1
|
Thoms JAI, Yan F, Hampton HR, Davidson S, Joshi S, Saw J, Sarowar CH, Lim XY, Nunez AC, Kakadia PM, Bhuyan GS, Zou X, Nguyen M, Ghodousi ES, Koch FC, Vafaee F, Thompson IR, Karimi MM, Pickford R, Raftery MJ, Hough S, Buckland G, Bailey M, Ghodke Y, Absar N, Vaughan L, Pasalic L, Fong CY, Kenealy M, Hiwase DK, Stoddart RI, Mohammed S, Lee L, Passam FH, Larsen SR, Spring KJ, Skarratt KK, Rebeiro P, Presgrave P, Stevenson WS, Ling S, Tiley C, Fuller SJ, Roncolato F, Enjeti AK, Hoenemann D, Lemech C, Jolly CJ, Bohlander SK, Curtis DJ, Wong JWH, Unnikrishnan A, Hertzberg M, Olivier J, Polizzotto MN, Pimanda JE. Clinical response to azacitidine in MDS is associated with distinct DNA methylation changes in HSPCs. Nat Commun 2025; 16:4451. [PMID: 40360497 PMCID: PMC12075701 DOI: 10.1038/s41467-025-59796-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Hypomethylating agents are frontline therapies for myelodysplastic neoplasms (MDS), yet clinical responses remain unpredictable. We conducted a phase 2 trial comparing injectable and oral azacitidine (AZA) administered over one or three weeks per four-week cycle, with the primary objective of investigating whether response is linked to in vivo drug incorporation or DNA hypomethylation. Our findings show that injection results in higher drug incorporation, but lower DNA demethylation per cycle, while global DNA methylation levels in mononuclear cells are comparable between responders and non-responders. However, hematopoietic stem and progenitor cells (HSPCs) from responders exhibit distinct baseline and early treatment-induced CpG methylation changes at regulatory regions linked to tissue patterning, cell migration, and myeloid differentiation. By cycle six-when clinical responses typically emerge-further differential hypomethylation in responder HSPCs suggests marrow adaptation as a driver of improved hematopoiesis. These findings indicate that intrinsic baseline and early drug-induced epigenetic differences in HSPCs may underlie the variable clinical response to AZA in MDS.
Collapse
Affiliation(s)
- Julie A I Thoms
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia.
| | - Feng Yan
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Henry R Hampton
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Sarah Davidson
- ANU Clinical Hub for Interventional Research (CHOIR), John Curtin School of Medical Research, Canberra, ACT, Australia
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Swapna Joshi
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Jesslyn Saw
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Chowdhury H Sarowar
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Xin Ying Lim
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Andrea C Nunez
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Purvi M Kakadia
- Leukaemia & Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Golam Sarower Bhuyan
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Xiaoheng Zou
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mary Nguyen
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Elaheh S Ghodousi
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Forrest C Koch
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Fatemeh Vafaee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- UNSW Data Science Hub, University of New South Wales, Sydney, NSW, Australia
| | - I Richard Thompson
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Mohammad M Karimi
- Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King's College London, London, UK
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Mark J Raftery
- Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, NSW, Australia
| | - Sally Hough
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Griselda Buckland
- ANU Clinical Hub for Interventional Research (CHOIR), John Curtin School of Medical Research, Canberra, ACT, Australia
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Michelle Bailey
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Yuvaraj Ghodke
- ANU Clinical Hub for Interventional Research (CHOIR), John Curtin School of Medical Research, Canberra, ACT, Australia
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Noorul Absar
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Lachlin Vaughan
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Westmead Hospital, Sydney, NSW, Australia
- ICPMR, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
| | - Leonardo Pasalic
- Westmead Hospital, Sydney, NSW, Australia
- ICPMR, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
| | - Chun Y Fong
- Department of Haematology, Austin Health, Melbourne, VIC, Australia
| | | | - Devendra K Hiwase
- Department of Haematology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | - Soma Mohammed
- ICPMR, Department of Haematology, Westmead Hospital, Sydney, NSW, Australia
| | - Linda Lee
- Royal North Shore Hospital, Sydney, NSW, Australia
| | - Freda H Passam
- Haematology Research Group, Heart Research Institute, Sydney, NSW, Australia
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Stephen R Larsen
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Kevin J Spring
- Medical Oncology Group, Liverpool Clinical School, School of Medicine, Western Sydney University and Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- South-West Sydney Clinical Campuses, UNSW Medicine & Health, Sydney, NSW, Australia
| | - Kristen K Skarratt
- Sydney Medical School, Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Nepean Hospital, Kingswood, NSW, Australia
| | | | | | | | | | - Campbell Tiley
- Central Coast Health, Gosford Hospital, Gosford, NSW, Australia
| | - Stephen J Fuller
- Sydney Medical School, Nepean Clinical School, Faculty of Medicine and Health, University of Sydney, Nepean Hospital, Kingswood, NSW, Australia
| | | | - Anoop K Enjeti
- Department of Haematology, Calvary Mater Hospital, Waratah, NSW, Australia
- University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Program, Hunter Cancer Research Institute, New Lambton Heights, NSW, Australia
| | - Dirk Hoenemann
- Otway Pharmaceutical Development and Consulting Pty Ltd, Forrest, VIC, Australia
| | - Charlotte Lemech
- Scientia Clinical Research, Medical Oncology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Christopher J Jolly
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Stefan K Bohlander
- Leukaemia & Blood Cancer Research Unit, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - David J Curtis
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Jason W H Wong
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong, SAR, China
| | - Ashwin Unnikrishnan
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Mark Hertzberg
- Department of Clinical Haematology, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Jake Olivier
- School of Mathematics and Statistics, University of New South Wales, Sydney, NSW, Australia
| | - Mark N Polizzotto
- ANU Clinical Hub for Interventional Research (CHOIR), John Curtin School of Medical Research, Canberra, ACT, Australia.
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia.
| | - John E Pimanda
- School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia.
- School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia.
- Department of Clinical Haematology, Prince of Wales Hospital, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Rahimian E, Koochak M, Traikov S, Schroeder M, Brilloff S, Schäfer S, Kufrin V, Küchler S, Krüger A, Mirtschink P, Baretton G, Schröck E, Schewe DM, Ball CR, Bornhäuser M, Glimm H, Bill M, Wurm AA. A quiescence-like/TGF-β1-specific CRISPRi screen reveals drug uptake transporters as secondary targets of kinase inhibitors in AML. Drug Resist Updat 2025; 81:101242. [PMID: 40184725 DOI: 10.1016/j.drup.2025.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/26/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025]
Abstract
Relapse in acute myeloid leukemia (AML) is driven by resistant subclones that survive chemotherapy. It is assumed that these resilient leukemic cells can modify their proliferative behavior by entering a quiescent-like state, similar to healthy hematopoietic stem cells (HSCs). These dormant cells can evade the effects of cytostatic drugs that primarily target actively dividing cells. Although quiescence has been extensively studied in healthy hematopoiesis and various solid cancers, its role in AML has remained unexplored. In this study, we applied an HSC-derived quiescence-associated gene signature to an AML patient cohort and found it to be strongly correlated with poor prognosis and active TGF-β signaling. In vitro treatment with TGF-β1 induces a quiescence-like phenotype, resulting in a G0 shift and reduced sensitivity to cytarabine. To find potential therapeutic targets that prevent AML-associated quiescence and improve response to cytarabine, we conducted a comprehensive CRISPR interference (CRISPRi) screen combined with TGF-β1 stimulation. This approach identified TGFBR1 inhibitors, like vactosertib, as effective agents for preventing the G0 shift in AML cell models. However, pretreatment with vactosertib unexpectedly induced complete resistance to cytarabine. To elucidate the underlying mechanism, we performed a multi-faceted approach combining a second CRISPRi screen, liquid chromatography-tandem mass spectrometry (LC-MS/MS), and in silico analysis. Our findings revealed that TGFBR1 inhibitors unintentionally target the nucleoside transporter SLC29A1 (ENT1), leading to reduced intracellular cytarabine levels. Importantly, we found that this drug interaction is not unique to TGFBR1 inhibitors, but extends to other clinically significant kinase inhibitors, such as the FLT3 inhibitor midostaurin. These findings may have important implications for optimizing combination therapies in AML treatment.
Collapse
Affiliation(s)
- Elahe Rahimian
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | - Masoud Koochak
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | - Sofia Traikov
- Institute for Clinical Chemistry and Laboratory Medicine, TU Dresden, Dresden, Germany
| | - Michael Schroeder
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Silke Brilloff
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | - Silvia Schäfer
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | - Vida Kufrin
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | - Sandra Küchler
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany
| | - Alexander Krüger
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT), NCT/UCC Dresden, a partnership between German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany
| | - Peter Mirtschink
- Institute for Clinical Chemistry and Laboratory Medicine, TU Dresden, Dresden, Germany
| | - Gustavo Baretton
- Core Unit for Molecular Tumor Diagnostics (CMTD), National Center for Tumor Diseases Dresden (NCT), NCT/UCC Dresden, a partnership between German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; Institute for Pathology, Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Evelin Schröck
- Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany; ERN GENTURIS, Hereditary Cancer Syndrome Center Dresden, Germany; National Center for Tumor Diseases (NCT), NCT/UCC Dresden, a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Germany; German Cancer Consortium (DKTK), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Denis M Schewe
- Department of Pediatric Hematology and Oncology, University Hospital Dresden, Dresden, Germany
| | - Claudia R Ball
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, Germany; TUD Dresden University of Technology, Faculty of Biology, Dresden, Germany
| | - Martin Bornhäuser
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Department of Internal Medicine I, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Hanno Glimm
- Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, Germany; Translational Functional Cancer Genomics, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marius Bill
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany; German Cancer Consortium (DKTK), partner site Dresden, Germany; Department of Internal Medicine I, University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Alexander A Wurm
- Mildred Scheel Early Career Center, National Center for Tumor Diseases (NCT/UCC) Dresden, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; Department of Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), a partnership between DKFZ, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, and Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Germany; Department of Pediatric Hematology and Oncology, University Hospital Dresden, Dresden, Germany; Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany; German Cancer Consortium (DKTK), partner site Dresden, Germany.
| |
Collapse
|
3
|
Yang Y, Cathelin S, Liu ACH, Subedi A, Maher A, Hosseini M, Manikoth Ayyathan D, Vanner R, Chan SM. TET2 deficiency increases the competitive advantage of hematopoietic stem and progenitor cells through upregulation of thrombopoietin receptor signaling. Nat Commun 2025; 16:2384. [PMID: 40064887 PMCID: PMC11894142 DOI: 10.1038/s41467-025-57614-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Ten-Eleven Translocation-2 (TET2) mutations drive the expansion of mutant hematopoietic stem cells (HSCs) in clonal hematopoiesis (CH). However, the precise mechanisms by which TET2 mutations confer a competitive advantage to HSCs remain unclear. Here, through an epigenetic drug screen, we discover that inhibition of disruptor of telomeric silencing 1-like (DOT1L), a H3K79 methyltransferase, selectively reduces the fitness of Tet2 knockout (Tet2KO) hematopoietic stem and progenitor cells (HSPCs). Mechanistically, we find that TET2 deficiency increases H3K79 dimethylation and expression of Mpl, which encodes the thrombopoietin receptor (TPO-R). Correspondingly, TET2 deficiency is associated with a higher proportion of primitive Mpl-expressing (Mpl+) cells in the HSC compartment. Importantly, inhibition of Mpl expression or the signaling downstream of TPO-R is sufficient to reduce the competitive advantage of murine and human TET2-deficient HSPCs. Our findings demonstrate a critical role for aberrant TPO-R signaling in TET2 mutation-driven CH and uncover potential therapeutic strategies against this condition.
Collapse
Affiliation(s)
- Yitong Yang
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, Canada
| | - Severine Cathelin
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, Canada
| | - Alex C H Liu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, Canada
| | - Amit Subedi
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, Canada
| | - Abdula Maher
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, M5S 1A8, Canada
| | - Mohsen Hosseini
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, Canada
| | | | - Robert Vanner
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, Canada
| | - Steven M Chan
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, M5G 1L7, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, Canada.
| |
Collapse
|
4
|
Gurashi K, Wang YH, Amaral FMR, Spence K, Cant R, Yao CY, Lin CC, Wirth C, Wedge DC, Montalban-Bravo G, Colla S, Tien HF, Somervaille TCP, Batta K, Wiseman DH. An integrative multiparametric approach stratifies putative distinct phenotypes of blast phase chronic myelomonocytic leukemia. Cell Rep Med 2025; 6:101933. [PMID: 39892394 PMCID: PMC11866517 DOI: 10.1016/j.xcrm.2025.101933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/19/2024] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
Approximately 30% of patients with chronic myelomonocytic leukemia (CMML) undergo transformation to a chemo-refractory blastic phase (BP-CMML). Seeking novel therapeutic approaches, we profiled blast transcriptomes from 42 BP-CMMLs, observing extensive transcriptional heterogeneity and poor alignment to current acute myeloid leukemia (AML) classifications. BP-CMMLs display distinctive transcriptomic profiles, including enrichment for quiescence and variability in drug response signatures. Integrating clinical, immunophenotype, and transcriptome parameters, Random Forest unsupervised clustering distinguishes immature and mature subtypes characterized by differential expression of transcriptional modules, oncogenes, apoptotic regulators, and patterns of surface marker expression. Subtypes differ in predicted response to AML drugs, validated ex vivo in primary samples. Iteratively refined stratification resolves a classification structure comprising five subtypes along a maturation spectrum, predictive of response to novel agents including consistent patterns for receptor tyrosine kinase (RTK), cyclin-dependent kinase (CDK), mechanistic target of rapamycin (MTOR), and mitogen-activated protein kinase (MAPK) inhibitors. Finally, we generate a prototype decision tree to stratify BP-CMML with high specificity and sensitivity, requiring validation but with potential clinical applicability to guide personalized drug selection for improved outcomes.
