1
|
Ratajczak MZ, Bujko K, Brzezniakiewicz-Janus K, Ratajczak J, Kucia M. Hematopoiesis Revolves Around the Primordial Evolutional Rhythm of Purinergic Signaling and Innate Immunity - A Journey to the Developmental Roots. Stem Cell Rev Rep 2024; 20:827-838. [PMID: 38363476 PMCID: PMC10984895 DOI: 10.1007/s12015-024-10692-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/17/2024]
Abstract
A cell's most significant existential task is to survive by ensuring proper metabolism, avoiding harmful stimuli, and adapting to changing environments. It explains why early evolutionary primordial signals and pathways remained active and regulate cell and tissue integrity. This requires energy supply and a balanced redox state. To meet these requirements, the universal intracellular energy transporter purine nucleotide-adenosine triphosphate (ATP) became an important signaling molecule and precursor of purinergic signaling after being released into extracellular space. Similarly, ancient proteins involved in intracellular metabolism gave rise to the third protein component (C3) of the complement cascade (ComC), a soluble arm of innate immunity. These pathways induce cytosol reactive oxygen (ROS) and reactive nitrogen species (RNS) that regulate the redox state of the cells. While low levels of ROS and RNS promote cell growth and differentiation, supra-physiological concentrations can lead to cell damage by pyroptosis. This balance explains the impact of purinergic signaling and innate immunity on cell metabolism, organogenesis, and tissue development. Subsequently, along with evolution, new regulatory cues emerge in the form of growth factors, cytokines, chemokines, and bioactive lipids. However, their expression is still modulated by both primordial signaling pathways. This review will focus on the data that purinergic signaling and innate immunity carry on their ancient developmental task in hematopoiesis and specification of hematopoietic stem/progenitor cells (HSPCs). Moreover, recent evidence shows both these regulatory pathways operate in a paracrine manner and inside HSPCs at the autocrine level.
Collapse
Affiliation(s)
- Mariusz Z Ratajczak
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland.
- Department of Hematology, University of Zielona Gora, Multi-Specialist Hospital Gorzow Wlkp., Gorzow Wielkopolski, Poland.
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA.
| | - Kamila Bujko
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine at Medical, University of Warsaw, Warsaw, Poland
| | | | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, 500 S. Floyd Street, Rm. 107, Louisville, KY, 40202, USA
| | - Magdalena Kucia
- Laboratory of Regenerative Medicine, Medical University of Warsaw, Warsaw, Poland
- Center for Preclinical Studies and Technology, Department of Regenerative Medicine at Medical, University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Zaib S, Areeba, Khan I. Purinergic Signaling and its Role in the Stem Cell Differentiation. Mini Rev Med Chem 2024; 24:863-883. [PMID: 37828668 DOI: 10.2174/0113895575261206231003151416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023]
Abstract
Purinergic signaling is a mechanism in which extracellular purines and pyrimidines interact with specialized cell surface receptors known as purinergic receptors. These receptors are divided into two families of P1 and P2 receptors, each responding to different nucleosides and nucleotides. P1 receptors are activated by adenosine, while P2 receptors are activated by pyrimidine and purines. P2X receptors are ligand-gated ion channels, including seven subunits (P2X1-7). However, P2Y receptors are the G-protein coupled receptors comprising eight subtypes (P2Y1/2/4/6/11/12/13/14). The disorder in purinergic signaling leads to various health-related issues and diseases. In various aspects, it influences the activity of non-neuronal cells and neurons. The molecular mechanism of purinergic signaling provides insight into treating various human diseases. On the contrary, stem cells have been investigated for therapeutic applications. Purinergic signaling has shown promising effect in stem cell engraftment. The immune system promotes the autocrine and paracrine mechanisms and releases the significant factors essential for successful stem cell therapy. Each subtype of purinergic receptor exerts a beneficial effect on the damaged tissue. The most common effect caused by purinergic signaling is the proliferation and differentiation that treat different health-related conditions.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Areeba
- Department of Basic and Applied Chemistry, Faculty of Science and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Imtiaz Khan
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
3
|
Liang Q, Wang JW, Bai YR, Li RL, Wu CJ, Peng W. Targeting TRPV1 and TRPA1: A feasible strategy for natural herbal medicines to combat postoperative ileus. Pharmacol Res 2023; 196:106923. [PMID: 37709183 DOI: 10.1016/j.phrs.2023.106923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Under physiological or pathological conditions, transient receptor potential (TRP) channel vanilloid type 1 (TRPV1) and TRP ankyrin 1 (TRPA1) possess the ability to detect a vast array of stimuli and execute diverse functions. Interestingly, increasing works have reported that activation of TRPV1 and TRPA1 could also be beneficial for ameliorating postoperative ileus (POI). Increasing research has revealed that the gastrointestinal (GI) tract is rich in TRPV1/TRPA1, which can be stimulated by capsaicin, allicin and other compounds. This activation stimulates a variety of neurotransmitters, leading to increased intestinal motility and providing protective effects against GI injury. POI is the most common emergent complication following abdominal and pelvic surgery, and is characterized by postoperative bowel dysfunction, pain, and inflammatory responses. It is noteworthy that natural herbs are gradually gaining recognition as a potential therapeutic option for POI due to the lack of effective pharmacological interventions. Therefore, the focus of this paper is on the TRPV1/TRPA1 channel, and an analysis and summary of the processes and mechanism by which natural herbs activate TRPV1/TRPA1 to enhance GI motility and relieve pain are provided, which will lay the foundation for the development of natural herb treatments for this disease.
Collapse
Affiliation(s)
- Qi Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jing-Wen Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yu-Ru Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Chun-Jie Wu
- Institute of Innovation, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
4
|
Kyawsoewin M, Manokawinchoke J, Namangkalakul W, Egusa H, Limraksasin P, Osathanon T. Roles of extracellular adenosine triphosphate on the functions of periodontal ligament cells. BDJ Open 2023; 9:28. [PMID: 37422449 DOI: 10.1038/s41405-023-00147-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 07/10/2023] Open
Abstract
OBJECTIVE Adenosine triphosphate (ATP) is an essential nucleotide that is normally present in both intracellular and extracellular compartments. Extracellular ATP (eATP) has a pivotal role in both physiological and pathological processes of periodontal ligament tissues. Here, this review aimed to explore the various functions of eATP that are involved in the control of behaviours and functions of periodontal ligament cells. METHODS To identify the included publications for review, the articles were searched in PubMed (MEDLINE) and SCOPUS with the keywords of adenosine triphosphate and periodontal ligament cells. Thirteen publications were used as the main publications for discussion in the present review. RESULTS eATP has been implicated as a potent stimulator for inflammation initiation in periodontal tissues. It also plays a role in proliferation, differentiation, remodelling, and immunosuppressive functions of periodontal ligament cells. Yet, eATP has diverse functions in regulating periodontal tissue homeostasis and regeneration. CONCLUSION eATP may provide a new prospect for periodontal tissue healing as well as treatment of periodontal disease especially periodontitis. It may be utilized as a useful therapeutic tool for future periodontal regeneration therapy.
Collapse
Affiliation(s)
- Maythwe Kyawsoewin
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jeeranan Manokawinchoke
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Worachat Namangkalakul
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Phoonsuk Limraksasin
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand.
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan.
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Ali AAH, Abdel-Hafiz L, Tundo-Lavalle F, Hassan SA, von Gall C. P2Y 2 deficiency impacts adult neurogenesis and related forebrain functions. FASEB J 2021; 35:e21546. [PMID: 33817825 DOI: 10.1096/fj.202002419rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
Adult neurogenesis occurs particularly in the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricle. This continuous addition of neurons to pre-existing neuronal networks is essential for intact cognitive and olfactory functions, respectively. Purinergic signaling modulates adult neurogenesis, however, the role of individual purinergic receptor subtypes in this dynamic process and related cognitive performance is poorly understood. In this study, we analyzed the role of P2Y2 receptor in the neurogenic niches and in related forebrain functions such as spatial working memory and olfaction using mice with a targeted deletion of the P2Y2 receptor (P2Y2-/- ). Proliferation, migration, differentiation, and survival of neuronal precursor cells (NPCs) were analyzed by BrdU assay and immunohistochemistry; signal transduction pathway components were analyzed by immunoblot. In P2Y2-/- mice, proliferation of NPCs in the SGZ and the SVZ was reduced. However, migration, neuronal fate decision, and survival were not affected. Moreover, p-Akt expression was decreased in P2Y2-/- mice. P2Y2-/- mice showed an impaired performance in the Y-maze and a higher latency in the hidden food test. These data indicate that the P2Y2 receptor plays an important role in NPC proliferation as well as in hippocampus-dependent working memory and olfactory function.
Collapse
Affiliation(s)
- Amira A H Ali
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Laila Abdel-Hafiz
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Federica Tundo-Lavalle
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Soha A Hassan
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.,Zoology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
6
|
Noort RJ, Christopher GA, Esseltine JL. Pannexin 1 Influences Lineage Specification of Human iPSCs. Front Cell Dev Biol 2021; 9:659397. [PMID: 33937260 PMCID: PMC8086557 DOI: 10.3389/fcell.2021.659397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Every single cell in the body communicates with nearby cells to locally organize activities with their neighbors and dysfunctional cell-cell communication can be detrimental during cell lineage commitment, tissue patterning and organ development. Pannexin channels (PANX1, PANX2, and PANX3) facilitate purinergic paracrine signaling through the passage of messenger molecules out of cells. PANX1 is widely expressed throughout the body and has recently been identified in human oocytes as well as 2 and 4-cell stage human embryos. Given its abundance across multiple adult tissues and its expression at the earliest stages of human development, we sought to understand whether PANX1 impacts human induced pluripotent stem cells (iPSCs) or plays a role in cell fate decisions. Western blot, immunofluorescence and flow cytometry reveal that PANX1 is expressed in iPSCs as well as all three germ lineages derived from these cells: ectoderm, endoderm, and mesoderm. PANX1 demonstrates differential glycosylation patterns and subcellular localization across the germ lineages. Using CRISPR-Cas9 gene ablation, we find that loss of PANX1 has no obvious impact on iPSC morphology, survival, or pluripotency gene expression. However, PANX1 gene knockout iPSCs exhibit apparent lineage specification bias under 3-dimensional spontaneous differentiation into the three germ lineages. Indeed, loss of PANX1 increases representation of endodermal and mesodermal populations in PANX1 knockout cells. Importantly, PANX1 knockout iPSCs are fully capable of differentiating toward each specific lineage when exposed to the appropriate external signaling pressures, suggesting that although PANX1 influences germ lineage specification, it is not essential to this process.
Collapse
Affiliation(s)
- Rebecca J Noort
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Grace A Christopher
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jessica L Esseltine
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
7
|
Menéndez Méndez A, Smith J, Engel T. Neonatal Seizures and Purinergic Signalling. Int J Mol Sci 2020; 21:ijms21217832. [PMID: 33105750 PMCID: PMC7660091 DOI: 10.3390/ijms21217832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Neonatal seizures are one of the most common comorbidities of neonatal encephalopathy, with seizures aggravating acute injury and clinical outcomes. Current treatment can control early life seizures; however, a high level of pharmacoresistance remains among infants, with increasing evidence suggesting current anti-seizure medication potentiating brain damage. This emphasises the need to develop safer therapeutic strategies with a different mechanism of action. The purinergic system, characterised by the use of adenosine triphosphate and its metabolites as signalling molecules, consists of the membrane-bound P1 and P2 purinoreceptors and proteins to modulate extracellular purine nucleotides and nucleoside levels. Targeting this system is proving successful at treating many disorders and diseases of the central nervous system, including epilepsy. Mounting evidence demonstrates that drugs targeting the purinergic system provide both convulsive and anticonvulsive effects. With components of the purinergic signalling system being widely expressed during brain development, emerging evidence suggests that purinergic signalling contributes to neonatal seizures. In this review, we first provide an overview on neonatal seizure pathology and purinergic signalling during brain development. We then describe in detail recent evidence demonstrating a role for purinergic signalling during neonatal seizures and discuss possible purine-based avenues for seizure suppression in neonates.
