to observe the expression of circ-CYP24A1 and PRLR in the decidua. Rescue experiments were performed to investigate the regulating effects of circ-CYP24A1, miR-224, and PRLR. Western blotting was conducted to test the expression level of PRLR. The proliferation and apoptosis-related markers in Ishikawa cells were analyzed using CCK8, immunofluorescence staining, and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay.ResultsIn this study, based on the microarray analysis data, we identified a high level of circ-CYP24A1 and PRLR in the decidua of patients with early RM. Based on the bioinformatics prediction, the binding relationship between circ-CYP24A1 and miR-224, as well as miR-224 and PRLR, were verified. Functional experiments demonstrated that circ-CYP24A1 regulated proliferation and apoptosis by binding to and inhibiting miR-224, resulting in increased PRLR expression. Taken together, this study provides new insights into the mechanism of RM.ConclusionIn this study, we found that circ-CYP24A1 plays a role in RM by impairing the balance of cell proliferation and apoptosis by sponging miR-224, thereby regulating PRLR.
Collapse
Affiliation(s)
- Yan Su
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
| | - Jiani Xu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xiaoli Liu
- Department of Family Planning, Chongqing Health Center for Women and Children, Chongqing, China
| | - Taihang Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Cong Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Chunli Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
- *Correspondence: Chunli Li,
| | - Hongbo Qi
- Department of Clinical Laboratory, Chongqing Health Center for Women and Children, Chongqing, China
- Hongbo Qi,
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
- Yingxiong Wang,
| |
Collapse
|
22
|
Pantos K, Grigoriadis S, Maziotis E, Pistola K, Xystra P, Pantou A, Kokkali G, Pappas A, Lambropoulou M, Sfakianoudis K, Simopoulou M. The Role of Interleukins in Recurrent Implantation Failure: A Comprehensive Review of the Literature. Int J Mol Sci 2022; 23:2198. [PMID: 35216313 PMCID: PMC8875813 DOI: 10.3390/ijms23042198] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/31/2022] Open
Abstract
Recurrent implantation failure (RIF) is a multifactorial condition affecting 10-15% of in vitro fertilization (IVF) couples. Data suggest that functional dysregulation of the endometrial immune system constitutes one of the main pathophysiological mechanisms leading to RIF. The aim of this article is to provide a thorough presentation and evaluation of the role of interleukins (ILs) in the pathogenesis of RIF. A comprehensive literature screening was performed summarizing current evidence. During implantation, several classes of ILs are secreted by epithelial and stromal endometrial cells, including IL-6, IL-10, IL-12, IL-15, IL-18, and the leukemia inhibitory factor. These ILs create a perplexing network that orchestrates both proliferation and maturation of uterine natural killer cells, controls the function of regulatory T and B cells inhibiting the secretion of antifetal antibodies, and supports trophoblast invasion and decidua formation. The existing data indicate associations between ILs and RIF. The extensive analysis performed herein concludes that the dysregulation of the ILs network indeed jeopardizes implantation leading to RIF. This review further proposes a mapping of future research on how to move forward from mere associations to robust molecular data that will allow an accurate profiling of ILs in turn enabling evidence-based consultancy and decision making when addressing RIF patients.
Collapse
Affiliation(s)
- Konstantinos Pantos
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.P.); (A.P.); (G.K.); (A.P.); (K.S.)
| | - Sokratis Grigoriadis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (S.G.); (E.M.); (K.P.); (P.X.)
| | - Evangelos Maziotis
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (S.G.); (E.M.); (K.P.); (P.X.)
| | - Kalliopi Pistola
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (S.G.); (E.M.); (K.P.); (P.X.)
| | - Paraskevi Xystra
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (S.G.); (E.M.); (K.P.); (P.X.)
| | - Agni Pantou
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.P.); (A.P.); (G.K.); (A.P.); (K.S.)