Collapse
Affiliation(s)
- Kristian Gurashi
- Epigenetic of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Yu-Hung Wang
- Epigenetic of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Fabio M R Amaral
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK
| | - Katherine Spence
- Epigenetic of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Rachel Cant
- Epigenetic of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Chi-Yuan Yao
- The National University Hospital of Taiwan, Taipei, Taiwan
| | - Chien-Chin Lin
- The National University Hospital of Taiwan, Taipei, Taiwan
| | - Christopher Wirth
- Wedge Group, Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - David C Wedge
- Wedge Group, Manchester Cancer Research Centre, University of Manchester, Manchester, UK; NIHR Manchester Biomedical Research Centre, Manchester, UK
| | | | - Simona Colla
- Departments of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Hwei-Fang Tien
- The National University Hospital of Taiwan, Taipei, Taiwan
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester, UK; The Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Kiran Batta
- Epigenetic of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, UK.
| | - Daniel H Wiseman
- Epigenetic of Haematopoiesis Group, Division of Cancer Sciences, The University of Manchester, Manchester, UK; The Christie Hospital NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
5
|
Khamidullina AI, Yastrebova MA, Bruter AV, Nuzhina JV, Vorobyeva NE, Khrustaleva AM, Varlamova EA, Tyakht AV, Abramenko IE, Ivanova ES, Zamkova MA, Li J, Lim CU, Chen M, Broude EV, Roninson IB, Shtil AA, Tatarskiy VV. CDK8/19 inhibition attenuates G1 arrest induced by BCR-ABL antagonists and accelerates death of chronic myelogenous leukemia cells. Cell Death Discov 2025; 11:62. [PMID: 39955308 PMCID: PMC11830074 DOI: 10.1038/s41420-025-02339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
Imatinib mesylate (IM) and other BCR-ABL tyrosine kinase inhibitors (BCR-ABLi) are the mainstay of chronic myelogenous leukemia (CML) treatment. However, activation of circumventing signaling pathways and quiescence may limit BCR-ABLi efficacy. CDK8/19 Mediator kinases have been implicated in the emergence of non-genetic drug resistance. Dissecting the effects of pharmacological CDK8/19 inhibition on CML survival in response to BCR-ABLi, we found that a selective, non-toxic CDK8/19 inhibitor (CDK8/19i) Senexin B (SenB) and other CDK8/19i sensitized K562 cells to different BCR-ABLi via attenuation of cell cycle arrest. In particular, SenB prevented IM-induced upregulation of genes that negatively regulate cell cycle progression. SenB also antagonized IM-activated p27Kip1 elevation thereby diminishing the population of G1-arrested cells. After transient G1 arrest, cells treated with IM + SenB re-entered the S phase, where they were halted and underwent replicative stress. Consequently, the combination of IM and SenB intensified apoptotic cell death, measured by activation of caspase 9 and 3, subsequent cleavage of poly(ADPriboso)polymerase 1, positive Annexin V staining and increase of subG1 fraction. In contrast, IM-treated BCR-ABL-positive KU812 CML cells, which did not induce p27Kip1, readily died regardless of SenB treatment. Thus, CDK8/19i prevent the quiescence-mediated escape from BCR-ABLi-induced apoptosis, suggesting a strategy for avoiding the CML relapse.
Collapse
Affiliation(s)
- Alvina I Khamidullina
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia.
| | - Margarita A Yastrebova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Alexandra V Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Julia V Nuzhina
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Nadezhda E Vorobyeva
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Anastasia M Khrustaleva
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Ekaterina A Varlamova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Alexander V Tyakht
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Iaroslav E Abramenko
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
| | - Ekaterina S Ivanova
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye shosse, 115522, Moscow, Russia
| | - Maria A Zamkova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye shosse, 115522, Moscow, Russia
| | - Jing Li
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - Chang-Uk Lim
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - Eugenia V Broude
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| | - Alexander A Shtil
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye shosse, 115522, Moscow, Russia
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334, Moscow, Russia.
| |
Collapse
|
6
|
Liu F, Sun X, Deng S, Wu Y, Liu X, Wu C, Huang K, Li Y, Dong Z, Xiao W, Li M, Chen Z, Ju Z, Xiao J, Du J, Zeng H. Cxcl10 and Cxcr3 regulate self-renewal and differentiation of hematopoietic stem cells. Stem Cell Res Ther 2024; 15:248. [PMID: 39113086 PMCID: PMC11304843 DOI: 10.1186/s13287-024-03861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The function of hematopoietic stem cells (HSC) is regulated by HSC internal signaling pathways and their microenvironment. Chemokines and chemokine ligands play important roles in the regulation of HSC function. Yet, their functions in HSC are not fully understood. METHODS We established Cxcr3 and Cxcl10 knockout mouse models (Cxcr3-/- and Cxcl10-/-) to analyze the roles of Cxcr3 or Cxcl10 in regulating HSC function. The cell cycle distribution of LT-HSC was assessed via flow cytometry. Cxcr3-/- and Cxcl10-/- stem/progenitor cells showed reduced self-renewal capacity as measured in serial transplantation assays. To study the effects of Cxcr3 or Cxcl10 deficient bone marrow microenvironment, we transplanted CD45.1 donor cells into Cxcr3-/-or Cxcl10-/- recipient mice (CD45.2) and examined donor-contributed hematopoiesis. RESULTS Deficiency of Cxcl10 and its receptor Cxcr3 led to decreased BM cellularity in mice, with a significantly increased proportion of LT-HSC. Cxcl10-/- stem/progenitor cells showed reduced self-renewal capacity in the secondary transplantation assay. Notably, Cxcl10-/- donor-derived cells preferentially differentiated into B lymphocytes, with skewed myeloid differentiation ability. Meanwhile, Cxcr3-deficient HSCs demonstrated a reconstitution disadvantage in secondary transplantation, but the lineage bias was not significant. Interestingly, the absence of Cxcl10 or Cxcr3 in bone marrow microenvironment did not affect HSC function. CONCLUSIONS The Cxcl10 and Cxcr3 regulate the function of HSC, including self-renewal and differentiation, adding to the understanding of the roles of chemokines in the regulation of HSC function.
Collapse
Affiliation(s)
- Fangshu Liu
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China
| | - Xiaofan Sun
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China
| | - Suqi Deng
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China
| | - Yingying Wu
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China
| | - Xingcheng Liu
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China
| | - Caiping Wu
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China
| | - Kexiu Huang
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China
| | - Yue Li
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China
| | - Zexuan Dong
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China
| | - Weihao Xiao
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China
| | - Manchun Li
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jia Xiao
- Clinical Medicine Research Institute, the First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Juan Du
- Department of Hematology, The First Affiliated Hospital of Jinan University, 613W Huangpu Rd, Guangzhou, Guangdong, 510632, China.
| | - Hui Zeng
- Department of Hematology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan 2nd Rd, Guangzhou, Guangdong, 510000, China.
| |
Collapse
|
7
|
Winter PS, Ramseier ML, Navia AW, Saksena S, Strouf H, Senhaji N, DenAdel A, Mirza M, An HH, Bilal L, Dennis P, Leahy CS, Shigemori K, Galves-Reyes J, Zhang Y, Powers F, Mulugeta N, Gupta AJ, Calistri N, Van Scoyk A, Jones K, Liu H, Stevenson KE, Ren S, Luskin MR, Couturier CP, Amini AP, Raghavan S, Kimmerling RJ, Stevens MM, Crawford L, Weinstock DM, Manalis SR, Shalek AK, Murakami MA. Mutation and cell state compatibility is required and targetable in Ph+ acute lymphoblastic leukemia minimal residual disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597767. [PMID: 38915726 PMCID: PMC11195125 DOI: 10.1101/2024.06.06.597767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Efforts to cure BCR::ABL1 B cell acute lymphoblastic leukemia (Ph+ ALL) solely through inhibition of ABL1 kinase activity have thus far been insufficient despite the availability of tyrosine kinase inhibitors (TKIs) with broad activity against resistance mutants. The mechanisms that drive persistence within minimal residual disease (MRD) remain poorly understood and therefore untargeted. Utilizing 13 patient-derived xenograft (PDX) models and clinical trial specimens of Ph+ ALL, we examined how genetic and transcriptional features co-evolve to drive progression during prolonged TKI response. Our work reveals a landscape of cooperative mutational and transcriptional escape mechanisms that differ from those causing resistance to first generation TKIs. By analyzing MRD during remission, we show that the same resistance mutation can either increase or decrease cellular fitness depending on transcriptional state. We further demonstrate that directly targeting transcriptional state-associated vulnerabilities at MRD can overcome BCR::ABL1 independence, suggesting a new paradigm for rationally eradicating MRD prior to relapse. Finally, we illustrate how cell mass measurements of leukemia cells can be used to rapidly monitor dominant transcriptional features of Ph+ ALL to help rationally guide therapeutic selection from low-input samples.
Collapse
Affiliation(s)
- Peter S. Winter
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michelle L. Ramseier
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Andrew W. Navia
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Sachit Saksena
- Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
- Computational and Systems Biology Program, MIT, Cambridge, MA, USA
| | - Haley Strouf
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Nezha Senhaji
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alan DenAdel
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Biostatistics, Brown University, Providence, RI, USA
| | - Mahnoor Mirza
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Hyun Hwan An
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Laura Bilal
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Peter Dennis
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Catharine S. Leahy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kay Shigemori
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jennyfer Galves-Reyes
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Ye Zhang
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Foster Powers
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nolawit Mulugeta
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Nicholas Calistri
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Alex Van Scoyk
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kristen Jones
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Huiyun Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Siyang Ren
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA USA
| | - Marlise R. Luskin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Charles P. Couturier
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | | | - Srivatsan Raghavan
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Mark M. Stevens
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Lorin Crawford
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
- Department of Biostatistics, Brown University, Providence, RI, USA
- Microsoft Research, Cambridge, MA, USA
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Current Address: Merck and Co., Rahway, NJ, USA
| | - Scott R. Manalis
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Alex K. Shalek
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Institute for Medical Engineering & Science, MIT, Cambridge, MA, USA
- Department of Chemistry, MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Mark A. Murakami
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Scott MT, Liu W, Mitchell R, Clarke CJ, Kinstrie R, Warren F, Almasoudi H, Stevens T, Dunn K, Pritchard J, Drotar ME, Michie AM, Jørgensen HG, Higgins B, Copland M, Vetrie D. Activating p53 abolishes self-renewal of quiescent leukaemic stem cells in residual CML disease. Nat Commun 2024; 15:651. [PMID: 38246924 PMCID: PMC10800356 DOI: 10.1038/s41467-024-44771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Whilst it is recognised that targeting self-renewal is an effective way to functionally impair the quiescent leukaemic stem cells (LSC) that persist as residual disease in chronic myeloid leukaemia (CML), developing therapeutic strategies to achieve this have proved challenging. We demonstrate that the regulatory programmes of quiescent LSC in chronic phase CML are similar to that of embryonic stem cells, pointing to a role for wild type p53 in LSC self-renewal. In support of this, increasing p53 activity in primitive CML cells using an MDM2 inhibitor in combination with a tyrosine kinase inhibitor resulted in reduced CFC outputs and engraftment potential, followed by loss of multilineage priming potential and LSC exhaustion when combination treatment was discontinued. Our work provides evidence that targeting LSC self-renewal is exploitable in the clinic to irreversibly impair quiescent LSC function in CML residual disease - with the potential to enable more CML patients to discontinue therapy and remain in therapy-free remission.
Collapse
Affiliation(s)
- Mary T Scott
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Wei Liu
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Rebecca Mitchell
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Cassie J Clarke
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Ross Kinstrie
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Felix Warren
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Hassan Almasoudi
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Thomas Stevens
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - John Pritchard
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mark E Drotar
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Alison M Michie
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Heather G Jørgensen
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - David Vetrie
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
9
|
Wang W, Hwang S, Park D, Park YD. The Features of Shared Genes among Transcriptomes Probed in Atopic Dermatitis, Psoriasis, and Inflammatory Acne: S100A9 Selection as the Target Gene. Protein Pept Lett 2024; 31:356-374. [PMID: 38766834 DOI: 10.2174/0109298665290166240426072642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Atopic dermatitis (AD), psoriasis (PS), and inflammatory acne (IA) are well-known as inflammatory skin diseases. Studies of the transcriptome with altered expression levels have reported a large number of dysregulated genes and gene clusters, particularly those involved in inflammatory skin diseases. OBJECTIVE To identify genes commonly shared in AD, PS, and IA that are potential therapeutic targets, we have identified consistently dysregulated genes and disease modules that overlap with AD, PS, and IA. METHODS Microarray data from AD, PS, and IA patients were downloaded from Gene Expression Omnibus (GEO), and identification of differentially expressed genes from microarrays of AD, PS, and IA was conducted. Subsequently, gene ontology and gene set enrichment analysis, detection of disease modules with known disease-associated genes, construction of the protein-protein interaction (PPI) network, and PPI sub-mapping analysis of shared genes were performed. Finally, the computational docking simulations between the selected target gene and inhibitors were conducted. RESULTS We identified 50 shared genes (36 up-regulated and 14 down-regulated) and disease modules for each disease. Among the shared genes, 20 common genes in PPI network were detected such as LCK, DLGAP5, SELL, CEP55, CDC20, RRM2, S100A7, S100A9, MCM10, AURKA, CCNB1, CHEK1, BTC, IL1F7, AGTR1, HABP4, SERPINB13, RPS6KA4, GZMB, and TRIP13. Finally, S100A9 was selected as the target gene for therapeutics. Docking simulations between S100A9 and known inhibitors indicated several key binding residues, and based on this result, we suggested several cannabinoids such as WIN-55212-2, JZL184, GP1a, Nabilone, Ajulemic acid, and JWH-122 could be potential candidates for a clinical study for AD, PS, and IA via inhibition of S100A9-related pathway. CONCLUSION Overall, our approach may become an effective strategy for discovering new disease candidate genes for inflammatory skin diseases with a reevaluation of clinical data.
