1
|
Kim IK, Park JH, Kim B, Hwang KC, Song BW. Recent advances in stem cell therapy for neurodegenerative disease: Three dimensional tracing and its emerging use. World J Stem Cells 2021; 13:1215-1230. [PMID: 34630859 PMCID: PMC8474717 DOI: 10.4252/wjsc.v13.i9.1215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/20/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative disease is a brain disorder caused by the loss of structure and function of neurons that lowers the quality of human life. Apart from the limited potential for endogenous regeneration, stem cell-based therapies hold considerable promise for maintaining homeostatic tissue regeneration and enhancing plasticity. Despite many studies, there remains insufficient evidence for stem cell tracing and its correlation with endogenous neural cells in brain tissue with three-dimensional structures. Recent advancements in tissue optical clearing techniques have been developed to overcome the existing shortcomings of cross-sectional tissue analysis in thick and complex tissues. This review focuses on recent progress of stem cell treatments to improve neurodegenerative disease, and introduces tissue optical clearing techniques that can implement a three-dimensional image as a proof of concept. This review provides a more comprehensive understanding of stem cell tracing that will play an important role in evaluating therapeutic efficacy and cellular interrelationship for regeneration in neurodegenerative diseases.
Collapse
Affiliation(s)
- Il-Kwon Kim
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon Metropolitan City 22711, South Korea
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangwon-do 25601, South Korea
| | - Jun-Hee Park
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon Metropolitan City 22711, South Korea
| | - Bomi Kim
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon Metropolitan City 22711, South Korea
| | - Ki-Chul Hwang
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon Metropolitan City 22711, South Korea
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangwon-do 25601, South Korea
| | - Byeong-Wook Song
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon Metropolitan City 22711, South Korea
- Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University, Gangwon-do 25601, South Korea.
| |
Collapse
|
2
|
Zito G, Coppola A, Pizzolanti G, Giordano C. Heterogeneity of Stem Cells in the Thyroid. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:81-93. [PMID: 31487020 DOI: 10.1007/978-3-030-24108-7_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Identification of thyroid stem cells in the past few years has made important contributions to our understanding of the cellular and molecular mechanisms that induce tissue regeneration and repair. Embryonic stem (ES) cells and induced-pluripotent stem cells have been used to establish reliable protocols to obtain mature thyrocytes and functional follicles for the treatment of thyroid diseases in mice. In addition, the discovery of resident thyroid progenitor cells, along with other sources of stem cells, has defined in detail the mechanisms responsible for tissue repair upon moderate or severe organ injury.In this chapter, we highlight in detail the current state of research on thyroid stem cells by focusing on (1) the description of the first experiments performed to obtain thyroid follicles from embryonic stem cells, (2) the identification of resident stem cells in the thyroid gland, and (3) the definition of the current translational in vivo and in vitro models used for thyroid tissue repair and regeneration.
Collapse
Affiliation(s)
- Giovanni Zito
- Biomedical Department of Internal and Specialist Medicine (DI.BI.MIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, University of Palermo, Palermo, Italy.,Advanced Technologies Network (ATeN) Center, Laboratory of Stem Cells and Cellular Cultures, University of Palermo, Palermo, Italy
| | - Antonina Coppola
- Biomedical Department of Internal and Specialist Medicine (DI.BI.MIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, University of Palermo, Palermo, Italy.,Advanced Technologies Network (ATeN) Center, Laboratory of Stem Cells and Cellular Cultures, University of Palermo, Palermo, Italy
| | - Giuseppe Pizzolanti
- Biomedical Department of Internal and Specialist Medicine (DI.BI.MIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, University of Palermo, Palermo, Italy.,Advanced Technologies Network (ATeN) Center, Laboratory of Stem Cells and Cellular Cultures, University of Palermo, Palermo, Italy
| | - Carla Giordano
- Biomedical Department of Internal and Specialist Medicine (DI.BI.MIS), Laboratory of Regenerative Medicine, Section of Endocrinology, Diabetology and Metabolism, University of Palermo, Palermo, Italy. .,Advanced Technologies Network (ATeN) Center, Laboratory of Stem Cells and Cellular Cultures, University of Palermo, Palermo, Italy.
| |
Collapse
|
3
|
Treadmill Exercise Attenuates L-DOPA-Induced Dyskinesia and Increases Striatal Levels of Glial Cell-Derived Neurotrophic Factor (GDNF) in Hemiparkinsonian Mice. Mol Neurobiol 2018; 56:2944-2951. [PMID: 30073506 DOI: 10.1007/s12035-018-1278-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/23/2018] [Indexed: 12/27/2022]
Abstract
Exercise can act as a disease-modifying agent in Parkinson's disease (PD), and we have previously demonstrated that voluntary exercise in running wheels during 2 weeks normalizes striatopallidal dopaminergic signaling and prevents the development of L-DOPA-induced dyskinesia (LID) in C57BL/6 mice. We now tested whether LID in Swiss albino mice could be attenuated by treadmill-controlled exercise alone or in combination with the reference antidyskinetic drug amantadine. The daily intraperitoneal (i.p.) treatment with three different doses of L-DOPA/benserazide (30/12.5, 50/25, or 70/35 mg/kg) during 3 weeks induced increasing levels of LID scores in hemiparkinsonian Swiss albino mice previously lesioned with a unilateral intrastriatal injection of 6-hydroxydopamine (6-OHDA, 10 μg). Then, we addressed the antidyskinetic effects of treadmill-controlled exercise by comparing LID, induced by L-DOPA/benserazide (50/25 mg/kg, i.p.) during 4 weeks, in sedentary and daily exercised mice. Exercise reduced LID and improved motor skills of dyskinetic mice, as indicated by decreased contralateral bias, increase in maximal load test, and latency to fall in rotarod. The antidyskinetic effect of amantadine (60 mg/kg, i.p.) was only observed in sedentary mice, indicating the absence of synergistic antidyskinetic effect of the combination of treadmill exercise plus amantadine. Finally, Western blot analysis unraveled an ability of exercise to increase the striatal immunocontent of glial cell-derived neurotrophic factor (GDNF), apart from normalizing striatal levels of tyrosine hydroxylase. These findings show that controlled treadmill exercise attenuates LID and provide the first indication that the antidyskinetic effects of treadmill exercise may involve increased striatal GDNF levels.
Collapse
|
4
|
Ouji Y, Sakagami M, Omori H, Higashiyama S, Kawai N, Kitahara T, Wanaka A, Yoshikawa M. Efficient induction of inner ear hair cell-like cells from mouse ES cells using combination of Math1 transfection and conditioned medium from ST2 stromal cells. Stem Cell Res 2017; 23:50-56. [PMID: 28689068 DOI: 10.1016/j.scr.2017.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/28/2017] [Accepted: 06/29/2017] [Indexed: 12/22/2022] Open
Abstract
We sought to establish a more efficient technique for induction of inner ear hair cell-like cells (HC-like cells) from embryonic stem cells (ES cells) by using a combination of two previously reported methods; ST2 stromal cell-conditioned medium, known to be favorable for HC-like cell induction (HIST2 method), and ES cells with transfer of the Math1 gene (Math1-ES cells). Math1-ES cells carrying Tet-inducible Math1 were cultured for 14days with doxycycline in conditioned medium from cultures of ST2 stromal cells following formation of 4-day embryoid bodies (EBs). Although each of the previously introduced methods have been reported to induce approximately 20% HC-like cells and 10% HC-like cells in their respective populations in EB outgrowths at the end of the culture periods, the present combined method was able to generate approximately 30% HC-like cells expressing HC-related markers (myosin6, myosin7a, calretinin, α9AchR, Brn3c), which showed remarkable formation of stereocilia-like structures. Analysis of expressions of marker genes specific for cochlear (Lmod3, Emcn) and vestibular (Dnah5, Ptgds) cells indicated that our HIST2 method may lead to induction of cochlear- and vestibular-type cells. In addition, continuous Math1 induction by doxycycline without use of the HIST2 method preferentially induced cochlear markers with negligible effects on vestibular marker induction.