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (S.G.); (E.M.); (K.P.); (P.X.)
| | - Georgia Kokkali
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.P.); (A.P.); (G.K.); (A.P.); (K.S.)
| | - Athanasios Pappas
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.P.); (A.P.); (G.K.); (A.P.); (K.S.)
| | - Maria Lambropoulou
- Laboratory of Histology and Embryology, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Konstantinos Sfakianoudis
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.P.); (A.P.); (G.K.); (A.P.); (K.S.)
| | - Mara Simopoulou
- Laboratory of Physiology, Medical School, National and Kapodistrian University of Athens, 75, Mikras Asias, 11527 Athens, Greece; (S.G.); (E.M.); (K.P.); (P.X.)
| |
Collapse
|
23
|
Kim W, Choi J, Yoon H, Lee J, Jun JH. Detrimental effects of lipopolysaccharide on the attachment and outgrowth of various trophoblastic spheroids on human endometrial epithelial cells. Clin Exp Reprod Med 2021; 48:132-141. [PMID: 34078006 PMCID: PMC8176151 DOI: 10.5653/cerm.2021.04448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/21/2021] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Lipopolysaccharide (LPS) from Gram-negative bacteria causes poor uterine receptivity by inducing excessive inflammation at the maternal-fetal interface. This study aimed to investigate the detrimental effects of LPS on the attachment and outgrowth of various types of trophoblastic spheroids on endometrial epithelial cells (ECC-1 cells) in an in vitro model of implantation. METHODS Three types of spheroids with JAr, JEG-3, and JAr mixed JEG-3 (JmJ) cells were used to evaluate the effect of LPS on early implantation events. ECC-1 cells were treated with LPS to mimic endometrial infection, and the expression of inflammatory cytokines and adhesion molecules was analyzed by quantitative real-time polymerase chain reaction and western blotting. The attachment rates and outgrowth areas were evaluated in the various trophoblastic spheroids and ECC-1 cells treated with LPS. RESULTS LPS treatment significantly increased the mRNA expression of inflammatory cytokines (CXCL1, IL-8, and IL-33) and decreased the protein expression of adhesion molecules (ITGβ3 and ITGβ5) in ECC-1 cells. The attachment rates of JAr and JmJ spheroids on ECC-1 cells significantly decreased after treating the ECC-1 cells with 1 and 10 μg/mL LPS. In the outgrowth assay, JAr spheroids did not show any outgrowth areas. However, the outgrowth areas of JEG-3 spheroids were similar regardless of LPS treatment. LPS treatment of JmJ spheroids significantly decreased the outgrowth area after 72 hours of coincubation. CONCLUSION An in vitro implantation model using novel JmJ spheroids was established, and the inhibitory effects of LPS on ECC-1 endometrial epithelial cells were confirmed in the early implantation process.
Collapse
Affiliation(s)
- Wontae Kim
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Seongnam, Korea
| | - Jungwon Choi
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Seongnam, Korea
| | - Hyejin Yoon
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Seongnam, Korea
| | - Jaewang Lee
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Seongnam, Korea
| | - Jin Hyun Jun
- Department of Biomedical Laboratory Science, Graduate School, Eulji University, Seongnam, Korea.,Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, Seongnam, Korea
| |
Collapse
|
24
|
Hosono T, Ono M, Daikoku T, Mieda M, Nomura S, Kagami K, Iizuka T, Nakata R, Fujiwara T, Fujiwara H, Ando H. Time-Restricted Feeding Regulates Circadian Rhythm of Murine Uterine Clock. Curr Dev Nutr 2021; 5:nzab064. [PMID: 33981944 PMCID: PMC8099714 DOI: 10.1093/cdn/nzab064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Skipping breakfast is associated with dysmenorrhea in young women. This suggests that the delay of food intake in the active phase impairs uterine functions by interfering with circadian rhythms. OBJECTIVES To examine the relation between the delay of feeding and uterine circadian rhythms, we investigated the effects of the first meal occasion