Collapse
Affiliation(s)
- Aida Menéndez Méndez
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
| | - Jonathon Smith
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (A.M.M.); (J.S.)
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- Correspondence: ; Tel.: +35-314-025-199
| |
Collapse
|
8
|
Zhang Y, Babczyk P, Pansky A, Kassack MU, Tobiasch E. P2 Receptors Influence hMSCs Differentiation towards Endothelial Cell and Smooth Muscle Cell Lineages. Int J Mol Sci 2020; 21:E6210. [PMID: 32867347 PMCID: PMC7503934 DOI: 10.3390/ijms21176210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human mesenchymal stem cells (hMSCs) have shown their multipotential including differentiating towards endothelial and smooth muscle cell lineages, which triggers a new interest for using hMSCs as a putative source for cardiovascular regenerative medicine. Our recent publication has shown for the first time that purinergic 2 receptors are key players during hMSC differentiation towards adipocytes and osteoblasts. Purinergic 2 receptors play an important role in cardiovascular function when they bind to extracellular nucleotides. In this study, the possible functional role of purinergic 2 receptors during MSC endothelial and smooth muscle differentiation was investigated. METHODS AND RESULTS Human MSCs were isolated from liposuction materials. Then, endothelial and smooth muscle-like cells were differentiated and characterized by specific markers via Reverse Transcriptase-PCR (RT-PCR), Western blot and immunochemical stainings. Interestingly, some purinergic 2 receptor subtypes were found to be differently regulated during these specific lineage commitments: P2Y4 and P2Y14 were involved in the early stage commitment while P2Y1 was the key player in controlling MSC differentiation towards either endothelial or smooth muscle cells. The administration of natural and artificial purinergic 2 receptor agonists and antagonists had a direct influence on these differentiations. Moreover, a feedback loop via exogenous extracellular nucleotides on these particular differentiations was shown by apyrase digest. CONCLUSIONS Purinergic 2 receptors play a crucial role during the differentiation towards endothelial and smooth muscle cell lineages. Some highly selective and potent artificial purinergic 2 ligands can control hMSC differentiation, which might improve the use of adult stem cells in cardiovascular tissue engineering in the future.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany; (Y.Z.); (P.B.); (A.P.)
- Institute of Pharmaceutical & Medicinal Chemistry, University of Dusseldorf, D-40225 Dusseldorf, Germany;
| | - Patrick Babczyk
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany; (Y.Z.); (P.B.); (A.P.)
| | - Andreas Pansky
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany; (Y.Z.); (P.B.); (A.P.)
| | - Matthias Ulrich Kassack
- Institute of Pharmaceutical & Medicinal Chemistry, University of Dusseldorf, D-40225 Dusseldorf, Germany;
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, D-53359 Rheinbach, Germany; (Y.Z.); (P.B.); (A.P.)
| |
Collapse
|
9
|
Möhner DM, Bernhardt A, Bekhite MM, Schulze PC, Sauer H, Wartenberg M. Zoxazolamine-induced stimulation of cardiomyogenesis from embryonic stem cells is mediated by Ca 2+, nitric oxide and ATP release. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118796. [PMID: 32663504 DOI: 10.1016/j.bbamcr.2020.118796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
Ca2+-activated potassium (KCa) channels of small and intermediate conductance influence proliferation, apoptosis, and cell metabolism. We analysed whether prolonged activation of KCa channels by zoxazolamine (ZOX) induces differentiation of mouse embryonic stem (ES) cells towards cardiomyocytes. ZOX treatment of ES cells dose-dependent increased the number and diameter of cardiac foci, the frequency of contractions as well as mRNA expression of the cardiac transcription factor Nkx-2.5, the cardiac markers cardiac troponin I (cTnI), α-myosin heavy chain (α-MHC), ventricular myosin light chain-2 (MLC2v), and the pacemaker hyperpolarization-activated, cyclic nucleotide-gated 4 channel (HCN4). ZOX induced hyperpolarization of membrane potential due to activation of IKCa, raised intracellular Ca2+ concentration ([Ca2+]i) and nitric oxide (NO) in a Ca2+-dependent manner. The Ca2+ response to ZOX was inhibited by chelation of Ca2+ with BAPTA-AM, release of Ca2+ from intracellular stores by thapsigargin and the phospholipase C (PLC) antagonist U73,122. Moreover, the ZOX-induced Ca2+ response was blunted by the purinergic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS) as well as the specific P2Y1 antagonist MRS 2,179, suggesting purinergic receptor-stimulated signal transduction. Consequently, ZOX initiated ATP release from differentiating ES cells, which was inhibited by the chloride channel inhibitor NPPB and the gap junction inhibitor carbenoxolone (CBX). The stimulation of cardiomyogenesis by ZOX was blunted by the nitric oxide synthase (NOS) inhibitor l-NAME, as well as CBX and NPPB. In summary, our data suggest that ZOX enhances cardiomyogenesis of ES cells by ATP release presumably through gap junctional hemichannels, purinergic receptor activation and intracellular Ca2+ response, thus promoting NO generation.
Collapse
Affiliation(s)
- Desirée M Möhner
- Clinic of Internal Medicine I, Department of Cardiology, University Heart Center, Jena University Hospital, Jena, Germany
| | - Anne Bernhardt
- Clinic of Internal Medicine I, Department of Cardiology, University Heart Center, Jena University Hospital, Jena, Germany
| | - Mohamed M Bekhite
- Clinic of Internal Medicine I, Department of Cardiology, University Heart Center, Jena University Hospital, Jena, Germany
| | - P Christian Schulze
- Clinic of Internal Medicine I, Department of Cardiology, University Heart Center, Jena University Hospital, Jena, Germany
| | - Heinrich Sauer
- Justus Liebig University Giessen, Department of Physiology, Giessen, Germany
| | - Maria Wartenberg
- Clinic of Internal Medicine I, Department of Cardiology, University Heart Center, Jena University Hospital, Jena, Germany.
| |
Collapse
|
10
|
Zhai K, Liskova A, Kubatka P, Büsselberg D. Calcium Entry through TRPV1: A Potential Target for the Regulation of Proliferation and Apoptosis in Cancerous and Healthy Cells. Int J Mol Sci 2020; 21:E4177. [PMID: 32545311 PMCID: PMC7312732 DOI: 10.3390/ijms21114177] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Intracellular calcium (Ca2+) concentration ([Ca2+]i) is a key determinant of cell fate and is implicated in carcinogenesis. Membrane ion channels are structures through which ions enter or exit the cell, depending on the driving forces. The opening of transient receptor potential vanilloid 1 (TRPV1) ligand-gated ion channels facilitates transmembrane Ca2+ and Na+ entry, which modifies the delicate balance between apoptotic and proliferative signaling pathways. Proliferation is upregulated through two mechanisms: (1) ATP binding to the G-protein-coupled receptor P2Y2, commencing a kinase signaling cascade that activates the serine-threonine kinase Akt, and (2) the transactivation of the epidermal growth factor receptor (EGFR), leading to a series of protein signals that activate the extracellular signal-regulated kinases (ERK) 1/2. The TRPV1-apoptosis pathway involves Ca2+ influx and efflux between the cytosol, mitochondria, and endoplasmic reticulum (ER), the release of apoptosis-inducing factor (AIF) and cytochrome c from the mitochondria, caspase activation, and DNA fragmentation and condensation. While proliferative mechanisms are typically upregulated in cancerous tissues, shifting the balance to favor apoptosis could support anti-cancer therapies. TRPV1, through [Ca2+]i signaling, influences cancer cell fate; therefore, the modulation of the TRPV1-enforced proliferation-apoptosis balance is a promising avenue in developing anti-cancer therapies and overcoming cancer drug resistance. As such, this review characterizes and evaluates the role of TRPV1 in cell death and survival, in the interest of identifying mechanistic targets for drug discovery.
Collapse
Affiliation(s)
- Kevin Zhai
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, PO Box 24144, Qatar;
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha, PO Box 24144, Qatar;
| |
Collapse
|
11
|
Andrejew R, Glaser T, Oliveira-Giacomelli Á, Ribeiro D, Godoy M, Granato A, Ulrich H. Targeting Purinergic Signaling and Cell Therapy in Cardiovascular and Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1201:275-353. [PMID: 31898792 DOI: 10.1007/978-3-030-31206-0_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular purines exert several functions in physiological and pathophysiological mechanisms. ATP acts through P2 receptors as a neurotransmitter and neuromodulator and modulates heart contractility, while adenosine participates in neurotransmission, blood pressure, and many other mechanisms. Because of their capability to differentiate into mature cell types, they provide a unique therapeutic strategy for regenerating damaged tissue, such as in cardiovascular and neurodegenerative diseases. Purinergic signaling is pivotal for controlling stem cell differentiation and phenotype determination. Proliferation, differentiation, and apoptosis of stem cells of various origins are regulated by purinergic receptors. In this chapter, we selected neurodegenerative and cardiovascular diseases with clinical trials using cell therapy and purinergic receptor targeting. We discuss these approaches as therapeutic alternatives to neurodegenerative and cardiovascular diseases. For instance, promising results were demonstrated in the utilization of mesenchymal stem cells and bone marrow mononuclear cells in vascular regeneration. Regarding neurodegenerative diseases, in general, P2X7 and A2A receptors mostly worsen the degenerative state. Stem cell-based therapy, mainly through mesenchymal and hematopoietic stem cells, showed promising results in improving symptoms caused by neurodegeneration. We propose that purinergic receptor activity regulation combined with stem cells could enhance proliferative and differentiation rates as well as cell engraftment.
Collapse
Affiliation(s)
- Roberta Andrejew
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Ágatha Oliveira-Giacomelli
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Deidiane Ribeiro
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Mariana Godoy
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.,Laboratory of Neurodegenerative Diseases, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Granato
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
12
|
Rodrigues RJ, Marques JM, Cunha RA. Purinergic signalling and brain development. Semin Cell Dev Biol 2019; 95:34-41. [DOI: 10.1016/j.semcdb.2018.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/01/2018] [Accepted: 12/01/2018] [Indexed: 11/27/2022]
|
13
|
Huang L, Otrokocsi L, Sperlágh B. Role of P2 receptors in normal brain development and in neurodevelopmental psychiatric disorders. Brain Res Bull 2019; 151:55-64. [PMID: 30721770 DOI: 10.1016/j.brainresbull.2019.01.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 12/19/2022]
Abstract
The purinergic signaling system, including P2 receptors, plays an important role in various central nervous system (CNS) disorders. Over the last few decades, a substantial amount of accumulated data suggest that most P2 receptor subtypes (P2X1, 2, 3, 4, 6, and 7, and P2Y1, 2, 6, 12, and 13) regulate neuronal/neuroglial developmental processes, such as proliferation, differentiation, migration of neuronal precursors, and neurite outgrowth. However, only a few of these subtypes (P2X2, P2X3, P2X4, P2X7, P2Y1, and P2Y2) have been investigated in the context of neurodevelopmental psychiatric disorders. The activation of these potential target receptors and their underlying mechanisms mainly influence the process of neuroinflammation. In particular, P2 receptor-mediated inflammatory cytokine release has been indicated to contribute to the complex mechanisms of a variety of CNS disorders. The released inflammatory cytokines could be utilized as biomarkers for neurodevelopmental and psychiatric disorders to improve the early diagnosis intervention, and prognosis. The population changes in gut microbiota after birth are closely linked to neurodevelopmental/neuropsychiatric disorders in later life; thus, the dynamic expression and function of P2 receptors on gut epithelial cells during disease processes indicate a novel avenue for the evaluation of disease progression and for the discovery of related therapeutic compounds.