Collapse
Affiliation(s)
- Wei Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, P.R. China
| | - Sungbo Hwang
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Korea
| | - Yong-Doo Park
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, P.R. China
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, 314006, P.R. China
- Skin Diseases Research Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, P.R. China
| |
Collapse
|
10
|
Broxmeyer HE, Luchsinger LL, Weinberg RS, Jimenez A, Frenet EM, Van't Hof W, Capitano ML, Hillyer CD, Kaplan MH, Cooper S, Ropa J. Insights into highly engraftable hematopoietic cells from 27-year cryopreserved umbilical cord blood. Cell Rep Med 2023; 4:101259. [PMID: 37913777 PMCID: PMC10694620 DOI: 10.1016/j.xcrm.2023.101259] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/02/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
Umbilical cord blood transplantation is a life-saving treatment for malignant and non-malignant hematologic disorders. It remains unclear how long cryopreserved units remain functional, and the length of cryopreservation is often used as a criterion to exclude older units. We demonstrate that long-term cryopreserved cord blood retains similar numbers of hematopoietic stem and progenitor cells compared with fresh and recently cryopreserved cord blood units. Long-term cryopreserved units contain highly functional cells, yielding robust engraftment in mouse transplantation models. We also leverage differences between units to examine gene programs associated with better engraftment. Transcriptomic analyses reveal that gene programs associated with lineage determination and oxidative stress are enriched in high engrafting cord blood, revealing potential molecular markers to be used as potency markers for cord blood unit selection regardless of length of cryopreservation. In summary, cord blood units cryopreserved for extended periods retain engrafting potential and can potentially be used for patient treatment.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | - Alexandra Jimenez
- Comprehensive Cell Solutions, New York Blood Center, New York, NY 10065, USA; National Cord Blood Program, Long Island City, NY 11101, USA
| | - Emeline Masson Frenet
- Comprehensive Cell Solutions, New York Blood Center, New York, NY 10065, USA; National Cord Blood Program, Long Island City, NY 11101, USA
| | | | - Maegan L Capitano
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Mark H Kaplan
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Scott Cooper
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - James Ropa
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
11
|
Wu SC, Lai SW, Lu XJ, Lai HF, Chen YG, Chen PH, Ho CL, Wu YY, Chiu YL. Profiling of miRNAs and their interfering targets in peripheral blood mononuclear cells from patients with chronic myeloid leukaemia. Front Oncol 2023; 13:1173970. [PMID: 37476380 PMCID: PMC10356106 DOI: 10.3389/fonc.2023.1173970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/16/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction MicroRNAs may be implicated in the acquisition of drug resistance in chronic myeloid leukemia as they regulate the expression of not only BCR-ABL1 but also genes associated with the activation of drug transfer proteins or essential signaling pathways. Methods To understand the impact of specifically expressed miRNAs in chronic myeloid leukemia and their target genes, we collected peripheral blood mononuclear cells (PBMC) from patients diagnosed with chronic myeloid leukemia (CML) and healthy donors to determine whole miRNA expression by small RNA sequencing and screened out 31 differentially expressed microRNAs (DE-miRNAs) with high expression. With the utilization of miRNA set enrichment analysis tools, we present here a comprehensive analysis of the relevance of DE-miRNAs to disease and biological function. Furthermore, the literature-based miRNA-target gene database was used to analyze the overall target genes of the DE-miRNAs and to define their associated biological responses. We further integrated DE-miRNA target genes to identify CML miRNA targeted gene signature singscore (CMTGSS) and used gene-set enrichment analysis (GSEA) to analyze the correlation between CMTGSS and Hallmark gene-sets in PBMC samples from clinical CML patients. Finally, the association of CMTGSS stratification with multiple CML cell lineage gene sets was validated in PBMC samples from CML patients using GSEA. Results Although individual miRNAs have been reported to have varying degrees of impact on CML, overall, our results show that abnormally upregulated miRNAs are associated with apoptosis and aberrantly downregulated miRNAs are associated with cell cycle. The clinical database shows that our defined DE-miRNAs are associated with the prognosis of CML patients. CMTGSS-based stratification analysis presented a tendency for miRNAs to affect cell differentiation in the blood microenvironment. Conclusion Collectively, this study defined differentially expressed miRNAs by miRNA sequencing from clinical samples and comprehensively analyzed the biological functions of the differential miRNAs in association with the target genes. The analysis of the enrichment of specific myeloid differentiated cells and immune cells also suggests the magnitude and potential targets of differentially expressed miRNAs in the clinical setting. It helps us to make links between the different results obtained from the multi-faceted studies to provide more potential research directions.
Collapse
Affiliation(s)
- Sheng-Cheng Wu
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital Penghu Branch, Magong City, Taiwan
| | - Shiue-Wei Lai
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Xin-Jie Lu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Hsing-Fan Lai
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Yu-Guang Chen
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Po-Huang Chen
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Ching-Liang Ho
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Ying Wu
- Division of Hematology and Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
12
|
Kim JC, Chan-Seng-Yue M, Ge S, Zeng AGX, Ng K, Gan OI, Garcia-Prat L, Flores-Figueroa E, Woo T, Zhang AXW, Arruda A, Chithambaram S, Dobson SM, Khoo A, Khan S, Ibrahimova N, George A, Tierens A, Hitzler J, Kislinger T, Dick JE, McPherson JD, Minden MD, Notta F. Transcriptomic classes of BCR-ABL1 lymphoblastic leukemia. Nat Genet 2023:10.1038/s41588-023-01429-4. [PMID: 37337105 DOI: 10.1038/s41588-023-01429-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 05/17/2023] [Indexed: 06/21/2023]
Abstract
In BCR-ABL1 lymphoblastic leukemia, treatment heterogeneity to tyrosine kinase inhibitors (TKIs), especially in the absence of kinase domain mutations in BCR-ABL1, is poorly understood. Through deep molecular profiling, we uncovered three transcriptomic subtypes of BCR-ABL1 lymphoblastic leukemia, each representing a maturation arrest at a stage of B-cell progenitor differentiation. An earlier arrest was associated with lineage promiscuity, treatment refractoriness and poor patient outcomes. A later arrest was associated with lineage fidelity, durable leukemia remissions and improved patient outcomes. Each maturation arrest was marked by specific genomic events that control different transition points in B-cell development. Interestingly, these events were absent in BCR-ABL1+ preleukemic stem cells isolated from patients regardless of subtype, which supports that transcriptomic phenotypes are determined downstream of the leukemia-initialing event. Overall, our data indicate that treatment response and TKI efficacy are unexpected outcomes of the differentiation stage at which this leukemia transforms.
Collapse
Affiliation(s)
- Jaeseung C Kim
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Sabrina Ge
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Andy G X Zeng
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Karen Ng
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Olga I Gan
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | | | - Tristan Woo
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | - Andrea Arruda
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Shivapriya Chithambaram
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Amanda Khoo
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | - Ann George
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Anne Tierens
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Johann Hitzler
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - John D McPherson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Mark D Minden
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Faiyaz Notta
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Zhang L, Zhu Z, Yang Q, Zhao J. A genome-wide association study identified one variant associated with static spatial working memory in Chinese population. Front Genet 2022; 13:915275. [PMID: 36176292 PMCID: PMC9514234 DOI: 10.3389/fgene.2022.915275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Spatial working memory (SWM) is a kind of memory that temporarily preserves spatial information (the location or order of objects, etc.). Individuals with mental disorders tend to show worse performance in SWM task. This study investigated the genetic basis of two subtypes of SWM, static spatial working memory (SSWM) and dynamic spatial working memory (DSWM) in humans, using quantitative genomic analyses. A total of 451 Chinese students were tested on their magnitudes of SSWM and DSWM. A genome-wide association study (GWAS) was performed. Two SNPs (top SNP: rs80263879, p = 1.6 × 10−9, gene: epoxide hydrolase 2, EPHX2) reaching genome-wide significance for SSWM were identified. There is a high linkage disequilibrium between these two SNPs. The data of expression quantitative trait locus (eQTL) showed that different genotypes of rs80263879 and rs72478903 made significant differences in the expression of EPHX2 gene in the spinal cord (p = 0.022, p = 0.048). Enrichment analysis identified a gene set significantly associated with DSWM. Overall, our study discovered a candidate genetic locus and gene set for the genetics of the SWM.
Collapse
|
14
|
Zhao H, Pomicter AD, Eiring AM, Franzini A, Ahmann J, Hwang JY, Senina A, Helton B, Iyer S, Yan D, Khorashad JS, Zabriskie MS, Agarwal A, Redwine HM, Bowler AD, Clair PM, McWeeney SK, Druker BJ, Tyner JW, Stirewalt DL, Oehler VG, Varambally S, Berrett KC, Vahrenkamp JM, Gertz J, Varley KE, Radich JP, Deininger MW. MS4A3 promotes differentiation in chronic myeloid leukemia by enhancing common β-chain cytokine receptor endocytosis. Blood 2022; 139:761-778. [PMID: 34780648 PMCID: PMC8814676 DOI: 10.1182/blood.2021011802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023] Open
Abstract
The chronic phase of chronic myeloid leukemia (CP-CML) is characterized by the excessive production of maturating myeloid cells. As CML stem/progenitor cells (LSPCs) are poised to cycle and differentiate, LSPCs must balance conservation and differentiation to avoid exhaustion, similar to normal hematopoiesis under stress. Since BCR-ABL1 tyrosine kinase inhibitors (TKIs) eliminate differentiating cells but spare BCR-ABL1-independent LSPCs, understanding the mechanisms that regulate LSPC differentiation may inform strategies to eliminate LSPCs. Upon performing a meta-analysis of published CML transcriptomes, we discovered that low expression of the MS4A3 transmembrane protein is a universal characteristic of LSPC quiescence, BCR-ABL1 independence, and transformation to blast phase (BP). Several mechanisms are involved in suppressing MS4A3, including aberrant methylation and a MECOM-C/EBPε axis. Contrary to previous reports, we find that MS4A3 does not function as a G1/S phase inhibitor but promotes endocytosis of common β-chain (βc) cytokine receptors upon GM-CSF/IL-3 stimulation, enhancing downstream signaling and cellular differentiation. This suggests that LSPCs downregulate MS4A3 to evade βc cytokine-induced differentiation and maintain a more primitive, TKI-insensitive state. Accordingly, knockdown (KD) or deletion of MS4A3/Ms4a3 promotes TKI resistance and survival of CML cells ex vivo and enhances leukemogenesis in vivo, while targeted delivery of exogenous MS4A3 protein promotes differentiation. These data support a model in which MS4A3 governs response to differentiating myeloid cytokines, providing a unifying mechanism for the differentiation block characteristic of CML quiescence and BP-CML. Promoting MS4A3 reexpression or delivery of ectopic MS4A3 may help eliminate LSPCs in vivo.
Collapse
MESH Headings
- Animals
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Down-Regulation
- Endocytosis
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Receptors, Cytokine/metabolism
- Transcriptome
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Helong Zhao
- Versiti Blood Research Institute, Milwaukee, WI
- Medical College of Wisconsin, Milwaukee, WI
- Division of Hematology and Hematologic Malignancies and
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | | | | | - Anca Franzini
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Jonathan Ahmann
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Jae-Yeon Hwang
- Department of Oncological Sciences, The University of Utah, Salt Lake City, UT
| | - Anna Senina
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Bret Helton
- Department of Chemistry, University of Washington, Seattle, WA
| | - Siddharth Iyer
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Dongqing Yan
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Jamshid S Khorashad
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | | | - Anupriya Agarwal
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| | - Hannah M Redwine
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Amber D Bowler
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Phillip M Clair
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| | - Shannon K McWeeney
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| | - Brian J Druker
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| | - Jeffrey W Tyner
- Division of Hematology and Medical Oncology, Oregon Health & Science University Knight Cancer Institute, Portland, OR
| | | | | | | | | | | | - Jason Gertz
- Department of Oncological Sciences, The University of Utah, Salt Lake City, UT
| | - Katherine E Varley
- Department of Oncological Sciences, The University of Utah, Salt Lake City, UT
| | | | - Michael W Deininger
- Versiti Blood Research Institute, Milwaukee, WI
- Medical College of Wisconsin, Milwaukee, WI
- Division of Hematology and Hematologic Malignancies and
- Huntsman Cancer Institute, The University of Utah, Salt Lake City, UT
| |
Collapse
|
15
|
Splenic red pulp macrophages provide a niche for CML stem cells and induce therapy resistance. Leukemia 2022; 36:2634-2646. [PMID: 36163264 PMCID: PMC7613762 DOI: 10.1038/s41375-022-01682-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022]
Abstract
Disease progression and relapse of chronic myeloid leukemia (CML) are caused by therapy resistant leukemia stem cells (LSCs), and cure relies on their eradication. The microenvironment in the bone marrow (BM) is known to contribute to LSC maintenance and resistance. Although leukemic infiltration of the spleen is a hallmark of CML, it is unknown whether spleen cells form a niche that maintains LSCs. Here, we demonstrate that LSCs preferentially accumulate in the spleen and contribute to disease progression. Spleen LSCs were located in the red pulp close to red pulp macrophages (RPM) in CML patients and in a murine CML model. Pharmacologic and genetic depletion of RPM reduced LSCs and decreased their cell cycling activity in the spleen. Gene expression analysis revealed enriched stemness and decreased myeloid lineage differentiation in spleen leukemic stem and progenitor cells (LSPCs). These results demonstrate that splenic RPM form a niche that maintains CML LSCs in a quiescent state, resulting in disease progression and resistance to therapy.
Collapse
|
16
|
Fang F, Cao W, Zhu W, Lam N, Li L, Gaddam S, Wang Y, Kim C, Lambert S, Zhang H, Hu B, Farber DL, Weyand CM, Goronzy JJ. The cell-surface 5'-nucleotidase CD73 defines a functional T memory cell subset that declines with age. Cell Rep 2021; 37:109981. [PMID: 34758299 PMCID: PMC8612175 DOI: 10.1016/j.celrep.2021.109981] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/09/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Memory T cells exhibit considerable diversity that determines their ability to be protective. Here, we examine whether changes in T cell heterogeneity contribute to the age-associated failure of immune memory. By screening for age-dependent T cell-surface markers, we identify CD4 and CD8 memory T cell subsets that are unrelated to previously defined subsets of central and effector memory cells. Memory T cells expressing the ecto-5'-nucleotidase CD73 constitute a functionally distinct subset of memory T cells that declines with age. They resemble long-lived, polyfunctional memory cells but are also poised to display effector functions and to develop into cells resembling tissue-resident memory T cells (TRMs). Upstream regulators of differential chromatin accessibility and transcriptomes include transcription factors that facilitate CD73 expression and regulate TRM differentiation. CD73 is not just a surrogate marker of these regulatory networks but is directly involved in T cell survival.
