1
|
Henden C, Fjerdingstad HB, Bjørnsen EG, Thiruchelvam-Kyle L, Daws MR, Inngjerdingen M, Glover JC, Dissen E. NK-cell cytotoxicity toward pluripotent stem cells and their neural progeny: impacts of activating and inhibitory receptors and KIR/HLA mismatch. Stem Cells 2025; 43:sxae083. [PMID: 39708357 PMCID: PMC11929945 DOI: 10.1093/stmcls/sxae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/14/2024] [Indexed: 12/23/2024]
Abstract
Pluripotent stem cells provide opportunities for treating injuries and previously incurable diseases. A major concern is the immunogenicity of stem cells and their progeny. Here, we have dissected the molecular mechanisms that allow natural killer (NK) cells to respond to human pluripotent stem cells, investigating a wide selection of activating and inhibitory NK-cell receptors and their ligands. Reporter cells expressing the activating receptor NKG2D responded strongly to embryonic stem (ES) cell lines and induced pluripotent stem (iPS) cell lines, whereas reporter cells expressing the activating receptors NKp30, NKp46, KIR2DS1, KIR2DS2, and KIR2DS4 did not respond. Human ES and iPS cells invariably expressed several ligands for NKG2D. Expression of HLA-C and HLA-E was lacking or low, insufficient to trigger reporter cells expressing the inhibitory receptors KIR2DL1, -2DL2, or -2DL3. Similar results were obtained for the pluripotent embryonic carcinoma cell lines NTERA-2 and 2102Ep, and also iPS-cell-derived neural progenitor cells. Importantly, neural progenitor cells and iPS-cell-derived motoneurons also expressed B7H6, the ligand for the activating receptor NKp30. In line with these observations, IL-2-stimulated NK cells showed robust cytotoxic responses to ES and iPS cells as well as to iPS-cell-derived motoneurons. No significant differences in cytotoxicity levels were observed between KIR/HLA matched and mismatched combinations of NK cells and pluripotent targets. Together, these data indicate that pluripotent stem cells and their neural progeny are targets for NK-cell killing both by failing to sufficiently express ligands for inhibitory receptors and by expression of ligands for activating receptors.
Collapse
Affiliation(s)
- Camilla Henden
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Hege B Fjerdingstad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, N-0317 Oslo, Norway
| | - Elisabeth G Bjørnsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Lavanya Thiruchelvam-Kyle
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Michael R Daws
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Marit Inngjerdingen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, N-0317 Oslo, Norway
| | - Joel C Glover
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
- Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital, N-0317 Oslo, Norway
| | - Erik Dissen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| |
Collapse
|
2
|
Petrus-Reurer S, Romano M, Howlett S, Jones JL, Lombardi G, Saeb-Parsy K. Immunological considerations and challenges for regenerative cellular therapies. Commun Biol 2021; 4:798. [PMID: 34172826 PMCID: PMC8233383 DOI: 10.1038/s42003-021-02237-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
The central goal of regenerative medicine is to replace damaged or diseased tissue with cells that integrate and function optimally. The capacity of pluripotent stem cells to produce unlimited numbers of differentiated cells is of considerable therapeutic interest, with several clinical trials underway. However, the host immune response represents an important barrier to clinical translation. Here we describe the role of the host innate and adaptive immune responses as triggers of allogeneic graft rejection. We discuss how the immune response is determined by the cellular therapy. Additionally, we describe the range of available in vitro and in vivo experimental approaches to examine the immunogenicity of cellular therapies, and finally we review potential strategies to ameliorate immune rejection. In conclusion, we advocate establishment of platforms that bring together the multidisciplinary expertise and infrastructure necessary to comprehensively investigate the immunogenicity of cellular therapies to ensure their clinical safety and efficacy.
Collapse
Affiliation(s)
- Sandra Petrus-Reurer
- Department of Surgery, University of Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom.
| | - Marco Romano
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Sarah Howlett
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Joanne Louise Jones
- Department of Clinical Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, and NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom.
| |
Collapse
|
3
|
Wu CE, Yu CW, Chang KW, Chou WH, Lu CY, Ghelfi E, Wu FC, Jan PS, Huang MC, Allard P, Lin SP, Ho HN, Chen HF. Comparative global immune-related gene profiling of somatic cells, human pluripotent stem cells and their derivatives: implication for human lymphocyte proliferation. Exp Mol Med 2017; 49:e376. [PMID: 28912571 PMCID: PMC5628273 DOI: 10.1038/emm.2017.134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 02/19/2017] [Accepted: 03/19/2017] [Indexed: 12/14/2022] Open
Abstract
Human pluripotent stem cells (hPSCs), including embryonic stem cells (ESCs) and induced PSCs (iPSCs), represent potentially unlimited cell sources for clinical applications. Previous studies have suggested that hPSCs may benefit from immune privilege and limited immunogenicity, as reflected by the reduced expression of major histocompatibility complex class-related molecules. Here we investigated the global immune-related gene expression profiles of human ESCs, hiPSCs and somatic cells and identified candidate immune-related genes that may alter their immunogenicity. The expression levels of global immune-related genes were determined by comparing undifferentiated and differentiated stem cells and three types of human somatic cells: dermal papilla cells, ovarian granulosa cells and foreskin fibroblast cells. We identified the differentially expressed genes CD24, GATA3, PROM1, THBS2, LY96, IFIT3, CXCR4, IL1R1, FGFR3, IDO1 and KDR, which overlapped with selected immune-related gene lists. In further analyses, mammalian target of rapamycin complex (mTOR) signaling was investigated in the differentiated stem cells following treatment with rapamycin and lentiviral transduction with specific short-hairpin RNAs. We found that the inhibition of mTOR signal pathways significantly downregulated the immunogenicity of differentiated stem cells. We also tested the immune responses induced in differentiated stem cells by mixed lymphocyte reactions. We found that CD24- and GATA3-deficient differentiated stem cells including neural lineage cells had limited abilities to activate human lymphocytes. By analyzing the transcriptome signature of immune-related genes, we observed a tendency of the hPSCs to differentiate toward an immune cell phenotype. Taken together, these data identify candidate immune-related genes that might constitute valuable targets for clinical applications.
Collapse
Affiliation(s)
- Chia-Eng Wu
- College of Medicine, Graduate Institute of Immunology, National Taiwan University, Taipei, Taiwan
| | - Chen-Wei Yu
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,College of Medicine, Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Kai-Wei Chang
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - Wen-Hsi Chou
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,College of Medicine, Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Chen-Yu Lu
- College of Medicine, Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Elisa Ghelfi
- Department of Environmental Health, Harvard University - Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiological Sciences, Boston, MA, USA
| | - Fang-Chun Wu
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,College of Medicine, Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Pey-Shynan Jan
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,College of Medicine, Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Mei-Chi Huang
- College of Medicine, Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Patrick Allard
- Department of Environment Health Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shau-Ping Lin
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hong-Nerng Ho
- College of Medicine, Graduate Institute of Immunology, National Taiwan University, Taipei, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,College of Medicine, Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| | - Hsin-Fu Chen
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,College of Medicine, Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Johannsen H, Muppala V, Gröschel C, Monecke S, Elsner L, Didié M, Zimmermann WH, Dressel R. Immunological Properties of Murine Parthenogenetic Stem Cells and Their Differentiation Products. Front Immunol 2017; 8:924. [PMID: 28824647 PMCID: PMC5543037 DOI: 10.3389/fimmu.2017.00924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/20/2017] [Indexed: 12/27/2022] Open
Abstract
The perspective to transplant grafts derived from pluripotent stem cells has gained much attention in recent years. Parthenogenetic stem cells (PSCs) are an alternative pluripotent stem cell type that is attractive as source of grafts for allogeneic transplantations because most PSCs are haploidentical for the major histocompatibility complex (MHC). This reduced immunogenetic complexity of PSCs could tremendously simplify the search for MHC-matched allogeneic stem cells. In this study, we have characterized immunological properties of the MHC haploidentical PSC line A3 (H2d/d) and the heterologous PSC line A6 (H2b/d). Both PSC lines largely lack MHC class I molecules, which present peptides to cytotoxic T lymphocytes (CTLs) and serve as ligands for inhibitory natural killer (NK) receptors. They express ligands for activating NK receptors, including the NKG2D ligand RAE-1, and the DNAM-1 ligands CD112 and CD155. Consequently, both PSC lines are highly susceptible to killing by IL-2-activated NK cells. In vitro-differentiated cells acquire resistance and downregulate ligands for activating NK receptors but fail to upregulate MHC class I molecules. The PSC line A6 and differentiated A6 cells are largely resistant to CTLs derived from T cell receptor transgenic OT-I mice after pulsing of the targets with the appropriate peptide. The high susceptibility to killing by activated NK cells may constitute a general feature of pluripotent stem cells as it has been also found with other pluripotent stem cell types. This activity potentially increases the safety of transplantations, if grafts contain traces of undifferentiated cells that could be tumorigenic in the recipient.
Collapse
Affiliation(s)
- Hannah Johannsen
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Vijayakumar Muppala
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Carina Gröschel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Sebastian Monecke
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Leslie Elsner
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Didié
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Gröschel C, Hübscher D, Nolte J, Monecke S, Sasse A, Elsner L, Paulus W, Trenkwalder C, Polić B, Mansouri A, Guan K, Dressel R. Efficient Killing of Murine Pluripotent Stem Cells by Natural Killer (NK) Cells Requires Activation by Cytokines and Partly Depends on the Activating NK Receptor NKG2D. Front Immunol 2017; 8:870. [PMID: 28890717 PMCID: PMC5582315 DOI: 10.3389/fimmu.2017.00870] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells play an important role as cytotoxic effector cells, which scan the organism for infected or tumorigenic cells. Conflicting data have been published whether NK cells can also kill allogeneic or even autologous pluripotent stem cells (PSCs) and which receptors are involved. A clarification of this question is relevant since an activity of NK cells against PSCs could reduce the risk of teratoma growth after transplantation of PSC-derived grafts. Therefore, the hypothesis has been tested that the activity of NK cells against PSCs depends on cytokine activation and specifically on the activating NK receptor NKG2D. It is shown that a subcutaneous injection of autologous iPSCs failed to activate NK cells against these iPSCs and can give rise to teratomas. In agreement with this result, several PSC lines, including two iPSC, two embryonic stem cell (ESC), and two so-called multipotent adult germline stem cell (maGSC) lines, were largely resistant against resting NK cells although differences in killing were found at low level. All PSC lines were killed by interleukin (IL)-2-activated NK cells, and maGSCs were better killed than the other PSC types. The PSCs expressed ligands of the activating NK receptor NKG2D and NKG2D-deficient NK cells from Klrk1-/- mice were impaired in their cytotoxic activity against PSCs. The low-cytotoxic activity of resting NK cells was almost completely dependent on NKG2D. The cytotoxic activity of IL-2-activated NKG2D-deficient NK cells against PSCs was reduced, indicating that also other activating receptors on cytokine-activated NK cells must be engaged by ligands on PSCs. Thus, NKG2D is an important activating receptor involved in killing of murine PSCs. However, NK cells need to be activated by cytokines before they efficiently target PSCs and then also other NK receptors become relevant. These features of NK cells might be relevant for transplantation of PSC-derived grafts since NK cells have the capability to kill undifferentiated cells, which might be present in grafts in trace amounts.