Collapse
Affiliation(s)
- Lumei Huang
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Lilla Otrokocsi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
14
|
Grković I, Drakulić D, Martinović J, Mitrović N. Role of Ectonucleotidases in Synapse Formation During Brain Development: Physiological and Pathological Implications. Curr Neuropharmacol 2019; 17:84-98. [PMID: 28521702 PMCID: PMC6341498 DOI: 10.2174/1570159x15666170518151541] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/19/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Extracellular adenine nucleotides and nucleosides, such as ATP and adenosine, are among the most recently identified and least investigated diffusible signaling factors that contribute to the structural and functional remodeling of the brain, both during embryonic and postnatal development. Their levels in the extracellular milieu are tightly controlled by various ectonucleotidases: ecto-nucleotide pyrophosphatase/phosphodiesterases (E-NPP), alkaline phosphatases (AP), ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) and ecto-5'- nucleotidase (eN). METHODS Studies related to the expression patterns of ectonucleotidases and their known features during brain development are reviewed, highlighting involvement of these enzymes in synapse formation and maturation in physiological as well as in pathological states. RESULTS During brain development and in adulthood all ectonucleotidases have diverse expression pattern, cell specific localization and function. NPPs are expressed at early embryonic days, but the expression of NPP3 is reduced and restricted to ependymal area in adult brain. NTPDase2 is dominant ectonucleotidase existing in the progenitor cells as well as main astrocytic NTPDase in the adult brain, while NTPDase3 is fully expressed after third postnatal week, almost exclusively on varicose fibers. Specific brain AP is functionally associated with synapse formation and this enzyme is sufficient for adenosine production during neurite growth and peak of synaptogenesis. eN is transiently associated with synapses during synaptogenesis, however in adult brain it is more glial than neuronal enzyme. CONCLUSION Control of extracellular adenine nucleotide levels by ectonucleotidases are important for understanding the role of purinergic signaling in developing tissues and potential targets in developmental disorders such as autism.
Collapse
Affiliation(s)
- Ivana Grković
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Dunja Drakulić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Jelena Martinović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| | - Nataša Mitrović
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11001 Belgrade, Serbia
| |
Collapse
|
15
|
Wörsdörfer P, Wagner N, Ergün S. The role of connexins during early embryonic development: pluripotent stem cells, gene editing, and artificial embryonic tissues as tools to close the knowledge gap. Histochem Cell Biol 2018; 150:327-339. [PMID: 30039329 DOI: 10.1007/s00418-018-1697-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 12/14/2022]
Abstract
Since almost 4 decades, connexins have been discussed as important regulators of embryogenesis. Several different members of the gene family can be detected in the preimplantation embryo and during gastrulation. However, genetically engineered mice deficient for every connexin expressed during early development are available and even double-deficient mice were generated. Interestingly, all of these mice complete gastrulation without any abnormalities. This raises the question if the role of connexins has been overrated or if other gene family members compensate and mask their importance. To answer this question, embryos completely devoid of any gap junctional communication need to be investigated. This is challenging because a variety of connexin genes are co-expressed and some null mutations lead to a lethal phenotype. In addition, maternal connexin transcripts were described to persist until the blastocyst stage. In this review, we summarize the current knowledge about the role of connexins during preimplantation development and in embryonic stem cells. We propose that the use of pluripotent stem cells, trophoblast stem cells, as well as artificial embryo-like structures and organoid cultures in combination with multiplex CRISPR/Cas9-based genome editing provides a powerful platform to comprehensively readdress this issue and decipher the role of connexins during lineage decision, differentiation, and morphogenesis in a cell culture model for mouse and human development.
Collapse
Affiliation(s)
- Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr.6, 97070, Würzburg, Germany.
| | - Nicole Wagner
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr.6, 97070, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr.6, 97070, Würzburg, Germany
| |
Collapse
|
16
|
McClelland Descalzo DL, Satoorian TS, Walker LM, Sparks NRL, Pulyanina PY, Zur Nieden NI. Glucose-Induced Oxidative Stress Reduces Proliferation in Embryonic Stem Cells via FOXO3A/β-Catenin-Dependent Transcription of p21(cip1). Stem Cell Reports 2017; 7:55-68. [PMID: 27411103 PMCID: PMC4945584 DOI: 10.1016/j.stemcr.2016.06.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 11/17/2022] Open
Abstract
Embryonic stem cells (ESCs), which are derived from a peri-implantation embryo, are routinely cultured in medium containing diabetic glucose (Glc) concentrations. While pregnancy in women with pre-existing diabetes may result in small embryos, whether such high Glc levels affect ESC growth remains uncovered. We show here that long-term exposure of ESCs to diabetic Glc inhibits their proliferation, thereby mimicking in vivo findings. Molecularly, Glc exposure increased oxidative stress and activated Forkhead box O3a (FOXO3a), promoting increased expression and activity of the ROS-removal enzymes superoxide dismutase and catalase and the cell-cycle inhibitors p21cip1 and p27kip1. Diabetic Glc also promoted β-catenin nuclear localization and the formation of a complex with FOXO3a that localized to the promoters of Sod2, p21cip1, and potentially p27kip1. Our results demonstrate an adaptive response to increases in oxidative stress induced by diabetic Glc conditions that promote ROS removal, but also result in a decrease in proliferation. Exposure of ESCs to diabetic glucose (Glc) induces oxidative stress ESCs fight oxidative stress via FOXO3a-mediated transcription of Sod2 FOXO3a activation promotes p21cip1 and p27kip1 expression and cell-cycle inhibition Glc regulates FOXO3a/β-catenin co-occupation of the p21 and Sod2 promoters
Collapse
Affiliation(s)
- Darcie L McClelland Descalzo
- Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, 1113 Biological Sciences Building, Riverside, CA 92521, USA
| | - Tiffany S Satoorian
- Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, 1113 Biological Sciences Building, Riverside, CA 92521, USA
| | - Lauren M Walker
- Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, 1113 Biological Sciences Building, Riverside, CA 92521, USA
| | - Nicole R L Sparks
- Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, 1113 Biological Sciences Building, Riverside, CA 92521, USA
| | - Polina Y Pulyanina
- Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, 1113 Biological Sciences Building, Riverside, CA 92521, USA
| | - Nicole I Zur Nieden
- Department of Cell Biology & Neuroscience and Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, 1113 Biological Sciences Building, Riverside, CA 92521, USA.
| |
Collapse
|
17
|
Kashfi S, Peymani M, Ghaedi K, Baharvand H, Nasr-Esfahani MH, Javan M. Purinergic Receptor Expression and Potential Association with Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitor Cell Development. CELL JOURNAL 2017; 19:386-402. [PMID: 28836401 PMCID: PMC5570404 DOI: 10.22074/cellj.2017.3906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 08/28/2016] [Indexed: 12/19/2022]
Abstract
Objective Due to recent progress in production of human embryonic stem cell-derived oligodendrocyte progenitor cells (hESC-OPCs) for ameliorating myelin disease
such as multiple sclerosis (MS) and the role of purinergic signaling in OPCs development, we avaluated the profile of purinergic receptors expression during development
of OPCs from hESC. Materials and Methods In this experimental study, we used reverse transcription and
quantitative polymerase chain reaction (RT-qPCR) to obtain more information about
potential roles of purinergic receptors during in vitro production of hESC-OPCs. We
first determined the expression level of different subtypes of purinergic receptors in
hESCs, embryoid bodies (EBs), and hESC-OPCs. The effects of A1adenosine receptor (A1AR)
activation on hESC-OPCs development were subsequently examined. Results hESCs and OPCs had different mRNA expression levels of the AR subtypes.
ARs mRNA were expressed in the EB stage, except for A2AAR. We observed expressions
of several P2X (P2X1, 2, 3, 4, 5, 7) and P2Y (P2Y1, 2, 4, 6, 11-14) genes in hESCs. hESC-OPCs
expressed different subtypes of P2X (P2X1, 2, 3,4,5,7) and P2Y (P2Y1, 2, 4, 6, 11-14). Except for P2X1
and P2X6, all other P2X and P2Y purinergic receptor subtypes expressed in EBs. We also
indicate that A1AR might be involved in modulating gene expression levels of cell cycle
regulators in an agonist and/or dose-dependent manner.
Conclusion Elucidation of the expression pattern of purinergic receptors and the effects
of different subtypes of these receptors in hESC-OPCs may have a promising role in future cell-based therapy or drug design for demyelinating disease.
Collapse
Affiliation(s)
- Shirin Kashfi
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.,Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Maryam Peymani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Kamran Ghaedi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.,Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mohammad Javan
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
18
|
Tang Y, Illes P. Regulation of adult neural progenitor cell functions by purinergic signaling. Glia 2016; 65:213-230. [PMID: 27629990 DOI: 10.1002/glia.23056] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/20/2016] [Accepted: 08/23/2016] [Indexed: 01/30/2023]
Abstract
Extracellular purines are signaling molecules in the neurogenic niches of the brain and spinal cord, where they activate cell surface purinoceptors at embryonic neural stem cells (NSCs) and adult neural progenitor cells (NPCs). Although mRNA and protein are expressed at NSCs/NPCs for almost all subtypes of the nucleotide-sensitive P2X/P2Y, and the nucleoside-sensitive adenosine receptors, only a few of those have acquired functional significance. ATP is sequentially degraded by ecto-nucleotidases to ADP, AMP, and adenosine with agonistic properties for distinct receptor-classes. Nucleotides/nucleosides facilitate or inhibit NSC/NPC proliferation, migration and differentiation. The most ubiquitous effect of all agonists (especially of ATP and ADP) appears to be the facilitation of cell proliferation, usually through P2Y1Rs and sometimes through P2X7Rs. However, usually P2X7R activation causes necrosis/apoptosis of NPCs. Differentiation can be initiated by P2Y2R-activation or P2X7R-blockade. A key element in the transduction mechanism of either receptor is the increase of the intracellular free Ca2+ concentration, which may arise due to its release from intracellular storage sites (G protein-coupling; P2Y) or due to its passage through the receptor-channel itself from the extracellular space (ATP-gated ion channel; P2X). Further research is needed to clarify how purinergic signaling controls NSC/NPC fate and how the balance between the quiescent and activated states is established with fine and dynamic regulation. GLIA 2017;65:213-230.