Collapse
Affiliation(s)
- Yukiteru Ouji
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan.
| | - Masaharu Sakagami
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan; Department of Otolaryngology - Head and Neck Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroko Omori
- Core Instrumentation Facility, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Shinji Higashiyama
- Core Instrumentation Facility, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Central Instrumentation Laboratory, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Norikazu Kawai
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Tadashi Kitahara
- Department of Otolaryngology - Head and Neck Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Akio Wanaka
- Department of Second Anatomy, Nara Medical University, Kashihara, Nara, Japan
| | - Masahide Yoshikawa
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan.
| |
Collapse
|
5
|
Freed WJ. Article Commentary: A Perspective on Transplantation Therapy and Stem Cells for Parkinson's Disease. Cell Transplant 2017; 13:319-327. [DOI: 10.3727/000000004783984025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- William J. Freed
- Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, 21224
| |
Collapse
|
6
|
Alizadeh R, Hassanzadeh G, Joghataei MT, Soleimani M, Moradi F, Mohammadpour S, Ghorbani J, Safavi A, Sarbishegi M, Pirhajati Mahabadi V, Alizadeh L, Hadjighassem M. In vitro differentiation of neural stem cells derived from human olfactory bulb into dopaminergic‐like neurons. Eur J Neurosci 2017; 45:773-784. [DOI: 10.1111/ejn.13504] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/25/2022]
Abstract
AbstractThis study describes a new accessible source of neuronal stem cells that can be used in Parkinson's disease cell transplant. The human olfactory bulb contains neural stem cells (NSCs) that are responsible for neurogenesis in the brain and the replacement of damaged cellular components throughout life. NSCs are capable of differentiating into neuronal and glial cells. We isolated NSCs from the olfactory bulb of brain‐death donors and differentiated them into dopaminergic neurons. The olfactory bulb tissues obtained were cultured in Dulbecco's modified Eagle's medium/nutrient mixture F12, B27 supplemented with basic fibroblast growth factor, epidermal growth factor and leukemia inhibitory factor. The NSCs and proliferation markers were assessed. The multipotentiality of olfactory bulb NSCs was demonstrated by their capacity to differentiate into neurons, oligodendrocytes and astrocytes. To generate dopaminergic neurons, olfactory bulb NSCs were differentiated in neurobasal medium, supplemented with B27, and treated with sonic hedgehog, fibroblast growth factor 8 and glial cell‐derived neurotrophic factor from the 7th to the 21st day, followed by detection of dopaminergic neuronal markers including tyrosine hydroxylase and aromatic l‐amino acid decarboxylase. The cells were expanded, established in continuous cell lines and differentiated into the two classical neuronal phenotypes. The percentage of co‐positive cells (microtubule‐associated protein 2 and tyrosine hydroxylase; aromatic l‐amino acid decarboxylase and tyrosine hydroxylase) in the treated cells was significantly higher than in the untreated cells. These results illustrate the existence of multipotent NSCs in the adult human olfactory bulb that are capable of differentiating toward putative dopaminergic neurons in the presence of trophic factors. Taken together, our data encourage further investigations of the possible use of olfactory bulb NSCs as a promising cell‐based therapeutic strategy for Parkinson's disease.
Collapse
Affiliation(s)
- Rafieh Alizadeh
- Cellular and Molecular Research Center School of Medicine Iran University of Medical Sciences Tehran Iran
- ENT and Head & Neck Research Center and Department Hazrat Rasoul Akram Hospital Iran University of Medical Sciences (IUMS) Tehran Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy School of Medicine Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center School of Medicine Iran University of Medical Sciences Tehran Iran
- Department of Anatomy School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center School of Medicine Iran University of Medical Sciences Tehran Iran
- Department of Anatomy School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Fatemeh Moradi
- Cellular and Molecular Research Center School of Medicine Iran University of Medical Sciences Tehran Iran
- Department of Anatomy School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Shahram Mohammadpour
- Cellular and Molecular Research Center School of Medicine Iran University of Medical Sciences Tehran Iran
- Department of Anatomy School of Medicine Iran University of Medical Sciences Tehran Iran
- Department of Anatomy School of Medicine Ilam University of Medical Sciences Ilam Iran
| | - Jahangir Ghorbani
- Organ Procurement and Transplant Unit (OPTU) Faculty of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Ali Safavi
- Organ Procurement and Transplant Unit (OPTU) Faculty of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Maryam Sarbishegi
- Department of Anatomy School of Medicine Zahedan University of Medical Sciences Zahedan Iran
| | - Vahid Pirhajati Mahabadi
- ENT and Head & Neck Research Center and Department Hazrat Rasoul Akram Hospital Iran University of Medical Sciences (IUMS) Tehran Iran
- Department of Anatomy School of Medicine Iran University of Medical Sciences Tehran Iran
| | - Leila Alizadeh
- Shefa Neuroscience Research Center Khatam‐Alanbia Hospital, Department of Neuroscience, School of Advanced Technologies in Medicine Tehran Iran
| | - Mahmoudreza Hadjighassem
- Brain and Spinal Cord Injury Research Center Imam Khomeinin Hospital Blv Keshavarz, Tehran University of Medical Sciences Tehran 1419733141 Iran
- School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
7
|
Abstract
Regenerative medicine with stem cells holds great hope for the treatment of degenerative disease. The medical potential of embryonic stem cells remains relatively untapped at this point, and significant scientific hurdles remain to be overcome before these cells might be considered safe and effective for uses in patients. Meanwhile, adult stem cells have begun to show significant capabilities of their own in repair of damaged tissues, in both animal models and early patient trials.
Collapse
|
8
|
Yoshikawa M, Ouji Y. Induction of Inner Ear Hair Cells from Mouse Embryonic Stem Cells In Vitro. Methods Mol Biol 2016; 1516:257-267. [PMID: 27032944 DOI: 10.1007/7651_2016_328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Inner ear hair cells (HCs) function as the primary transducers for perception of sound and balance, while a defect in their formation or their loss results in sensory deficits. In mammals, once HCs are lost, they are not regenerated, and thus, various medical strategies have been proposed for their reproduction. Although embryonic stem (ES) cells are a promising source for cell therapy, little is known about efficient generation of hair cell-like cells (HCLs) from mouse ES cells. In the present protocol, we describe a simple method for obtaining ES-derived murine HCLs (HIST2 method).
Collapse
Affiliation(s)
- Masahide Yoshikawa
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan.
| | - Yukiteru Ouji
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan.
| |
Collapse
|
9
|
Effenberg A, Stanslowsky N, Klein A, Wesemann M, Haase A, Martin U, Dengler R, Grothe C, Ratzka A, Wegner F. Striatal Transplantation of Human Dopaminergic Neurons Differentiated From Induced Pluripotent Stem Cells Derived From Umbilical Cord Blood Using Lentiviral Reprogramming. Cell Transplant 2014; 24:2099-112. [PMID: 25420114 DOI: 10.3727/096368914x685591] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are promising sources for regenerative therapies like the replacement of dopaminergic neurons in Parkinson's disease. They offer an unlimited cell source that can be standardized and optimized to produce applicable cell populations to gain maximal functional recovery. In the present study, human cord blood-derived iPSCs (hCBiPSCs) were differentiated into dopaminergic neurons utilizing two different in vitro protocols for neural induction: (protocol I) by fibroblast growth factor (FGF-2) signaling, (protocol II) by bone morphogenetic protein (BMP)/transforming growth factor (TGF-β) inhibition. After maturation, in vitro increased numbers of tyrosine hydroxylase (TH)-positive neurons (7.4% of total cells) were observed by protocol II compared to 3.5% in protocol I. Furthermore, 3 weeks after transplantation in hemiparkinsonian rats in vivo, a reduced number of undifferentiated proliferating cells was achieved with protocol II. In contrast, proliferation still occurred in protocol I-derived grafts, resulting in tumor-like growth in two out of four animals 3 weeks after transplantation. Protocol II, however, did not increase the number of TH(+) cells in the striatal grafts of hemiparkinsonian rats. In conclusion, BMP/TGF-β inhibition was more effective than FGF-2 signaling with regard to dopaminergic induction of hCBiPSCs in vitro and prevented graft overgrowth in vivo.