Collapse
Affiliation(s)
- Carina Gröschel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Göttingen, Germany
| | - Daniela Hübscher
- DZHK (German Center for Cardiovascular Research), Göttingen, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Jessica Nolte
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Sebastian Monecke
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Göttingen, Germany
| | - André Sasse
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Leslie Elsner
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ahmed Mansouri
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.,Department of Molecular Cell Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Kaomei Guan
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Göttingen, Germany
| |
Collapse
|
6
|
Hübscher D, Kaiser D, Elsner L, Monecke S, Dressel R, Guan K. The Tumorigenicity of Multipotent Adult Germline Stem Cells Transplanted into the Heart Is Affected by Natural Killer Cells and by Cyclosporine A Independent of Its Immunosuppressive Effects. Front Immunol 2017; 8:67. [PMID: 28220117 PMCID: PMC5292627 DOI: 10.3389/fimmu.2017.00067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/16/2017] [Indexed: 12/18/2022] Open
Abstract
Transplantation of stem cells represents an upcoming therapy for many degenerative diseases. For clinical use, transplantation of pluripotent stem cell-derived cells should lead to integration of functional grafts without immune rejection or teratoma formation. Our previous studies showed that the risk of teratoma formation is highly influenced by the immune system of the recipients. In this study, we have observed a higher teratoma formation rate when undifferentiated so-called multipotent adult germline stem cells (maGSCs) were transplanted into the heart of T, B, and natural killer (NK) cell-deficient RAG2−/−γc−/− mice than in RAG2−/− mice, which still have NK cells. Notably, in both strains, the teratoma formation rate was significantly reduced by the immunosuppressive drug cyclosporine A (CsA). Thus, CsA had a profound effect on teratoma formation independent of its immunosuppressive effects. The transplantation into RAG2−/− mice led to an activation of NK cells, which reached the maximum 14 days after transplantation and was not affected by CsA. The in vivo-activated NK cells efficiently killed YAC-1 and also maGSC target cells. This NK cell activation was confirmed in C57BL/6 wild-type mice whether treated with CsA or not. Sham operations in wild-type mice indicated that the inflammatory response to open heart surgery rather than the transplantation of maGSCs activated the NK cell system. An activation of NK cells during the transplantation of stem cell-derived in vitro differentiated grafts might be clinically beneficial by reducing the risk of teratoma formation by residual pluripotent cells.
Collapse
Affiliation(s)
- Daniela Hübscher
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Diana Kaiser
- Department of Cardiology and Pneumology, University Medical Center Göttingen , Göttingen , Germany
| | - Leslie Elsner
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen , Göttingen , Germany
| | - Sebastian Monecke
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany; Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Ralf Dressel
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany; Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Kaomei Guan
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany; Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
7
|
Djelloul M, Popa N, Pelletier F, Raguénez G, Boucraut J. RAE-1 expression is induced during experimental autoimmune encephalomyelitis and is correlated with microglia cell proliferation. Brain Behav Immun 2016; 58:209-217. [PMID: 27444966 DOI: 10.1016/j.bbi.2016.07.147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/30/2016] [Accepted: 07/16/2016] [Indexed: 01/06/2023] Open
Abstract
Retinoic acid early induced transcript-1 (RAE-1) glycoproteins are ligands of the activating immune receptor NKG2D. They are known as stress molecules induced in pathological conditions. We previously reported that progenitor cells express RAE-1 in physiological conditions and we described a correlation between RAE-1 expression and cell proliferation. In addition, we showed that Raet1 transcripts are induced in the spinal cord of experimental autoimmune encephalomyelitis (EAE) mice. EAE is a model for multiple sclerosis which is accompanied by microglia proliferation and activation, recruitment of immune cells and neurogenesis. We herein studied the time course expression of the two members of the Raet1 gene family present in C57BL/6 mice, namely Raet1d and Raet1e, in the spinal cord during EAE. We report that Raet1d and Raet1e genes are induced early upon EAE onset and reach a maximal expression at the peak of the pathology. We show that myeloid cells, i.e. macrophages as well as microglia, are cellular sources of Raet1 transcripts. We also demonstrate that only Raet1d expression is induced in microglia, whereas macrophages expressed both Raet1d and Raet1e. Furthermore, we investigated the dynamics of RAE-1 expression in microglia cultures. RAE-1 induction correlated with cell proliferation but not with M1/M2 phenotypic orientation. We finally demonstrate that macrophage colony-stimulating factor (M-CSF) is a major factor controlling RAE-1 expression in microglia.
Collapse
Affiliation(s)
- Mehdi Djelloul
- Aix Marseille Université, CRN2M, CNRS UMR 7286, 13344 Marseille Cedex 15, France
| | - Natalia Popa
- Aix Marseille Université, CRN2M, CNRS UMR 7286, 13344 Marseille Cedex 15, France
| | - Florence Pelletier
- Aix Marseille Université, CRN2M, CNRS UMR 7286, 13344 Marseille Cedex 15, France
| | - Gilda Raguénez
- Aix Marseille Université, CRN2M, CNRS UMR 7286, 13344 Marseille Cedex 15, France
| | - José Boucraut
- Aix Marseille Université, CRN2M, CNRS UMR 7286, 13344 Marseille Cedex 15, France.
| |
Collapse
|
8
|
Emerging Implications for Extracellular Matrix-Based Technologies in Vascularized Composite Allotransplantation. Stem Cells Int 2016; 2016:1541823. [PMID: 26839554 PMCID: PMC4709778 DOI: 10.1155/2016/1541823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022] Open
Abstract
Despite recent progress in vascularized composite allotransplantation (VCA), limitations including complex, high dose immunosuppression regimens, lifelong risk of toxicity from immunosuppressants, acute and most critically chronic graft rejection, and suboptimal nerve regeneration remain particularly challenging obstacles restricting clinical progress. When properly configured, customized, and implemented, biomaterials derived from the extracellular matrix (ECM) retain bioactive molecules and immunomodulatory properties that can promote stem cell migration, proliferation and differentiation, and constructive functional tissue remodeling. The present paper reviews the emerging implications of ECM-based technologies in VCA, including local immunomodulation, tissue repair, nerve regeneration, minimally invasive graft targeted drug delivery, stem cell transplantation, and other donor graft manipulation.
Collapse
|
9
|
Development of a Safeguard System Using an Episomal Mammalian Artificial Chromosome for Gene and Cell Therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2015; 4:e272. [PMID: 26670279 PMCID: PMC5014537 DOI: 10.1038/mtna.2015.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/23/2015] [Indexed: 11/08/2022]
Abstract
The development of a safeguard system to remove tumorigenic cells would allow safer clinical applications of stem cells for the treatment of patients with an intractable disease including genetic disorders. Such safeguard systems should not disrupt the host genome and should have long-term stability. Here, we attempted to develop a tumor-suppressing mammalian artificial chromosome containing a safeguard system that uses the immune rejection system against allogeneic tissue from the host. For proof-of-concept of the safeguard system, B16F10 mouse melanoma cells expressing the introduced H2-K(d) major histocompatibility complex (MHC class I)-allogenic haplotype were transplanted into recipient C57BL/6J mice expressing MHC H2-K(b). Subcutaneous implantation of B16F10 cells into C57BL/6J mice resulted in high tumorigenicity. The volume of tumors derived from B16F10 cells expressing allogenic MHC H2-K(d) was decreased significantly (P < 0.01). Suppression of MHC H2-K(d)-expressing tumors in C57BL/6J mice was enhanced by immunization with MHC H2-K(d)-expressing splenocytes (P < 0.01). These results suggest that the safeguard system is capable of suppressing tumor formation by the transplanted cells.
Collapse
|
10
|
iPS Cell-Derived Immunosuppressive Myeloid Cells. Transplantation 2015; 99:2245-6. [PMID: 26451526 DOI: 10.1097/tp.0000000000000876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Abstract
PURPOSE OF REVIEW Ongoing research is constantly looking for means to modulate the immune system for long-lasting engraftment of pluripotent stem cells (PSC) during stem cell-based therapies. This study reviews data on in-vitro and in-vivo immunogenicity of embryonic and induced-PSC and describes how their immunological properties can be harnessed for tolerance induction in organ transplantation. RECENT FINDINGS Although PSC display immunomodulatory properties in vitro, they are capable of eliciting an immune response that leads to cell rejection when transplanted into immune-competent recipients. Nevertheless, long-term acceptance of PSC-derived cells/tissues in an allogeneic environment can be achieved using minimal host conditioning. Protocols for differentiating PSC towards haematopoietic stem cells, thymic epithelial precursors, dendritic cells, regulatory T cells and myeloid-derived suppressor cells are being developed, suggesting the possibility to use PSC-derived immunomodulatory cells to induce tolerance to a solid organ transplant. SUMMARY PSC and/or their derivatives possess unique immunological properties that allow for acceptance of PSC-derived tissue with minimal host conditioning. Investigators involved either in regenerative or in transplant medicine must join their efforts with the ultimate aim of using PSC as a source of donor-specific cells that would create a protolerogenic environment to achieve tolerance in solid organ transplantation.
Collapse
|
12
|
Chen HF, Yu CY, Chen MJ, Chou SH, Chiang MS, Chou WH, Ko BS, Huang HP, Kuo HC, Ho HN. Characteristic Expression of Major Histocompatibility Complex and Immune Privilege Genes in Human Pluripotent Stem Cells and Their Derivatives. Cell Transplant 2015; 24:845-64. [DOI: 10.3727/096368913x674639] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pluripotent stem cells, including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs), have been regarded as useful sources for cell-based transplantation therapy. However, immunogenicity of the cells remains the major determinant for successful clinical application. We report the examination of several hESC lines (NTU1 and H9), hiPSC lines, and their derivatives (including stem cell-derived hepatocytes) for the expression of major histocompatibility complex (MHC), natural killer (NK) cell receptor (NKp30, NKp44, NKp46) ligand, immune-related genes, human leukocyte antigen (HLA) haplotyping, and the effects in functional mixed lymphocyte reaction (MLR). Flow cytometry showed lower levels (percentages and fluorescence intensities) of MHC class I (MHC-I) molecules, β2-microglobulin, and HLA-E in undifferentiated stem cells. The levels were increased after cotreatment with interferon-γ and/or in vitro differentiation. Antigen-presenting cell markers (CD11c, CD80, and CD86) and MHC-II (HLA-DP, -DQ, and -DR) remained low throughout the treatments. Recognition of stem cells/derivatives by NK lysis receptors were lower or absent. Activation of responder lymphocytes was significantly lower by undifferentiated stem cells than by allogeneic lymphocytes in MLR, but differentiated NTU1 hESCs induced a cell number-dependent lymphocyte proliferation comparable with that by allogeneic lymphocytes. Interestingly, activation of lymphocytes by differentiated hiPSCs or H9 cells became blunted at higher cell numbers. Real-time reverse transcriptase PCR (RT-PCR) showed significant differential expression of immune privilege genes ( TGF-β2, Arginase 2, Indole 1, GATA3, POMC, VIP, CALCA, CALCB, IL-1RN, CD95L, CR1L, Serpine 1, HMOX1, IL6, LGALS3, HEBP1, THBS1, CD59, and LGALS1) in pluripotent stem cells/derivatives when compared to somatic cells. It was concluded that pluripotent stem cells/derivatives are predicted to be immunogenic, though evidence suggests some level of potential immune privilege. In addition, differential immunogenicity may exist between different pluripotent stem cell lines and their derivatives.