Collapse
Affiliation(s)
- Fengqin Fang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Wenqiang Cao
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, US
| | - Weikang Zhu
- CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Nora Lam
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lingjie Li
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Histoembryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| | - Sadhana Gaddam
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yong Wang
- CEMS, NCMIS, HCMS, MDIS, Academy of Mathematics & Systems Science, Chinese Academy of Sciences, Beijing 100190, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Chulwoo Kim
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Simon Lambert
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Huimin Zhang
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, US
| | - Bin Hu
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cornelia M Weyand
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, US
| | - Jörg J Goronzy
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University, Stanford, CA, USA; Department of Medicine, Palo Alto Veterans Administration Healthcare System, Palo Alto, CA, USA; Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, MN, US.
| |
Collapse
|
17
|
Gelatin methacrylate hydrogels culture model for glioblastoma cells enriches for mesenchymal-like state and models interactions with immune cells. Sci Rep 2021; 11:17727. [PMID: 34489494 PMCID: PMC8421368 DOI: 10.1038/s41598-021-97059-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is the most lethal primary malignant brain tumor in adults. Simplified two-dimensional (2D) cell culture and neurospheres in vitro models fail to recapitulate the complexity of the tumor microenvironment, limiting its ability to predict therapeutic response. Three-dimensional (3D) scaffold-based models have emerged as a promising alternative for addressing these concerns. One such 3D system is gelatin methacrylate (GelMA) hydrogels, and we aimed to understand the suitability of using this system to mimic treatment-resistant glioblastoma cells that reside in specific niches. We characterized the phenotype of patient-derived glioma cells cultured in GelMA hydrogels (3D-GMH) for their tumorigenic properties using invasion and chemoresponse assays. In addition, we used integrated single-cell and spatial transcriptome analysis to compare cells cultured in 3D-GMH to neoplastic cells in vivo. Finally, we assessed tumor-immune cell interactions with a macrophage infiltration assay and a cytokine array. We show that the 3D-GMH system enriches treatment-resistant mesenchymal cells that are not represented in neurosphere cultures. Cells cultured in 3D-GMH resemble a mesenchymal-like cellular phenotype found in perivascular and hypoxic regions and recruit macrophages by secreting cytokines, a hallmark of the mesenchymal phenotype. Our 3D-GMH model effectively mimics the phenotype of glioma cells that are found in the perivascular and hypoxic niches of the glioblastoma core in situ, in contrast to the neurosphere cultures that enrich cells of the infiltrative edge of the tumor. This contrast highlights the need for due diligence in selecting an appropriate model when designing a study's objectives.
Collapse
|
18
|
Ma XY, Wei L, Lei Z, Chen Y, Ding Z, Chen ZS. Recent progress on targeting leukemia stem cells. Drug Discov Today 2021; 26:1904-1913. [PMID: 34029689 DOI: 10.1016/j.drudis.2021.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/14/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022]
Abstract
Leukemia is a type of malignant clonal disease of hematopoietic stem cells (HSCs). A small population of leukemic stem cells (LSCs) are responsible for the initiation, drug resistance, and relapse of leukemia. LSCs have the ability to form tumors after xenotransplantation in immunodeficient mice and appear to be common in most human leukemias. Therefore, the eradication of LSCs is an approach with the potential to improve survival or even to cure leukemia. Using recent research in the field of LSCs, we summarize the targeted therapy approaches for the removal of LSCs through surface markers including immune checkpoint molecules, pathways influencing LSC survival, or the survival microenvironment of LSCs. In addition, we introduce the survival microenvironment and survival regulation of LSCs.
Collapse
Affiliation(s)
- Xiang-Yu Ma
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| | - Zining Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yanglu Chen
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Gangxing 3rd Rd, High-Tech and Innovation Zone, Jinan, Shandong 250101, PR China
| | - Zhe-Sheng Chen
- School of Pharmacy, Weifang Medical University, Weifang 261053, PR China.
| |
Collapse
|
19
|
Cominal JG, Cacemiro MDC, Berzoti-Coelho MG, Pereira IEG, Frantz FG, Souto EX, Covas DT, de Figueiredo-Pontes LL, Oliveira MC, Malmegrim KCR, de Castro FA. Bone Marrow Soluble Mediator Signatures of Patients With Philadelphia Chromosome-Negative Myeloproliferative Neoplasms. Front Oncol 2021; 11:665037. [PMID: 34084749 PMCID: PMC8167065 DOI: 10.3389/fonc.2021.665037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Background Essential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF) are clonal hematological diseases classified as Philadelphia chromosome-negative myeloproliferative neoplasms (MPN). MPN pathogenesis is associated with the presence of somatic driver mutations, bone marrow (BM) niche alterations, and tumor inflammatory status. The relevance of soluble mediators in the pathogenesis of MPN led us to analyze the levels of cytokines, chemokines, and growth factors related to inflammation, angiogenesis and hematopoiesis regulation in the BM niche of MPN patients. Methods Soluble mediator levels in BM plasma samples from 17 healthy subjects, 28 ET, 19 PV, and 16 PMF patients were determined using a multiplex assay. Soluble mediator signatures were created from categorical analyses of high mediator producers. Soluble mediator connections and the correlation between plasma levels and clinic-laboratory parameters were also analyzed. Results The soluble mediator signatures of the BM niche of PV patients revealed a highly inflammatory and pro-angiogenic milieu, with increased levels of chemokines (CCL2, CCL5, CXCL8, CXCL12, CXCL10), and growth factors (GM-CSF M-CSF, HGF, IFN-γ, IL-1β, IL-6Ra, IL-12, IL-17, IL-18, TNF-α, VEGF, and VEGF-R2). ET and PMF patients presented intermediate inflammatory and pro-angiogenic profiles. Deregulation of soluble mediators was associated with some clinic-laboratory parameters of MPN patients, including vascular events, treatment status, risk stratification of disease, hemoglobin concentration, hematocrit, and red blood cell count. Conclusions Each MPN subtype exhibits a distinct soluble mediator signature. Deregulated production of BM soluble mediators may contribute to MPN pathogenesis and BM niche modification, provides pro-tumor stimuli, and is a potential target for future therapies.
Collapse
Affiliation(s)
- Juçara Gastaldi Cominal
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maira da Costa Cacemiro
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Gabriela Berzoti-Coelho
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Illy Enne Gomes Pereira
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fabiani Gai Frantz
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Elizabeth Xisto Souto
- Department of Clinical Hematology, Euryclides de Jesus Zerbini Transplant Hospital, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Lorena Lobo de Figueiredo-Pontes
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Division of Hematology, Hemotherapy and Cellular Therapy, Department of Medical Imaging, Hematology, and Clinical Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Maria Carolina Oliveira
- Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Division of Rheumatology, Allergy and Immunotherapy, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen Cristina Ribeiro Malmegrim
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fabíola Attié de Castro
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.,Center for Cell-Based Therapy, Regional Blood Center of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
20
|
Andrade J, Shi C, Costa ASH, Choi J, Kim J, Doddaballapur A, Sugino T, Ong YT, Castro M, Zimmermann B, Kaulich M, Guenther S, Wilhelm K, Kubota Y, Braun T, Koh GY, Grosso AR, Frezza C, Potente M. Control of endothelial quiescence by FOXO-regulated metabolites. Nat Cell Biol 2021; 23:413-423. [PMID: 33795871 PMCID: PMC8032556 DOI: 10.1038/s41556-021-00637-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 01/21/2021] [Indexed: 02/08/2023]
Abstract
Endothelial cells (ECs) adapt their metabolism to enable the growth of new blood vessels, but little is known how ECs regulate metabolism to adopt a quiescent state. Here, we show that the metabolite S-2-hydroxyglutarate (S-2HG) plays a crucial role in the regulation of endothelial quiescence. We find that S-2HG is produced in ECs after activation of the transcription factor forkhead box O1 (FOXO1), where it limits cell cycle progression, metabolic activity and vascular expansion. FOXO1 stimulates S-2HG production by inhibiting the mitochondrial enzyme 2-oxoglutarate dehydrogenase. This inhibition relies on branched-chain amino acid catabolites such as 3-methyl-2-oxovalerate, which increase in ECs with activated FOXO1. Treatment of ECs with 3-methyl-2-oxovalerate elicits S-2HG production and suppresses proliferation, causing vascular rarefaction in mice. Our findings identify a metabolic programme that promotes the acquisition of a quiescent endothelial state and highlight the role of metabolites as signalling molecules in the endothelium.
Collapse
Affiliation(s)
- Jorge Andrade
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Chenyue Shi
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ana S H Costa
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK.,Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jeongwoon Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Korea
| | - Jaeryung Kim
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Korea.,Department of Oncology and Ludwig Institute for Cancer Research, University of Lausanne and Centre Hospitalier Universitaire Vaudois, Epalinges, Switzerland
| | - Anuradha Doddaballapur
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Toshiya Sugino
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yu Ting Ong
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Marco Castro
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Barbara Zimmermann
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Manuel Kaulich
- Gene Editing Group, Institute of Biochemistry II, Goethe University, Frankfurt (Main), Germany
| | - Stefan Guenther
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Kerstin Wilhelm
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Gou Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.,Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, Korea
| | - Ana Rita Grosso
- UCIBIO-Unidade de Ciências Biomoleculares Aplicadas, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia-Universidade Nova de Lisboa Campus de Caparica, Caparica, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge, UK
| | - Michael Potente
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany. .,Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany. .,Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany.
| |
Collapse
|
21
|
Chen Y, Zhao H, Luo J, Liao Y, Tan K, Hu G. A drug targeting 5-lipoxygenase enhances the activity of a JAK2 inhibitor in CD34 + bone marrow cells from patients with JAK2V617F-positive polycythemia vera in vitro. Oncol Lett 2021; 21:351. [PMID: 33747208 PMCID: PMC7967924 DOI: 10.3892/ol.2021.12612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/10/2021] [Indexed: 11/06/2022] Open
Abstract
Janus kinase 2 (JAK2) inhibitors, the first targeted treatments for myeloproliferative neoplasms (MPNs), provide substantial benefits, including a marked reduction in splenomegaly and MPN-associated symptoms. However, these drugs rarely induce molecular remission in patients with MPNs. Zileuton, a 5-lipoxygenase (5-LO) inhibitor, has been demonstrated to selectively deplete hematopoietic stem cells (HSCs) expressing a JAK2 point mutation (JAK2V617F) in mouse models of JAK2V617F-induced polycythemia vera (PV). To determine the potential activity of 5-LO inhibitors in combination with JAK inhibitors against human PV HSCs, the present study first analyzed 5-LO expression in CD34+ bone marrow cells from patients with JAK2V617F-positive PV using western blotting and reverse transcription-quantitative PCR, and then examined the effect of zileuton combined with ruxolitinib on colony formation using a colony formation assay. Furthermore, cell cycle and apoptosis in CD34+ cells from patients with PV and healthy volunteers were determined by flow cytometry. In the present study, 5-LO expression was upregulated in CD34+ cells from patients with PV compared with in CD34+ cells from healthy volunteers. Higher levels of leukotriene B4, a product of the 5-LO signaling pathway, were detected in patients with PV compared with in healthy volunteers. Zileuton treatment suppressed the colony formation of CD34+ cells from patients with PV in a dose-dependent manner. Furthermore, zileuton and ruxolitinib exerted their anticancer effects by suppressing hematopoietic colony formation, inducing apoptosis and arresting the cell cycle of human CD34+ cells from patients with PV. The combination of these two drugs exerted a more beneficial effect than either agent alone. Based on these data, zileuton enhanced the antitumor activity of low-dose ruxolitinib in hematopoietic progenitor cells from patients with PV, providing conceptual validation for further clinical applications of combination treatment with ruxolitinib and zileuton for patients with PV.
Collapse
Affiliation(s)
- Yuan Chen
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan 412000, P.R. China
| | - Hu Zhao
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan 412000, P.R. China
| | - Jing Luo
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan 412000, P.R. China
| | - Youping Liao
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan 412000, P.R. China
| | - Kui Tan
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan 412000, P.R. China
| | - Guoyu Hu
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou, Hunan 412000, P.R. China
| |
Collapse
|
22
|
Vetrie D, Helgason GV, Copland M. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nat Rev Cancer 2020; 20:158-173. [PMID: 31907378 DOI: 10.1038/s41568-019-0230-9] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2019] [Indexed: 01/21/2023]
Abstract
For two decades, leukaemia stem cells (LSCs) in chronic myeloid leukaemia (CML) and acute myeloid leukaemia (AML) have been advanced paradigms for the cancer stem cell field. In CML, the acquisition of the fusion tyrosine kinase BCR-ABL1 in a haematopoietic stem cell drives its transformation to become a LSC. In AML, LSCs can arise from multiple cell types through the activity of a number of oncogenic drivers and pre-leukaemic events, adding further layers of context and genetic and cellular heterogeneity to AML LSCs not observed in most cases of CML. Furthermore, LSCs from both AML and CML can be refractory to standard-of-care therapies and persist in patients, diversify clonally and serve as reservoirs to drive relapse, recurrence or progression to more aggressive forms. Despite these complexities, LSCs in both diseases share biological features, making them distinct from other CML or AML progenitor cells and from normal haematopoietic stem cells. These features may represent Achilles' heels against which novel therapies can be developed. Here, we review many of the similarities and differences that exist between LSCs in CML and AML and examine the therapeutic strategies that could be used to eradicate them.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Disease Management
- Disease Susceptibility
- Drug Development
- History, 20th Century
- History, 21st Century
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Molecular Targeted Therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Research/history
- Research/trends
Collapse
Affiliation(s)
- David Vetrie
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
23
|
Coordinated inhibition of nuclear export and Bcr-Abl1 selectively targets chronic myeloid leukemia stem cells. Leukemia 2020; 34:1679-1683. [PMID: 31980730 DOI: 10.1038/s41375-020-0708-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 12/04/2019] [Accepted: 01/14/2020] [Indexed: 11/08/2022]
|
24
|
Kinstrie R, Horne GA, Morrison H, Irvine D, Munje C, Castañeda EG, Moka HA, Dunn K, Cassels JE, Parry N, Clarke CJ, Scott MT, Clark RE, Holyoake TL, Wheadon H, Copland M. CD93 is expressed on chronic myeloid leukemia stem cells and identifies a quiescent population which persists after tyrosine kinase inhibitor therapy. Leukemia 2020; 34:1613-1625. [PMID: 31896780 PMCID: PMC7272220 DOI: 10.1038/s41375-019-0684-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 11/17/2019] [Accepted: 12/05/2019] [Indexed: 01/10/2023]
Abstract
The introduction of BCR-ABL tyrosine kinase inhibitors has revolutionized the treatment of chronic myeloid leukemia (CML). A major clinical aim remains the identification and elimination of low-level disease persistence, termed "minimal residual disease". The phenomenon of disease persistence suggests that despite targeted therapeutic approaches, BCR-ABL-independent mechanisms exist which sustain the survival of leukemic stem cells (LSCs). Although other markers of a primitive CML LSC population have been identified in the preclinical setting, only CD26 appears to offer clinical utility. Here we demonstrate consistent and selective expression of CD93 on a lin-CD34+CD38-CD90+ CML LSC population and show in vitro and in vivo data to suggest increased stem cell characteristics, as well as robust engraftment in patient-derived xenograft models in comparison with a CD93- CML stem/progenitor cell population, which fails to engraft. Through bulk and single-cell analyses of selected stem cell and cell survival-specific genes, we confirmed the quiescent character and demonstrate their persistence in a population of CML patient samples who demonstrate molecular relapse on TKI withdrawal. Taken together, our results identify that CD93 is consistently and selectively expressed on a lin-CD34+CD38-CD90+ CML LSC population with stem cell characteristics and may be an important indicator in determining poor TKI responders.