Collapse
Affiliation(s)
- Anna Effenberg
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The aim of stem cell therapy for Parkinson's disease is to reconstruct nigro-striatal neuronal pathways using endogenous neural stem/precursor cells or grafted dopaminergic neurons. As an alternative, transplantation of stem cell-derived dopaminergic neurons into the striatum has been attempted, with the aim of stimulating local synapse formation and/or release of dopamine and cytokines from grafted cells. Candidate stem cells include neural stem/precursor cells, embryonic stem cells and other stem/precursor cells. Among these, embryonic stem cells are pluripotent cells that proliferate extensively, making them a good potential donor source for transplantation. However, tumor formation and ethical issues present major problems for embryonic stem cell therapy. This review describes the current status of stem cell therapy for Parkinson's disease, as well as future research approaches from a clinical perspective.
Collapse
Affiliation(s)
- Jun Takahashi
- Kyoto University, Department of Biological Repair, Institute for Frontier Medical Sciences, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
11
|
Ouji Y, Ishizaka S, Nakamura-Uchiyama F, Wanaka A, Yoshikawa M. Induction of inner ear hair cell-like cells from Math1-transfected mouse ES cells. Cell Death Dis 2013; 4:e700. [PMID: 23828563 PMCID: PMC3730404 DOI: 10.1038/cddis.2013.230] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 05/10/2013] [Accepted: 06/03/2013] [Indexed: 12/31/2022]
Abstract
Math1, a basic helix-loop-helix transcription factor homolog of the Drosophila atonal gene, is considered to be a key factor for induction of sensory hair cells (HCs) during development of the organ of Corti or cochlea. Although embryonic stem (ES) cells are able to produce HC-like cells, the role of Math1 in induction of those cells has not been thoroughly elucidated. In the present study, we introduced Math1 into ES cells in order to achieve efficient generation of HC-like cells. ES cells carrying Tet-inducible Math1, Math1-ES cells, were generated using a Tet-On gene expression system. Embryoid bodies (EBs) formed in the absence of doxycycline (Dox) for 4 days were allowed to grow for an additional 14 days in the dishes in the presence of 400 μg/ml of Dox. At the end of those 14-day cultures, approximately 10% of the cells in EB outgrowths expressed the HC-related markers myosin6, myosin7a, calretinin, α9AchR, and Brn3c (also known as Pou4f3) and showed formation of stereocilia-like structures, whereas few cells in EB outgrowths grown without Dox showed those markers. Reporter assays of Math1-ES cells using a Brn3c-promoter plasmid demonstrated positive regulation of Brn3c by Math1. Furthermore, such HC-related marker-positive cells derived from Math1-ES cells were found to be incorporated in the developing inner ear after transplantation into chick embryos. Math1-ES cells are considered to be an efficient source of ES-derived HC-like cells, and Math1 may be an important factor for induction of HC-like cells from differentiating ES cells.
Collapse
Affiliation(s)
- Y Ouji
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan.
| | | | | | | | | |
Collapse
|
12
|
Aguiar A, Moreira E, Hoeller A, Oliveira P, Córdova F, Glaser V, Walz R, Cunha R, Leal R, Latini A, Prediger R. Exercise attenuates levodopa-induced dyskinesia in 6-hydroxydopamine-lesioned mice. Neuroscience 2013; 243:46-53. [DOI: 10.1016/j.neuroscience.2013.03.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/02/2013] [Accepted: 03/23/2013] [Indexed: 11/15/2022]
|
13
|
Shukla A, Mohapatra TM, Agrawal AK, Parmar D, Seth K. Salsolinol induced apoptotic changes in neural stem cells: amelioration by neurotrophin support. Neurotoxicology 2013; 35:50-61. [PMID: 23261589 DOI: 10.1016/j.neuro.2012.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 12/14/2012] [Accepted: 12/14/2012] [Indexed: 11/20/2022]
Abstract
Salsolinol (SAL), a catechol isoquinoline has invited considerable attention due to its structural similarity with dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Its high endogenous presence in Parkinsonian brain implicated its possible association with the disease process. SAL is also present in alcohol beverages and certain food materials and can get access to brain especially in conditions of immature or impaired BBB. Besides this, the effect of SAL on neural stem cells (NSCs) which are potential candidates for adult neurogenesis and transplantation mediated rejuvenating attempts for Parkinson's disease (PD) brain has not been known so far. NSCs in both the cases have to overcome suppressive cues of diseased brain for their survival and function. In this study we explored the toxicity of SAL toward NSCs focusing on apoptosis and status of PI3K survival signaling. NSCs cultured from embryonic day 11 rat fetal brain including those differentiated to TH(+ve) colonies, when challenged with SAL (1-100μM), elicited a concentration and time dependent cell death/loss of mitochondrial viability. 10μM SAL on which significant mitochondrial impairment initiated was further used to study mechanism of toxicity. Morphological impairment, enhanced TUNEL positivity, cleaved caspase-3 and decreased Bcl-2:Bax suggested apoptosis. Sal toxicity coincided with reduced pAkt level and its downstream effectors: pCREB, pGSK-3β, Bcl-2 and neurotrophins GDNF, BDNF suggesting repressed PI3K/Akt signaling. Multiple neurotrophic factor support in the form of Olfactory Ensheathing Cell's Conditioned Media (OEC CM) potentially protected NSCs against SAL through activating PI3K/Akt pathway. This was confirmed on adding LY294002 the PI3K inhibitor which abolished the protection. We inferred that SAL exerts substantial toxicity toward NSCs. These findings will lead to better understanding of endogenous threats that might affect the fate of transplanted NSCs and their probable antidotes.
Collapse
Affiliation(s)
- A Shukla
- Indian Institute of Toxicology Research (CSIR), Developmental Toxicology Division, Mahatma Gandhi Marg, Post Box 80, Lucknow 226 001, India; Department of Microbiology, IMS, Banaras Hindu University, Varanasi 221 005, India
| | | | | | | | | |
Collapse
|
14
|
Ogura A, Morizane A, Nakajima Y, Miyamoto S, Takahashi J. γ-secretase inhibitors prevent overgrowth of transplanted neural progenitors derived from human-induced pluripotent stem cells. Stem Cells Dev 2012; 22:374-82. [PMID: 23020188 DOI: 10.1089/scd.2012.0198] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although transplanted pluripotent stem cell-derived neurons can contribute to functional recovery in animal models of Parkinson's disease, the risk of tumor formation hinders clinical applications of this approach. Removing undifferentiated cells from the donor population is critical to reduce tumorigenesis. Moreover, immature neural progenitors in transplants can proliferate unpredictably, resulting in neural overgrowth and long-term risks of compressing the surrounding host tissue. Because Notch signaling plays a role in maintaining the multipotency and proliferative capacity of neural progenitors, we used γ-secretase inhibitors (GSIs) to dampen Notch signaling in human-induced pluripotent stem cell-derived neural progenitors before transplantation and examined the effects on the growth of proliferative grafts. We observed a marked reduction in the percentage of dividing cells and increased neuronal maturation in GSI-treated samples in vitro. Next, grafts were transplanted into the striata of nonobese diabetic/severe combined immune deficiency mice. Histological analyses performed 8 weeks after the operation showed that grafts pretreated with GSIs--N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester or compound E--were significantly smaller than control samples. Immunohistologic analyses revealed that briefly treating the donor population with GSIs not only reduced the graft volume, but also altered the composition of the graft; control grafts showed neural overgrowth with numerous PAX6+ and Ki67+ neural rosettes, whereas GSI-treated samples developed into mature neuronal grafts containing primarily Tubβ3+ cells. These results suggest that pretreating potentially proliferative progenitors with GSIs may improve the safety of cell replacement therapies using pluripotent stem cells.