Collapse
Affiliation(s)
- Hsin-Fu Chen
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Ying Yu
- Institute of Cellular and Organismic Biology and Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Mei-Jou Chen
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan
| | - Shiu-Huey Chou
- Department of Life Science, Fu-Jen Catholic University, Taipei, Taiwan
| | - Ming-Shan Chiang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan
| | - Wen-Hsi Chou
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan
| | - Bor-Sheng Ko
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Cellular and Systemic Medicine, National Health Research Institute, Miaoli County, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology and Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hong-Nerng Ho
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Acquarone M, de Melo TM, Meireles F, Brito-Moreira J, Oliveira G, Ferreira ST, Castro NG, Tovar-Moll F, Houzel JC, Rehen SK. Mitomycin-treated undifferentiated embryonic stem cells as a safe and effective therapeutic strategy in a mouse model of Parkinson's disease. Front Cell Neurosci 2015; 9:97. [PMID: 25904842 PMCID: PMC4389407 DOI: 10.3389/fncel.2015.00097] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 03/04/2015] [Indexed: 12/21/2022] Open
Abstract
Parkinson’s disease (PD) is an incurable progressive neurodegenerative disorder. Clinical presentation of PD stems largely from the loss of dopaminergic neurons in the nigrostriatal dopaminergic pathway, motivating experimental strategies of replacement based on cell therapy. Transplantation of dopaminergic neurons derived from embryonic stem cells significantly improves motor functions in rodent and non-human primate models of PD. However, protocols to generate dopaminergic neurons from embryonic stem cells generally meet with low efficacy and high risk of teratoma formation upon transplantation. To address these issues, we have pre-treated undifferentiated mouse embryonic stem cells (mESCs) with the DNA alkylating agent mitomycin C (MMC) before transplantation. MMC treatment of cultures prevented tumorigenesis in a 12 week follow-up after mESCs were injected in nude mice. In 6-OH-dopamine-lesioned mice, intrastriatal injection of MMC-treated mESCs markedly improved motor function without tumor formation for as long as 15 months. Furthermore, we show that halting mitotic activity of undifferentiated mESCs induces a four-fold increase in dopamine release following in vitro differentiation. Our findings indicate that treating mESCs with MMC prior to intrastriatal transplant is an effective to strategy that could be further investigated as a novel alternative for treatment of PD.
Collapse
Affiliation(s)
- Mariana Acquarone
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Thiago M de Melo
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Fernanda Meireles
- D'Or Institute for Research and Education (IDOR) Rio de Janeiro, Brazil
| | - Jordano Brito-Moreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Gabriel Oliveira
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation Rio de Janeiro, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Newton G Castro
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Fernanda Tovar-Moll
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro Rio de Janeiro, Brazil ; D'Or Institute for Research and Education (IDOR) Rio de Janeiro, Brazil
| | - Jean-Christophe Houzel
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Stevens K Rehen
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro Rio de Janeiro, Brazil ; D'Or Institute for Research and Education (IDOR) Rio de Janeiro, Brazil
| |
Collapse
|
14
|
D'Addio F, Trevisani A, Ben Nasr M, Bassi R, El Essawy B, Abdi R, Secchi A, Fiorina P. Harnessing the immunological properties of stem cells as a therapeutic option for diabetic nephropathy. Acta Diabetol 2014; 51:897-904. [PMID: 24894496 DOI: 10.1007/s00592-014-0603-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 05/17/2014] [Indexed: 12/27/2022]
Abstract
Diabetic nephropathy is the leading and possibly the most devastating complication of diabetes, with a prevalence ranging from 25 to 40 % in diabetic individuals, and as such represents an important challenge for public health worldwide. As a major cause of end-stage renal disease, diabetic nephropathy also accounts for a large proportion of deaths in diabetic individuals. To date, therapeutic options for overt diabetic nephropathy include medical interventions to reduce blood glucose levels and to control blood pressure and proteinuria. Recent evidence suggests a strong role for inflammation in the development and progression of diabetic nephropathy. Various immune cells, cytokines and chemokines have been implicated in the onset of diabetic nephropathy, while immune-related transcription factors and adhesion molecules have been correlated with the establishment of a renal proinflammatory microenvironment. Both inflammation and immune activation may promote severe distress in the kidney, with subsequent increased local fibrosis, ultimately leading to the development of end-stage renal disease. Stem cells are undifferentiated cells capable of regenerating virtually any organ or tissue and bearing important immunoregulatory and anti-inflammatory properties. Due to the aforementioned considerations, significant interest has been ignited with regard to the use of stem cells as novel therapeutics for diabetic nephropathy. Here, we will be examining in detail how anti-inflammatory properties of different populations of stem cells may offer novel therapy for the treatment of diabetic nephropathy.
Collapse
|
15
|
Kim EM, Miyake B, Aggarwal M, Voetlause R, Griffith M, Zavazava N. Embryonic stem cell-derived haematopoietic progenitor cells down-regulate the CD3 ξ chain on T cells, abrogating alloreactive T cells. Immunology 2014; 142:421-30. [PMID: 24527810 DOI: 10.1111/imm.12268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 11/29/2022] Open
Abstract
Murine embryonic stem (ES) cell-derived haematopoietic progenitor cells (HPCs) engraft and populate lymphoid organs. In vivo, HPCs engraft across MHC barriers protecting donor-type allografts from rejection. However, the underlying phenomenon remains elusive. Here, we sought to determine the mechanism by which ES cell-derived HPCs regulate alloreactive T cells. We used the 2C mouse, which expresses a transgenic T-cell receptor against H2-L(d) to determine whether HPCs are deleted by cytotoxic T lymphocytes (CTLs). Previously, we reported that HPCs express MHC class I antigens poorly and do not express class II antigens. In vitro stimulated 2C CTLs failed to lyse H2-L(d) HPCs in a standard 4-hr (51) chromium release assay. Similarly, when the HPCs were tested in an ELISPOT assay measuring the release of interferon-γ by CTLs, HPCs failed to induce CTL degranulation. In addition, mice that were injected with HPCs showed a marked decrease in T-cell responses to alloantigen and CD3 stimulation, but showed a normal response to PMA/ionomycin, suggesting that HPCs impaired T-cell signalling through the T-cell receptor/CD3 complex. Here, we show that HPCs secrete arginase, an enzyme that scavenges l-arginine, leading to metabolites that down-regulate CD3 ζ chain. Indeed an arginase inhibitor partially restored expression of the CD3 ζ chain, implicating arginase 1 in the down-regulation of T cells. This previously unrecognized property of ES cell-derived HPCs could positively enhance the engraftment of ES cell-derived HPCs across MHC barriers by preventing rejection.
Collapse
Affiliation(s)
- Eun-Mi Kim
- University of Iowa Hospitals and Clinics & Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA
| | | | | | | | | | | |
Collapse
|
16
|
Zhou C, Huang Z, Li P, Li W, Liu Y, Li C, Liu Z, Wang X, Wan P, Wang Z. Safety and Efficacy of Embryonic Stem Cell Microenvironment in a Leukemia Mouse Model. Stem Cells Dev 2014; 23:1741-54. [DOI: 10.1089/scd.2013.0585] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Chenjing Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zheqian Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Panlong Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Weiqiang Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ying Liu
- State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Chaoyang Li
- State Key Laboratory of Ophthalmology, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhao Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiaoran Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Pengxia Wan
- Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhichong Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
17
|
Natural killer cell subsets differentially reject embryonic stem cells based on licensing. Transplantation 2014; 97:992-8. [PMID: 24704665 DOI: 10.1097/tp.0000000000000063] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Embryonic stem cells (ESC) and induced pluripotent stem cells provide great promise to the future of medicine. Because immune rejection represents a major obstacle to the success of all stem cell-based therapies, many recent studies have sought to determine the key immune mediators involved in ESC rejection. The role of natural killer (NK) cells and specifically the role of NK cell licensing is not well understood in ESC rejection. METHODS Mouse or human ESCs were subjected to cytotoxicity assays involving their respective species-matched activated NK cells. Mouse ESCs were then transplanted to allogeneic recipients after depletion of NK cell subsets in the host. ESC engraftment was analyzed by bioluminescent imaging. RESULTS Depletion of all NK cells in vivo resulted in the greatest amount of ESC engraftment, confirming a role for NK cells in ESC rejection. Importantly, depletion of the Ly49C/I or Ly49G2 NK cell subsets resulted in differential ESC engraftment and rejection. This indicates that NK cell rejection of allogeneic ESC is highly differential based on the presence of licensed NK cells. Blocking NKG2D in vitro resulted in less killing of mESC by allogeneic NK cells, indicating NKG2D is a likely mechanism for NK-mediated killing of mESC. CONCLUSIONS In this study, we show that expression of inhibitory Ly49s correlates with the ability of NK cells to kill murine ESC in an NKG2D-dependent manner. This further suggests that the rejection of similar stem cell transplants in humans will be dependent upon the presence of licensed NK cells.
Collapse
|
18
|
Phillips LK, Gould EA, Babu H, Krams SM, Palmer TD, Martinez OM. Natural killer cell-activating receptor NKG2D mediates innate immune targeting of allogeneic neural progenitor cell grafts. Stem Cells 2014; 31:1829-39. [PMID: 23733329 DOI: 10.1002/stem.1422] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/10/2013] [Indexed: 12/25/2022]
Abstract
Cell replacement therapy holds promise for a number of untreatable neurological or psychiatric diseases but the immunogenicity of cellular grafts remains controversial. Emerging stem cell and reprogramming technologies can be used to generate autologous grafts that minimize immunological concerns but autologous grafts may carry an underlying genetic vulnerability that reduces graft efficacy or survival. Healthy allogeneic grafts are an attractive and commercially scalable alternative if immunological variables can be controlled. Stem cells and immature neural progenitor cells (NPC) do not express major histocompatibility complex (MHC) antigens and can evade adaptive immune surveillance. Nevertheless, in an experimental murine model, allogeneic NPCs do not survive and differentiate as well as syngeneic grafts, even when traditional immunosuppressive treatments are used. In this study, we show that natural killer (NK) cells recognize the lack of self-MHC antigens on NPCs and pose a barrier to NPC transplantation. NK cells readily target both syngeneic and allogeneic NPC, and killing is modulated primarily by NK-inhibiting "self" class I MHC and NK-activating NKG2D-ligand expression. The absence of NKG2D signaling in NK cells significantly improves NPC-derived neuron survival and differentiation. These data illustrate the importance of innate immune mechanisms in graft outcome and the potential value of identifying and targeting NK cell-activating ligands that may be expressed by stem cell derived grafts.