Collapse
Affiliation(s)
- Yong Tang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Peter Illes
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, 04107, Germany
| |
Collapse
|
19
|
Yue J, Jin S, Li Y, Zhang L, Jiang W, Yang C, Du J. Magnesium inhibits the calcification of the extracellular matrix in tendon-derived stem cells via the ATP-P2R and mitochondrial pathways. Biochem Biophys Res Commun 2016; 478:314-322. [PMID: 27402270 DOI: 10.1016/j.bbrc.2016.06.108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 06/22/2016] [Indexed: 01/14/2023]
Abstract
Tendon calcification has been widely regarded by researchers to result from the osteogenic differentiation of Tendon-Derived Stem Cells (TDSCs) and ectopic mineralization caused by the calcification of cellular matrix. Recent studies have revealed a correlation between the Mg(2+)/Ca(2+) balance and the degeneration or calcification of tendon tissues. Furthermore, the ATP-P2X/P2Y receptor pathway has been shown to play a decisive role in the process of calcification, with calcium exportation from mitochondria and calcium oscillations potentially representing the cohesive signal produced by this pathway. Our previous study demonstrated that matrix calcification is inhibited by magnesium. In this study, we examined the effects of extracellular Mg(2+) on the deposition of calcium phosphate matrix and cellular pathways in TDSCs. The suppression of the export of calcium from mitochondria has also been detected. We found that a high concentration of extracellular Mg(2+) ([Mg(2+)]e) inhibited the mineralization of the extracellular matrix in TDSCs and that 100 μM ATP reversed this inhibitory effect in vitro. In addition, the spontaneous release of ATP was inhibited by high [Mg(2+)]e levels. A high [Mg(2+)]e suppressed the expression of P2X4, P2X5 and P2X7 and activated the expression of P2Y1, P2Y2, P2Y4 and P2Y14. The interaction between Mg(2+) and Ca(2+) is therefore contradictory, Mg(2+) inhibits mitochondrial calcium concentrations, meanwhile it reverses the opening of mPTP that is induced by Ca(2+). JC-1 staining verified the protective effect of Mg(2+) on mitochondrial membrane potential and the decrease induced by Ca(2+). Taken together, these results indicate that high [Mg(2+)]e interferes with the expression of P2 receptors, resulting in decreased extracellular mineralization. The balance between Mg(2+) and Ca(2+) influences mitochondrial calcium exportation and provides another explanation for the mechanism underlying matrix calcification in TDSCs.
Collapse
Affiliation(s)
- Jiaji Yue
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China; Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Shanzi Jin
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China; Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Yaqiang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China; Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Li Zhang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China; Department of Trauma Surgery, Klinikum rechts der lsar, Technical University of Munich, Ismaningerstrasse 22, 81675 Munich, Germany
| | - Wenwei Jiang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China; The First Clinical Medical College, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, People's Republic of China
| | - Chunxi Yang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, 301 Middle Yanchang Road, Shanghai 200072, People's Republic of China.
| | - Jiang Du
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
| |
Collapse
|
20
|
Huang J, Zhang M, Zhang P, Liang H, Ouyang K, Yang HT. Coupling switch of P2Y-IP3 receptors mediates differential Ca(2+) signaling in human embryonic stem cells and derived cardiovascular progenitor cells. Purinergic Signal 2016; 12:465-78. [PMID: 27098757 DOI: 10.1007/s11302-016-9512-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/04/2016] [Indexed: 12/18/2022] Open
Abstract
Purinergic signaling mediated by P2 receptors (P2Rs) plays important roles in embryonic and stem cell development. However, how it mediates Ca(2+) signals in human embryonic stem cells (hESCs) and derived cardiovascular progenitor cells (CVPCs) remains unclear. Here, we aimed to determine the role of P2Rs in mediating Ca(2+) mobilizations of these cells. hESCs were induced to differentiate into CVPCs by our recently established methods. Gene expression of P2Rs and inositol 1,4,5-trisphosphate receptors (IP3Rs) was analyzed by quantitative/RT-PCR. IP3R3 knockdown (KD) or IP3R2 knockout (KO) hESCs were established by shRNA- or TALEN-mediated gene manipulations, respectively. Confocal imaging revealed that Ca(2+) responses in CVPCs to ATP and UTP were more sensitive and stronger than those in hESCs. Consistently, the gene expression levels of most P2YRs except P2Y1 were increased in CVPCs. Suramin or PPADS blocked ATP-induced Ca(2+) transients in hESCs but only partially inhibited those in CVPCs. Moreover, the P2Y1 receptor-specific antagonist MRS2279 abolished most ATP-induced Ca(2+) signals in hESCs but not in CVPCs. P2Y1 receptor-specific agonist MRS2365 induced Ca(2+) transients only in hESCs but not in CVPCs. Furthermore, IP3R2KO but not IP3R3KD decreased the proportion of hESCs responding to MRS2365. In contrast, both IP3R2 and IP3R3 contributed to UTP-induced Ca(2+) responses while ATP-induced Ca(2+) responses were more dependent on IP3R2 in the CVPCs. In conclusion, a predominant role of P2Y1 receptors in hESCs and a transition of P2Y-IP3R coupling in derived CVPCs are responsible for the differential Ca(2+) mobilization between these cells.
Collapse
Affiliation(s)
- Jijun Huang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, China.,Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Min Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, China
| | - Peng Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, China
| | - He Liang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Kunfu Ouyang
- Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Huang-Tian Yang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, 200031, China. .,Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, 310009, China. .,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
21
|
Hao B, Webb SE, Miller AL, Yue J. The role of Ca(2+) signaling on the self-renewal and neural differentiation of embryonic stem cells (ESCs). Cell Calcium 2016; 59:67-74. [PMID: 26973143 DOI: 10.1016/j.ceca.2016.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/05/2016] [Accepted: 01/19/2016] [Indexed: 12/12/2022]
Abstract
Embryonic stem cells (ESCs) are promising resources for both scientific research and clinical regenerative medicine. With regards to the latter, ESCs are especially useful for treating several neurodegenerative disorders. Two significant characteristics of ESCs, which make them so valuable, are their capacity for self-renewal and their pluripotency, both of which are regulated by the integration of various signaling pathways. Intracellular Ca(2+) signaling is involved in several of these pathways. It is known to be precisely controlled by different Ca(2+) channels and pumps, which play an important role in a variety of cellular activities, including proliferation, differentiation and apoptosis. Here, we provide a review of the recent work conducted to investigate the function of Ca(2+) signaling in the self-renewal and the neural differentiation of ESCs. Specifically, we describe the role of intracellular Ca(2+) mobilization mediated by RyRs (ryanodine receptors); by cADPR (cyclic adenosine 5'-diphosphate ribose) and CD38 (cluster of differentiation 38/cADPR hydrolase); and by NAADP (nicotinic acid adenine dinucleotide phosphate) and TPC2 (two pore channel 2). We also discuss the Ca(2+) influx mediated by SOCs (store-operated Ca(2+) channels), TRPCs (transient receptor potential cation channels) and LTCC (L-type Ca(2+) channels) in the pluripotent ESCs as well as in neural differentiation of ESCs. Moreover, we describe the integration of Ca(2+) signaling in the other signaling pathways that are known to regulate the fate of ESCs.
Collapse
Affiliation(s)
- Baixia Hao
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
22
|
Effect of near-infrared light on in vitro cellular ATP production of osteoblasts and fibroblasts and on fracture healing with intramedullary fixation. J Clin Orthop Trauma 2016; 7:234-241. [PMID: 27857496 PMCID: PMC5106470 DOI: 10.1016/j.jcot.2016.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 02/11/2016] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Evaluate the effect of near-infrared light (NIR) on immediate production of ATP by osteoblasts and fibroblasts in vitro, and the healing process of rat femur fractures with intramedullary fixation. BACKGROUND NIR is one potential treatment option for complications of fracture healing, which has shown to stimulate cellular proliferation and to enhance the healing process. METHODS Cell culture - MC3T3-E1 and 3T3-A31 cells were subjected to NIR at 660 nm, 830 nm, or both combined. ATP was assayed at 5, 10, 20, and 45 min after exposure. Animal study - 18 rats had surgery with retrograde intramedullary pins inserted into their femurs, which then underwent closed, transverse femur fracture. Rats were randomly divided into 3 study groups of 6 each: nonirradiated controls, 660 nm, and 830 nm NIR. Healing process was assessed by a blinded radiologist, assigning a healing score of 1-6 for radiographs taken on days 0, 7, 14, and 21. RESULTS Cell culture - All groups gave significant increase in ATP within 5-10 min, with decay to baseline by 45 min. 660 nm NIR was significantly more effective than 830 nm with fibroblasts or either wavelength with osteoblasts. Animal study - A significant increase in the fracture healing grade in the 660 nm group at day 14, but with no differences at day 21. CONCLUSION The study demonstrated an immediate increase in ATP production in vitro and an initial acceleration of callus formation in the fracture healing process, in the presence of NIR.
Collapse
|
23
|
Burnstock G, Dale N. Purinergic signalling during development and ageing. Purinergic Signal 2015; 11:277-305. [PMID: 25989750 PMCID: PMC4529855 DOI: 10.1007/s11302-015-9452-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 04/23/2015] [Indexed: 01/28/2023] Open
Abstract
Extracellular purines and pyrimidines play major roles during embryogenesis, organogenesis, postnatal development and ageing in vertebrates, including humans. Pluripotent stem cells can differentiate into three primary germ layers of the embryo but may also be involved in plasticity and repair of the adult brain. These cells express the molecular components necessary for purinergic signalling, and their developmental fates can be manipulated via this signalling pathway. Functional P1, P2Y and P2X receptor subtypes and ectonucleotidases are involved in the development of different organ systems, including heart, blood vessels, skeletal muscle, urinary bladder, central and peripheral neurons, retina, inner ear, gut, lung and vas deferens. The importance of purinergic signalling in the ageing process is suggested by changes in expression of A1 and A2 receptors in old rat brains and reduction of P2X receptor expression in ageing mouse brain. By contrast, in the periphery, increases in expression of P2X3 and P2X4 receptors are seen in bladder and pancreas.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
24
|
Alzheimer’s disease shares gene expression aberrations with purinergic dysregulation of HPRT deficiency (Lesch–Nyhan disease). Neurosci Lett 2015; 590:35-9. [DOI: 10.1016/j.neulet.2015.01.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 12/19/2022]
|
25
|
Heine C, Sygnecka K, Scherf N, Grohmann M, Bräsigk A, Franke H. P2Y(1) receptor mediated neuronal fibre outgrowth in organotypic brain slice co-cultures. Neuropharmacology 2015; 93:252-66. [PMID: 25683778 DOI: 10.1016/j.neuropharm.2015.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/30/2015] [Accepted: 02/01/2015] [Indexed: 11/16/2022]
Abstract
Extracellular purines have multiple functional roles in development, plastic remodelling, and regeneration of the CNS by stimulating certain P2X/Y receptor (R) subtypes. In the present study we elucidated the involvement of P2YRs in neuronal fibre outgrowth in the developing nervous system. We particularly focused on the P2Y1R subtype and the dopaminergic system, respectively. For this purpose, we used organotypic slice co-cultures consisting of the ventral tegmental area/substantia nigra (VTA/SN) and the prefrontal cortex (PFC). After detecting the presence of the P2Y1R in VTA/SN, PFC, and on outgrowing fibres in the border region (e.g. on glial processes) connecting both brain slices, we could show that pharmacological modulation of the receptor influenced neuronal fibre outgrowth. Biocytin-tracing and tyrosine hydroxylase-immunolabelling together with quantitative image analysis revealed a significant increase in fibre growth in the border region of the co-cultures after treatment with ADPβS (P2Y1,12,13R agonist). The observed stimulatory potential of ADPβS was inhibited by pre-treatment with the P2X/YR antagonist PPADS. In P2Y1R knockout (P2Y1R(-/-)) mice, the ADPβS-induced stimulatory effect was absent, while growth was significantly enhanced in the co-cultures of the respective wild-type. This observation was confirmed in entorhino-hippocampal co-cultures, an example of a different projection system, expressing the P2Y1R. Using wortmannin and PD98059 we further showed that PI3K/Akt and MAPK/ERK cascades are involved in the mechanism underlying ADPβS-induced fibre growth. In conclusion, the data of this study clearly indicate that activation of the P2Y1R stimulates fibre growth and thereby emphasises the general role of this particular receptor subtype during development and regeneration.