Collapse
Affiliation(s)
- Aya Ogura
- Department of Biological Repair, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
15
|
Akanuma H, Qin XY, Nagano R, Win-Shwe TT, Imanishi S, Zaha H, Yoshinaga J, Fukuda T, Ohsako S, Sone H. Identification of Stage-Specific Gene Expression Signatures in Response to Retinoic Acid during the Neural Differentiation of Mouse Embryonic Stem Cells. Front Genet 2012; 3:141. [PMID: 22891073 PMCID: PMC3413097 DOI: 10.3389/fgene.2012.00141] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/12/2012] [Indexed: 01/23/2023] Open
Abstract
We have previously established a protocol for the neural differentiation of mouse embryonic stem cells (mESCs) as an efficient tool to evaluate the neurodevelopmental toxicity of environmental chemicals. Here, we described a multivariate bioinformatic approach to identify the stage-specific gene sets associated with neural differentiation of mESCs. We exposed mESCs (B6G-2 cells) to 10−8 or 10−7 M of retinoic acid (RA) for 4 days during embryoid body formation and then performed morphological analysis on day of differentiation (DoD) 8 and 36, or genomic microarray analysis on DoD 0, 2, 8, and 36. Three gene sets, namely a literature-based gene set (set 1), an analysis-based gene set (set 2) using self-organizing map and principal component analysis, and an enrichment gene set (set 3), were selected by the combined use of knowledge from literatures and gene information selected from the microarray data. A gene network analysis for each gene set was then performed using Bayesian statistics to identify stage-specific gene expression signatures in response to RA during mESC neural differentiation. Our results showed that RA significantly increased the size of neurosphere, neuronal cells, and glial cells on DoD 36. In addition, the gene network analysis showed that glial fibrillary acidic protein, a neural marker, remarkably up-regulates the other genes in gene set 1 and 3, and Gbx2, a neural development marker, significantly up-regulates the other genes in gene set 2 on DoD 36 in the presence of RA. These findings suggest that our protocol for identification of developmental stage-specific gene expression and interaction is a useful method for the screening of environmental chemical toxicity during neurodevelopmental periods.
Collapse
Affiliation(s)
- Hiromi Akanuma
- Health Risk Research Section, Center for Environmental Risk Research, National Institute for Environmental Studies Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Nefzger CM, Su CT, Fabb SA, Hartley BJ, Beh SJ, Zeng WR, Haynes JM, Pouton CW. Lmx1a Allows Context-Specific Isolation of Progenitors of GABAergic or Dopaminergic Neurons During Neural Differentiation of Embryonic Stem Cells. Stem Cells 2012; 30:1349-61. [DOI: 10.1002/stem.1105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
In vitro differentiation of mouse embryonic stem cells into inner ear hair cell-like cells using stromal cell conditioned medium. Cell Death Dis 2012; 3:e314. [PMID: 22622133 PMCID: PMC3366087 DOI: 10.1038/cddis.2012.56] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hearing loss is mainly caused by loss of sensory hair cells (HCs) in the organ of Corti or cochlea. Although embryonic stem (ES) cells are a promising source for cell therapy, little is known about the efficient generation of HC-like cells from ES cells. In the present study, we developed a single-medium culture method for growing embryoid bodies (EBs), in which conditioned medium (CM) from cultures of ST2 stromal cells (ST2-CM) was used for 14-day cultures of 4-day EBs. At the end of the 14-day cultures, up to 20% of the cells in EB outgrowths expressed HC-related markers, including Math1 (also known as Atoh1), myosin6, myosin7a, calretinin, α9AchR and Brn3c (also known as Pou4f3), and also showed formation of stereocilia-like structures. Further, we found that these cells were incorporated into the developing inner ear after transplantation into chick embryos. The present inner ear HC induction method using ST2-CM (HIST2 method) is quite simple and highly efficient to obtain ES-derived HC-like cells with a relatively short cultivation time.
Collapse
|
18
|
Watmuff B, Pouton CW, Haynes JM. In vitro maturation of dopaminergic neurons derived from mouse embryonic stem cells: implications for transplantation. PLoS One 2012; 7:e31999. [PMID: 22384125 PMCID: PMC3285205 DOI: 10.1371/journal.pone.0031999] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/17/2012] [Indexed: 11/18/2022] Open
Abstract
The obvious motor symptoms of Parkinson's disease result from a loss of dopaminergic neurons from the substantia nigra. Embryonic stem cell-derived neural progenitor or precursor cells, adult neurons and fetal midbrain tissue have all been used to replace dying dopaminergic neurons. Transplanted cell survival is compromised by factors relating to the new environment, for example; hypoxia, mechanical trauma and excitatory amino acid toxicity. In this study we investigate, using live-cell fluorescence Ca2+ and Cl− imaging, the functional properties of catecholaminergic neurons as they mature. We also investigate whether GABA has the capacity to act as a neurotoxin early in the development of these neurons. From day 13 to day 21 of differentiation [Cl−]i progressively dropped in tyrosine hydroxylase positive (TH+) neurons from 56.0 (95% confidence interval, 55.1, 56.9) mM to 6.9 (6.8, 7.1) mM. At days 13 and 15 TH+ neurons responded to GABA (30 µM) with reductions in intracellular Cl− ([Cl−]i); from day 21 the majority of neurons responded to GABA (30 µM) with elevations of [Cl−]i. As [Cl−]i reduced, the ability of GABA (30 µM) to elevate intracellular Ca2+ ([Ca2+]i) did also. At day 13 of differentiation a three hour exposure to GABA (30 µM) or L-glutamate (30 µM) increased the number of midbrain dopaminergic (TH+ and Pitx3+) neurons labeled with the membrane-impermeable nuclear dye TOPRO-3. By day 23 cultures were resistant to the effects of both GABA and L-glutamate. We believe that neuronal susceptibility to amino acid excitotoxicity is dependent upon neuronal maturity, and this should be considered when isolating cells for transplantation studies.
Collapse
Affiliation(s)
| | - Colin W. Pouton
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- * E-mail: (CWP); (JMH)
| | - John M. Haynes
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- * E-mail: (CWP); (JMH)
| |
Collapse
|
19
|
Ratzka A, Kalve I, Özer M, Nobre A, Wesemann M, Jungnickel J, Köster-Patzlaff C, Baron O, Grothe C. The colayer method as an efficient way to genetically modify mesencephalic progenitor cells transplanted into 6-OHDA rat model of Parkinson's disease. Cell Transplant 2011; 21:749-62. [PMID: 21929871 DOI: 10.3727/096368911x586774] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Exogenous cell replacement represents a potent treatment option for Parkinson's disease. However, the low survival rate of transplanted dopaminergic neurons (DA) calls for methodological improvements. Here we evaluated a method to combine transient genetic modification of neuronal progenitor cells with an optimized cell culture protocol prior to intrastriatal transplantation into 6-hydroxydopamine (6-OHDA) unilateral lesioned rats. Plasmid-based delivery of brain-derived neurotrophic factor (BDNF) increases the number of DA neurons, identified by tyrosine hydroxylase immunoreactivity (TH-ir), by 25% in vitro, compared to enhanced green fluorescence protein (EGFP)-transfected controls. However, the nucleofection itself, especially the cell detachment and reseeding procedure, decreases the TH-ir neuron number to 40% compared with nontransfected control cultures. To circumvent this drawback we established the colayer method, which contains a mix of nucleofected cells reseeded on top of an adherent sister culture in a ratio 1:3. In this setup TH-ir neuron number remains high and could be further increased by 25% after BDNF transfection. Comparison of both cell culture procedures (standard and colayer) after intrastriatal transplantation revealed a similar DA neuron survival as seen in vitro. Two weeks after grafting TH-ir neuron number was strongly reduced in animals receiving the standard EGFP-transfected cells (271 ± 62) compared to 1,723 ± 199 TH-ir neurons in the colayer group. In contrast to the in vitro results, no differences in the number of grafted TH-ir neurons were observed between BDNF, EGFP, and nontransfected colayer groups, neither 2 nor 13 weeks after transplantation. Likewise, amphetamine and apomorphine-induced rotational behavior improved similarly over time in all groups. Nevertheless, the colayer protocol provides an efficient way for neurotrophic factor release by transplanted progenitor cells and will help to study the effects of candidate factors on survival and integration of transplanted DA neurons.