in the active phase on the uterine clock. METHODS Zeitgeber time (ZT) was defined as ZT0 (08:45) with lights on and ZT12 (20:45) with lights off. Young female mice (8 wk of age) were divided into 3 groups: group I (ad libitum consumption), group II (time-restricted feeding during ZT12-16, initial 4 h of the active period), and group III (time-restricted feeding during ZT20-24, last 4 h of the active period, a breakfast-skipping model). After 2 wk of dietary restriction, mice in each group were killed at 4-h intervals and the expression profiles of uterine clock genes, Bmal1 (brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1), Per1 (period circadian clock 1), Per2, and Cry1 (cryptochrome 1), were examined. RESULTS qPCR and western blot analyses demonstrated synchronized circadian clock gene expression within the uterus. Immunohistochemical analysis confirmed that BMAL1 protein expression was synchronized among the endometrium and myometrium. In groups I and II, mRNA expression of Bmal1 was elevated after ZT12 at the start of the active phase. In contrast, Bmal1 expression was elevated just after ZT20 in group III, showing that the uterine clock rhythm had shifted 8 h backward. The changes in BMAL1 protein expression were confirmed by western blot analysis. CONCLUSIONS This study is the first to indicate that time-restricted feeding regulates a circadian rhythm of the uterine clock that is synchronized throughout the uterine body. These findings suggest that the uterine clock system is a new candidate to explain the etiology of breakfast skipping-induced uterine dysfunction.
Collapse
Affiliation(s)
- Takashi Hosono
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Masanori Ono
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Takiko Daikoku
- Institute for Experimental Animals, Advanced Science Research Center, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Satoshi Nomura
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Kyosuke Kagami
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Takashi Iizuka
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Rieko Nakata
- Department of Food Science and Nutrition, Nara Women's University, Nara, Japan
| | - Tomoko Fujiwara
- Department of Social Work and Life Design, Kyoto Notre Dame University, Kyoto, Japan
| | - Hiroshi Fujiwara
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| | - Hitoshi Ando
- Department of Cellular and Molecular Function Analysis, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
25
|
Campanile G, Baruselli PS, Limone A, D'Occhio MJ. Local action of cytokines and immune cells in communication between the conceptus and uterus during the critical period of early embryo development, attachment and implantation - Implications for embryo survival in cattle: A review. Theriogenology 2021; 167:1-12. [PMID: 33743503 DOI: 10.1016/j.theriogenology.2021.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
Early embryo development, implantation and pregnancy involve a complex dialogue between the embryo and mother. In cattle this dialogue starts as early as days 3-4 when the embryo is still in the oviduct, and it continues to implantation. Immunological processes involving cytokines, mast cells and macrophages form an important part of this dialogue. Amongst the cytokines, interleukin-6 (Il-6) and leukemia inhibitory factor (LIF) are secreted by both the embryo and uterine endometrium and form part of an ongoing and reciprocating dialogue. Mast cells and macrophages populate the uterine endometrium during embryo development and are involved in achieving the correct balance between inflammatory and anti-inflammatory reactions at the uterus that are associated with embryo attachment and implantation. Embryo loss is the major cause of reproductive wastage in cattle, and livestock generally. A deeper understanding of immunological processes during early embryo development will help to achieve the next step change in the efficiency of natural and assisted breeding.
Collapse
Affiliation(s)
- Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil.