Collapse
Affiliation(s)
- Claudia Heine
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany; Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany.
| | - Katja Sygnecka
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany; Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany.
| | - Nico Scherf
- Institute for Medical Informatics and Biometry (IMB), Dresden University of Technology, Fetscherstraße 74, 01307 Dresden, Germany.
| | - Marcus Grohmann
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany.
| | - Annett Bräsigk
- Centre for Biotechnology and Biomedicine (BBZ), Molecular Biological-Biochemical Processing Technology, Deutscher Platz 5, 04103 Leipzig, Germany.
| | - Heike Franke
- Rudolf Boehm Institute of Pharmacology and Toxicology, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
26
|
Huang G, Ye S, Zhou X, Liu D, Ying QL. Molecular basis of embryonic stem cell self-renewal: from signaling pathways to pluripotency network. Cell Mol Life Sci 2015; 72:1741-57. [PMID: 25595304 DOI: 10.1007/s00018-015-1833-2] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/17/2014] [Accepted: 01/08/2015] [Indexed: 12/18/2022]
Abstract
Embryonic stem cells (ESCs) can be maintained in culture indefinitely while retaining the capacity to generate any type of cell in the body, and therefore not only hold great promise for tissue repair and regeneration, but also provide a powerful tool for modeling human disease and understanding biological development. In order to fulfill the full potential of ESCs, it is critical to understand how ESC fate, whether to self-renew or to differentiate into specialized cells, is regulated. On the molecular level, ESC fate is controlled by the intracellular transcriptional regulatory networks that respond to various extrinsic signaling stimuli. In this review, we discuss and compare important signaling pathways in the self-renewal and differentiation of mouse, rat, and human ESCs with an emphasis on how these pathways integrate into ESC-specific transcription circuitries. This will be beneficial for understanding the common and conserved mechanisms that govern self-renewal, and for developing novel culture conditions that support ESC derivation and maintenance.
Collapse
Affiliation(s)
- Guanyi Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, 230601, PR China
| | | | | | | | | |
Collapse
|
27
|
Zhao P, Schulz TC, Sherrer ES, Weatherly DB, Robins AJ, Wells L. The human embryonic stem cell proteome revealed by multidimensional fractionation followed by tandem mass spectrometry. Proteomics 2014; 15:554-66. [PMID: 25367160 DOI: 10.1002/pmic.201400132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/22/2014] [Accepted: 10/28/2014] [Indexed: 01/06/2023]
Abstract
Human embryonic stem cells (hESCs) have received considerable attention due to their therapeutic potential and usefulness in understanding early development and cell fate commitment. In order to appreciate the unique properties of these pluripotent, self-renewing cells, we have performed an in-depth multidimensional fractionation followed by LC-MS/MS analysis of the hESCs harvested from defined media to elucidate expressed, phosphorylated, O-linked β-N-acetylglucosamine (O-GlcNAc) modified, and secreted proteins. From the triplicate analysis, we were able to assign more than 3000 proteins with less than 1% false-discovery rate. This analysis also allowed us to identify nearly 500 phosphorylation sites and 68 sites of O-GlcNAc modification with the same high confidence. Investigation of the phosphorylation sites allowed us to deduce the set of kinases that are likely active in these cells. We also identified more than 100 secreted proteins of hESCs that likely play a role in extracellular matrix formation and remodeling, as well as autocrine signaling for self-renewal and maintenance of the undifferentiated state. Finally, by performing in-depth analysis in triplicate, spectral counts were obtained for these proteins and posttranslationally modified peptides, which will allow us to perform relative quantitative analysis between these cells and any derived cell type in the future.
Collapse
Affiliation(s)
- Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | | | | | | | | | | |
Collapse
|
28
|
Tackett BC, Sun H, Mei Y, Maynard JP, Cheruvu S, Mani A, Hernandez-Garcia A, Vigneswaran N, Karpen SJ, Thevananther S. P2Y2 purinergic receptor activation is essential for efficient hepatocyte proliferation in response to partial hepatectomy. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1073-87. [PMID: 25301185 PMCID: PMC4254960 DOI: 10.1152/ajpgi.00092.2014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/30/2014] [Indexed: 01/31/2023]
Abstract
Extracellular nucleotides via activation of P2 purinergic receptors influence hepatocyte proliferation and liver regeneration in response to 70% partial hepatectomy (PH). Adult hepatocytes express multiple P2Y (G protein-coupled) and P2X (ligand-gated ion channels) purinergic receptor subtypes. However, the identity of key receptor subtype(s) important for efficient hepatocyte proliferation in regenerating livers remains unknown. To evaluate the impact of P2Y2 purinergic receptor-mediated signaling on hepatocyte proliferation in regenerating livers, wild-type (WT) and P2Y2 purinergic receptor knockout (P2Y2-/-) mice were subjected to 70% PH. Liver tissues were analyzed for activation of early events critical for hepatocyte priming and subsequent cell cycle progression. Our findings suggest that early activation of p42/44 ERK MAPK (5 min), early growth response-1 (Egr-1) and activator protein-1 (AP-1) DNA-binding activity (30 min), and subsequent hepatocyte proliferation (24-72 h) in response to 70% PH were impaired in P2Y2-/- mice. Interestingly, early induction of cytokines (TNF-α, IL-6) and cytokine-mediated signaling (NF-κB, STAT-3) were intact in P2Y2-/- remnant livers, uncovering the importance of cytokine-independent and nucleotide-dependent early priming events critical for subsequent hepatocyte proliferation in regenerating livers. Hepatocytes isolated from the WT and P2Y2-/- mice were treated with ATP or ATPγS for 5-120 min and 12-24 h. Extracellular ATP alone, via activation of P2Y2 purinergic receptors, was sufficient to induce ERK phosphorylation, Egr-1 protein expression, and key cyclins and cell cycle progression of hepatocytes in vitro. Collectively, these findings highlight the functional significance of P2Y2 purinergic receptor activation for efficient hepatocyte priming and proliferation in response to PH.
Collapse
Affiliation(s)
- Bryan C Tackett
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas; Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Hongdan Sun
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas
| | - Yu Mei
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas
| | - Janielle P Maynard
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas; Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Sayuri Cheruvu
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas
| | - Arunmani Mani
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas
| | | | - Nadarajah Vigneswaran
- Department of Diagnostic Sciences, University of Texas Dental Branch in Houston, Houston, Texas
| | - Saul J Karpen
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas; Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Sundararajah Thevananther
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Liver Center, Houston, Texas; Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas;
| |
Collapse
|
29
|
Kaebisch C, Schipper D, Babczyk P, Tobiasch E. The role of purinergic receptors in stem cell differentiation. Comput Struct Biotechnol J 2014; 13:75-84. [PMID: 26900431 PMCID: PMC4720018 DOI: 10.1016/j.csbj.2014.11.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 12/20/2022] Open
Abstract
A major challenge modern society has to face is the increasing need for tissue regeneration due to degenerative diseases or tumors, but also accidents or warlike conflicts. There is great hope that stem cell-based therapies might improve current treatments of cardiovascular diseases, osteochondral defects or nerve injury due to the unique properties of stem cells such as their self-renewal and differentiation potential. Since embryonic stem cells raise severe ethical concerns and are prone to teratoma formation, adult stem cells are still in the focus of research. Emphasis is placed on cellular signaling within these cells and in between them for a better understanding of the complex processes regulating stem cell fate. One of the oldest signaling systems is based on nucleotides as ligands for purinergic receptors playing an important role in a huge variety of cellular processes such as proliferation, migration and differentiation. Besides their natural ligands, several artificial agonists and antagonists have been identified for P1 and P2 receptors and are already used as drugs. This review outlines purinergic receptor expression and signaling in stem cells metabolism. We will briefly describe current findings in embryonic and induced pluripotent stem cells as well as in cancer-, hematopoietic-, and neural crest-derived stem cells. The major focus will be placed on recent findings of purinergic signaling in mesenchymal stem cells addressed in in vitro and in vivo studies, since stem cell fate might be manipulated by this system guiding differentiation towards the desired lineage in the future.
Collapse
Affiliation(s)
| | | | | | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhine-Sieg University of Applied Sciences, Von-Liebig-Str. 20, 53359 Rheinbach, Germany
| |
Collapse
|
30
|
Atkinson SP, Lako M, Armstrong L. Potential for pharmacological manipulation of human embryonic stem cells. Br J Pharmacol 2014; 169:269-89. [PMID: 22515554 DOI: 10.1111/j.1476-5381.2012.01978.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The therapeutic potential of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is vast, allowing disease modelling, drug discovery and testing and perhaps most importantly regenerative therapies. However, problems abound; techniques for cultivating self-renewing hESCs tend to give a heterogeneous population of self-renewing and partially differentiated cells and general include animal-derived products that can be cost-prohibitive for large-scale production, and effective lineage-specific differentiation protocols also still remain relatively undefined and are inefficient at producing large amounts of cells for therapeutic use. Furthermore, the mechanisms and signalling pathways that mediate pluripotency and differentiation are still to be fully appreciated. However, over the recent years, the development/discovery of a range of effective small molecule inhibitors/activators has had a huge impact in hESC biology. Large-scale screening techniques, coupled with greater knowledge of the pathways involved, have generated pharmacological agents that can boost hESC pluripotency/self-renewal and survival and has greatly increased the efficiency of various differentiation protocols, while also aiding the delineation of several important signalling pathways. Within this review, we hope to describe the current uses of small molecule inhibitors/activators in hESC biology and their potential uses in the future.
Collapse
|
31
|
Weihs AM, Fuchs C, Teuschl AH, Hartinger J, Slezak P, Mittermayr R, Redl H, Junger WG, Sitte HH, Rünzler D. Shock wave treatment enhances cell proliferation and improves wound healing by ATP release-coupled extracellular signal-regulated kinase (ERK) activation. J Biol Chem 2014; 289:27090-27104. [PMID: 25118288 DOI: 10.1074/jbc.m114.580936] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Shock wave treatment accelerates impaired wound healing in diverse clinical situations. However, the mechanisms underlying the beneficial effects of shock waves have not yet been fully revealed. Because cell proliferation is a major requirement in the wound healing cascade, we used in vitro studies and an in vivo wound healing model to study whether shock wave treatment influences proliferation by altering major extracellular factors and signaling pathways involved in cell proliferation. We identified extracellular ATP, released in an energy- and pulse number-dependent manner, as a trigger of the biological effects of shock wave treatment. Shock wave treatment induced ATP release, increased Erk1/2 and p38 MAPK activation, and enhanced proliferation in three different cell types (C3H10T1/2 murine mesenchymal progenitor cells, primary human adipose tissue-derived stem cells, and a human Jurkat T cell line) in vitro. Purinergic signaling-induced Erk1/2 activation was found to be essential for this proliferative effect, which was further confirmed by in vivo studies in a rat wound healing model where shock wave treatment induced proliferation and increased wound healing in an Erk1/2-dependent fashion. In summary, this report demonstrates that shock wave treatment triggers release of cellular ATP, which subsequently activates purinergic receptors and finally enhances proliferation in vitro and in vivo via downstream Erk1/2 signaling. In conclusion, our findings shed further light on the molecular mechanisms by which shock wave treatment exerts its beneficial effects. These findings could help to improve the clinical use of shock wave treatment for wound healing.