Collapse
Affiliation(s)
- Ross Kinstrie
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Gillian A Horne
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Heather Morrison
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - David Irvine
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Chinmay Munje
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Eduardo Gómez Castañeda
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Hothri A Moka
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer E Cassels
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Narissa Parry
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Cassie J Clarke
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mary T Scott
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Richard E Clark
- Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Tessa L Holyoake
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Helen Wheadon
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
25
|
Wang J, Saraswat D, Sinha AK, Polanco J, Dietz K, O'Bara MA, Pol SU, Shayya HJ, Sim FJ. Paired Related Homeobox Protein 1 Regulates Quiescence in Human Oligodendrocyte Progenitors. Cell Rep 2019; 25:3435-3450.e6. [PMID: 30566868 DOI: 10.1016/j.celrep.2018.11.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/02/2018] [Accepted: 11/16/2018] [Indexed: 01/17/2023] Open
Abstract
Human oligodendrocyte progenitor cells (hOPCs) persist into adulthood as an abundant precursor population capable of division and differentiation. The transcriptional mechanisms that regulate hOPC homeostasis remain poorly defined. Herein, we identify paired related homeobox protein 1 (PRRX1) in primary PDGFαR+ hOPCs. We show that enforced PRRX1 expression results in reversible G1/0 arrest. While both PRRX1 splice variants reduce hOPC proliferation, only PRRX1a abrogates migration. hOPC engraftment into hypomyelinated shiverer/rag2 mouse brain is severely impaired by PRRX1a, characterized by reduced cell proliferation and migration. PRRX1 induces a gene expression signature characteristic of stem cell quiescence. Both IFN-γ and BMP signaling upregulate PRRX1 and induce quiescence. PRRX1 knockdown modulates IFN-γ-induced quiescence. In mouse brain, PRRX1 mRNA was detected in non-dividing OPCs and is upregulated in OPCs following demyelination. Together, these data identify PRRX1 as a regulator of quiescence in hOPCs and as a potential regulator of pathological quiescence.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Darpan Saraswat
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Anjali K Sinha
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jessie Polanco
- Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Karen Dietz
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Melanie A O'Bara
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Suyog U Pol
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Department of Biomedical Engineering, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Hani J Shayya
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Fraser J Sim
- Department of Pharmacology and Toxicology, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA; Neuroscience Program, Jacob's School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
26
|
Sachs K, Sarver AL, Noble-Orcutt KE, LaRue RS, Antony ML, Chang D, Lee Y, Navis CM, Hillesheim AL, Nykaza IR, Ha NA, Hansen CJ, Karadag FK, Bergerson RJ, Verneris MR, Meredith MM, Schomaker ML, Linden MA, Myers CL, Largaespada DA, Sachs Z. Single-Cell Gene Expression Analyses Reveal Distinct Self-Renewing and Proliferating Subsets in the Leukemia Stem Cell Compartment in Acute Myeloid Leukemia. Cancer Res 2019; 80:458-470. [PMID: 31784425 DOI: 10.1158/0008-5472.can-18-2932] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 05/30/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022]
Abstract
Standard chemotherapy for acute myeloid leukemia (AML) targets proliferative cells and efficiently induces complete remission; however, many patients relapse and die of their disease. Relapse is caused by leukemia stem cells (LSC), the cells with self-renewal capacity. Self-renewal and proliferation are separate functions in normal hematopoietic stem cells (HSC) in steady-state conditions. If these functions are also separate functions in LSCs, then antiproliferative therapies may fail to target self-renewal, allowing for relapse. We investigated whether proliferation and self-renewal are separate functions in LSCs as they often are in HSCs. Distinct transcriptional profiles within LSCs of Mll-AF9/NRASG12V murine AML were identified using single-cell RNA sequencing. Single-cell qPCR revealed that these genes were also differentially expressed in primary human LSCs and normal human HSPCs. A smaller subset of these genes was upregulated in LSCs relative to HSPCs; this subset of genes constitutes "LSC-specific" genes in human AML. To assess the differences between these profiles, we identified cell surface markers, CD69 and CD36, whose genes were differentially expressed between these profiles. In vivo mouse reconstitution assays resealed that only CD69High LSCs were capable of self-renewal and were poorly proliferative. In contrast, CD36High LSCs were unable to transplant leukemia but were highly proliferative. These data demonstrate that the transcriptional foundations of self-renewal and proliferation are distinct in LSCs as they often are in normal stem cells and suggest that therapeutic strategies that target self-renewal, in addition to proliferation, are critical to prevent relapse and improve survival in AML. SIGNIFICANCE: These findings define and functionally validate a self-renewal gene profile of leukemia stem cells at the single-cell level and demonstrate that self-renewal and proliferation are distinct in AML. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/3/458/F1.large.jpg.
Collapse
Affiliation(s)
- Karen Sachs
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,Next Generation Analytics, Palo Alto, California
| | - Aaron L Sarver
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Klara E Noble-Orcutt
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Rebecca S LaRue
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Marie Lue Antony
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Daniel Chang
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Yoonkyu Lee
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Connor M Navis
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Alexandria L Hillesheim
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Ian R Nykaza
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Ngoc A Ha
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Conner J Hansen
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Fatma K Karadag
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Rachel J Bergerson
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Michael R Verneris
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Matthew M Meredith
- Molecular Lab, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Matthew L Schomaker
- Molecular Lab, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Michael A Linden
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota
| | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Zohar Sachs
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, Minnesota. .,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
27
|
Moradi F, Babashah S, Sadeghizadeh M, Jalili A, Hajifathali A, Roshandel H. Signaling pathways involved in chronic myeloid leukemia pathogenesis: The importance of targeting Musashi2-Numb signaling to eradicate leukemia stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:581-589. [PMID: 31231484 PMCID: PMC6570743 DOI: 10.22038/ijbms.2019.31879.7666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/15/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Chronic myeloid leukemia (CML) is a myeloid clonal proliferation disease defining by the presence of the Philadelphia chromosome that shows the movement of BCR-ABL1. In this study, the critical role of the Musashi2-Numb axis in determining cell fate and relationship of the axis to important signaling pathways such as Hedgehog and Notch that are essential for self-renewal pathways in CML stem cells will be reviewed meticulously. MATERIALS AND METHODS In this review, a PubMed search using the keywords of Leukemia, signaling pathways, Musashi2-Numb was performed, and then we summarized different research works . RESULTS Although tyrosine kinase inhibitors such as Imatinib significantly kill and remove the cell with BCR-ABL1 translocation, they are unable to target BCR-ABL1 leukemia stem cells. The main problem is stem cells resistance to Imatinib therapy. Therefore, the identification and control of downstream molecules/ signaling route of the BCR-ABL1 that are involved in the survival and self-renewal of leukemia stem cells can be an effective treatment strategy to eliminate leukemia stem cells, which supposed to be cured by Musashi2-Numb signaling pathway. CONCLUSION The control of molecules /pathways downstream of the BCR-ABL1 and targeting Musashi2-Numb can be an effective therapeutic strategy for treatment of chronic leukemia stem cells. While Musashi2 is a poor prognostic marker in leukemia, in treatment and strategy, it has significant diagnostic value.
Collapse
Affiliation(s)
- Foruzan Moradi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Arsalan Jalili
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hajifathali Roshandel
- Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
28
|
Pellicano F, Park L, Hopcroft LEM, Shah MM, Jackson L, Scott MT, Clarke CJ, Sinclair A, Abraham SA, Hair A, Helgason GV, Aspinall-O'Dea M, Bhatia R, Leone G, Kranc KR, Whetton AD, Holyoake TL. hsa-mir183/EGR1-mediated regulation of E2F1 is required for CML stem/progenitor cell survival. Blood 2018; 131:1532-1544. [PMID: 29437554 PMCID: PMC6027092 DOI: 10.1182/blood-2017-05-783845] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 01/05/2018] [Indexed: 12/30/2022] Open
Abstract
Chronic myeloid leukemia (CML) stem/progenitor cells (SPCs) express a transcriptional program characteristic of proliferation, yet can achieve and maintain quiescence. Understanding the mechanisms by which leukemic SPCs maintain quiescence will help to clarify how they persist during long-term targeted treatment. We have identified a novel BCR-ABL1 protein kinase-dependent pathway mediated by the upregulation of hsa-mir183, the downregulation of its direct target early growth response 1 (EGR1), and, as a consequence, upregulation of E2F1. We show here that inhibition of hsa-mir183 reduced proliferation and impaired colony formation of CML SPCs. Downstream of this, inhibition of E2F1 also reduced proliferation of CML SPCs, leading to p53-mediated apoptosis. In addition, we demonstrate that E2F1 plays a pivotal role in regulating CML SPC proliferation status. Thus, for the first time, we highlight the mechanism of hsa-mir183/EGR1-mediated E2F1 regulation and demonstrate this axis as a novel, critical factor for CML SPC survival, offering new insights into leukemic stem cell eradication.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Cell Survival
- E2F1 Transcription Factor/biosynthesis
- E2F1 Transcription Factor/genetics
- Early Growth Response Protein 1/genetics
- Early Growth Response Protein 1/metabolism
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Mice, Knockout
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Signal Transduction
- Up-Regulation
Collapse
Affiliation(s)
- Francesca Pellicano
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Laura Park
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lisa E M Hopcroft
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mansi M Shah
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lorna Jackson
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mary T Scott
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Cassie J Clarke
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Amy Sinclair
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sheela A Abraham
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alan Hair
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - G Vignir Helgason
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mark Aspinall-O'Dea
- Stem Cell and Leukaemia Proteomics Laboratory, Faculty Institute of Cancer Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Ravi Bhatia
- Division of Hematology and Oncology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL
| | - Gustavo Leone
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC; and
| | - Kamil R Kranc
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Anthony D Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, Faculty Institute of Cancer Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Tessa L Holyoake
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
29
|
Trojani A, Pungolino E, Rossi G, D’Adda M, Lodola M, Camillo BD, Perego A, Turrini M, Orlandi E, Borin L, Iurlo A, Malato S, Spina F, Latargia ML, Lanza F, Artale S, Anghilieri M, Carraro MC, Canal GD, Morra E, Cairoli R. Wide-transcriptome analysis and cellularity of bone marrow CD34+/lin- cells of patients with chronic-phase chronic myeloid leukemia at diagnosis vs. 12 months of first-line nilotinib treatment. Cancer Biomark 2017; 21:41-53. [DOI: 10.3233/cbm-170209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alessandra Trojani
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Ester Pungolino
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Giuseppe Rossi
- Department of Hematology, ASST Spedali Civili, Brescia, Italy
| | - Mariella D’Adda
- Department of Hematology, ASST Spedali Civili, Brescia, Italy
| | - Milena Lodola
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padova, Italy
| | | | - Mauro Turrini
- Division of Hematology, Department of Internal Medicine, Valduce Hospital, Como, Italy
| | - Ester Orlandi
- Hematology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Lorenza Borin
- Hematology Division, San Gerardo Hospital, Monza, Italy
| | - Alessandra Iurlo
- Oncohematology Division, IRCCS Ca’ Granda – Maggiore Policlinico Hospital Foundation, Milano, Italy
| | - Simona Malato
- Hematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Francesco Spina
- Division of Hematology – Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | | | | | | | | | | | - Gabriella De Canal
- Pathology Department, Cytogenetics, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Enrica Morra
- Executive Committee, Rete Ematologia Lombarda, Italy
| | - Roberto Cairoli
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| |
Collapse
|
30
|
Perrotti D, Silvestri G, Stramucci L, Yu J, Trotta R. Cellular and Molecular Networks in Chronic Myeloid Leukemia: The Leukemic Stem, Progenitor and Stromal Cell Interplay. Curr Drug Targets 2017; 18:377-388. [PMID: 27307150 DOI: 10.2174/1389450117666160615074120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/13/2022]
Abstract
The use of imatinib, second and third generation ABL tyrosine kinase inhibitors (TKI) (i.e. dasatinib, nilotinib, bosutinib and ponatinib) made CML a clinically manageable and, in a small percentage of cases, a cured disease. TKI therapy also turned CML blastic transformation into a rare event; however, disease progression still occurs in those patients who are refractory, not compliant with TKI therapy or develop resistance to multiple TKIs. In the past few years, it became clear that the BCRABL1 oncogene does not operate alone to drive disease emergence, maintenance and progression. Indeed, it seems that bone marrow (BM) microenvironment-generated signals and cell autonomous BCRABL1 kinase-independent genetic and epigenetic alterations all contribute to: i. persistence of a quiescent leukemic stem cell (LSC) reservoir, ii. innate or acquired resistance to TKIs, and iii. progression into the fatal blast crisis stage. Herein, we review the intricate leukemic network in which aberrant, but finely tuned, survival, mitogenic and self-renewal signals are generated by leukemic progenitors, stromal cells, immune cells and metabolic microenvironmental conditions (e.g. hypoxia) to promote LSC maintenance and blastic transformation.
Collapse
Affiliation(s)
- Danilo Perrotti
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | | | | | | | | |
Collapse
|
31
|
Li F, He B, Ma X, Yu S, Bhave RR, Lentz SR, Tan K, Guzman ML, Zhao C, Xue HH. Prostaglandin E1 and Its Analog Misoprostol Inhibit Human CML Stem Cell Self-Renewal via EP4 Receptor Activation and Repression of AP-1. Cell Stem Cell 2017; 21:359-373.e5. [PMID: 28844837 PMCID: PMC5678929 DOI: 10.1016/j.stem.2017.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 03/03/2017] [Accepted: 07/31/2017] [Indexed: 02/02/2023]
Abstract
Effective treatment of chronic myelogenous leukemia (CML) largely depends on the eradication of CML leukemic stem cells (LSCs). We recently showed that CML LSCs depend on Tcf1 and Lef1 factors for self-renewal. Using a connectivity map, we identified prostaglandin E1 (PGE1) as a small molecule that partly elicited the gene expression changes in LSCs caused by Tcf1/Lef1 deficiency. Although it has little impact on normal hematopoiesis, we found that PGE1 treatment impaired the persistence and activity of LSCs in a pre-clinical murine CML model and a xenograft model of transplanted CML patient CD34+ stem/progenitor cells. Mechanistically, PGE1 acted on the EP4 receptor and repressed Fosb and Fos AP-1 factors in a β-catenin-independent manner. Misoprostol, an FDA-approved EP4 agonist, conferred similar protection against CML. These findings suggest that activation of this PGE1-EP4 pathway specifically targets CML LSCs and that the combination of PGE1/misoprostol with conventional tyrosine-kinase inhibitors could provide effective therapy for CML.