Collapse
Affiliation(s)
- Lori K Phillips
- Program in Immunology Stanford University School of Medicine University of Colorado, Boulder, Colorado, USA
| | | | | | | | | | | |
Collapse
|
19
|
Schnabel LV, Abratte CM, Schimenti JC, Felippe MJB, Cassano JM, Southard TL, Cross JA, Fortier LA. Induced pluripotent stem cells have similar immunogenic and more potent immunomodulatory properties compared with bone marrow-derived stromal cells in vitro. Regen Med 2014; 9:621-35. [PMID: 24773530 PMCID: PMC4352342 DOI: 10.2217/rme.14.29] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIM To evaluate the in vitro immunogenic and immunomodulatory properties of induced pluripotent stem cells (iPSCs) compared with bone marrow-derived mesenchymal stromal cells (MSCs). MATERIALS & METHODS Mouse embryonic fibroblasts (MEFs) were isolated from C3HeB/FeJ and C57BL/6J mice, and reprogrammed to generate iPSCs. Mixed leukocyte reactions were performed using MHC-matched and -mismatched responder leukocytes and stimulator leukocytes, iPSCs or MSCs. To assess immunogenic potential, iPSCs and MSCs were used as stimulator cells for responder leukocytes. To assess immunomodulatory properties, iPSCs and MSCs were cultured in the presence of stimulator and responder leukocytes. MEFs were used as a control. RESULTS iPSCs had similar immunogenic properties but more potent immunomodulatory effects than MSCs. Co-culture of MHC-mismatched leukocytes with MHC-matched iPSCs resulted in significantly less responder T-cell proliferation than observed for MHC-mismatched leukocytes alone and at more responder leukocyte concentrations than with MSCs. In addition, MHC-mismatched iPSCs significantly reduced responder T-cell proliferation when co-cultured with MHC-mismatched leukocytes, while MHC-mismatched MSCs did not. CONCLUSION These results provide important information when considering the use of iPSCs in place of MSCs in both regenerative and transplantation medicine.
Collapse
Affiliation(s)
- Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | - Christian M Abratte
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - John C Schimenti
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - M Julia Bevilaqua Felippe
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer M Cassano
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Teresa L Southard
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Jessica A Cross
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Lisa A Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
20
|
Abstract
Future stem cell-based therapies will benefit from the new discoveries being made on pluripotent stem cells such as embryonic stem (ES) cells and induced pluripotent stem (IPS) cells. Understanding the genes regulating pluripotency has opened new opportunities to generate patient-tailored therapies. However, protocols for deriving progenitor cells of therapeutic grade from these pluripotent stem cells are not yet worked out. In particular the potential of these cells in treating diseases when compared to their adult progenitor counterparts is unknown. This is crucial work that needs to be studied in detail because we will need to determine engraftment potential of these cells and their ability for multi-lineage engraftment in the in vivo setting before any clinical applications. The ability of these cells to engraft is dependent on their expression of cell surface markers which guide their homing patterns. In this review, I discuss murine hematopoietic progenitor cells derived from mouse ES cells. Stem cells in the bone marrow are found in the bone marrow niches. Our knowledge of the bone marrow niches is growing and will ultimately lead to improved clinical transplantation of bone marrow cells. We are, however, a long way in appreciating how hematopoietic progenitor cells migrate and populate lymphoid tissues. One of the variables in generating hematopoietic progenitor cells is that different labs use different approaches in generating progenitor cells. In some cases, the ES cell lines used show some variability as well. The cell culture media used by the different investigators highly influence the maturation level of the cells and their homing patterns. Here, mouse ES cell-derived progenitor cells are discussed.
Collapse
|
21
|
Thompson HL, McLelland BT, Manilay JO. Indirect immune recognition of mouse embryonic stem cell-derived hematopoietic progenitors in vitro. Exp Hematol 2014; 42:347-359.e5. [PMID: 24440521 DOI: 10.1016/j.exphem.2014.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 12/02/2013] [Accepted: 01/02/2014] [Indexed: 11/30/2022]
Abstract
The clinical use of embryonic stem cell (ESC)-derived hematopoietic progenitors (ESHPs) requires the generation of ESHPs that produce mature hematopoietic cells and do not induce immune rejection after transplantation. We compared the developmental maturity and immunogenicity of ESHPs generated using two methods: embryoid body (EB) formation and culture of ESCs with the OP9 bone marrow stromal cell line (ESC-OP9). ESHPs derived from EBs displayed an immature hematopoietic phenotype and were devoid of immunogenicity marker expression. In contrast, ESHPs derived via ESC-OP9 displayed a mature phenotype and expressed high levels of some immunostimulatory molecules. ESHPs alone could not stimulate CD4(+) T lymphocyte proliferation directly. However, preferential phagocytosis of ESHPs and T cell proliferation were observed in the presence of antigen-presenting cells, consistent with a model of indirect immune recognition of ESHPs. These results suggest that depletion of host CD4(+) T lymphocytes or antigen-presenting cells may be necessary for successful ESHP transplantation.
Collapse
Affiliation(s)
- Heather L Thompson
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California-Merced, Merced, CA, USA
| | - Bryce T McLelland
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California-Merced, Merced, CA, USA
| | - Jennifer O Manilay
- Quantitative and Systems Biology Graduate Program, School of Natural Sciences, University of California-Merced, Merced, CA, USA; Molecular and Cell Biology Unit, School of Natural Sciences, University of California-Merced, Merced, CA, USA.
| |
Collapse
|
22
|
Evaluation of immunogenicity of rat ES-cell derived endothelial cells. Methods Mol Biol 2013; 1029:43-63. [PMID: 23756941 DOI: 10.1007/978-1-62703-478-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Evaluation of the immunogenicity of embryonic stem cell derived differentiated cells is important for their potential application in cell replacement therapies and transplantations. Low immunogenicity or even an immune privileged status would enable their general use in allogeneic settings and therefore supply an unrestricted source. Based on conflicting data in terms of immunogenicity published for mouse and human ES-derived cells, the rat model was used to complement the knowledge in this specific area by a set of in vitro test systems using endothelial ES cell derivatives.This chapter describes the strategies and methods used to analyze immunogenicity of rat ES cell derived endothelial cells (RESC) in comparison to adult mature rat endothelial cells (EC). In a first characterization step, the endothelial nature of rat ES cell derived endothelial cells was proved by labelling with von Willebrand factor (vWF) as well as testing tube formation capacity on an extracellular matrix. The RESC can be characterized by their constitutive or cytokine-induced expression level of the Major Histocompatibility Complex (MHC) antigens class I and class II by Fluorescence Activated Cell Sorter (FACS) technology. Moreover, regulation of transcription factors involved in the IFNγ signaling pathway could be evaluated by detecting either the phosphorylation status by specific intracellular antibody staining followed by flow cytometric measurement or by analyzing the mRNA expression level by quantitative RT-PCR. By stimulating the RESC with IFNγ and coculturing with Carboxy-fluorescein diacetate succinimidyl ester (CFDA-SE)-labelled CD4(+) rat T cells, the ability of RESC to induce proliferation was analyzed by FACS technology. Allo-reactive cytotoxic T cells were generated in a mixed lymphocyte culture (MLC) with lymph node cells from two MHC-disparate rat strains and used to determine the susceptibility of RESC to lytic processes. Therefore, RESC were labelled with calcein and the release of this fluorochrome after coculture was measured. To analyze the response to humoral attacks, RESC were incubated with allo-antibody containing sera and rabbit complement and then cell damage was assessed by 7-actinomycin D (7-AAD) incorporation into the DNA using FACS analysis.
Collapse
|
23
|
Chan KM, Fu YH, Wu TJ, Hsu PY, Lee WC. Hepatic stellate cells promote the differentiation of embryonic stem cell-derived definitive endodermal cells into hepatic progenitor cells. Hepatol Res 2013; 43:648-657. [PMID: 23072626 DOI: 10.1111/j.1872-034x.2012.01110.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 02/08/2023]
Abstract
AIM Hepatic non-parenchymal cells are well known to be capable of providing an important microenvironment and growth factors for hepatic regeneration, but their capacity for directing embryonic stem cells (ESC) toward hepatocytes remains to be assessed. Thus, this study aims to investigate the role of hepatic stellate cells (HSC), the major type of hepatic non-parenchymal cells, in the differentiation of ESC as well as exploring the potentiality of ESC in regeneration medicine for cell-based therapy. METHODS A two-step differentiation procedure that utilized the capability of HSC to regulate proliferation and differentiation of hepatocytes was used to develop an approach for directing the differentiation of ESC towards hepatic progenitor cells. Mouse ESC were cultivated in a serum-free medium containing Activin A and fibroblast growth factor to generate definitive endodermal cells characterized by the CXCR4 cell-surface marker. After 6-8 days in culture, approximately 60% of the differentiated cells expressed CXCR4, and more than 90% of the CXCR4 positive cells could be recovered by cell sorting. The purified CXCR4 positive cells were co-cultured with mouse HSC as feeder cells in basal medium without additional hepatocyte growth factors. Differentiation was complete after 10-12 days of co-culture, and hepatic progenitor cell markers such as α-fetoprotein (afp) and albumin (alb) were detected in the terminally differentiated ESC. CONCLUSION These results show that HSC provide an appropriate microenvironment and pivotal growth factors for generation of hepatic progenitor cells from ESC-derived definitive endodermal cells, and suggest that this approach possibly allows for hepatic differentiation of ESC imitating the process of hepatic regeneration.
Collapse
Affiliation(s)
- Kun-Ming Chan
- Division of Liver and Transplantation Surgery, Department of General Surgery, Chang-Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
24
|
Lee EM, Hurh S, Cho B, Oh KH, Kim SU, Surh CD, Sprent J, Yang J, Kim JY, Ahn C. CD70-CD27 ligation between neural stem cells and CD4+ T cells induces Fas-FasL-mediated T-cell death. Stem Cell Res Ther 2013; 4:56. [PMID: 23692980 PMCID: PMC3706991 DOI: 10.1186/scrt206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 05/09/2013] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Neural stem cells (NSCs) are among the most promising candidates for cell replacement therapy in neuronal injury and neurodegenerative diseases. One of the remaining obstacles for NSC therapy is to overcome the alloimmune response on NSCs by the host. METHODS To investigate the mechanisms of immune modulatory function derived from the interaction of human NSCs with allogeneic T cells, we examined the immune regulatory effects of human NSCs on allogeneic T cells in vitro. RESULTS Significantly, NSCs induced apoptosis of allogeneic T cells, in particular CD4+ T cells. Interaction of CD70 on NSCs and CD27 on CD4(+) T cells mediated apoptosis of T cells. Thus, blocking CD70-CD27 interaction prevented NSC-mediated death of CD4(+) T cells. CONCLUSIONS We present a rational explanation of NSC-induced immune escape in two consecutive stages. First, CD70 constitutively expressed on NSCs engaged CD27 on CD4(+) T cells, which induced Fas ligand expression on CD4(+) T cells. Second, CD4(+) T-cell apoptosis was followed by Fas-Fas ligand interaction in the CD4(+) T cells.