Collapse
Affiliation(s)
- Anna M Weihs
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria,; The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Christiane Fuchs
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria,; The Austrian Cluster for Tissue Regeneration, Vienna, Austria,.
| | - Andreas H Teuschl
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria,; The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Joachim Hartinger
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria,; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/Austrian Workers' Compensation Board (AUVA) Research Center, 1200 Vienna, Austria
| | - Paul Slezak
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria,; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/Austrian Workers' Compensation Board (AUVA) Research Center, 1200 Vienna, Austria
| | - Rainer Mittermayr
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria,; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/Austrian Workers' Compensation Board (AUVA) Research Center, 1200 Vienna, Austria
| | - Heinz Redl
- The Austrian Cluster for Tissue Regeneration, Vienna, Austria,; Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/Austrian Workers' Compensation Board (AUVA) Research Center, 1200 Vienna, Austria
| | - Wolfgang G Junger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/Austrian Workers' Compensation Board (AUVA) Research Center, 1200 Vienna, Austria,; Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, and
| | - Harald H Sitte
- Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dominik Rünzler
- Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria,; The Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
32
|
Cao X, Li LP, Qin XH, Li SJ, Zhang M, Wang Q, Hu HH, Fang YY, Gao YB, Li XW, Sun LR, Xiong WC, Gao TM, Zhu XH. Astrocytic adenosine 5'-triphosphate release regulates the proliferation of neural stem cells in the adult hippocampus. Stem Cells 2014; 31:1633-43. [PMID: 23630193 DOI: 10.1002/stem.1408] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 03/27/2013] [Indexed: 12/13/2022]
Abstract
Astrocytes are key components of the niche for neural stem cells (NSCs) in the adult hippocampus and play a vital role in regulating NSC proliferation and differentiation. However, the exact molecular mechanisms by which astrocytes modulate NSC proliferation have not been identified. Here, we identified adenosine 5'-triphosphate (ATP) as a proliferative factor required for astrocyte-mediated proliferation of NSCs in the adult hippocampus. Our results indicate that ATP is necessary and sufficient for astrocytes to promote NSC proliferation in vitro. The lack of inositol 1,4,5-trisphosphate receptor type 2 and transgenic blockage of vesicular gliotransmission induced deficient ATP release from astrocytes. This deficiency led to a dysfunction in NSC proliferation that could be rescued via the administration of exogenous ATP. Moreover, P2Y1-mediated purinergic signaling is involved in the astrocyte promotion of NSC proliferation. As adult hippocampal neurogenesis is potentially involved in major mood disorder, our results might offer mechanistic insights into this disease.
Collapse
Affiliation(s)
- Xiong Cao
- Department of Neurobiology, School of Basic Medical Sciences; Key Laboratory of Neuroplasticity of Guangdong Higher Education Institutes, and; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Glaser T, de Oliveira SLB, Cheffer A, Beco R, Martins P, Fornazari M, Lameu C, Junior HMC, Coutinho-Silva R, Ulrich H. Modulation of mouse embryonic stem cell proliferation and neural differentiation by the P2X7 receptor. PLoS One 2014; 9:e96281. [PMID: 24798220 PMCID: PMC4010452 DOI: 10.1371/journal.pone.0096281] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 04/04/2014] [Indexed: 12/31/2022] Open
Abstract
Background Novel developmental functions have been attributed to the P2X7 receptor (P2X7R) including proliferation stimulation and neural differentiation. Mouse embryonic stem cells (ESC), induced with retinoic acid to neural differentiation, closely assemble processes occurring during neuroectodermal development of the early embryo. Principal Findings P2X7R expression together with the pluripotency marker Oct-4 was highest in undifferentiated ESC. In undifferentiated cells, the P2X7R agonist Bz-ATP accelerated cell cycle entry, which was blocked by the specific P2X7R inhibitor KN-62. ESC induced to neural differentiation with retinoic acid, reduced Oct-4 and P2X7R expression. P2X7R receptor-promoted intracellular calcium fluxes were obtained at lower Bz-ATP ligand concentrations in undifferentiated and in neural-differentiated cells compared to other studies. The presence of KN-62 led to increased number of cells expressing SSEA-1, Dcx and β3-tubulin, as well as the number of SSEA-1 and β3-tubulin-double-positive cells confirming that onset of neuroectodermal differentiation and neuronal fate determination depends on suppression of P2X7R activity. Moreover, an increase in the number of Ki-67 positive cells in conditions of P2X7R inhibition indicates rescue of progenitors into the cell cycle, augmenting the number of neuroblasts and consequently neurogenesis. Conclusions In embryonic cells, P2X7R expression and activity is upregulated, maintaining proliferation, while upon induction to neural differentiation P2X7 receptor expression and activity needs to be suppressed.
Collapse
Affiliation(s)
- Talita Glaser
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | | | - Arquimedes Cheffer
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | - Renata Beco
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | - Patrícia Martins
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | - Maynara Fornazari
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | - Claudiana Lameu
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | - Helio Miranda Costa Junior
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica; Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
- * E-mail:
| |
Collapse
|
34
|
Danino O, Grossman S, Fischer B. Nucleoside 5'-phosphorothioate derivatives as oxidative stress protectants in PC12 cells. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2013; 32:333-53. [PMID: 23742060 DOI: 10.1080/15257770.2013.789107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Iron-induced oxidative damage of mitochondria contributes to cellular death seen in neurodegenerative diseases, therefore, there is a demand for nontoxic, biocompatible, and effective Fe-ion chelators. We evaluated the chelation of Fe(II) by phosphate derivatives using ferrozine as an indicator. We studied the effect of phosphate derivatives on inhibiting Fe(II)-induced oxidative stress in PC12 cells, and metabolic stability in PC12 cells was evaluated. Nucleotides containing phosphorothioate moieties inhibited ROS formation better than natural nucleotides and were more metabolically stable in PC12 cells. Finally, we elucidated that these nucleotides activate the MAP-kinase pathway that contributes to protection of PC12 cells under oxidative stress.
Collapse
Affiliation(s)
- Ortal Danino
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | | | | |
Collapse
|
35
|
Garavello NM, Pena DA, Bonatto JMC, Duarte ML, Costa-Junior HM, Schumacher RI, Forti FL, Schechtman D. Activation of protein kinase C delta by ψδRACK peptide promotes embryonic stem cell proliferation through ERK 1/2. J Proteomics 2013; 94:497-512. [DOI: 10.1016/j.jprot.2013.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 09/30/2013] [Accepted: 10/15/2013] [Indexed: 01/07/2023]
|
36
|
Stimulation of α1-adrenoceptor or angiotensin type 1 receptor enhances DNA synthesis in human-induced pluripotent stem cells via Gq-coupled receptor-dependent signaling pathways. Eur J Pharmacol 2013; 714:202-9. [DOI: 10.1016/j.ejphar.2013.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/31/2013] [Accepted: 06/08/2013] [Indexed: 11/22/2022]
|
37
|
Neuron-NG2 cell synapses: novel functions for regulating NG2 cell proliferation and differentiation. BIOMED RESEARCH INTERNATIONAL 2013; 2013:402843. [PMID: 23984358 PMCID: PMC3747365 DOI: 10.1155/2013/402843] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/08/2013] [Indexed: 01/11/2023]
Abstract
NG2 cells are a population of CNS cells that are distinct from neurons, mature oligodendrocytes, astrocytes, and microglia. These cells can be identified by their NG2 proteoglycan expression. NG2 cells have a highly branched morphology, with abundant processes radiating from the cell body, and express a complex set of voltage-gated channels, AMPA/kainate, and GABA receptors. Neurons notably form classical and nonclassical synapses with NG2 cells, which have varied characteristics and functions. Neuron-NG2 cell synapses could fine-tune NG2 cell activities, including the NG2 cell cycle, differentiation, migration, and myelination, and may be a novel potential therapeutic target for NG2 cell-related diseases, such as hypoxia-ischemia injury and periventricular leukomalacia. Furthermore, neuron-NG2 cell synapses may be correlated with the plasticity of CNS in adulthood with the synaptic contacts passing onto their progenies during proliferation, and synaptic contacts decrease rapidly upon NG2 cell differentiation. In this review, we highlight the characteristics of classical and nonclassical neuron-NG2 cell synapses, the potential functions, and the fate of synaptic contacts during proliferation and differentiation, with the emphasis on the regulation of the NG2 cell cycle by neuron-NG2 cell synapses and their potential underlying mechanisms.
Collapse
|
38
|
Lee IT, Lin CC, Lin WN, Wu WL, Hsiao LD, Yang CM. Lung inflammation caused by adenosine-5'-triphosphate is mediated via Ca2+/PKCs-dependent COX-2/PGE2 induction. Int J Biochem Cell Biol 2013; 45:1657-68. [PMID: 23680674 DOI: 10.1016/j.biocel.2013.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/30/2013] [Accepted: 05/06/2013] [Indexed: 12/13/2022]
Abstract
Up-regulation of cyclooxygenase (COX)-2 and prostaglandin E2 (PGE2) are implicated in lung inflammation. Adenosine 5'-triphosphate (ATP) has been shown to act via activation of P2 purinoceptors, leading to COX-2 expression in various inflammatory diseases. The mechanisms of ATP-induced COX-2 expression and PGE2 release remain unclear. We showed that pretreatment with the inhibitors of P2 receptors (PPADS and Suramin), Gq protein (GPA2A), phosphatidylcholine-phospholipase C (PC-PLC; D609), phosphoinositide-phospholipase C (PI-PLC; ET-18-OCH3), Ca(2+)/calmodulin-dependent protein kinase II (CaMKII; KN62), protein kinase C (PKC; Gö6976, Ro-318220, GF109203X, and rottlerin), MEK1/2 (PD98059), p38 MAPK (SB202190), and nuclear factor-kappaB (NF-κB; Bay11-7082) and the intracellular calcium chelator (BAPTA/AM) or transfection with siRNAs of these molecules and cPLA2 reduced ATPγS-induced COX-2 expression or PGE2 production in A549 cells. In addition, ATPγS-induced elevation of intracellular Ca(2+) concentration was attenuated by PPADS, Suramin, D609, or ET-18-OCH3. ATPγS-induced p38 MAPK, p42/p44 MAPK, and NF-κB p65 activation were inhibited by Gö6976, Ro-318220, GF109203X, or rottlerin. ATPγS also induced cPLA2 phosphorylation and activity, which were reduced via inhibition of P2 receptors, PKCs, p38 MAPK, and p42/p44 MAPK. ATPγS-induced cPLA2 expression was inhibited by SB202190, PD98059, or Bay11-7082. In the in vitro study, we established that ATPγS induced PGE2 generation via a cPLA2/COX-2-dependent pathway. In the in vivo study, we found that ATPγS induced COX-2 mRNA expression in the lungs and leukocyte (mainly eosinophils and neutrophils) count in bronchoalveolar lavage (BAL) fluid in mice via a P2 receptors-dependent signaling pathway. We concluded that ATPγS may induce lung inflammation via a cPLA2/COX-2/PGE2-dependent pathway.