Collapse
Affiliation(s)
- Andreas Ratzka
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Parkinson's disease (PD) is a neurological movement disorder primarily resulting from damage to the nigrostriatal dopaminergic pathway. To elucidate the pathogenesis, mechanisms of cell death, and to evaluate therapeutic strategies for PD, numerous animal models have been developed. Understanding the strengths and limitations of these models can significantly impact the choice of model, experimental design, and data interpretation. The primary objectives of this article are twofold: First, to assist new investigators who are contemplating embarking on PD research to navigate through the available animal models. Emphasis will be placed on common neurotoxic murine models in which toxic molecules are used to lesion the nigrostriatal dopaminergic system. And second, to provide an overview of basic technical requirements for assessing the pathology, structure, and function of the nigrostriatal pathway.
Collapse
Affiliation(s)
- Kim Tieu
- Department of Neurology in the Center for Translational Neuromedicine, University of Rochester, Rochester, New York 14625, USA.
| |
Collapse
|
21
|
Park KD, Seong SK, Park YM, Choi Y, Park JH, Lee SH, Baek DH, Kang JW, Choi KS, Park SN, Kim DS, Kim SH, Kim HS. Telomerase reverse transcriptase related with telomerase activity regulates tumorigenic potential of mouse embryonic stem cells. Stem Cells Dev 2010; 20:149-57. [PMID: 20486780 DOI: 10.1089/scd.2009.0523] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Embryonic stem cell (ESC) research gave rise to the possibility that stem cell therapy could be used in the treatment of incurable diseases such as neurodegenerative disorders. However, problems related to the tumorigenicity of undifferentiated ESCs must be resolved before such cells can be used in the application of cell replacement therapies. In the present study, we attempted to determine biomarkers that predicted tumor formation of undifferentiated ESCs in vivo. We differentiated mouse ESCs (R1 cell line) into neural lineage using a 5-step method, and evaluated the expression of oncogenes (p53, Bax, c-myc, Bcl2, K-ras), telomerase-related genes (TERT, TRF), and telomerase activity and telomere length during differentiation of ESCs. The expression of oncogenes did not show a significant change during differentiation steps, but the expression of telomerase reverse transcriptase (TERT) and telomerase activity correlated with mouse ESCs differentiation. To investigate the possibility of mouse TERT (mTERT) as a biomarker of tumorigenicity of undifferentiated ESCs, we established mTERT knockdown ESCs using the shRNA lentivirus vector and evaluated its tumorigenicity in vivo using nude mice. Tumor volumes significantly decreased, and appearances of tumor formation in mice were delayed in the TERT-knockdown ESC treated group compared with the undifferentiated ESC treated group. Altogether, these results suggested that mTERT might be potentially beneficial as a biomarker, rather than oncogenes of somatic cells, for the assessment of ESCs tumorigenicity.
Collapse
Affiliation(s)
- Ki Dae Park
- Department of Pharmaceutical and Medical Device Research, National Institute of Food and Drug Safety Evaluation, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yang JR, Liao CH, Pang CY, Huang LLH, Lin YT, Chen YL, Shiue YL, Chen LR. Directed Differentiation into Neural Lineages and Therapeutic Potential of Porcine Embryonic Stem Cells in Rat Parkinson's Disease Model. Cell Reprogram 2010; 12:447-61. [DOI: 10.1089/cell.2009.0078] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jenn-Rong Yang
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan, R.O.C
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C
| | - Chia-Hsin Liao
- Department of Research, Buddhist Tzu-Chi General Hospital, Hualien, Taiwan, R.O.C
- Institute of Medical Science, Buddhist Tzu-Chi University, Hualien, Taiwan, R.O.C
| | - Cheng-Yoong Pang
- Department of Research, Buddhist Tzu-Chi General Hospital, Hualien, Taiwan, R.O.C
- Graduate Institute of Clinical Medicine, College of Medicine, Buddhist Tzu-Chi University, Hualien, Taiwan, R.O.C
| | - Lynn Ling-Huei Huang
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan, R.O.C
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C
| | - Yu-Ting Lin
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan, R.O.C
| | - Yi-Ling Chen
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan, R.O.C
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C
| | - Yow-Ling Shiue
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C
| | - Lih-Ren Chen
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan, R.O.C
- Institute of Biotechnology, National Cheng Kung University, Tainan, Taiwan, R.O.C
- Institute of Biotechnology, Southern Taiwan University, Tainan, Taiwan, R.O.C
| |
Collapse
|
23
|
Anisimov SV. Cell-based therapeutic approaches for Parkinson's disease: progress and perspectives. Rev Neurosci 2010; 20:347-81. [PMID: 20397620 DOI: 10.1515/revneuro.2009.20.5-6.347] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Motor dysfunctions in Parkinson's disease are believed to be primarily due to the degeneration of dopaminergic neurons located in the substantia nigra pars compacta. Because a single-type cell population is depleted, Parkinson's disease is considered a primary target for cell replacement-based therapeutic strategies. Extensive studies have confirmed transplantation of donor neurons could be beneficial, yet identifying an alternative cell source is clearly essential. Human embryonic stem cells (hESCs) have been proposed as a renewable source of dopaminergic neurons for transplantation in Parkinson's disease; other potential sources could include neural stem cells (hNSCs) and adult mesenchymal stem cells (hMSCs). However, numerous difficulties avert practical application of stem cell-based therapeutic approaches for the treatment of Parkinson's disease. Among the latter, ethical, safety (including xeno- and tumor formation-associated risks) and technical issues stand out. This review aims to provide a balanced and updated outlook on various issues associated with stem cells in regard to their potential in the treatment of Parkinson's disease. Essential features of the individual stem cell subtypes, principles of available differentiation protocols, transplantation, and safety issues are discussed extensively.
Collapse
Affiliation(s)
- Sergey V Anisimov
- Department of Intracellular Signalling and Transport, Institute of Cytology, Russian Academy of Sciences and Research, Saint-Petersburg, Russia.
| |
Collapse
|
24
|
Yuan J, Yu JX, Ge J. Sexual dimorphism on the neurogenic potential of rhesus monkeys mesenchymal stem cells. Biochem Biophys Res Commun 2010; 396:394-400. [DOI: 10.1016/j.bbrc.2010.04.103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 04/19/2010] [Indexed: 11/17/2022]
|
25
|
Hu L, McArthur C, Jaffe RB. Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant. Br J Cancer 2010; 102:1276-83. [PMID: 20354527 PMCID: PMC2856005 DOI: 10.1038/sj.bjc.6605626] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Ovarian cancer is the most lethal gynaecological malignancy. Although ovarian cancer patients often respond initially to chemotherapy, they usually develop chemoresistance. We hypothesised that a small portion of ovarian cancer cells have stem-like cell properties that contribute to tumourigenesis and drug resistance. Methods: Flow cytometry and Hoechst 33342 efflux isolated side-population (SP) cells from ascites derived from ovarian cancer patients and from mice inoculated with human ovarian cancer cell lines. The SP cells were examined for stem cell markers OCT4, NANOG, STELLAR, and ABCG2/BCRP1 by immunocytochemistry and RT–PCR. The SP cells and non-SP cells were studied for tumourigenesis and chemoresistance in vitro and in vivo. Results: The SP cells expressed ABCG2/BCRP1, OCT4, STELLAR, and NANOG, detected by immunocytochemistry and RT–PCR. ABCG2/BCRP1 expression was higher in SP than in non-SP cells. Xenogeneic mice inoculated with SP cells yielded more tumours than did mice inoculated with non-SP cells. In parallel, SP cell culture resulted in extensive cell proliferation, which was markedly more than in non-SP cells. SP cells resisted chemotherapy compared with non-SP cells, both in vivo and in vitro. Conclusion: Ovarian cancer SP cells are tumourigenic and chemoresistant. ABCG2/BCRP1 has an important role in chemoresistance, which has implications for new therapeutic approaches.
Collapse
Affiliation(s)
- L Hu
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, 94143-0556, USA
| | | | | |
Collapse
|
26
|
Fricker-Gates RA, Gates MA. Stem cell-derived dopamine neurons for brain repair in Parkinson’s disease. Regen Med 2010; 5:267-78. [DOI: 10.2217/rme.10.3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
One of the prospects for a curative treatment for Parkinson’s disease is to replace the lost dopaminergic neurons. Preclinical and clinical trials have demonstrated that dissected fetal dopaminergic neurons have the potential to markedly improve motor function in animal models and Parkinson’s disease patients. However, this source of cells will never be sufficient to use as a widespread therapy. Over the last 20 years, scientists have been searching for other reliable sources of midbrain dopamine neurons, and stem cells appear to be strong candidates. This article reviews the potential of different types of stem cells, from embryonic to adult to induced pluripotent stem cells, to see how well the cells can be differentiated into fully functional dopamine neurons, which cells might be the best candidates and how much more research is required before stem cell technology might be translated to a clinical therapy for Parkinson’s disease.