Collapse
MESH Headings
- Alprostadil/pharmacology
- Animals
- Cell Line, Tumor
- Cell Self Renewal/drug effects
- Drug Synergism
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Humans
- Imatinib Mesylate/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Misoprostol/pharmacology
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Proto-Oncogene Proteins c-fos/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Transcription Factor AP-1/metabolism
- Transcription, Genetic/drug effects
- Xenograft Model Antitumor Assays
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Fengyin Li
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Bing He
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xiaoke Ma
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Rupali R Bhave
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Steven R Lentz
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Monica L Guzman
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Chen Zhao
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Hai-Hui Xue
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
32
|
Horne GA, Copland M. Approaches for targeting self-renewal pathways in cancer stem cells: implications for hematological treatments. Expert Opin Drug Discov 2017; 12:465-474. [DOI: 10.1080/17460441.2017.1303477] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
A pharmacogenomic approach validates AG-221 as an effective and on-target therapy in IDH2 mutant AML. Leukemia 2017; 31:1466-1470. [PMID: 28280273 DOI: 10.1038/leu.2017.84] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Kakiuchi S, Minami Y, Miyata Y, Mizutani Y, Goto H, Kawamoto S, Yakushijin K, Kurata K, Matsuoka H, Minami H. NANOG Expression as a Responsive Biomarker during Treatment with Hedgehog Signal Inhibitor in Acute Myeloid Leukemia. Int J Mol Sci 2017; 18:ijms18030486. [PMID: 28245563 PMCID: PMC5372502 DOI: 10.3390/ijms18030486] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/14/2017] [Accepted: 02/21/2017] [Indexed: 01/20/2023] Open
Abstract
Aberrant activation of the Hedgehog (Hh) signaling pathway is involved in the maintenance of leukemic stem cell (LSCs) populations. PF-0444913 (PF-913) is a novel inhibitor that selectively targets Smoothened (SMO), which regulates the Hh pathway. Treatment with PF-913 has shown promising results in an early phase study of acute myeloid leukemia (AML). However, a detailed mode of action for PF-913 and relevant biomarkers remain to be elucidated. In this study, we examined bone marrow samples derived from AML patients under PF-913 monotherapy. Gene set enrichment analysis (GSEA) revealed that PF-913 treatment affected the self-renewal signature and cell-cycle regulation associated with LSC-like properties. We then focused on the expression of a pluripotency factor, NANOG, because previous reports showed that a downstream effector in the Hh pathway, GLI, directly binds to the NANOG promoter and that the GLI-NANOG axis promotes stemness and growth in several cancers. In this study, we found that a change in NANOG transcripts was closely associated with GLI-target genes and NANOG transcripts can be a responsive biomarker during PF-913 therapy. Additionally, the treatment of AML with PF-913 holds promise, possibly through inducing quiescent leukemia stem cells toward cell cycling.
Collapse
Affiliation(s)
- Seiji Kakiuchi
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Yosuke Minami
- Department of Transfusion Medicine and Cell Therapy, Kobe University Hospital, Kobe 650-0017, Japan.
| | - Yoshiharu Miyata
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Yu Mizutani
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Hideaki Goto
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Shinichiro Kawamoto
- Department of Medical Oncology and Hematology, Kobe University Hospital, Kobe 650-0017, Japan.
| | - Kimikazu Yakushijin
- Department of Medical Oncology and Hematology, Kobe University Hospital, Kobe 650-0017, Japan.
| | - Keiji Kurata
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Hiroshi Matsuoka
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Hironobu Minami
- Department of Medical Oncology and Hematology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
- Department of Medical Oncology and Hematology, Kobe University Hospital, Kobe 650-0017, Japan.
| |
Collapse
|
35
|
The chronic myeloid leukemia stem cell: stemming the tide of persistence. Blood 2017; 129:1595-1606. [PMID: 28159740 DOI: 10.1182/blood-2016-09-696013] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/04/2016] [Indexed: 12/14/2022] Open
Abstract
Chronic myeloid leukemia (CML) is caused by the acquisition of the tyrosine kinase BCR-ABL1 in a hemopoietic stem cell, transforming it into a leukemic stem cell (LSC) that self-renews, proliferates, and differentiates to give rise to a myeloproliferative disease. Although tyrosine kinase inhibitors (TKIs) that target the kinase activity of BCR-ABL1 have transformed CML from a once-fatal disease to a manageable one for the vast majority of patients, only ∼10% of those who present in chronic phase (CP) can discontinue TKI treatment and maintain a therapy-free remission. Strong evidence now shows that CML LSCs are resistant to the effects of TKIs and persist in all patients on long-term therapy, where they may promote acquired TKI resistance, drive relapse or disease progression, and inevitably represent a bottleneck to cure. Since their discovery in patients almost 2 decades ago, CML LSCs have become a well-recognized exemplar of the cancer stem cell and have been characterized extensively, with the aim of developing new curative therapeutic approaches based on LSC eradication. This review summarizes our current understanding of many of the pathways and mechanisms that promote the survival of the CP CML LSCs and how they can be a source of new gene coding mutations that impact in the clinic. We also review recent preclinical approaches that show promise to eradicate the LSC, and future challenges on the path to cure.
Collapse
|
36
|
Ebinger S, Özdemir EZ, Ziegenhain C, Tiedt S, Castro Alves C, Grunert M, Dworzak M, Lutz C, Turati VA, Enver T, Horny HP, Sotlar K, Parekh S, Spiekermann K, Hiddemann W, Schepers A, Polzer B, Kirsch S, Hoffmann M, Knapp B, Hasenauer J, Pfeifer H, Panzer-Grümayer R, Enard W, Gires O, Jeremias I. Characterization of Rare, Dormant, and Therapy-Resistant Cells in Acute Lymphoblastic Leukemia. Cancer Cell 2016; 30:849-862. [PMID: 27916615 PMCID: PMC5156313 DOI: 10.1016/j.ccell.2016.11.002] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 06/11/2016] [Accepted: 10/31/2016] [Indexed: 01/06/2023]
Abstract
Tumor relapse is associated with dismal prognosis, but responsible biological principles remain incompletely understood. To isolate and characterize relapse-inducing cells, we used genetic engineering and proliferation-sensitive dyes in patient-derived xenografts of acute lymphoblastic leukemia (ALL). We identified a rare subpopulation that resembled relapse-inducing cells with combined properties of long-term dormancy, treatment resistance, and stemness. Single-cell and bulk expression profiling revealed their similarity to primary ALL cells isolated from pediatric and adult patients at minimal residual disease (MRD). Therapeutically adverse characteristics were reversible, as resistant, dormant cells became sensitive to treatment and started proliferating when dissociated from the in vivo environment. Our data suggest that ALL patients might profit from therapeutic strategies that release MRD cells from the niche.
Collapse
Affiliation(s)
- Sarah Ebinger
- Department of Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany
| | - Erbey Ziya Özdemir
- Department of Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany
| | - Christoph Ziegenhain
- Anthropology and Human Genomics, Department Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Sebastian Tiedt
- Department of Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany
| | - Catarina Castro Alves
- Department of Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany
| | - Michaela Grunert
- Department of Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany
| | - Michael Dworzak
- Children's Cancer Research Institute and St. Anna Kinderspital, Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Lutz
- Department of Medicine V, University of Heidelberg, 69120 Heidelberg, Germany
| | | | - Tariq Enver
- University College London Cancer Institute, London WC1E, UK
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Karl Sotlar
- Institute of Pathology, Ludwig-Maximilians-Universität München, 80337 Munich, Germany
| | - Swati Parekh
- Anthropology and Human Genomics, Department Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Karsten Spiekermann
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; German Consortium for Translational Cancer Research (DKTK), Partnering Site, Munich, 81377 Munich, Germany
| | - Wolfgang Hiddemann
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; German Consortium for Translational Cancer Research (DKTK), Partnering Site, Munich, 81377 Munich, Germany
| | - Aloys Schepers
- Department of Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany
| | - Bernhard Polzer
- Project Group Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 93053 Regensburg, Germany
| | - Stefan Kirsch
- Project Group Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 93053 Regensburg, Germany
| | - Martin Hoffmann
- Project Group Personalized Tumor Therapy, Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, 93053 Regensburg, Germany
| | - Bettina Knapp
- Institute of Computational Biology, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
| | - Jan Hasenauer
- Institute of Computational Biology, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 85764 Neuherberg, Germany; Department of Mathematics, Technische Universität München (TUM), 85748 Munich, Germany
| | - Heike Pfeifer
- Department of Medicine, Hematology and Oncology, Goethe University, 60590 Frankfurt, Germany
| | - Renate Panzer-Grümayer
- Children's Cancer Research Institute and St. Anna Kinderspital, Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Enard
- Anthropology and Human Genomics, Department Biology II, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Irmela Jeremias
- Department of Gene Vectors, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), 81377 Munich, Germany; German Consortium for Translational Cancer Research (DKTK), Partnering Site, Munich, 81377 Munich, Germany; Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig Maximilians University München, 80337 Munich, Germany.
| |
Collapse
|
37
|
CML cells actively evade host immune surveillance through cytokine-mediated downregulation of MHC-II expression. Blood 2016; 129:199-208. [PMID: 27793879 DOI: 10.1182/blood-2016-09-742049] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/26/2016] [Indexed: 12/12/2022] Open
Abstract
Targeting the fusion oncoprotein BCR-ABL with tyrosine kinase inhibitors has significantly affected chronic myeloid leukemia (CML) treatment, transforming the life expectancy of patients; however the risk for relapse remains, due to persistence of leukemic stem cells (LSCs). Therefore it is imperative to explore the mechanisms that result in LSC survival and develop new therapeutic approaches. We now show that major histocompatibility complex (MHC)-II and its master regulator class II transactivator (CIITA) are downregulated in CML compared with non-CML stem/progenitor cells in a BCR-ABL kinase-independent manner. Interferon γ (IFN-γ) stimulation resulted in an upregulation of CIITA and MHC-II in CML stem/progenitor cells; however, the extent of IFN-γ-induced MHC-II upregulation was significantly lower than when compared with non-CML CD34+ cells. Interestingly, the expression levels of CIITA and MHC-II significantly increased when CML stem/progenitor cells were treated with the JAK1/2 inhibitor ruxolitinib (RUX). Moreover, mixed lymphocyte reactions revealed that exposure of CD34+ CML cells to IFN-γ or RUX significantly enhanced proliferation of the responder CD4+CD69+ T cells. Taken together, these data suggest that cytokine-driven JAK-mediated signals, provided by CML cells and/or the microenvironment, antagonize MHC-II expression, highlighting the potential for developing novel immunomodulatory-based therapies to enable host-mediated immunity to assist in the detection and eradication of CML stem/progenitor cells.
Collapse
|
38
|
Fukushima N, Minami Y, Kakiuchi S, Kuwatsuka Y, Hayakawa F, Jamieson C, Kiyoi H, Naoe T. Small-molecule Hedgehog inhibitor attenuates the leukemia-initiation potential of acute myeloid leukemia cells. Cancer Sci 2016; 107:1422-1429. [PMID: 27461445 PMCID: PMC5084664 DOI: 10.1111/cas.13019] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 07/21/2016] [Accepted: 07/23/2016] [Indexed: 01/13/2023] Open
Abstract
Aberrant activation of the Hedgehog signaling pathway has been implicated in the maintenance of leukemia stem cell populations in several model systems. PF‐04449913 (PF‐913) is a selective, small‐molecule inhibitor of Smoothened, a membrane protein that regulates the Hedgehog pathway. However, details of the proof‐of‐concept and mechanism of action of PF‐913 following administration to patients with acute myeloid leukemia (AML) are unclear. This study examined the role of the Hedgehog signaling pathway in AML cells, and evaluated the in vitro and in vivo effects of the Smoothened inhibitor PF‐913. In primary AML cells, activation of the Hedgehog signaling pathway was more pronounced in CD34+ cells than CD34− cells. In vitro treatment with PF‐913 induced a decrease in the quiescent cell population accompanied by minimal cell death. In vivo treatment with PF‐913 attenuated the leukemia‐initiation potential of AML cells in a serial transplantation mouse model, while limiting reduction of tumor burden in a primary xenotransplant system. Comprehensive gene set enrichment analysis revealed that PF‐913 modulated self‐renewal signatures and cell cycle progression. Furthermore, PF‐913 sensitized AML cells to cytosine arabinoside, and abrogated resistance to cytosine arabinoside in AML cells cocultured with HS‐5 stromal cells. These findings imply that pharmacologic inhibition of Hedgehog signaling attenuates the leukemia‐initiation potential, and also enhanced AML therapy by sensitizing dormant leukemia stem cells to chemotherapy and overcoming resistance in the bone marrow microenvironment.