Collapse
Affiliation(s)
- I-Ta Lee
- Department of Anesthetics, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | | | | | |
Collapse
|
39
|
Linta L, Stockmann M, Lin Q, Lechel A, Proepper C, Boeckers TM, Kleger A, Liebau S. Microarray-Based Comparisons of Ion Channel Expression Patterns: Human Keratinocytes to Reprogrammed hiPSCs to Differentiated Neuronal and Cardiac Progeny. Stem Cells Int 2013; 2013:784629. [PMID: 23690787 PMCID: PMC3649712 DOI: 10.1155/2013/784629] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/06/2013] [Indexed: 11/17/2022] Open
Abstract
Ion channels are involved in a large variety of cellular processes including stem cell differentiation. Numerous families of ion channels are present in the organism which can be distinguished by means of, for example, ion selectivity, gating mechanism, composition, or cell biological function. To characterize the distinct expression of this group of ion channels we have compared the mRNA expression levels of ion channel genes between human keratinocyte-derived induced pluripotent stem cells (hiPSCs) and their somatic cell source, keratinocytes from plucked human hair. This comparison revealed that 26% of the analyzed probes showed an upregulation of ion channels in hiPSCs while just 6% were downregulated. Additionally, iPSCs express a much higher number of ion channels compared to keratinocytes. Further, to narrow down specificity of ion channel expression in iPS cells we compared their expression patterns with differentiated progeny, namely, neurons and cardiomyocytes derived from iPS cells. To conclude, hiPSCs exhibit a very considerable and diverse ion channel expression pattern. Their detailed analysis could give an insight into their contribution to many cellular processes and even disease mechanisms.
Collapse
Affiliation(s)
- Leonhard Linta
- Institute for Anatomy Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Marianne Stockmann
- Institute for Anatomy Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Qiong Lin
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen, Pauwelstrasse 30, 52074 Aachen, Germany
| | - André Lechel
- Department of Internal Medicine I, Ulm University, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Christian Proepper
- Institute for Anatomy Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Tobias M. Boeckers
- Institute for Anatomy Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University, Albert-Einstein Allee 11, 89081 Ulm, Germany
| | - Stefan Liebau
- Institute for Anatomy Cell Biology, Ulm University, Albert-Einstein Allee 11, 89081 Ulm, Germany
| |
Collapse
|
40
|
ATP mediates NADPH oxidase/ROS generation and COX-2/PGE2 expression in A549 cells: role of P2 receptor-dependent STAT3 activation. PLoS One 2013; 8:e54125. [PMID: 23326583 PMCID: PMC3543320 DOI: 10.1371/journal.pone.0054125] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/06/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Up-regulation of cyclooxygenase (COX)-2 and its metabolite prostaglandin E(2) (PGE(2)) are frequently implicated in lung inflammation. Extracellular nucleotides, such as ATP have been shown to act via activation of P2 purinoceptors, leading to COX-2 expression in various inflammatory diseases, such as lung inflammation. However, the mechanisms underlying ATP-induced COX-2 expression and PGE(2) release remain unclear. PRINCIPAL FINDINGS Here, we showed that ATPγS induced COX-2 expression in A549 cells revealed by western blot and real-time PCR. Pretreatment with the inhibitors of P2 receptor (PPADS and suramin), PKC (Gö6983, Gö6976, Ro318220, and Rottlerin), ROS (Edaravone), NADPH oxidase [diphenyleneiodonium chloride (DPI) and apocynin], Jak2 (AG490), and STAT3 [cucurbitacin E (CBE)] and transfection with siRNAs of PKCα, PKCι, PKCμ, p47(phox), Jak2, STAT3, and cPLA(2) markedly reduced ATPγS-induced COX-2 expression and PGE(2) production. In addition, pretreatment with the inhibitors of P2 receptor attenuated PKCs translocation from the cytosol to the membrane in response to ATPγS. Moreover, ATPγS-induced ROS generation and p47(phox) translocation was also reduced by pretreatment with the inhibitors of P2 receptor, PKC, and NADPH oxidase. On the other hand, ATPγS stimulated Jak2 and STAT3 activation which were inhibited by pretreatment with PPADS, suramin, Gö6983, Gö6976, Ro318220, GF109203X, Rottlerin, Edaravone, DPI, and apocynin in A549 cells. SIGNIFICANCE Taken together, these results showed that ATPγS induced COX-2 expression and PGE(2) production via a P2 receptor/PKC/NADPH oxidase/ROS/Jak2/STAT3/cPLA(2) signaling pathway in A549 cells. Increased understanding of signal transduction mechanisms underlying COX-2 gene regulation will create opportunities for the development of anti-inflammation therapeutic strategies.
Collapse
|
41
|
Ulrich H, Abbracchio MP, Burnstock G. Extrinsic purinergic regulation of neural stem/progenitor cells: implications for CNS development and repair. Stem Cell Rev Rep 2012; 8:755-67. [PMID: 22544361 DOI: 10.1007/s12015-012-9372-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There has been tremendous progress in understanding neural stem cell (NSC) biology, with genetic and cell biological methods identifying sequential gene expression and molecular interactions guiding NSC specification into distinct neuronal and glial populations during development. Data has emerged on the possible exploitation of NSC-based strategies to repair adult diseased brain. However, despite increased information on lineage specific transcription factors, cell-cycle regulators and epigenetic factors involved in the fate and plasticity of NSCs, understanding of extracellular cues driving the behavior of embryonic and adult NSCs is still very limited. Knowledge of factors regulating brain development is crucial in understanding the pathogenetic mechanisms of brain dysfunction. Since injury-activated repair mechanisms in adult brain often recapitulate ontogenetic events, the identification of these players will also reveal novel regenerative strategies. Here, we highlight the purinergic system as a key emerging player in the endogenous control of NSCs. Purinergic signalling molecules (ATP, UTP and adenosine) act with growth factors in regulating the synchronized proliferation, migration, differentiation and death of NSCs during brain and spinal cord development. At early stages of development, transient and time-specific release of ATP is critical for initiating eye formation; once anatomical CNS structures are defined, purinergic molecules participate in calcium-dependent neuron-glia communication controlling NSC behaviour. When development is complete, some purinergic mechanisms are silenced, but can be re-activated in adult brain after injury, suggesting a role in regeneration and self-repair. Targeting the purinergic system to develop new strategies for neurodevelopmental disorders and neurodegenerative diseases will be also discussed.
Collapse
Affiliation(s)
- Henning Ulrich
- Departamento de Bioquimica, Instituto de Quimica, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo 05508-900, SP, Brazil.
| | | | | |
Collapse
|
42
|
Roszek K, Błaszczak A, Wujak M, Komoszyński M. Nucleotides metabolizing ectoenzymes as possible markers of mesenchymal stem cell osteogenic differentiation. Biochem Cell Biol 2012; 91:176-81. [PMID: 23668790 DOI: 10.1139/bcb-2012-0093] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Growing murine mesenchymal stem cells (mMSCs) from mouse bone marrow decreased their rate of proliferation in the presence of benzoylbenzoyl-ATP persistently, but the inhibitory effect of ATP was strong only in a concentration of 50 μmol·L(-1) and lasted for 48 h in culture. These results hinted at ATP hydrolysis by the cell surface enzymes at the lower concentrations and thus it may be not able to inhibit MSCs. By using ATP, ADP, or AMP as substrates, we tested the ectonucleotidase activity on the surface of undifferentiated MSCs and MSC-derived osteoblasts. Here, we report that although nucleoside triphosphate diphosphohydrolase (NTPDase)1 and NTPDase8 are engaged in the metabolism of ATP in MSC-derived osteoblasts, NTPDase3 is responsible for its metabolism in undifferentiated MSCs. In this study, we also realized that osteoblasts effectively metabolize ADP to ATP and AMP. The enzymatic activity of adenylate kinase (AK) is consistent with the high expression level of the AK gene. Therefore, it was tempting to suggest that this enzyme, together with NTPDase1 and NTPDase8, assume the role of specific markers that allowed distinction between differentiated osteoblasts and early undifferentiated MSCs. Additionally, unlike osteoblasts, undifferentiated MSCs demonstrated the activity of 5'-nucleotidase (CD73). However, the expression analysis of CD73 mRNA did not show any differences; CD73 mRNA was expressed in both kinds of cells to the same extent.
Collapse
Affiliation(s)
- Katarzyna Roszek
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, 7 Gagarina Street, 87-100 Torun, Poland.
| | | | | | | |
Collapse
|
43
|
Extracellular nucleotide inhibits cell proliferation and negatively regulates Toll-like receptor 4 signalling in human progenitor endothelial cells. Cell Biol Int 2012; 36:625-33. [PMID: 22299633 DOI: 10.1042/cbi20110111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Extracellular nucleotides mediate a wide range of physiological effects by interacting with plasma membrane P2 purinergic receptors. P2 receptors are expressed in certain kinds of stem cells, and function to induce cytokine expression and to modulate cell proliferation. We have analysed the expression and the function of P2 receptors in human umbilical cord blood-derived EPCs (endothelial progenitor cells). EPCs expressed P2X4,6,7 and P2Y2,4,11,13,14 receptors and extracellular ATP inhibited EPCs proliferation. As in a previous study, EPCs expressed functional TLR4 (Toll-like receptor 4) and activation of TLR4 by LPS (lipopolysaccharide) evoked a pro-inflammatory immune response. When human EPCs were stimulated with LPS and nucleotides, ATP or UTP inhibited the expression of pro-inflammatory cytokines including MCP-1 (monocyte chemoattractant protein-1), IFNα (interferon α), TNFα (tumour necrosis factor α) and adhesion molecule VCAM-1 (vascular cell adhesion molecule 1) induced by LPS. ATP and UTP also down-regulated the gene expression of TLR4, CD14 and MyD88 (myeloid differentiation factor 88), a TLR adaptor molecule, and protein expression of CD14 and MyD88. Moreover, the phosphorylation of NF-κB (nuclear factor κB) p65 induced by TLR4 activation was inhibited partly by ATP or UTP at concentrations of 1-5 μM. These results suggest that extracellular nucleotides negatively regulate EPCs proliferation and TLR4 signalling.
Collapse
|
44
|
Chen JB, Liu WJ, Che H, Liu J, Sun HY, Li GR. Adenosine-5'-triphosphate up-regulates proliferation of human cardiac fibroblasts. Br J Pharmacol 2012; 166:1140-50. [PMID: 22224416 DOI: 10.1111/j.1476-5381.2012.01831.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE ATP is a potent signalling molecule that regulates biological activities including increasing or decreasing proliferation in different types of cells. The aim of the present study was to investigate how ATP regulates the proliferation of human cardiac fibroblasts. EXPERIMENTAL APPROACH Reverse transcription (RT)-PCR, Western blot analysis, cell proliferation and migration assays were employed to investigate the effects of ATP on human adult ventricular fibroblasts. KEY RESULTS ATP increased cell proliferation in a concentration-dependent manner. Similarly, the P2X receptor agonist α,β-methylene ATP and P2Y receptor agonist ATP-γS also up-regulated cell proliferation. The P2 receptor antagonists suramin and reactive blue-2 prevented the ATP-induced increase in proliferation and RT-PCR and Western blot analysis revealed that mRNAs of P2X(4/7) and P2Y(2) are abundant in cardiac fibroblasts. ATP increased phosphorylated PKB (Akt) and ERK1/2 levels; an effect antagonized by suramin, reactive blue-2, the PI3-kinase inhibitor, wortmannin, PKB inhibitor, API-2, and MAPK inhibitor, PD98059. These kinase inhibitors also prevented the ATP-induced increase in proliferation. In addition, ATP enhanced the progression of cells from the G0/G1 phase to the S phase by increasing the expression of proteins for cyclin D1 and cyclin E. Silencing the P2X(4/7) and P2Y(2) receptors with siRNA targeting the corresponding receptor diminished ATP-stimulated proliferation and migration of the cardiac fibroblasts. CONCLUSION AND IMPLICATION ATP activates P2X(4/7) and P2Y(2) receptors and up-regulates the proliferation of human cardiac fibroblasts by promoting cell cycling progression. It also increases the migration of these cells. These effects of ATP may be involved in cardiac remodelling of injured hearts.