Collapse
|
25
|
Human iPS cell-derived hematopoietic progenitor cells induce T-cell anergy in in vitro-generated alloreactive CD8(+) T cells. Blood 2013; 121:5167-75. [PMID: 23687092 DOI: 10.1182/blood-2012-11-467753] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human induced pluripotent stem cells (iPSCs) have emerged as an alternative source of pluripotent stem cells that can be used for tissue regeneration in place of the controversial human embryonic stem cells. However, immunologic knowledge about iPSC derivatives remains enigmatic. Here, we characterized human iPS-derived CD34(+) hematopoietic progenitor cells (HPCs). These HPCs poorly express major histocompatibility complex (MHC) I antigens and are MHC-II negative. Interestingly, they moderately express nonclassical HLA-G and HLA-E molecules. Consequently, alloreactive HLA-A2-specific cytotoxic T cells failed to recognize HLA-A2-expressing HPCs but became anergic. Subsequent upregulation of MHC-I using interferon-γ stimulation and provision of CD28 cosignaling led to T-cell activation, confirming that poor delivery of signals 1 and 2 by the HPCs mediated T-cell anergy. These data indicate for the first time that HPCs induce T-cell anergy, a unique characteristic of iPSC-derived cells that confers immunologic advantage for allogenic transplantation. Although iPSCs are ideal for patient-tailored treatments with the anticipation that no immunosuppression will be required, in cases of gene defects, their derivatives could be used to treat diseases in nonhistocompatible recipients.
Collapse
|
26
|
Kramer AS, Harvey AR, Plant GW, Hodgetts SI. Systematic Review of Induced Pluripotent Stem Cell Technology as a Potential Clinical Therapy for Spinal Cord Injury. Cell Transplant 2013; 22:571-617. [DOI: 10.3727/096368912x655208] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transplantation therapies aimed at repairing neurodegenerative and neuropathological conditions of the central nervous system (CNS) have utilized and tested a variety of cell candidates, each with its own unique set of advantages and disadvantages. The use and popularity of each cell type is guided by a number of factors including the nature of the experimental model, neuroprotection capacity, the ability to promote plasticity and guided axonal growth, and the cells' myelination capability. The promise of stem cells, with their reported ability to give rise to neuronal lineages to replace lost endogenous cells and myelin, integrate into host tissue, restore functional connectivity, and provide trophic support to enhance and direct intrinsic regenerative ability, has been seen as a most encouraging step forward. The advent of the induced pluripotent stem cell (iPSC), which represents the ability to “reprogram” somatic cells into a pluripotent state, hails the arrival of a new cell transplantation candidate for potential clinical application in therapies designed to promote repair and/or regeneration of the CNS. Since the initial development of iPSC technology, these cells have been extensively characterized in vitro and in a number of pathological conditions and were originally reported to be equivalent to embryonic stem cells (ESCs). This review highlights emerging evidence that suggests iPSCs are not necessarily indistinguishable from ESCs and may occupy a different “state” of pluripotency with differences in gene expression, methylation patterns, and genomic aberrations, which may reflect incomplete reprogramming and may therefore impact on the regenerative potential of these donor cells in therapies. It also highlights the limitations of current technologies used to generate these cells. Moreover, we provide a systematic review of the state of play with regard to the use of iPSCs in the treatment of neurodegenerative and neuropathological conditions. The importance of balancing the promise of this transplantation candidate in the light of these emerging properties is crucial as the potential application in the clinical setting approaches. The first of three sections in this review discusses (A) the pathophysiology of spinal cord injury (SCI) and how stem cell therapies can positively alter the pathology in experimental SCI. Part B summarizes (i) the available technologies to deliver transgenes to generate iPSCs and (ii) recent data comparing iPSCs to ESCs in terms of characteristics and molecular composition. Lastly, in (C) we evaluate iPSC-based therapies as a candidate to treat SCI on the basis of their neurite induction capability compared to embryonic stem cells and provide a summary of available in vivo data of iPSCs used in SCI and other disease models.
Collapse
Affiliation(s)
- Anne S. Kramer
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| | - Alan R. Harvey
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| | - Giles W. Plant
- Stanford Partnership for Spinal Cord Injury and Repair, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart I. Hodgetts
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| |
Collapse
|
27
|
Eve DJ, Marty PJ, McDermott RJ, Klasko SK, Sanberg PR. Stem Cell Research and Health Education. AMERICAN JOURNAL OF HEALTH EDUCATION 2013. [DOI: 10.1080/19325037.2008.10599033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- David J. Eve
- a Center of Excellence for Aging and Brain Repair , University of South Florida College of Medicin, Department of Neurosurgery , 12901 Bruce B. Downs Blvd. (MDC 078), Tampa , FL , 33612
| | - Phillip J. Marty
- b Department of Community and Family Health , University of South Florida, College of Public Health
| | - Robert J. McDermott
- b Department of Community and Family Health , University of South Florida, College of Public Health
| | | | - Paul R. Sanberg
- d Center of Excellence for Aging and Brain Repair , University of South Florida
| |
Collapse
|
28
|
Pilat S, Carotta S, Klump H. Development of hematopoietic stem and progenitor cells from mouse embryonic stem cells, in vitro, supported by ectopic human HOXB4 expression. Methods Mol Biol 2013; 1029:129-147. [PMID: 23756947 DOI: 10.1007/978-1-62703-478-4_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Differentiation of pluripotent embryonic stem (ES) cells can recapitulate many aspects of hematopoiesis, in vitro, and can even generate cells capable of long-term multilineage repopulation after transplantation into recipient mice, when the homeodomain transcription factor HOXB4 is ectopically expressed. Thus, the ES-cell differentiation system is of great value for a detailed understanding of the process of blood formation. Furthermore, it is also promising for future application in hematopoietic cell and gene therapy. Since the arrival of techniques which allow the reprogramming of somatic cells back to an ES cell-like state, the generation of hematopoietic stem cells from patient-specific so-called induced pluripotent stem cells shows great promise for future therapeutic applications. In this chapter, we describe how to cultivate a certain feeder cell-independent mouse embryonic stem cell line, to manipulate these cells by retroviral gene transfer to ectopically express HOXB4, to differentiate these ES cells via embryoid body formation, and to selectively expand the arising, HOXB4-expressing hematopoietic stem and progenitor cells.
Collapse
Affiliation(s)
- Sandra Pilat
- Department of Medical Biology, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia
| | | | | |
Collapse
|
29
|
Tang C, Weissman IL, Drukker M. Immunogenicity of in vitro maintained and matured populations: potential barriers to engraftment of human pluripotent stem cell derivatives. Methods Mol Biol 2013; 1029:17-31. [PMID: 23756939 DOI: 10.1007/978-1-62703-478-4_2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential to develop into any cell type makes human pluripotent stem cells (hPSCs) one of the most promising sources for regenerative treatments. Hurdles to their clinical applications include (1) formation of heterogeneously differentiated cultures, (2) the risk of teratoma formation from residual undifferentiated cells, and (3) immune rejection of engrafted cells. The recent production of human isogenic (genetically identical) induced PSCs (hiPSCs) has been proposed as a "solution" to the histocompatibility barrier. In theory, differentiated cells derived from patient-specific hiPSC lines should be histocompatible to their donor/recipient. However, propagation, maintenance, and non-physiologic differentiation of hPSCs in vitro may produce other, likely less powerful, immune responses. In light of recent progress towards the clinical application of hPSCs, this review focuses on two antigen presentation phenomena that may lead to rejection of isogenic hPSC derivates: namely, the expression of aberrant antigens as a result of long-term in vitro maintenance conditions or incomplete somatic cell reprogramming, and the unbalanced presentation of receptors and ligands involved in immune recognition due to accelerated differentiation. Finally, we discuss immunosuppressive approaches that could potentially address these immunological concerns.
Collapse
Affiliation(s)
- Chad Tang
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
30
|
Raikwar SP, Zavazava N. PDX1-engineered embryonic stem cell-derived insulin producing cells regulate hyperglycemia in diabetic mice. Transplant Res 2012; 1:19. [PMID: 23369186 PMCID: PMC3560994 DOI: 10.1186/2047-1440-1-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/24/2012] [Indexed: 01/09/2023] Open
Abstract
Background Type 1 diabetes can be treated by the transplantation of cadaveric whole pancreata or isolated pancreatic islets. However, this form of treatment is hampered by the chronic shortage of cadaveric donors. Embryonic stem (ES) cell-derived insulin producing cells (IPCs) offer a potentially novel source of unlimited cells for transplantation to treat type 1 and possibly type 2 diabetes. However, thus far, the lack of a reliable protocol for efficient differentiation of ES cells into IPCs has hindered the clinical exploitation of these cells. Methods To efficiently generate IPCs using ES cells, we have developed a double transgenic ES cell line R1Pdx1AcGFP/RIP-Luc that constitutively expresses pancreatic β-cell-specific transcription factor pancreatic and duodenal homeobox gene 1 (Pdx1) as well as rat insulin promoter (RIP) driven luciferase reporter. We have established several protocols for the reproducible differentiation of ES cells into IPCs. The differentiation of ES cells into IPCs was monitored by immunostaining as well as real-time quantitative RT-PCR for pancreatic β-cell-specific markers. Pancreatic β-cell specific RIP became transcriptionally active following the differentiation of ES cells into IPCs and induced the expression of the luciferase reporter. Glucose stimulated insulin secretion by the ES cell-derived IPCs was measured by ELISA. Further, we have investigated the therapeutic efficacy of ES cell-derived IPCs to correct hyperglycemia in syngeneic streptozotocin (STZ)-treated diabetic mice. The long term fate of the transplanted IPCs co-expressing luciferase in syngeneic STZ-induced diabetic mice was monitored by real time noninvasive in vivo bioluminescence imaging (BLI). Results We have recently demonstrated that spontaneous in vivo differentiation of R1Pdx1AcGFP/RIP-Luc ES cell-derived pancreatic endoderm-like cells (PELCs) into IPCs corrects hyperglycemia in diabetic mice. Here, we investigated whether R1Pdx1AcGFP/RIP-Luc ES cells can be efficiently differentiated in vitro into IPCs. Our new data suggest that R1Pdx1AcGFP/RIP-Luc ES cells efficiently differentiate into glucose responsive IPCs. The ES cell differentiation led to pancreatic lineage commitment and expression of pancreatic β cell-specific genes, including Pax4, Pax6, Ngn3, Isl1, insulin 1, insulin 2 and PC2/3. Transplantation of the IPCs under the kidney capsule led to sustained long-term correction of hyperglycemia in diabetic mice. Although these newly generated IPCs effectively rescued hyperglycemic mice, an unexpected result was teratoma formation in 1 out of 12 mice. We attribute the development of the teratoma to the presence of either non-differentiated or partially differentiated stem cells. Conclusions Our data show the potential of Pdx1-engineered ES cells to enhance pancreatic lineage commitment and to robustly drive the differentiation of ES cells into glucose responsive IPCs. However, there is an unmet need for eliminating the partially differentiated stem cells.