Collapse
|
27
|
Cui YF, Hargus G, Xu JC, Schmid JS, Shen YQ, Glatzel M, Schachner M, Bernreuther C. Embryonic stem cell-derived L1 overexpressing neural aggregates enhance recovery in Parkinsonian mice. Brain 2010; 133:189-204. [PMID: 19995872 DOI: 10.1093/brain/awp290] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Parkinson's disease is the second most common neurodegenerative disease, after Alzheimer's disease, and the most common movement disorder. Drug treatment and deep brain stimulation can ameliorate symptoms, but the progressive degeneration of dopaminergic neurons in the substantia nigra eventually leads to severe motor dysfunction. The transplantation of stem cells has emerged as a promising approach to replace lost neurons in order to restore dopamine levels in the striatum and reactivate functional circuits. We have generated substrate-adherent embryonic stem cell-derived neural aggregates overexpressing the neural cell adhesion molecule L1, because it has shown beneficial functions after central nervous system injury. L1 enhances neurite outgrowth and neuronal migration, differentiation and survival as well as myelination. In a previous study, L1 was shown to enhance functional recovery in a mouse model of Huntington's disease. In another study, a new differentiation protocol for murine embryonic stem cells was established allowing the transplantation of stem cell-derived neural aggregates consisting of differentiated neurons and radial glial cells into the lesioned brain. In the present study, this embryonic stem cell line was engineered to overexpress L1 constitutively at all stages of differentiation and used to generate stem cell-derived neural aggregates. These were monitored in their effects on stem cell survival and differentiation, rescue of endogenous dopaminergic neurons and ability to influence functional recovery after transplantation in an animal model of Parkinson's disease. Female C57BL/6J mice (2 months old) were treated with the mitochondrial toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intraperitoneally to deplete dopaminergic neurons selectively, followed by unilateral transplantation of stem cell-derived neural aggregates into the striatum. Mice grafted with L1 overexpressing stem cell-derived neural aggregates showed better functional recovery when compared to mice transplanted with wild-type stem cell-derived neural aggregates and vehicle-injected mice. Morphological analysis revealed increased numbers and migration of surviving transplanted cells, as well as increased numbers of dopaminergic neurons, leading to enhanced levels of dopamine in the striatum ipsilateral to the grafted side in L1 overexpressing stem cell-derived neural aggregates, when compared to wild-type stem cell-derived neural aggregates. The striatal levels of gamma-aminobutyric acid were not affected by L1 overexpressing stem cell-derived neural aggregates. Furthermore, L1 overexpressing, but not wild-type stem cell-derived neural aggregates, enhanced survival of endogenous host dopaminergic neurons after transplantation adjacent to the substantia nigra pars compacta. Thus, L1 overexpressing stem cell-derived neural aggregates enhance survival and migration of transplanted cells, differentiation into dopaminergic neurons, survival of endogenous dopaminergic neurons, and functional recovery after syngeneic transplantation in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease.
Collapse
Affiliation(s)
- Yi-Fang Cui
- Centre for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou 515041, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Spinal cord injury (SCI) results in loss of nervous tissue and consequently loss of motor and sensory function. There is no treatment available that restores the injury-induced loss of function to a degree that an independent life can be guaranteed. Transplantation of stem cells or progenitors may support spinal cord repair. Stem cells are characterized by self-renewal and their ability to become any cell in an organism. Promising results have been obtained in experimental models of SCI. Stem cells can be directed to differentiate into neurons or glia in vitro, which can be used for replacement of neural cells lost after SCI. Neuroprotective and axon regeneration-promoting effects have also been credited to transplanted stem cells. There are still issues related to stem cell transplantation that need to be resolved, including ethical concerns. This paper reviews the current status of stem cell application for spinal cord repair.
Collapse
|
29
|
Toriumi H, Yoshikawa M, Matsuda R, Nishimura F, Yamada SI, Hirabayashi H, Nakase H, Nonaka JI, Ouji Y, Ishizaka S, Sakaki T. Treatment of Parkinson's disease model mice with allogeneic embryonic stem cells: necessity of immunosuppressive treatment for sustained improvement. Neurol Res 2009; 31:220-7. [PMID: 19406036 DOI: 10.1179/016164108x339378] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The purpose of the present study was to examine the efficacy of transplantation of mouse embryonic stem (ES) into Parkinson's disease (PD) model mice as well as the necessity of immunosuppression in allogeneic donor-host combinations. MATERIALS AND METHODS ES cells, derived from SvJ129 strain mice, were differentiated into tyrosine hydroxylase (TH)-positive neurons in vitro by an embryoid body (EB)-based multistep differentiation method and used as graft cells for PD mice, which were prepared by injection of 6-hydroxydopamine (OHDA) into C57BL/6, BALB/c and C3H/HeN strains. Mice from each strain were divided into Groups 1-3. Four weeks after the 6-OHDA injection, Group 1 received phosphate-buffered saline in the striatum wounds, while Group 2 received 2 x 10(4) graft cells, and Group 3 mice received 2 x 10(4) graft cells and were also treated with cyclosporine A. RESULTS Apomorphine-induced rotational behavior was improved in Groups 2 and 3, but not in Group 1. However, the behavioral improvement ceased later in Group 2, whereas sustained improvement was observed in Group 3 throughout the 8 week observation period after transplantation. ES-derived TH(+) cells were found at the grafted sites at the end of the experiment in Groups 2 and 3, and tended to be more abundant in Group 3. CONCLUSION Intra-striatum transplantation of ES-derived dopaminergic neurons was effective in treating PD mice, even in allogeneic donor-host combinations. Immunosuppressive treatment did not have an effect on initial behavioral restoration after transplantation; however, it was necessary for sustained improvement over a prolonged period.
Collapse
Affiliation(s)
- Hayato Toriumi
- Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara-shi, Nara 634-8521, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brooks SP, Dunnett SB. Tests to assess motor phenotype in mice: a user's guide. Nat Rev Neurosci 2009; 10:519-29. [DOI: 10.1038/nrn2652] [Citation(s) in RCA: 430] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Lavdas AA, Matsas R. Towards personalized cell-replacement therapies for brain repair. Per Med 2009; 6:293-313. [DOI: 10.2217/pme.09.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The inability of the CNS to efficiently repair damage caused by trauma and neurodegenerative or demyelinating diseases has underlined the necessity for developing novel therapeutic strategies. Cell transplantation to replace lost neurons and the grafting of myelinating cells to repair demyelinating lesions are promising approaches for treating CNS injuries and demyelination. In this review, we will address the prospects of using stem cells or myelinating glial cells of the PNS, as well as olfactory ensheathing cells, in cell-replacement therapies. The recent generation of induced pluripotent stem cells from adult somatic cells by introduction of three or four genes controlling ‘stemness’ and their subsequent differentiation to desired phenotypes, constitutes a significant advancement towards personalized cell-replacement therapies.