Collapse
Affiliation(s)
- Jing-Bo Chen
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
45
|
Kim MO, Lee YJ, Park JH, Ryu JM, Yun SP, Han HJ. PKA and cAMP stimulate proliferation of mouse embryonic stem cells by elevating GLUT1 expression mediated by the NF-κB and CREB/CBP signaling pathways. Biochim Biophys Acta Gen Subj 2012; 1820:1636-46. [PMID: 22658979 DOI: 10.1016/j.bbagen.2012.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/01/2012] [Accepted: 05/21/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Regulation of glucose transporter (GLUT) expression and activity plays a vital role in the supply of glucose to embryonic stem (ES) cells. METHODS To observe the effect of 6-phenyl cyclic monophosphate (cAMP) on glucose uptake and cell proliferation, 2-deoxyglucose (2-DG) uptake, immunohistochemistry, Western blotting, and immunoprecipitation were carried out. RESULTS Among GLUT isoforms in mouse ES cells, GLUT1 was predominantly expressed and 6-phenyl cAMP increased GLUT mRNA levels. Among cAMP agonists, 6-phenyl cAMP increased 2-DG uptake more than that of 8-p-chlorophenylthio-2'-O-methyl-cAMP. 6-Phenyl cAMP increased GLUT1 expression and translocation from the cytosol to the plasma membrane. 6-Phenyl cAMP increased 2-DG uptake in a time- and concentration-dependent manner due to an increase in V(max) but not K(m). 6-Phenyl cAMP increased phosphorylation of nuclear factor-κB (NF-κB) and cAMP response element binding (CREB) and expression of the CREB protein (CBP) and transducer of regulated CREB activity 2 (TORC2) in sequence. 6-Phenyl cAMP induced complex formation of NF-κB/CREB/CBP/TORC2, which are involved in the increase of gluconeogenic enzyme expression. 6-Phenyl cAMP also increased cell cycle regulatory protein expression levels, the proportion of S-phase cells, and proto-oncogene expression via protein kinase A (PKA)-dependent NF-κB signaling. Finally, GLUT1 siRNA blocked the 6-phenyl cAMP-induced increase in ES cell proliferation. We conclude that PKA stimulated the complex formation of CREB/CBP/TORC2 via NF-κB, which induced effective coordination of glucose uptake as well as proliferation in ES cells. GENERAL SIGNIFICANCE 6-Phenyl cAMP-induced PKA activation modified the proliferation, which may be beneficial for expanding ES cell use to cell therapy.
Collapse
Affiliation(s)
- Mi Ok Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | |
Collapse
|
46
|
Thompson BA, Storm MP, Hewinson J, Hogg S, Welham MJ, MacKenzie AB. A novel role for P2X7 receptor signalling in the survival of mouse embryonic stem cells. Cell Signal 2012; 24:770-8. [PMID: 22120528 PMCID: PMC3271386 DOI: 10.1016/j.cellsig.2011.11.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/08/2011] [Indexed: 01/12/2023]
Abstract
The growth of a pluripotent embryonic stem (ES) cell population is dependent on cell survival, proliferation and self-renewal. The nucleotide ATP represents an important extracellular signalling molecule that regulates the survival of differentiated cells, however, its role is largely undefined in embryonic stem cells. Here we report a role for ATP-gated P2X7 receptors in ES cell survival. The functional expression of P2X7 receptors in undifferentiated mouse ES cells is demonstrated using a selective P2X7 antagonist and small interfering RNA knockdown of these receptors. Our data illustrate a key role for the P2X7 receptor as an essential pro-survival signal required for optimal ES cell colony growth in the presence of leukemia inhibitor factor (LIF). However, chronic exposure to exogenous ATP leads to rapid P2X7-dependent cell death via necrosis. Together, these data demonstrate a novel role for P2X7 receptors in regulation of ES cell behaviour where they can mediate either a pro-survival or pro-death signal depending on the mode of activation.
Collapse
Affiliation(s)
| | - Michael P. Storm
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK
- Centre for Regenerative Medicine, University of Bath, Bath, BA2 7AY, UK
| | - James Hewinson
- School of Physiology and Pharmacology, University of Bristol, UK
| | - Sarah Hogg
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK
| | - Melanie J. Welham
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK
- Centre for Regenerative Medicine, University of Bath, Bath, BA2 7AY, UK
| | - Amanda B. MacKenzie
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK
| |
Collapse
|
47
|
Purinergic signaling in human pluripotent stem cells is regulated by the housekeeping gene encoding hypoxanthine guanine phosphoribosyltransferase. Proc Natl Acad Sci U S A 2012; 109:3377-82. [PMID: 22331909 DOI: 10.1073/pnas.1118067109] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Lesch-Nyhan disease (LND) is an X-linked genetic disorder caused by mutations of the hypoxanthine guanine phosphoribosyltransferase (HPRT) purine biosynthesis gene and characterized by aberrant purine metabolism, deficient basal ganglia dopamine levels, dystonia, and severe neurobehavioral manifestations, including compulsive self-injurious behavior. Although available evidence has identified important roles for purinergic signaling in brain development, the mechanisms linking HPRT deficiency, purinergic pathways, and neural dysfunction of LND are poorly understood. In these studies aimed at characterizing purinergic signaling in HPRT deficiency, we used a lentivirus vector stably expressing an shRNA targeted to the HPRT gene to produce HPRT-deficient human CVB induced pluripotent stem cells and human HUES11 embryonic stem cells. Both CVB and HUES11 cells show >99% HPRT knockdown and demonstrate markedly decreased expression of the purinergic P2Y1 receptor mRNA. In CVB cells, P2Y1 mRNA and protein down-regulation by HPRT knockdown is refractory to activation by the P2Y1 receptor agonist ATP and shows aberrant purinergic signaling, as reflected by marked deficiency of the transcription factor pCREB and constitutive activation of the MAP kinases phospho-ERK1/2. Moreover, HPRT-knockdown CVB cells also demonstrate marked reduction of phosphorylated β-catenin. These results indicate that the housekeeping gene HPRT regulates purinergic signaling in pluripotent human stem cells, and that this regulation occurs at least partly through aberrant P2Y1-mediated expression and signaling. We propose that such mechanisms may play a role in the neuropathology of HPRT-deficiency LND and may point to potential molecular targets for modulation of this intractable neurological phenotype.
Collapse
|
48
|
Larrayoz IM, Ochoa-Callejero L, García-Sanmartín J, Vicario-Abejón C, Martínez A. Role of adrenomedullin in the growth and differentiation of stem and progenitor cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 297:175-234. [PMID: 22608560 DOI: 10.1016/b978-0-12-394308-8.00005-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cells have captured the imagination of the general public by their potential as new therapeutic tools in the fight against degenerative diseases. This potential is based on their capability for self-renewal and at the same time for producing progenitor cells that will eventually provide the building blocks for tissue and organ regeneration. These processes are carefully orchestrated in the organism by means of a series of molecular cues. An emerging molecule which is responsible for some of these physiological responses is adrenomedullin, a 52-amino acid regulatory peptide which increases proliferation and regulates cell fate of stem cells of different origins. Adrenomedullin binds to specific membrane receptors in stem cells and induces several intracellular pathways such as those involving cAMP, Akt, or MAPK. Regulation of adrenomedullin levels may help in directing the growth and differentiation of stem cells for applications (e.g., cell therapy) both in vitro and in vivo.
Collapse
Affiliation(s)
- Ignacio M Larrayoz
- Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | | | | | | | | |
Collapse
|
49
|
Xiao Z, Yang M, Lv Q, Wang W, Deng M, Liu X, He Q, Chen X, Chen M, Fang L, Xie X, Hu J. P2Y11 impairs cell proliferation by induction of cell cycle arrest and sensitizes endothelial cells to cisplatin-induced cell death. J Cell Biochem 2011; 112:2257-65. [PMID: 21503959 DOI: 10.1002/jcb.23144] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Extracellular ATP mediates a wide range of physiological effects, including cell proliferation, differentiation, maturation, and migration. However, the effect of ATP on cell proliferation has been contradictory, and the mechanism is not fully understood. In the current study, we found that extracellular ATP significantly inhibited the proliferation of human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells (HAECs). Treatment with ATP did not induce cell apoptosis but instead induced cell cycle arrest in S phase. ATP induced the phosphorylation of ERK1/2, but the ERK inhibitors, U0126 and PD9809, did not regulate the inhibition of cell proliferation induced by ATP. However, ATP-induced inhibition of cell proliferation was blocked by suramin, a nonspecific antagonist of the P2Y receptors, and endothelial cells expressed P2Y11, a P2Y receptor that specifically binds ATP. Moreover, the down-regulation of P2Y11 by RNA interference not only reversed the inhibition of cell proliferation but also ameliorated cell cycle arrest in S phase. In addition, P2Y11 sensitized endothelial cells to cisplatin-induced cell death by down-regulation of the expression of Bcl-2. Taken together, these results suggest that extracellular ATP impairs cell proliferation by triggering signaling to induce cell cycle arrest and sensitizes cell to death via P2Y11 in endothelial cells.
Collapse
Affiliation(s)
- Zhilin Xiao
- Department of Geriatric Cardiology, Xiangya Hospital, Central South University, Changsha 410008, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Dutta D, Ray S, Home P, Larson M, Wolfe MW, Paul S. Self-renewal versus lineage commitment of embryonic stem cells: protein kinase C signaling shifts the balance. Stem Cells 2011; 29:618-28. [PMID: 21308862 DOI: 10.1002/stem.605] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The intricate molecular mechanisms that regulate ESC pluripotency are incompletely understood. Prior research indicated that activation of the Janus kinase-signal transducer and activator of transcription (STAT3) pathway or inhibition of extracellular signal-regulated kinase/glycogen synthase kinase 3 (ERK/GSK3) signaling maintains mouse ESC (mESC) pluripotency. Here, we demonstrate that inhibition of protein kinase C (PKC) isoforms maintains mESC pluripotency without the activation of STAT3 or inhibition of ERK/GSK3 signaling pathways. Our analyses revealed that the atypical PKC isoform, PKCζ plays an important role in inducing lineage commitment in mESCs through a PKCζ-nuclear factor kappa-light-chain-enhancer of activated B cells signaling axis. Furthermore, inhibition of PKC isoforms permits derivation of germline-competent ESCs from mouse blastocysts and also facilitates reprogramming of mouse embryonic fibroblasts toward induced pluripotent stem cells. Our results indicate that PKC signaling is critical to balancing ESC self-renewal and lineage commitment.
Collapse
Affiliation(s)
- Debasree Dutta
- Department of Pathology and Laboratory Medicine, Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | |
Collapse
|