Collapse
Affiliation(s)
- Sudhanshu P Raikwar
- Department of Internal Medicine, Division of Immunology, Roy J, and Lucille A, Carver College of Medicine, University of Iowa and Iowa City Veterans Affairs Medical Center, Building 41, Room #128, 601 Highway 6W, Iowa City, IA 52246, USA.
| | | |
Collapse
|
31
|
Niederkorn JY. Ocular immune privilege and ocular melanoma: parallel universes or immunological plagiarism? Front Immunol 2012; 3:148. [PMID: 22707951 PMCID: PMC3374415 DOI: 10.3389/fimmu.2012.00148] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 05/21/2012] [Indexed: 12/31/2022] Open
Abstract
Evidence of immune privilege in the eye was recorded almost 140 years ago, yet interest in immune privilege languished for almost a century. However, the past 35 years have witnessed a plethora of research and a rekindled interest in the mechanisms responsible for immune privilege in the anterior chamber of the eye. This research has demonstrated that multiple anatomical, structural, physiological, and immunoregulatory processes contribute to immune privilege and remind us of the enormous complexity of this phenomenon. It is widely accepted that immune privilege is an adaptation for reducing the risk of immune-mediated inflammation in organs such as the eye and brain whose tissues have a limited capacity to regenerate. Recent findings suggest that immune privilege also occurs in sites where stem cells reside and raise the possibility that immune privilege is also designed to prevent the unwitting elimination of stem cells by immune-mediated inflammation at these sites. Uveal melanoma arises within the eye and as such, benefits from ocular immune privilege. A significant body of research reveals an intriguing parallel between the mechanisms that contribute to immune privilege in the eye and those strategies used by uveal melanoma cells to evade immune elimination once they have disseminated from the eye and establish metastatic foci in the liver. Uveal melanoma metastases seem to have “plagiarized” the blueprints used for ocular immune privilege to create “ad hoc immune privileged sites” in the liver.
Collapse
Affiliation(s)
- Jerry Y Niederkorn
- Department of Ophthalmology, University of Texas Southwestern Medical Center Dallas, TX, USA
| |
Collapse
|
32
|
Prasongchean W, Ferretti P. Autologous stem cells for personalised medicine. N Biotechnol 2012; 29:641-50. [PMID: 22561284 DOI: 10.1016/j.nbt.2012.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/17/2012] [Accepted: 04/19/2012] [Indexed: 01/11/2023]
Abstract
Increasing understanding of stem cell biology, the ability to reprogramme differentiated cells to a pluripotent state and evidence of multipotency in certain adult somatic stem cells has opened the door to exciting therapeutic advances as well as a great deal of regulatory and ethical issues. Benefits will come from the possibility of modelling human diseases and develop individualised therapies, and from their use in transplantation and bioengineering. The use of autologous stem cells is highly desirable, as it avoids the problem of tissue rejection, and also reduces ethical and regulatory issues. Identification of the most appropriate cell sources for different potential applications, development of appropriate clinical grade methodologies and large scale well controlled clinical trials will be essential to assess safety and value of cell based therapies, which have been generating much hope, but are by and large not yet close to becoming standard clinical practice. We briefly discuss stem cells in the context of tissue repair and regenerative medicine, with a focus on individualised clinical approaches, and give examples of sources of autologous cells with potential for clinical intervention.
Collapse
|
33
|
Kim EM, Stultz R, Bonde S, Zavazava N. Embryonic stem cell-derived T cells induce lethal graft-versus-host disease and reject allogenic skin grafts upon thymic selection. Am J Transplant 2012; 12:600-9. [PMID: 22070732 PMCID: PMC10619206 DOI: 10.1111/j.1600-6143.2011.03845.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Efficient differentiation of embryonic stem cells (ESC) into hematopoietic progenitor cells (HPCs) is crucial for the establishment of stem cell-based therapies targeting the treatment of immunological and hematological disorders. However, so far, it has not been possible to induce long-term survival of murine ESC-derived HPCs without the overexpression of HoxB4, a homeobox transcription factor that confers self-renewal properties to hematopoietic cells. Yet it has not been feasible to generate T cells from HoxB4-expressing HPCs, a problem that has been attributed to HoxB4. Here, we show that Notch1 signaling in HoxB4-transduced ESCs leads to efficient derivation of T cells that survive long term. These T cells display a normal T-cell Vβ repertoire, respond to mitogen stimulation and induce lethal graft-versus-host disease. Thymic selection in fetal thymic organ cultures (FTOCs) allowed negative selection and generation of T cells tolerant to 'self' and capable of rejecting MHC-mismatched skin allografts. Our data show that ESC-derived T cells, despite high expression of HoxB4, are fully immunocompetent.
Collapse
Affiliation(s)
- E. M. Kim
- Department of Internal Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, IA
| | - R. Stultz
- Department of Internal Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, IA
| | - S. Bonde
- Department of Internal Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, IA
| | - N. Zavazava
- Department of Internal Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, IA
- Division of Immunology and Interdisciplinary Immunology Program, University of Iowa, Iowa City, IA
| |
Collapse
|
34
|
Deuse T, Seifert M, Phillips N, Fire A, Tyan D, Kay M, Tsao PS, Hua X, Velden J, Eiermann T, Volk HD, Reichenspurner H, Robbins RC, Schrepfer S. Immunobiology of naïve and genetically modified HLA-class-I-knockdown human embryonic stem cells. J Cell Sci 2012; 124:3029-37. [PMID: 21878509 DOI: 10.1242/jcs.087718] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human embryonic stem cells (hESCs) can serve as a universal cell source for emerging cell or tissue replacement strategies, but immune rejection of hESC derivatives remains an unsolved problem. Here, we sought to describe the mechanisms of rejection for naïve hESCs and upon HLA class I (HLA I) knockdown (hESC(KD)). hESCs were HLA I-positive but negative for HLA II and co-stimulatory molecules. Transplantation of naïve hESC into immunocompetent Balb/c mice induced substantial T helper cell 1 and 2 (Th1 and Th2) responses with rapid cell death, but hESCs survived in immunodeficient SCID-beige recipients. Histology revealed mainly macrophages and T cells, but only scattered natural killer (NK) cells. A surge of hESC-specific antibodies against hESC class I, but not class II antigens, was observed. Using HLA I RNA interference and intrabody technology, HLA I surface expression of hESC(KD) was 88%-99% reduced. T cell activation after hESC(KD) transplantation into Balb/c was significantly diminished, antibody production was substantially alleviated, the levels of graft-infiltrating immune cells were reduced and the survival of hESC(KD) was prolonged. Because of their very low expression of stimulatory NK ligands, NK-susceptibility of naïve hESCs and hESC(KD) was negligible. Thus, HLA I recognition by T cells seems to be the primary mechanism of hESC recognition, and T cells, macrophages and hESC-specific antibodies participate in hESC killing.
Collapse
Affiliation(s)
- Tobias Deuse
- Cardiothoracic Surgery Department, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Current approaches aiming to cure type 1 diabetes (T1D) have made a negligible number of patients insulin-independent. In this review, we revisit the role of stem cell (SC)-based applications in curing T1D. The optimal therapeutic approach for T1D should ideally preserve the remaining β-cells, restore β-cell function, and protect the replaced insulin-producing cells from autoimmunity. SCs possess immunological and regenerative properties that could be harnessed to improve the treatment of T1D; indeed, SCs may reestablish peripheral tolerance toward β-cells through reshaping of the immune response and inhibition of autoreactive T-cell function. Furthermore, SC-derived insulin-producing cells are capable of engrafting and reversing hyperglycemia in mice. Bone marrow mesenchymal SCs display a hypoimmunogenic phenotype as well as a broad range of immunomodulatory capabilities, they have been shown to cure newly diabetic nonobese diabetic (NOD) mice, and they are currently undergoing evaluation in two clinical trials. Cord blood SCs have been shown to facilitate the generation of regulatory T cells, thereby reverting hyperglycemia in NOD mice. T1D patients treated with cord blood SCs also did not show any adverse reaction in the absence of major effects on glycometabolic control. Although hematopoietic SCs rarely revert hyperglycemia in NOD mice, they exhibit profound immunomodulatory properties in humans; newly hyperglycemic T1D patients have been successfully reverted to normoglycemia with autologous nonmyeloablative hematopoietic SC transplantation. Finally, embryonic SCs also offer exciting prospects because they are able to generate glucose-responsive insulin-producing cells. Easy enthusiasm should be mitigated mainly because of the potential oncogenicity of SCs.
Collapse
Affiliation(s)
- Paolo Fiorina
- Transplantation Research Center, Division of Nephrology, Children's Hospital/Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
36
|
Abstract
Repair of damaged myocardium with pluripotent stem cell derived cardiomyocytes is becoming increasingly more feasible. Developments in stem cell research emphasize the need to address the foreseeable problem of immune rejection following transplantation. Pluripotent stem cell (PSC) derived cardiomyocytes have unique immune characteristics, some of which are not advantageous for transplantation. Here we review the possible mechanisms of PSC-derived cardiomyocytes rejection, summarize the current knowledge pertaining to immunogenicity of such cells and describe the existing controversies. Myocardial graft rejection can be reduced by modifying PSCs prior to their differentiation into cardiomyocytes. Overall, this approach facilitates the development of universal donor stem cells suitable for the regeneration of many different tissue types.
Collapse
Affiliation(s)
- Zaruhi Karabekian
- Pharmacology and Physiology Department, The George Washington University, 2300 Eye Street, Washington, DC 20037 USA
| | - Nikki Gillum Posnack
- Pharmacology and Physiology Department, The George Washington University, 2300 Eye Street, Washington, DC 20037 USA
| | - Narine Sarvazyan
- Pharmacology and Physiology Department, The George Washington University, 2300 Eye Street, Washington, DC 20037 USA
| |
Collapse
|
37
|
Immunity of embryonic stem cell-derived hematopoietic progenitor cells. Semin Immunopathol 2011; 33:613-7. [PMID: 21547436 DOI: 10.1007/s00281-011-0273-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 04/18/2011] [Indexed: 12/13/2022]
Abstract
A number of medical conditions including hematopoietic stem cell malignancies, immunodeficiencies, and autoimmune diseases can be treated using bone marrow cells. However, the major hindrance to the routine use of bone marrow cells is their unparalleled immunogenicity, requiring the use of harsh and toxic preconditioning regimens that can be fatal. Thus, identification of a safer alternative source of hematopoietic stem cells that can be broadly used in such therapies is highly desirable. Despite the current limited number of human ES cell lines, we believe that the newer technology of reprogramming adult somatic cells into pluripotent cells will eventually lead to greater availability of stem cell lines. Even more compelling is the possibility to directly reprogram a somatic cell into another adult cell type of a different tissue without the need for generating pluripotent cells. Here, I will discuss the immunological properties of mouse ES cell-derived hematopoietic progenitor cells. These progenitor cells poorly express MHC class I antigens but are responsive to stimulation by IFN-γ and other cytokines. However, despite upregulating MHC class I antigens after stimulation, they do not express class II molecules, a consequence of their lack of expression of the critical class II transcription factor CIITA. In this overview, I will discuss some of the published data on antigenicity and immunogenicity of ES cell-derived tissues. As more cells and tissues derived from ES cells become available for transplantation, we will gain more insight and into their abilities to interact with immune cells.