Collapse
Affiliation(s)
- Nobuaki Fukushima
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yosuke Minami
- Department of Transfusion Medicine and Cell Therapy, Kobe University Hospital, Kobe, Japan.
| | - Seiji Kakiuchi
- Department of Medical Oncology and Hematology, Kobe University Hospital, Kobe, Japan
| | - Yachiyo Kuwatsuka
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Fumihiko Hayakawa
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Catoriona Jamieson
- Department of Medicine and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Naoe
- National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| |
Collapse
|
39
|
Sinclair A, Park L, Shah M, Drotar M, Calaminus S, Hopcroft LEM, Kinstrie R, Guitart AV, Dunn K, Abraham SA, Sansom O, Michie AM, Machesky L, Kranc KR, Graham GJ, Pellicano F, Holyoake TL. CXCR2 and CXCL4 regulate survival and self-renewal of hematopoietic stem/progenitor cells. Blood 2016; 128:371-83. [PMID: 27222476 PMCID: PMC4991087 DOI: 10.1182/blood-2015-08-661785] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 05/12/2016] [Indexed: 01/13/2023] Open
Abstract
The regulation of hematopoietic stem cell (HSC) survival and self-renewal within the bone marrow (BM) niche is not well understood. We therefore investigated global transcriptomic profiling of normal human HSC/hematopoietic progenitor cells [HPCs], revealing that several chemokine ligands (CXCL1-4, CXCL6, CXCL10, CXCL11, and CXCL13) were upregulated in human quiescent CD34(+)Hoescht(-)Pyronin Y(-) and primitive CD34(+)38(-), as compared with proliferating CD34(+)Hoechst(+)Pyronin Y(+) and CD34(+)38(+) stem/progenitor cells. This suggested that chemokines might play an important role in the homeostasis of HSCs. In human CD34(+) hematopoietic cells, knockdown of CXCL4 or pharmacologic inhibition of the chemokine receptor CXCR2, significantly decreased cell viability and colony forming cell (CFC) potential. Studies on Cxcr2(-/-) mice demonstrated enhanced BM and spleen cellularity, with significantly increased numbers of HSCs, hematopoietic progenitor cell-1 (HPC-1), HPC-2, and Lin(-)Sca-1(+)c-Kit(+) subpopulations. Cxcr2(-/-) stem/progenitor cells showed reduced self-renewal capacity as measured in serial transplantation assays. Parallel studies on Cxcl4 demonstrated reduced numbers of CFC in primary and secondary assays following knockdown in murine c-Kit(+) cells, and Cxcl4(-/-) mice showed a decrease in HSC and reduced self-renewal capacity after secondary transplantation. These data demonstrate that the CXCR2 network and CXCL4 play a role in the maintenance of normal HSC/HPC cell fates, including survival and self-renewal.
Collapse
Affiliation(s)
- Amy Sinclair
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Laura Park
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mansi Shah
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mark Drotar
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Simon Calaminus
- Centre for Cardiovascular and Metabolic Research, University of Hull, Hull, United Kingdom
| | - Lisa E M Hopcroft
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ross Kinstrie
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Amelie V Guitart
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sheela A Abraham
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Owen Sansom
- Beatson Institute for Cancer Research, Glasgow, United Kingdom; and
| | - Alison M Michie
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Laura Machesky
- Beatson Institute for Cancer Research, Glasgow, United Kingdom; and
| | - Kamil R Kranc
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Gerard J Graham
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Francesca Pellicano
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tessa L Holyoake
- Paul O'Gorman Leukaemia Research Centre, College of Medical, Veterinary and Life Sciences, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
40
|
Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells. Nature 2016; 534:341-6. [PMID: 27281222 PMCID: PMC4913876 DOI: 10.1038/nature18288] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023]
Abstract
Chronic myeloid leukaemia (CML) arises after transformation of a haemopoietic stem cell (HSC) by the protein-tyrosine kinase BCR-ABL. Direct inhibition of BCR-ABL kinase has revolutionized disease management, but fails to eradicate leukaemic stem cells (LSCs), which maintain CML. LSCs are independent of BCR-ABL for survival, providing a rationale for identifying and targeting kinase-independent pathways. Here we show--using proteomics, transcriptomics and network analyses--that in human LSCs, aberrantly expressed proteins, in both imatinib-responder and non-responder patients, are modulated in concert with p53 (also known as TP53) and c-MYC regulation. Perturbation of both p53 and c-MYC, and not BCR-ABL itself, leads to synergistic cell kill, differentiation, and near elimination of transplantable human LSCs in mice, while sparing normal HSCs. This unbiased systems approach targeting connected nodes exemplifies a novel precision medicine strategy providing evidence that LSCs can be eradicated.
Collapse
|
41
|
Hu Y, Li S. Survival regulation of leukemia stem cells. Cell Mol Life Sci 2016; 73:1039-50. [PMID: 26686687 PMCID: PMC11108378 DOI: 10.1007/s00018-015-2108-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 02/05/2023]
Abstract
Leukemia stem cells (LSCs) are a subpopulation cells at the apex of hierarchies in leukemia cells and responsible for disease continuous propagation. In this article, we discuss some cellular and molecular components, which are critical for LSC survival. These components include intrinsic signaling pathways and extrinsic microenvironments. The intrinsic signaling pathways to be discussed include Wnt/β-catenin signaling, Hox genes, Hh pathway, Alox5, and some miRNAs, which have been shown to play important roles in regulating LSC survival and proliferation. The extrinsic components to be discussed include selectins, CXCL12/CXCR4, and CD44, which involve in LSC homing, survival, and proliferation by affecting bone marrow microenvironment. Potential strategies for eradicating LSCs will also discuss.
Collapse
Affiliation(s)
- Yiguo Hu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, The Third Part Renmin South Road, Chengdu, 610041, Sichuan, China.
| | - Shaoguang Li
- Division of Hematology/Oncology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
42
|
Taggart J, Ho TC, Amin E, Xu H, Barlowe TS, Perez AR, Durham BH, Tivnan P, Okabe R, Chow A, Vu L, Park SM, Prieto C, Famulare C, Patel M, Lengner CJ, Verma A, Roboz G, Guzman M, Klimek VM, Abdel-Wahab O, Leslie C, Nimer SD, Kharas MG. MSI2 is required for maintaining activated myelodysplastic syndrome stem cells. Nat Commun 2016; 7:10739. [PMID: 26898884 PMCID: PMC4764878 DOI: 10.1038/ncomms10739] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/14/2016] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are driven by complex genetic and epigenetic alterations. The MSI2 RNA-binding protein has been demonstrated to have a role in acute myeloid leukaemia and stem cell function, but its role in MDS is unknown. Here, we demonstrate that elevated MSI2 expression correlates with poor survival in MDS. Conditional deletion of Msi2 in a mouse model of MDS results in a rapid loss of MDS haematopoietic stem and progenitor cells (HSPCs) and reverses the clinical features of MDS. Inversely, inducible overexpression of MSI2 drives myeloid disease progression. The MDS HSPCs remain dependent on MSI2 expression after disease initiation. Furthermore, MSI2 expression expands and maintains a more activated (G1) MDS HSPC. Gene expression profiling of HSPCs from the MSI2 MDS mice identifies a signature that correlates with poor survival in MDS patients. Overall, we identify a role for MSI2 in MDS representing a therapeutic target in this disease. Several studies have recently demonstrated the role of the MSI2 RNA binding protein in normal and malignant haematopoietc stem cells. In this study, the authors show that MSI2 is required for maintaining myelodysplastic syndrome stem cells in mice and that MSI2 expression predicts poor prognosis in patients affected by this disease.
Collapse
Affiliation(s)
- James Taggart
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Tzu-Chieh Ho
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Elianna Amin
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Haiming Xu
- Memorial Sloan Kettering Cancer Center, Cancer Biology Program, New York, New York 10065, USA
| | - Trevor S Barlowe
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Alexendar R Perez
- Computational Biology Program Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Institute, New York, New York 10065, USA
| | - Benjamin H Durham
- Memorial Sloan Kettering Cancer Center, Human Oncology and Pathogenesis Program, New York, New York 10065, USA
| | - Patrick Tivnan
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Rachel Okabe
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Arthur Chow
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ly Vu
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Sun Mi Park
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Camila Prieto
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Christopher Famulare
- Memorial Sloan Kettering Cancer Center, Department of Medicine, Leukemia Service, New York, New York 10065, USA
| | - Minal Patel
- Memorial Sloan Kettering Cancer Center, Department of Medicine, Leukemia Service, New York, New York 10065, USA
| | - Christopher J Lengner
- Department of Animal Biology, Department of Cell and Developmental Biology and Institute for Regenerative Medicine, Schools of Veterinary Medicine and Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Amit Verma
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Gail Roboz
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | - Monica Guzman
- Division of Hematology and Medical Oncology, Department of Medicine and Pharmacology, Weill Cornell Medical College, Cornell University, New York, New York 10065, USA
| | - Virginia M Klimek
- Memorial Sloan Kettering Cancer Center, Department of Medicine, Leukemia Service, New York, New York 10065, USA
| | - Omar Abdel-Wahab
- Memorial Sloan Kettering Cancer Center, Human Oncology and Pathogenesis Program, New York, New York 10065, USA
| | - Christina Leslie
- Computational Biology Program Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Institute, New York, New York 10065, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | - Michael G Kharas
- Molecular Pharmacology and Center for Cell Engineering, Center for Stem Cell Biology, Center for Experimental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
43
|
Roos J, Grösch S, Werz O, Schröder P, Ziegler S, Fulda S, Paulus P, Urbschat A, Kühn B, Maucher I, Fettel J, Vorup-Jensen T, Piesche M, Matrone C, Steinhilber D, Parnham MJ, Maier TJ. Regulation of tumorigenic Wnt signaling by cyclooxygenase-2, 5-lipoxygenase and their pharmacological inhibitors: A basis for novel drugs targeting cancer cells? Pharmacol Ther 2016; 157:43-64. [PMID: 26549540 DOI: 10.1016/j.pharmthera.2015.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Gene expression profile of circulating CD34(+) cells and granulocytes in chronic myeloid leukemia. Blood Cells Mol Dis 2015; 55:373-81. [PMID: 26460262 DOI: 10.1016/j.bcmd.2015.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 01/19/2023]
Abstract
PURPOSE We compared the gene expression profile of peripheral blood CD34(+) cells and granulocytes in subjects with chronic myeloid leukemia (CML), with the accent on signaling pathways affected by BCR-ABL oncogene. METHODS The microarray analyses have been performed in circulating CD34(+) cells and granulocytes from peripheral blood of 7 subjects with CML and 7 healthy donors. All studied BCR-ABL positive CML patients were in chronic phase, with a mean value of 2012±SD of CD34(+)cells/μl in peripheral blood. RESULTS The gene expression profile was more prominent in CML CD34(+) cells (3553 genes) compared to granulocytes (2701 genes). The 41 and 39 genes were significantly upregulated in CML CD34(+) cells (HINT1, TXN, SERBP1) and granulocytes, respectively. BCR-ABL oncogene activated PI3K/AKT and MAPK signaling through significant upregulation of PTPN11, CDK4/6, and MYC and reduction of E2F1, KRAS, and NFKBIA gene expression in CD34(+) cells. Among genes linked to the inhibition of cellular proliferation by BCR-ABL inhibitor Imatinib, the FOS and STAT1 demonstrated significantly decreased expression in CML. CONCLUSION The presence of BCR-ABL fusion gene doubled the expression quantity of genes involved in the regulation of cell cycle, proliferation and apoptosis of CD34(+) cells. These results determined the modified genes in PI3K/AKT and MAPK signaling of CML subjects.
Collapse
|
45
|
Meldi K, Qin T, Buchi F, Droin N, Sotzen J, Micol JB, Selimoglu-Buet D, Masala E, Allione B, Gioia D, Poloni A, Lunghi M, Solary E, Abdel-Wahab O, Santini V, Figueroa ME. Specific molecular signatures predict decitabine response in chronic myelomonocytic leukemia. J Clin Invest 2015; 125:1857-72. [PMID: 25822018 DOI: 10.1172/jci78752] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 02/09/2015] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndromes and chronic myelomonocytic leukemia (CMML) are characterized by mutations in genes encoding epigenetic modifiers and aberrant DNA methylation. DNA methyltransferase inhibitors (DMTis) are used to treat these disorders, but response is highly variable, with few means to predict which patients will benefit. Here, we examined baseline differences in mutations, DNA methylation, and gene expression in 40 CMML patients who were responsive or resistant to decitabine (DAC) in order to develop a molecular means of predicting response at diagnosis. While somatic mutations did not differentiate responders from nonresponders, we identified 167 differentially methylated regions (DMRs) of DNA at baseline that distinguished responders from nonresponders using next-generation sequencing. These DMRs were primarily localized to nonpromoter regions and overlapped with distal regulatory enhancers. Using the methylation profiles, we developed an epigenetic classifier that accurately predicted DAC response at the time of diagnosis. Transcriptional analysis revealed differences in gene expression at diagnosis between responders and nonresponders. In responders, the upregulated genes included those that are associated with the cell cycle, potentially contributing to effective DAC incorporation. Treatment with CXCL4 and CXCL7, which were overexpressed in nonresponders, blocked DAC effects in isolated normal CD34+ and primary CMML cells, suggesting that their upregulation contributes to primary DAC resistance.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Azacitidine/therapeutic use
- Bone Marrow/pathology
- DNA Methylation/drug effects
- DNA Mutational Analysis
- DNA, Intergenic/genetics
- Decitabine
- Drug Resistance, Neoplasm/genetics
- Enhancer Elements, Genetic/genetics
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/genetics
- Genes, Neoplasm
- Humans
- Leukemia, Myelomonocytic, Chronic/drug therapy
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/metabolism
- Male
- Middle Aged
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Platelet Factor 4/biosynthesis
- Platelet Factor 4/genetics
- Platelet Factor 4/physiology
- Treatment Outcome
- beta-Thromboglobulin/biosynthesis
- beta-Thromboglobulin/genetics
- beta-Thromboglobulin/physiology
Collapse
|
46
|
Yang XH, Li M, Wang B, Zhu W, Desgardin A, Onel K, de Jong J, Chen J, Chen L, Cunningham JM. Systematic computation with functional gene-sets among leukemic and hematopoietic stem cells reveals a favorable prognostic signature for acute myeloid leukemia. BMC Bioinformatics 2015; 16:97. [PMID: 25887548 PMCID: PMC4376348 DOI: 10.1186/s12859-015-0510-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 02/24/2015] [Indexed: 12/16/2022] Open
Abstract
Background Genes that regulate stem cell function are suspected to exert adverse effects on prognosis in malignancy. However, diverse cancer stem cell signatures are difficult for physicians to interpret and apply clinically. To connect the transcriptome and stem cell biology, with potential clinical applications, we propose a novel computational “gene-to-function, snapshot-to-dynamics, and biology-to-clinic” framework to uncover core functional gene-sets signatures. This framework incorporates three function-centric gene-set analysis strategies: a meta-analysis of both microarray and RNA-seq data, novel dynamic network mechanism (DNM) identification, and a personalized prognostic indicator analysis. This work uses complex disease acute myeloid leukemia (AML) as a research platform. Results We introduced an adjustable “soft threshold” to a functional gene-set algorithm and found that two different analysis methods identified distinct gene-set signatures from the same samples. We identified a 30-gene cluster that characterizes leukemic stem cell (LSC)-depleted cells and a 25-gene cluster that characterizes LSC-enriched cells in parallel; both mark favorable-prognosis in AML. Genes within each signature significantly share common biological processes and/or molecular functions (empirical p = 6e-5 and 0.03 respectively). The 25-gene signature reflects the abnormal development of stem cells in AML, such as AURKA over-expression. We subsequently determined that the clinical relevance of both signatures is independent of known clinical risk classifications in 214 patients with cytogenetically normal AML. We successfully validated the prognosis of both signatures in two independent cohorts of 91 and 242 patients respectively (log-rank p < 0.0015 and 0.05; empirical p < 0.015 and 0.08). Conclusion The proposed algorithms and computational framework will harness systems biology research because they efficiently translate gene-sets (rather than single genes) into biological discoveries about AML and other complex diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12859-015-0510-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinan Holly Yang
- Department of Pediatrics, and Comer Children's Hospital, Section of Hematology/Oncology, The University of Chicago, 900 East 57th Street, KCBD Room 5121, Chicago, Illinois, 60637, USA.