Collapse
Affiliation(s)
- Alexandros A Lavdas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology, Hellenic Pasteur Institute, 127 Vassilissis Sofias Avenue, 11521 Athens, Greece
| |
Collapse
|
32
|
Shukla S, Chaturvedi RK, Seth K, Roy NS, Agrawal AK. Enhanced survival and function of neural stem cells-derived dopaminergic neurons under influence of olfactory ensheathing cells in parkinsonian rats. J Neurochem 2009; 109:436-51. [DOI: 10.1111/j.1471-4159.2009.05983.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Moriya K, Yoshikawa M, Ouji Y, Saito K, Nishiofuku M, Matsuda R, Ishizaka S, Fukui H. Embryonic stem cells reduce liver fibrosis in CCl4-treated mice. Int J Exp Pathol 2009; 89:401-9. [PMID: 19134049 PMCID: PMC2669601 DOI: 10.1111/j.1365-2613.2008.00607.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We transplanted undifferentiated embryonic stem (ES) cells into the spleens of carbon tetrachloride (CCl4)-treated mice to determine their effects on liver fibrosis. Carbon tetrachloride at 0.5 ml/kg of body weight was injected intraperitoneally into C57BL/6 mice twice weekly for up to 20 weeks. Four weeks after the first injection, the mice were divided into two groups and those in group 1 received 1 × 105 ES cells genetically labelled with enhanced green fluorescent protein (GFP) in the spleens, while group 2 mice received 0.1 ml of phosphate-buffered saline. In group 1, GFP-immunopositive cells were retained and found in areas of fibrosis in the liver, and reduced liver fibrosis was observed as compared with group 2. Secondary transplantation of ES cells at 12 weeks after the initial transplantation enhanced the reduction in liver fibrosis. No teratoma formation or uncontrolled growth of ES cells in organs, including the liver and spleen, was observed in any of the mice. In the livers of group 1 mice, metalloproteinase 9-immunopositive cells derived from ES cells as well as those from the recipient were observed. These cells were also found to be immunopositive for the hepatoblast marker Delta-like (DlK-1), a member of the DlK-1 family of transmembrane proteins. These results suggest that ES-based cell therapy is potentially useful for liver fibrosis treatment and that reduction in CCl4-induced liver fibrosis by transplantation of ES cells may be related closely to the emergence of metalloproteinase-producing hepatoblast-like cells.
Collapse
Affiliation(s)
- Kei Moriya
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Sharp J, Keirstead HS. Stem cell-based cell replacement strategies for the central nervous system. Neurosci Lett 2009; 456:107-11. [PMID: 19429144 DOI: 10.1016/j.neulet.2008.04.106] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 04/15/2008] [Accepted: 04/27/2008] [Indexed: 12/26/2022]
Abstract
During human development, cells of the blastocyst inner cell mass proliferate and give rise to each cell in the human body. It is that potential which focuses intense interest on these stem cells as a substrate for cell-based regenerative medicine. An increased understanding of the interrelation of processes that govern the formation of various cell types will allow for the directed differentiation of stem cells into specified cells or tissues that can ameliorate the effects of disease or damage. Perhaps the most difficult cells and tissues to derive for use in cell replacement strategies are the diverse neurons, glia and complex networks of the central nervous system (CNS). Here we present emerging perspectives on the development of neuronal and glial cells from stem cells for clinical application to CNS diseases and injury.
Collapse
Affiliation(s)
- Jason Sharp
- Reeve-Irvine Research Center, Sue and Bill Gross Stem Cell Research Center, Department of Anatomy & Neurobiology, School of Medicine, 2111 Gillespie Neuroscience Research Facility, University of California at Irvine, Irvine, CA 92697-4292, United States
| | | |
Collapse
|
35
|
Matsuda R, Yoshikawa M, Kimura H, Ouji Y, Nakase H, Nishimura F, Nonaka JI, Toriumi H, Yamada S, Nishiofuku M, Moriya K, Ishizaka S, Nakamura M, Sakaki T. Cotransplantation of Mouse Embryonic Stem Cells and Bone Marrow Stromal Cells following Spinal Cord Injury Suppresses Tumor Development. Cell Transplant 2009; 18:39-54. [DOI: 10.3727/096368909788237122] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Embryonic stem (ES) cells are a potential source for treatment of spinal cord injury (SCI). Although one of the main problems of ES cell-based cell therapy is tumor formation, there is no ideal method to suppress tumor development. In this study, we examined whether transplantation with bone marrow stromal cells (BMSCs) prevented tumor formation in SCI model mice that received ES cell-derived grafts containing both undifferentiated ES cells and neural stem cells. Embryoid bodies (EBs) formed in 4-day hanging drop cultures were treated with retinoic acid (RA) at a low concentration of 5 × 10–9 M for 4 days, in order to allow some of the ES cells to remain in an undifferentiated state. RA-treated EBs were enzymatically digested into single cells and used as ES cell-derived graft cells. Mice transplanted with ES cell-derived graft cells alone developed tumors at the grafted site and behavioral improvement ceased after day 21. In contrast, no tumor development was observed in mice cotransplanted with BMSCs, which also showed sustained behavioral improvement. In vitro results demonstrated the disappearance of SSEA-1 expression in cytochemical examinations, as well as attenuated mRNA expressions of the undifferentiated markers Oct3/4, Utf1, Nanog, Sox2, and ERas by RT-PCR in RA-treated EBs cocultured with BMSCs. In addition, MAP2-immunopositive cells appeared in the EBs cocultured with BMSCs. Furthermore, the synthesis of NGF, GDNF, and BDNF was confirmed in cultured BMSCs, while immunohistochemical examinations demonstrated the survival of BMSCs and their maintained ability of neurotrophic factor production at the grafted site for up to 5 weeks after transplantation. These results suggest that BMSCs induce undifferentiated ES cells to differentiate into a neuronal lineage by neurotrophic factor production, resulting in suppression of tumor formation. Cotransplantation of BMSCs with ES cell-derived graft cells may be useful for preventing the development of ES cell-derived tumors.
Collapse
Affiliation(s)
- Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Nara 634–8521, Japan
| | - Masahide Yoshikawa
- Department of Parasitology, Nara Medical University, Nara 634–8521, Japan
| | - Hajime Kimura
- Department of Neurosurgery, Nara Medical University, Nara 634–8521, Japan
| | - Yukiteru Ouji
- Department of Parasitology, Nara Medical University, Nara 634–8521, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Nara 634–8521, Japan
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Nara 634–8521, Japan
| | - Jun-Ichi Nonaka
- Department of Neurosurgery, Nara Medical University, Nara 634–8521, Japan
| | - Hayato Toriumi
- Department of Neurosurgery, Nara Medical University, Nara 634–8521, Japan
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Nara 634–8521, Japan
| | - Mariko Nishiofuku
- Department of Parasitology, Nara Medical University, Nara 634–8521, Japan
| | - Kei Moriya
- Department of Parasitology, Nara Medical University, Nara 634–8521, Japan
| | - Shigeaki Ishizaka
- Department of Parasitology, Nara Medical University, Nara 634–8521, Japan
| | | | - Toshisuke Sakaki
- Department of Neurosurgery, Nara Medical University, Nara 634–8521, Japan
| |
Collapse
|
36
|
Hara A, Aoki H, Taguchi A, Niwa M, Yamada Y, Kunisada T, Mori H. Neuron-like differentiation and selective ablation of undifferentiated embryonic stem cells containing suicide gene with Oct-4 promoter. Stem Cells Dev 2008; 17:619-27. [PMID: 18393636 DOI: 10.1089/scd.2007.0235] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In vivo transplantation of undifferentiated embryonic stem (ES) cells can produce teratomas with uncontrolled cell proliferation. Although ES cells may be attractive candidates for human cell-replacement therapy in the future, the major limitation of its application to the therapy is teratoma formation. In the present study, ES cells containing herpes simplex virus-thymidine kinase (HSV-tk) transgene for a suicide gene expression under the control of the Oct-4 promoter was used for ablation of undifferentiated ES cells, which may produce teratomas, using three-dimensional cell culture system allowing a multilayer cell construct. Selective ablation of undifferentiated ES cells expressing HSV-tk gene under the control of Oct-4 promoter was achieved by ganciclovir treatment. Surviving ES cells after ganciclovir treatment expressed several neuron-associated markers such as synaptophysin, beta-tubulin, vesicular glutamate transporter 1, syntaxin, protein kinase C and glial fibrillary acidic protein (GFAP) but not Oct-4. Coexpression of synaptophysin as a marker of neuronal synapse and GFAP as that of glial fibers in the surviving ES cells revealed finely structured neuronal network. Furthermore, decrease of Ki-67 proliferative index was detected in the surviving ES cells. In conclusion, selective ablation of undifferentiated ES cells by a suicide gene decreases proliferative activity and induces neuron-like differentiation in ES cells.