Collapse
|
38
|
Tang C, Drukker M. Potential barriers to therapeutics utilizing pluripotent cell derivatives: intrinsic immunogenicity of in vitro maintained and matured populations. Semin Immunopathol 2011; 33:563-72. [PMID: 21479877 DOI: 10.1007/s00281-011-0269-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/28/2011] [Indexed: 01/20/2023]
Abstract
The potential to develop into any tissue makes pluripotent stem cells (PSCs) one of the most promising sources for cellular therapeutics. However, numerous hurdles exist to their clinical applications, three of the most concerning include the inability to separate therapeutic population from heterogeneously differentiated cultures, the risk of teratoma formation from residual pluripotent cells, and immunologic rejection of engrafted cells. The recent development of induced PSCs has been proposed as a solution to the histocompatibility barrier. Theoretically, creation of patient-specific induced PSC lines would exhibit a complete histocompatibility antigen match. However, regardless of the PSC source, in vitro propagation and nonphysiologic differentiation may result in other, likely less powerful, mechanisms of immune rejection. In light of recent progress towards clinical application, this review focuses on two such potential immunologic mechanisms applicable to isogenic PSC derivates: namely, the immunogenicity of aberrant antigens resulting from long-term in vitro maintenance and alterations in immunologic properties due to rapid in vitro differentiation. These issues will be considered with attention to their relation to effector cells in the adult immune system. In addition, we highlight immunosuppressive approaches that could potentially address the immunogenicity of these proposed mechanisms.
Collapse
Affiliation(s)
- Chad Tang
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | |
Collapse
|
39
|
Kadereit S, Trounson A. In vitro immunogenicity of undifferentiated pluripotent stem cells (PSC) and derived lineages. Semin Immunopathol 2011; 33:551-62. [DOI: 10.1007/s00281-011-0265-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/16/2011] [Indexed: 01/19/2023]
|
40
|
Effects of histocompatibility and host immune responses on the tumorigenicity of pluripotent stem cells. Semin Immunopathol 2011; 33:573-91. [PMID: 21461989 PMCID: PMC3204002 DOI: 10.1007/s00281-011-0266-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
Pluripotent stem cells hold great promises for regenerative medicine. They might become useful as a universal source for a battery of new cell replacement therapies. Among the major concerns for the clinical application of stem cell-derived grafts are the risks of immune rejection and tumor formation. Pluripotency and tumorigenicity are closely linked features of pluripotent stem cells. However, the capacity to form teratomas or other tumors is not sufficiently described by inherited features of a stem cell line or a stem cell-derived graft. The tumorigenicity always depends on the inability of the recipient to reject the tumorigenic cells. This review summarizes recent data on the tumorigenicity of pluripotent stem cells in immunodeficient, syngeneic, allogeneic, and xenogeneic hosts. The effects of immunosuppressive treatment and cell differentiation are discussed. Different immune effector mechanisms appear to be involved in the rejection of undifferentiated and differentiated cell populations. Elements of the innate immune system, such as natural killer cells and the complement system, which are active also in syngeneic recipients, appear to preferentially reject undifferentiated cells. This effect could reduce the risk of tumor formation in immunocompetent recipients. Cell differentiation apparently increases susceptibility to rejection by the adaptive immune system in allogeneic hosts. The current data suggest that the immune system of the recipient has a major impact on the outcome of pluripotent stem cell transplantation, whether it is rejection, engraftment, or tumor development. This has to be considered when the results of experimental transplantation models are interpreted and even more when translation into clinics is planned.
Collapse
|
41
|
Imberti B, Casiraghi F, Cugini D, Azzollini N, Cassis P, Todeschini M, Solini S, Sebastiano V, Zuccotti M, Garagna S, Redi CA, Noris M, Morigi M, Remuzzi G. Embryonic stem cells, derived either after in vitro fertilization or nuclear transfer, prolong survival of semiallogeneic heart transplants. THE JOURNAL OF IMMUNOLOGY 2011; 186:4164-74. [PMID: 21389254 DOI: 10.4049/jimmunol.1000654] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tolerance induction toward allogeneic organ grafts represents one of the major aims of transplantation medicine. Stem cells are promising candidates for promoting donor-specific tolerance. In this study, we investigated the immunomodulatory properties of murine embryonic stem cells (ESCs), obtained either by in vitro fertilization (IVF-ESCs) or by nuclear transfer (NT-ESCs), in heart transplant mouse models. IVF-ESCs did not prolong the survival of fully allogeneic cardiac transplants but significantly prolonged the survival of semiallogeneic hearts from the same ESC donor strain for >100 d in 44% of the animals. However, 28% of transplanted animals infused with IVF-ESCs experienced development of a teratoma. NT-ESCs similarly prolonged semiallogeneic heart graft survival (>100 d in 40% of the animals) but were less teratogenic. By in vitro studies, IVF-ESC and NT-ESC immunoregulation was mediated both by cell contact-dependent mechanisms and by the release of soluble factors. By adding specific inhibitors, we identified PGE(2) as a soluble mediator of ESC immunoregulation. Expansion of regulatory T cells was found in lymphoid organs and in the grafts of IVF-ESC- and NT-ESC-tolerized mice. Our study demonstrates that both IVF-ESCs and NT-ESCs modulate recipient immune response toward tolerance to solid organ transplantation, and that NT-ESCs exhibit a lower tendency for teratoma formation. Because NT-ESCs are obtained by NT of a somatic cell from living individuals into an enucleated oocyte, they could represent a source of donor-derived stem cells to induce tolerance to solid organ allograft.
Collapse
Affiliation(s)
- Barbara Imberti
- Department of Molecular Medicine, Mario Negri Institute for Pharmacological Research, Bergamo 24125, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pearl JI, Lee AS, Leveson-Gower DB, Sun N, Ghosh Z, Lan F, Ransohoff J, Negrin RS, Davis MM, Wu JC. Short-term immunosuppression promotes engraftment of embryonic and induced pluripotent stem cells. Cell Stem Cell 2011; 8:309-17. [PMID: 21362570 PMCID: PMC3061351 DOI: 10.1016/j.stem.2011.01.012] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 11/10/2010] [Accepted: 01/11/2011] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) are an attractive source for tissue regeneration and repair therapies because they can be differentiated into virtually any cell type in the adult body. However, for this approach to succeed, the transplanted ESCs must survive long enough to generate a therapeutic benefit. A major obstacle facing the engraftment of ESCs is transplant rejection by the immune system. Here we show that blocking leukocyte costimulatory molecules permits ESC engraftment. We demonstrate the success of this immunosuppressive therapy for mouse ESCs, human ESCs, mouse induced pluripotent stem cells (iPSCs), human induced pluripotent stem cells, and more differentiated ESC/(iPSCs) derivatives. Additionally, we provide evidence describing the mechanism by which inhibition of costimulatory molecules suppresses T cell activation. This report describes a short-term immunosuppressive approach capable of inducing engraftment of transplanted ESCs and iPSCs, providing a significant improvement in our mechanistic understanding of the critical role costimulatory molecules play in leukocyte activation.
Collapse
Affiliation(s)
- Jeremy I. Pearl
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305
- Institute of Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Andrew S. Lee
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Dennis B. Leveson-Gower
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA 94305
| | - Ning Sun
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Zhumur Ghosh
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Feng Lan
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Julia Ransohoff
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305
| | - Robert S. Negrin
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA 94305
| | - Mark M. Davis
- Howard Hughes Medical Institute and the Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Joseph C. Wu
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305
- Institute of Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
43
|
Baertschiger RM, Gonelle-Gispert C, Morel P, Sgroi A, Serre-Beinier V, Stouffs M, Jaconi ME, Bühler LH. Transplantation of mouse embryonic stem cells induces hematopoietic and tissue chimerism in rats. Xenotransplantation 2011; 17:362-9. [PMID: 20973278 DOI: 10.1111/j.1399-3089.2010.00603.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Embryonic stem cells (ESC) can differentiate into all cell lineages, and ESC-like cells were shown to induce hematopoietic chimerism and tolerance in allogeneic models. The aim of our study was to test the capacity of mouse ESC (mESC) to engraft in rats in a xenotransplantation setting. Forty-six rats were transplanted intravenously with 1 million mESC, without immunosuppression (group 1, n = 23) or with cyclosporine (group 2, n = 23). Three months after mESC transplantation, skin grafts were performed from allogeneic, xenogeneic identical to mESC, or xenogeneic third party donors. At day 27 post-transplant, we detected circulating mouse cells in the blood of 4/23 and 5/23 animals of group 1 and group 2, respectively. Chimerism was confirmed by PCR. We also identified long-term surviving murine cells within livers of chimeric animals. Skin grafts showed no difference in survival between allogeneic and xenogeneic donors. Transplantation of xenogeneic mouse ESC induced short-term chimerism in the blood and persistent tissue chimerism in the liver of recipient rats, but did not induce tolerance to skin grafts. Improved immunosuppressive protocols should be tested to prolong chimerism and allow tolerance.
Collapse
|
44
|
English K, Wood KJ. Immunogenicity of embryonic stem cell-derived progenitors after transplantation. Curr Opin Organ Transplant 2011; 16:90-5. [PMID: 21150615 DOI: 10.1097/mot.0b013e3283424faa] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW This review focuses on the immunogenicity of embryonic stem cell (ESC)-derived progenitors and the impact of the immune response on applications of cell replacement therapy (CRT). Possible strategies to induce immunological tolerance to ESC-derived progenitor cells will also be discussed. RECENT FINDINGS Evidence for the differential epigenetic control of major histocompatibility (MHC) and antigen processing molecules in ESCs and differentiated ESCs has recently been described. The presence of T cells recognizing the pluripotency-associated transcription factor octamer-binding transcription factor 4 (OCT4) in healthy patient-derived peripheral blood mononuclear cells adds further complexity to the immune response against ESCs and ESC-derived progenitors. SUMMARY Although ESCs and ESC-derived progenitors appear to exert some level of immune privilege in specific circumstances, these allogeneic cells are indeed recognized by the immune system and can be subject to mechanisms of rejection. Herein, we discuss the importance of the recent reports describing an immunosuppressive capacity of ESCs, and the epigenetic control of MHC in ESCs and how these characteristics may be harnessed in the development of strategies to induce immunological tolerance.
Collapse
Affiliation(s)
- Karen English
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | |
Collapse
|
45
|
Popa N, Cedile O, Pollet-Villard X, Bagnis C, Durbec P, Boucraut J. RAE-1 is expressed in the adult subventricular zone and controls cell proliferation of neurospheres. Glia 2010; 59:35-44. [DOI: 10.1002/glia.21074] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
46
|
Ma M, Ding S, Lundqvist A, San H, Fang F, Konoplyannikov M, Berry C, Beltran LE, Chen G, Kovacic JC, Boehm M. Major histocompatibility complex-I expression on embryonic stem cell-derived vascular progenitor cells is critical for syngeneic transplant survival. Stem Cells 2010; 28:1465-75. [PMID: 20629173 PMCID: PMC2951734 DOI: 10.1002/stem.475] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Donor-recipient cell interactions are essential for functional engraftment after nonautologous cell transplantation. During this process, transplant engraftment is characterized and defined by interactions between transplanted cells with local and recruited inflammatory cells. The outcome of these interactions determines donor cell fate. Here, we provide evidence that lineage-committed embryonic stem cell (ESC)-derived vascular progenitor cells are the target of major histocompatibility complex (MHC) class I-dependent, natural killer (NK) cell-mediated elimination in vitro and in vivo. Treatment with interferon γ was found to significantly upregulate MHC class I expression on ESC-derived vascular progenitor cells, rendering them less susceptible to syngeneic NK cell-mediated killing in vitro and enhancing their survival and differentiation potential in vivo. Furthermore, in vivo ablation of NK cells led to enhanced progenitor cell survival after transplantation into a syngeneic murine ischemic hindlimb model, providing additional evidence that NK cells mediate ESC-derived progenitor cell transplant rejection. These data highlight the importance of recipient immune-donor cell interactions, and indicate a functional role for MHC-I antigen expression during successful ESC-derived syngeneic transplant engraftment.