| | - Meiyi Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Bin Wang
- Department of Pediatrics, and Comer Children's Hospital, Section of Hematology/Oncology, The University of Chicago, 900 East 57th Street, KCBD Room 5121, Chicago, Illinois, 60637, USA.
| | - Wanqi Zhu
- Laboratory Schools, The University of Chicago, Chicago, USA.
| | - Aurelie Desgardin
- Department of Pediatrics, and Comer Children's Hospital, Section of Hematology/Oncology, The University of Chicago, 900 East 57th Street, KCBD Room 5121, Chicago, Illinois, 60637, USA.
| | - Kenan Onel
- Department of Pediatrics, and Comer Children's Hospital, Section of Hematology/Oncology, The University of Chicago, 900 East 57th Street, KCBD Room 5121, Chicago, Illinois, 60637, USA.
| | - Jill de Jong
- Department of Pediatrics, and Comer Children's Hospital, Section of Hematology/Oncology, The University of Chicago, 900 East 57th Street, KCBD Room 5121, Chicago, Illinois, 60637, USA.
| | - Jianjun Chen
- Department of Medicine, The University of Chicago, Chicago, USA.
| | - Luonan Chen
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - John M Cunningham
- Department of Pediatrics, and Comer Children's Hospital, Section of Hematology/Oncology, The University of Chicago, 900 East 57th Street, KCBD Room 5121, Chicago, Illinois, 60637, USA.
| |
Collapse
|
47
|
Korthuis PM, Berger G, Bakker B, Rozenveld-Geugien M, Jaques J, de Haan G, Schuringa JJ, Vellenga E, Schepers H. CITED2-mediated human hematopoietic stem cell maintenance is critical for acute myeloid leukemia. Leukemia 2015; 29:625-35. [PMID: 25184385 DOI: 10.1038/leu.2014.259] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/01/2014] [Accepted: 08/22/2014] [Indexed: 02/07/2023]
Abstract
As the transcriptional coactivator CITED2 (CBP/p300-interacting-transactivator-with-an ED-rich-tail 2) can be overexpressed in acute myeloid leukemia (AML) cells, we analyzed the consequences of high CITED2 expression in normal and AML cells. CITED2 overexpression in normal CD34(+) cells resulted in enhanced hematopoietic stem and progenitor cell (HSPC) output in vitro, as well as in better hematopoietic stem cell (HSC) engraftability in NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice. This was because of an enhanced quiescence and maintenance of CD34(+)CD38(-) HSCs, due in part to an increased expression of the cyclin-dependent kinase inhibitor CDKN1A. We demonstrated that PU.1 is a critical regulator of CITED2, as PU.1 repressed CITED2 expression in a DNA methyltransferase 3A/B (DNMT3A/B)-dependent manner in normal CD34(+) cells. CD34(+) cells from a subset of AML patients displayed higher expression levels of CITED2 as compared with normal CD34(+) HSPCs, and knockdown of CITED2 in AML CD34(+) cells led to a loss of long-term expansion, both in vitro and in vivo. The higher CITED2 expression resulted from reduced PU.1 activity and/or dysfunction of mutated DNMT3A/B. Collectively, our data demonstrate that increased CITED2 expression results in better HSC maintenance. In concert with low PU.1 levels, this could result in a perturbed myeloid differentiation program that contributes to leukemia maintenance.
Collapse
MESH Headings
- Animals
- Antigens, CD34/genetics
- Antigens, CD34/metabolism
- Cell Proliferation
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- DNA Methyltransferase 3A
- Female
- Gene Expression Regulation, Leukemic
- Graft Survival
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Mice, Inbred NOD
- Mutation
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transplantation, Heterologous
- DNA Methyltransferase 3B
Collapse
Affiliation(s)
- P M Korthuis
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - G Berger
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - B Bakker
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M Rozenveld-Geugien
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J Jaques
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - G de Haan
- Department of Stem Cell Biology, European Research Institute for the Biology of Aging (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J J Schuringa
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - E Vellenga
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - H Schepers
- Department of Experimental Hematology, Cancer Research Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
48
|
Wang Z, Liu Z, Wu X, Chu S, Wang J, Yuan H, Roth M, Yuan YC, Bhatia R, Chen W. ATRA-induced cellular differentiation and CD38 expression inhibits acquisition of BCR-ABL mutations for CML acquired resistance. PLoS Genet 2014; 10:e1004414. [PMID: 24967705 PMCID: PMC4072521 DOI: 10.1371/journal.pgen.1004414] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/16/2014] [Indexed: 12/30/2022] Open
Abstract
Acquired resistance through genetic mutations is a major obstacle in targeted cancer therapy, but the underlying mechanisms are poorly understood. Here we studied mechanisms of acquired resistance of chronic myeloid leukemia (CML) to tyrosine kinase inhibitors (TKIs) by examining genome-wide gene expression changes in KCL-22 CML cells versus their resistant KCL-22M cells that acquire T315I BCR-ABL mutation following TKI exposure. Although T315I BCR-ABL is sufficient to confer resistance to TKIs in CML cells, surprisingly we found that multiple drug resistance pathways were activated in KCL-22M cells along with reduced expression of a set of myeloid differentiation genes. Forced myeloid differentiation by all-trans-retinoic acid (ATRA) effectively blocked acquisition of BCR-ABL mutations and resistance to the TKIs imatinib, nilotinib or dasatinib in our previously described in vitro models of acquired TKI resistance. ATRA induced robust expression of CD38, a cell surface marker and cellular NADase. High levels of CD38 reduced intracellular nicotinamide adenine dinucleotide (NAD+) levels and blocked acquired resistance by inhibiting the activity of the NAD+-dependent SIRT1 deacetylase that we have previously shown to promote resistance in CML cells by facilitating error-prone DNA damage repair. Consequently, ATRA treatment decreased DNA damage repair and suppressed acquisition of BCR-ABL mutations. This study sheds novel insight into mechanisms underlying acquired resistance in CML, and suggests potential benefit of combining ATRA with TKIs in treating CML, particularly in advanced phases.
Collapse
MESH Headings
- ADP-ribosyl Cyclase 1/biosynthesis
- ADP-ribosyl Cyclase 1/genetics
- Apoptosis/drug effects
- Benzamides/administration & dosage
- Cell Differentiation/drug effects
- Cell Line, Tumor
- DNA Damage/drug effects
- Dasatinib
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Flow Cytometry
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Piperazines/administration & dosage
- Point Mutation
- Protein Kinase Inhibitors/administration & dosage
- Pyrimidines/administration & dosage
- Sirtuin 1/genetics
- Thiazoles/administration & dosage
- Tretinoin/administration & dosage
Collapse
Affiliation(s)
- Zhiqiang Wang
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Zheng Liu
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Xiwei Wu
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Su Chu
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Jinhui Wang
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Hongfeng Yuan
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Mendel Roth
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Yate-Ching Yuan
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - Ravi Bhatia
- Division of Hematopoietic Stem Cell and Leukemia Research, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| | - WenYong Chen
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, United States of America
| |
Collapse
|
49
|
Medina DJ, Abass-Shereef J, Walton K, Goodell L, Aviv H, Strair RK, Budak-Alpdogan T. Cobblestone-area forming cells derived from patients with mantle cell lymphoma are enriched for CD133+ tumor-initiating cells. PLoS One 2014; 9:e91042. [PMID: 24722054 PMCID: PMC3982953 DOI: 10.1371/journal.pone.0091042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/09/2014] [Indexed: 01/07/2023] Open
Abstract
Mantle cell lymphoma (MCL) is associated with a significant risk of therapeutic failure and disease relapse, but the biological origin of relapse is poorly understood. Here, we prospectively identify subpopulations of primary MCL cells with different biologic and immunophenotypic features. Using a simple culture system, we demonstrate that a subset of primary MCL cells co-cultured with either primary human mesenchymal stromal cells (hMSC) or murine MS-5 cells form in cobblestone-areas consisting of cells with a primitive immunophenotype (CD19−CD133+) containing the chromosomal translocation t (11;14)(q13;q32) characteristic of MCL. Limiting dilution serial transplantation experiments utilizing immunodeficient mice revealed that primary MCL engraftment was only observed when either unsorted or CD19−CD133+ cells were utilized. No engraftment was seen using the CD19+CD133− subpopulation. Our results establish that primary CD19−CD133+ MCL cells are a functionally distinct subpopulation of primary MCL cells enriched for MCL-initiating activity in immunodeficient mice. This rare subpopulation of MCL-initiating cells may play an important role in the pathogenesis of MCL.
Collapse
Affiliation(s)
- Daniel J. Medina
- Department of Medicine, Rutgers - The State University of New Jersey, Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
- * E-mail:
| | - Jeneba Abass-Shereef
- Department of Medicine, Rutgers - The State University of New Jersey, Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Kelly Walton
- Department of Medicine, Rutgers - The State University of New Jersey, Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Lauri Goodell
- Department of Pathology, Rutgers - The State University of New Jersey, Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Hana Aviv
- Department of Pathology, Rutgers - The State University of New Jersey, Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Roger K. Strair
- Department of Medicine, Rutgers - The State University of New Jersey, Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| | - Tulin Budak-Alpdogan
- Department of Medicine, Rutgers - The State University of New Jersey, Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, United States of America
| |
Collapse
|
50
|
Wouters J, Stas M, Gremeaux L, Govaere O, Van den broeck A, Maes H, Agostinis P, Roskams T, van den Oord JJ, Vankelecom H. The human melanoma side population displays molecular and functional characteristics of enriched chemoresistance and tumorigenesis. PLoS One 2013; 8:e76550. [PMID: 24098529 PMCID: PMC3789681 DOI: 10.1371/journal.pone.0076550] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/26/2013] [Indexed: 01/10/2023] Open
Abstract
Melanoma remains the most lethal skin cancer, mainly because of high resistance to therapy. Side population (SP) cells are found in many types of cancer and are usually enriched in therapy-resistant as well as tumorigenic cells. Here, we identified a Hoechst dye-effluxing SP in a large series of human melanoma samples representing different progression phases. The SP size did not change with disease stage but was correlated with the prognostic “Breslow’s depth” in the primary (cutaneous) tumors. When injected into immunodeficient mice, the SP generated larger tumors than the bulk “main population” (MP) melanoma cells in two consecutive generations, and showed tumorigenic capacity at lower cell numbers than the MP. In addition, the SP reconstituted the heterogeneous composition of the human A375 melanoma cell line, and its clonogenic activity was 2.5-fold higher than that of the MP. Gene-expression analysis revealed upregulated expression in the melanoma SP (versus the MP) of genes associated with chemoresistance and anti-apoptosis. Consistent with these molecular characteristics, the SP increased in proportion when A375 cells were exposed to the melanoma standard chemotherapeutic agent dacarbazine, and to the aggravating condition of hypoxia. In addition, the SP showed enhanced expression of genes related to cell invasion and migration, as well as to putative (melanoma) cancer stem cells (CSC) including ABCB1 and JARID1B. ABCB1 immunoreactivity was detected in a number of tumor cells in human melanomas, and in particular in clusters at the invasive front of the primary tumors. Together, our findings support that the human melanoma SP is enriched in tumorigenic and chemoresistant capacity, considered key characteristics of CSC. The melanoma SP may therefore represent an interesting therapeutic target.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Dacarbazine/pharmacology
- Disease Progression
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Jumonji Domain-Containing Histone Demethylases/genetics
- Jumonji Domain-Containing Histone Demethylases/metabolism
- Male
- Melanoma/genetics
- Melanoma/metabolism
- Melanoma/pathology
- Mice
- Mice, SCID
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Staging
- Neoplasm Transplantation
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Side-Population Cells/drug effects
- Side-Population Cells/metabolism
- Side-Population Cells/pathology
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Tumor Burden
Collapse
Affiliation(s)
- Jasper Wouters
- Translational Cell & Tissue Research, Dept. of Imaging and Pathology, University of Leuven (KU Leuven), Leuven, Belgium
- Research Unit of Stem Cell Research (Lab. of Tissue Plasticity), Cluster Stem Cell Biology and Embryology, Dept. of Development and Regeneration, University of Leuven (KU Leuven), Leuven, Belgium
| | - Marguerite Stas
- Surgical Oncology, Dept. of Oncology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Lies Gremeaux
- Research Unit of Stem Cell Research (Lab. of Tissue Plasticity), Cluster Stem Cell Biology and Embryology, Dept. of Development and Regeneration, University of Leuven (KU Leuven), Leuven, Belgium
| | - Olivier Govaere
- Translational Cell & Tissue Research, Dept. of Imaging and Pathology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Anke Van den broeck
- Research Unit of Stem Cell Research (Lab. of Tissue Plasticity), Cluster Stem Cell Biology and Embryology, Dept. of Development and Regeneration, University of Leuven (KU Leuven), Leuven, Belgium
- Abdominal Surgical Oncology, Dept. of Oncology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Hannelore Maes
- Lab. of Cell Death Research & Therapy, Dept. of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Patrizia Agostinis
- Lab. of Cell Death Research & Therapy, Dept. of Cellular and Molecular Medicine, University of Leuven (KU Leuven), Leuven, Belgium
| | - Tania Roskams
- Translational Cell & Tissue Research, Dept. of Imaging and Pathology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Joost J. van den Oord
- Translational Cell & Tissue Research, Dept. of Imaging and Pathology, University of Leuven (KU Leuven), Leuven, Belgium
| | - Hugo Vankelecom
- Research Unit of Stem Cell Research (Lab. of Tissue Plasticity), Cluster Stem Cell Biology and Embryology, Dept. of Development and Regeneration, University of Leuven (KU Leuven), Leuven, Belgium
- * E-mail:
| |
Collapse
|