| | - Antonio Limone
- Instituto Zooprofilattico Sperimentale Del Mezzogiorno, Portici, Naples, Italy
| | - Michael J D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
26
|
Hirata K, Kimura F, Nakamura A, Kitazawa J, Morimune A, Hanada T, Takebayashi A, Takashima A, Amano T, Tsuji S, Kaku S, Kushima R, Murakami T. Histological diagnostic criterion for chronic endometritis based on the clinical outcome. BMC WOMENS HEALTH 2021; 21:94. [PMID: 33663485 PMCID: PMC7934457 DOI: 10.1186/s12905-021-01239-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 02/23/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND The diagnostic criteria of chronic endometritis remain controversial in the treatment for infertile patients. METHODS A prospective observational study was conducted in a single university from June 2014 to September 2017. Patients who underwent single frozen-thawed blastocyst transfer with a hormone replacement cycle after histological examination for the presence of chronic endometritis were enrolled. Four criteria were used to define chronic endometritis according to the number of plasma cells in the same group of patients: 1 or more (≥ 1) plasma cells, 2 or more (≥ 2), 3 or more (≥ 3), or 5 or more (≥ 5) in 10 high-power fields. Pregnancy rates, live birth rates, and miscarriage rates of the non-chronic endometritis and the chronic endometritis groups defined with each criterion were calculated. A logistic regression analysis was performed for live births using eight explanatory variables (seven infertility factors and chronic endometritis). A receiver operating characteristic curve was drawn and the optimal cut-off value was calculated. RESULTS A total of 69 patients were registered and 53 patients were finally analyzed after exclusion. When the diagnostic criterion was designated as the presence of ≥ 1 plasma cell in the endometrial stroma per 10 high-power fields, the pregnancy rate, live birth rate, and miscarriage rate were 63.0% vs. 30.8%, 51.9% vs. 7.7%, and 17.7% vs. 75% in the non-chronic and chronic endometritis groups, respectively. This criterion resulted in the highest pregnancy and live birth rates among the non-chronic endometritis and the smallest P values for the pregnancy rates, live birth rates, and miscarriage rates between the non-chronic and chronic endometritis groups. In the logistic regression analysis, chronic endometritis was an explanatory variable negatively affecting the objective variable of live birth only when chronic endometritis was diagnosed with ≥ 1 or ≥ 2 plasma cells per 10 high-power fields. The optimal cut-off value was obtained when one or more plasma cells were found in 10 high-power fields (sensitivity 87.5%, specificity 64.9%). CONCLUSIONS Chronic endometritis should be diagnosed as the presence of ≥ 1 plasma cells in 10 high-power fields. According to this diagnostic criterion, chronic endometritis adversely affected the pregnancy rate and the live birth rate.
Collapse
Affiliation(s)
- Kimiko Hirata
- Department of Obstetrics and Gynaecology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shifga, 520-2192, Japan.,Goto Ladies Clinic, 4-13 Hakubaicho, Takatsuki, Osaka, 569-1116, Japan
| | - Fuminori Kimura
- Department of Obstetrics and Gynaecology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shifga, 520-2192, Japan.
| | - Akiko Nakamura
- Department of Obstetrics and Gynaecology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shifga, 520-2192, Japan
| | - Jun Kitazawa
- Department of Obstetrics and Gynaecology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shifga, 520-2192, Japan
| | - Aina Morimune
- Department of Obstetrics and Gynaecology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shifga, 520-2192, Japan
| | - Tetsuro Hanada
- Department of Obstetrics and Gynaecology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shifga, 520-2192, Japan
| | - Akie Takebayashi
- Department of Obstetrics and Gynaecology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shifga, 520-2192, Japan.,Department of Obstetrics and Gynaecology, National Hospital Organization Shiga Hospital, 255 Gochi-cho, Higashioumi, Shiga, 527-8505, Japan
| | - Akiko Takashima
- Department of Obstetrics and Gynaecology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shifga, 520-2192, Japan
| | - Tsukuru Amano
- Department of Obstetrics and Gynaecology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shifga, 520-2192, Japan
| | - Shunichiro Tsuji
- Department of Obstetrics and Gynaecology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shifga, 520-2192, Japan
| | - Shoji Kaku
- Department of Obstetrics and Gynaecology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shifga, 520-2192, Japan
| | - Ryoji Kushima
- Department of Clinical Laboratory Medicine and Division of Diagnostic Pathology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan
| | - Takashi Murakami
- Department of Obstetrics and Gynaecology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shifga, 520-2192, Japan
| |
Collapse
|