Collapse
Affiliation(s)
- Mingchao Ma
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Shunli Ding
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Andreas Lundqvist
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Hong San
- Genome Technology Branch, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Fang Fang
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
- Department of Cardiology, Xiang Ya Hospital, Central South University, Changsha, Hunan, China
| | - Mikhail Konoplyannikov
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Colin Berry
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Leilani E. Beltran
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Guibin Chen
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Jason C. Kovacic
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Manfred Boehm
- Translational Medicine Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
47
|
Boyd AS, Wood KJ. Characteristics of the early immune response following transplantation of mouse ES cell derived insulin-producing cell clusters. PLoS One 2010; 5:e10965. [PMID: 20532031 PMCID: PMC2881030 DOI: 10.1371/journal.pone.0010965] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Accepted: 02/22/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The fully differentiated progeny of ES cells (ESC) may eventually be used for cell replacement therapy (CRT). However, elements of the innate immune system may contribute to damage or destruction of these tissues when transplanted. METHODOLOGY/PRINCIPAL FINDINGS Herein, we assessed the hitherto ill-defined contribution of the early innate immune response in CRT after transplantation of either ESC derived insulin producing cell clusters (IPCCs) or adult pancreatic islets. Ingress of neutrophil or macrophage cells was noted immediately at the site of IPCC transplantation, but this infiltration was attenuated by day three. Gene profiling identified specific inflammatory cytokines and chemokines that were either absent or sharply reduced by three days after IPCC transplantation. Thus, IPCC transplantation provoked less of an early immune response than pancreatic islet transplantation. CONCLUSIONS/SIGNIFICANCE Our study offers insights into the characteristics of the immune response of an ESC derived tissue in the incipient stages following transplantation and suggests potential strategies to inhibit cell damage to ensure their long-term perpetuation and functionality in CRT.
Collapse
Affiliation(s)
- Ashleigh S. Boyd
- Transplantation Research Immunology Group, Nuffield Department of Surgery, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- NIH Center of Biomedical Research Excellence (COBRE) in Tissue Repair and Stem Cell Biology, Roger Williams Hospital, Boston University School of Medicine, Providence, Rhode Island, United States of America
| | - Kathryn J. Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgery, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
48
|
Gong SP, Lee ST, Lee EJ, Kim DY, Lee G, Chi SG, Ryu BK, Lee CH, Yum KE, Lee HJ, Han JY, Tilly JL, Lim JM. Embryonic stem cell-like cells established by culture of adult ovarian cells in mice. Fertil Steril 2010; 93:2594-601, 2601.e1-9. [PMID: 20188358 PMCID: PMC5624318 DOI: 10.1016/j.fertnstert.2009.12.053] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/05/2009] [Accepted: 12/09/2009] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To suggest an alternative strategy for deriving histocompatible stems cells without undertaking genetic manipulation. DESIGN Prospective approach using an animal model. SETTING Stem cell and bioevaluation laboratory, Seoul National University. ANIMAL(S) F1 (C57BL6 X DBA2) and outbred (ICR) mice. INTERVENTION(S) Ovarian stroma cells of less than 40 mum in diameter were subcultured with fibroblast monolayer, and colony-forming cells were characterized. MAIN OUTCOME MEASURE(S) Stemness, genotype, and imprinted gene methylation. RESULT(S) Two-lines of colony-forming cells were established, which expressed markers specific for embryonic stem cells (ESC) and formed embryoid bodies and teratomas. Complete matching of microsatellite markers with the cell donor strain confirmed their establishment from ovarian tissue, and identification of both homozygotic and heterozygotic chromosomes raised the possibility of their derivation from parthenogenetic oocytes. However, the use of cells smaller than mature oocytes for primary culture, the difference in imprinted gene methylation compared with parthenogenetic ESCs, and failure to establish the ESC-like cells by primary follicle culture collectively suggested the irrelevancy to gametes. CONCLUSION(S) Coculture of adult ovarian cells with somatic fibroblasts can yield colony-forming cells having ESC-like activity, which may provide an alternative for establishing autologous stem cells from adults that can be obtained without genetic manipulation.
Collapse
Affiliation(s)
- Seung Pyo Gong
- Major in Biomodulation, WCU and Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Seung Tae Lee
- Department of Pharmacology and Regenerative Biology, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - Eun Ju Lee
- Clinical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Dae Yong Kim
- College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Gene Lee
- School of Dentistry, Seoul National University, Seoul, South Korea
| | - Sung Gil Chi
- School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Byung-Kyu Ryu
- School of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Chae Hyun Lee
- Major in Biomodulation, WCU and Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Kyung Eun Yum
- Major in Biomodulation, WCU and Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Ho-Joon Lee
- Vincent Center for Reproductive Biology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Jae Yong Han
- Major in Biomodulation, WCU and Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jonathan L. Tilly
- Vincent Center for Reproductive Biology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Jeong Mook Lim
- Major in Biomodulation, WCU and Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| |
Collapse
|
49
|
Suárez-Álvarez B, Rodriguez RM, Calvanese V, Blanco-Gelaz MA, Suhr ST, Ortega F, Otero J, Cibelli JB, Moore H, Fraga MF, López-Larrea C. Epigenetic mechanisms regulate MHC and antigen processing molecules in human embryonic and induced pluripotent stem cells. PLoS One 2010; 5:e10192. [PMID: 20419139 PMCID: PMC2855718 DOI: 10.1371/journal.pone.0010192] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 03/22/2010] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Human embryonic stem cells (hESCs) are an attractive resource for new therapeutic approaches that involve tissue regeneration. hESCs have exhibited low immunogenicity due to low levels of Mayor Histocompatibility Complex (MHC) class-I and absence of MHC class-II expression. Nevertheless, the mechanisms regulating MHC expression in hESCs had not been explored. METHODOLOGY/PRINCIPAL FINDINGS We analyzed the expression levels of classical and non-classical MHC class-I, MHC class-II molecules, antigen-processing machinery (APM) components and NKG2D ligands (NKG2D-L) in hESCs, induced pluripotent stem cells (iPSCs) and NTera2 (NT2) teratocarcinoma cell line. Epigenetic mechanisms involved in the regulation of these genes were investigated by bisulfite sequencing and chromatin immunoprecipitation (ChIP) assays. We showed that low levels of MHC class-I molecules were associated with absent or reduced expression of the transporter associated with antigen processing 1 (TAP-1) and tapasin (TPN) components in hESCs and iPSCs, which are involved in the transport and load of peptides. Furthermore, lack of beta2-microglobulin (beta2m) light chain in these cells limited the expression of MHC class I trimeric molecule on the cell surface. NKG2D ligands (MICA, MICB) were observed in all pluripotent stem cells lines. Epigenetic analysis showed that H3K9me3 repressed the TPN gene in undifferentiated cells whilst HLA-B and beta2m acquired the H3K4me3 modification during the differentiation to embryoid bodies (EBs). Absence of HLA-DR and HLA-G expression was regulated by DNA methylation. CONCLUSIONS/SIGNIFICANCE Our data provide fundamental evidence for the epigenetic control of MHC in hESCs and iPSCs. Reduced MHC class I and class II expression in hESCs and iPSCs can limit their recognition by the immune response against these cells. The knowledge of these mechanisms will further allow the development of strategies to induce tolerance and improve stem cell allograft acceptance.
Collapse
Affiliation(s)
- Beatriz Suárez-Álvarez
- Histocompatibility and Transplantation Unit, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ramón M. Rodriguez
- Department of Animal Science and Physiology, Michigan State University, East Lansing, Michigan, United States of America
- Unidad de Coordinación de Trasplantes y Terapia Celular, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Vincenzo Calvanese
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias, Oviedo, Spain
- Department of Immunology and Oncology, National Center for Biotechnology, CNB-CSIC, Cantoblanco, Madrid, Spain
| | - Miguel A. Blanco-Gelaz
- Histocompatibility and Transplantation Unit, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Steve T. Suhr
- Department of Animal Science and Physiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Francisco Ortega
- Department of Nephrology, Hospital Universitario Central de Asturias, Oviedo, Spain
- Fundación Renal “Íñigo Álvarez de Toledo”, Madrid, Spain
| | - Jesus Otero
- Unidad de Coordinación de Trasplantes y Terapia Celular, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Jose B. Cibelli
- Department of Animal Science and Physiology, Michigan State University, East Lansing, Michigan, United States of America
- Programa Andaluz de Terapia Celular y Medicina Regenerativa, Andalucía, Spain
| | - Harry Moore
- Centre for Stem Cell Biology, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Mario F. Fraga
- Cancer Epigenetics Laboratory, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Hospital Universitario Central de Asturias, Oviedo, Spain
- Department of Immunology and Oncology, National Center for Biotechnology, CNB-CSIC, Cantoblanco, Madrid, Spain
| | - Carlos López-Larrea
- Histocompatibility and Transplantation Unit, Hospital Universitario Central de Asturias, Oviedo, Spain
- Fundación Renal “Íñigo Álvarez de Toledo”, Madrid, Spain
| |
Collapse
|
50
|
Dressel R, Nolte J, Elsner L, Novota P, Guan K, Streckfuss-Bömeke K, Hasenfuss G, Jaenisch R, Engel W. Pluripotent stem cells are highly susceptible targets for syngeneic, allogeneic, and xenogeneic natural killer cells. FASEB J 2010; 24:2164-77. [PMID: 20145206 DOI: 10.1096/fj.09-134957] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multipotent adult germ-line stem cells (maGSCs) and induced pluripotent stem cells (iPSCs) could be used to generate autologous cells for therapeutic purposes, which are expected to be tolerated by the recipient. However, effects of the immune system on these cells have not been investigated. We have compared the susceptibility of maGSC lines to IL-2-activated natural killer (NK) cells with embryonic stem cell (ESC) lines, iPSCs, and F9 teratocarcinoma cells. The killing of pluripotent cell lines by syngeneic, allogeneic, and xenogeneic killer cells ranged between 48 and 265% in chromium release assays when compared to YAC-1 cells, which served as highly susceptible reference cells. With the exception of 2 maGSC lines, they expressed ligands for the activating NK receptor NKG2D that belong to the RAE-1 family, and killing could be inhibited by soluble NKG2D, demonstrating a functional role of these molecules. Furthermore, ligands of the activating receptor DNAM-1 were frequently expressed. The susceptibility to NK cells might constitute a common feature of pluripotent cells. It could result in rejection after transplantation, as suggested by a reduced teratoma growth after NK cell activation in vivo, but it might also offer a strategy to deplete contaminating pluripotent cells before grafting of differentiated cells.
Collapse
Affiliation(s)
- Ralf Dressel
- Department of Cellular and Molecular Immunology, University of Göttingen, Humboldtallee 34, 37073 Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|