Collapse
Affiliation(s)
- Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Stammzellforschung – Status, Ausblick und bioethischer Aspekt. Wien Med Wochenschr 2008; 158:493-502. [DOI: 10.1007/s10354-008-0551-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 03/11/2008] [Indexed: 12/22/2022]
|
38
|
Ideguchi M, Shinoyama M, Gomi M, Hayashi H, Hashimoto N, Takahashi J. Immune or inflammatory response by the host brain suppresses neuronal differentiation of transplanted ES cell-derived neural precursor cells. J Neurosci Res 2008; 86:1936-43. [PMID: 18335525 DOI: 10.1002/jnr.21652] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Embryonic stem (ES) cells are a promising donor source for transplantation therapy, but several problems must be solved before they can be clinically useful. One of these is the host immune reaction to allogeneic grafts. In this article, we examine the effect of the host immune reaction on survival and differentiation of grafted ES cell-derived neural precursor cells (NPCs). We induced NPCs from mouse ES cells by stromal cell-derived inducing activity and then transplanted them into mouse brains with or without administering the immunosuppressant cyclosporine A (CsA). Two and 8 weeks following transplantation, the accumulation of host-derived microglia/macrophages and lymphocytes was observed around the graft. This effect was reduced by CsA treatment, although no significant difference in graft volume was observed. These data suggest that an immune response occurs in allografts of ES cell-derived NPCs. Intriguingly, however, the ratio of neurons to astrocytes in the graft was higher in immunosuppressed mice. Because inflammatory or immune cells produce various cytokines, we examined the effect of IL-1beta, IL-6, IFN-gamma, and TNF-alpha on the differentiation of NPCs in vitro. Only IL-6 promoted glial cell fate, and this effect could be reversed by the addition of an IL-6 neutralizing antibody. These results suggest that allogeneic ES cell-derived NPCs can cause an immune response by the host brain, but it is not strong enough to reject the graft. More important, activated microglia and lymphocytes can suppress neuronal differentiation of grafted NPCs in vivo by producing cytokines such as IL-6.
Collapse
Affiliation(s)
- Makoto Ideguchi
- Department of Neurosurgery, Clinical Neuroscience, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Geeta R, Ramnath R, Rao HS, Chandra V. One year survival and significant reversal of motor deficits in parkinsonian rats transplanted with hESC derived dopaminergic neurons. Biochem Biophys Res Commun 2008; 373:258-64. [DOI: 10.1016/j.bbrc.2008.06.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022]
|
40
|
Olfactory Mucosa Is a Potential Source for Autologous Stem Cell Therapy for Parkinson's Disease. Stem Cells 2008; 26:2183-92. [DOI: 10.1634/stemcells.2008-0074] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
41
|
Abstract
Derivation of human embryonic stem (ES) cells from preimplantation embryos ten years ago raised great hopes that they may be an excellent source of cells for cell replacement therapy. However, serious ethical concerns and the risk of immune rejection of allotransplanted cells have hindered the translation of ES cell-based therapies into the clinic. In an attempt to circumvent these barriers, a number of methods have been developed for converting adult somatic cells into a pluripotent state from which ethically acceptable patient-specific mature cells of interest could be derived. These efforts, backed by advances in elucidating the molecular basis of pluripotency, have culminated in successful reprogramming of fibroblasts into ES cell-like cells, termed induced pluripotent stem (iPS) cells, by ectopic expression of only a handful of "stemness" factors. iPS cells possess morphological, molecular and developmental features of conventional blastocyst-derived ES cells and have the potential to serve as a source of therapeutic cells for customized tissue repair, gene therapy, drug discovery, toxicological testing and for studying the molecular basis of human disease. The goal of this review is to provide the current state-of-the-art in this very exciting and dynamic field and to discuss barriers that remain to be removed before the therapeutic potential of iPS cells can be fully realized.
Collapse
Affiliation(s)
- Tomo Saric
- Medical Center, Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | | |
Collapse
|
42
|
Hou L, Hong T. Stem cells and neurodegenerative diseases. ACTA ACUST UNITED AC 2008; 51:287-94. [PMID: 18368305 DOI: 10.1007/s11427-008-0049-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 12/04/2007] [Indexed: 01/01/2023]
Abstract
Neurodegenerative diseases are characterized by the neurodegenerative changes or apoptosis of neurons involved in networks, which are important to specific physiological functions. With the development of old-aging society, the incidence of neurodegenerative diseases is on the increase. However, it is difficult to diagnose for most of neurodegenerative diseases. At present, there are too few effective therapies. Advances in stem cell biology have raised the hope and possibility for the therapy of neurodegenerative diseases. Recently, stem cells have been widely attempted to treat neurodegenerative diseases of animal model. Here we review the progress and prospects of various stem cells, including embryonic stem cells, mesenchymal stem cell and neural stem cells and so on, for the treatments of neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, Huntington' disease and Amyotrophic lateral sclerosis/Lou Gehrig's disease.
Collapse
Affiliation(s)
- LingLing Hou
- Institute of Biological Science and Technology, Beijing Jiaotong University, Beijing 100044, China.
| | | |
Collapse
|
43
|
Alvarez-Fischer D, Henze C, Strenzke C, Westrich J, Ferger B, Höglinger GU, Oertel WH, Hartmann A. Characterization of the striatal 6-OHDA model of Parkinson's disease in wild type and α-synuclein-deleted mice. Exp Neurol 2008; 210:182-93. [DOI: 10.1016/j.expneurol.2007.10.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 10/03/2007] [Accepted: 10/21/2007] [Indexed: 12/21/2022]
|
44
|
Abstract
Ongoing advances in stem cell research have opened new avenues for therapy for many human disorders. Until recently, however, thyroid stem cells have been relatively understudied. Here, we review what is known about thyroid stem cells and explore their utility as models of normal and malignant biological development. We also discuss the cellular origin of thyroid cancer stem cells and explore the clinical implications of cancer stem cells in the thyroid gland. Since thyroid cancer is the most common form of endocrine cancer and that thyroid hormone is needed for the growth and metabolism of each cell in the body, understanding the molecular and the cellular aspects of thyroid stem cell biology will ultimately provide insights into mechanisms underlying human disease.
Collapse
Affiliation(s)
- Dolly Thomas
- Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
45
|
Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat Rev Drug Discov 2008; 7:131-42. [PMID: 18079756 DOI: 10.1038/nrd2403] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although great progress has been made in the isolation and culture of stem cells, the future of stem-cell-based therapies and their productive use in drug discovery and regenerative medicine depends on two key factors: finding reliable sources of multipotent and pluripotent cells and the ability to control their differentiation to generate desired derivatives. It is essential for clinical applications to establish reliable sources of pathogen-free human embryonic stem cells (ESCs) and develop suitable differentiation techniques. Here, we address some of the problems associated with the sourcing of human ESCs and discuss the current status of stem-cell differentiation technology.
Collapse
|
46
|
From bench to bed: the potential of stem cells for the treatment of Parkinson's disease. Cell Tissue Res 2007; 331:323-36. [PMID: 18034267 DOI: 10.1007/s00441-007-0541-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 10/23/2007] [Indexed: 01/08/2023]
Abstract
Parkinson's disease (PD) is the most common movement disorder. The neuropathology is characterized by the loss of dopamine neurons in the substantia nigra pars compacta. Transplants of fetal/embryonic midbrain tissue have exhibited some beneficial clinical effects in open-label trials. Neural grafting has, however, not become a standard treatment for several reasons. First, the supply of donor cells is limited, and therefore, surgery is accompanied by difficult logistics. Second, the extent of beneficial effects has varied in a partly unpredictable manner. Third, some patients have exhibited graft-related side effects in the form of involuntary movements. Fourth, in two major double-blind placebo-controlled trials, there was no effect of the transplants on the primary endpoints. Nevertheless, neural transplantation continues to receive a great deal of interest, and now, attention is shifting to the idea of using stem cells as starting donor material. In the context of stem cell therapy for PD, stem cells can be divided into three categories: neural stem cells, embryonic stem cells, and other tissue-specific types of stem cells, e.g., bone marrow stem cells. Each type of stem cell is associated with advantages and disadvantages. In this article, we review recent advances of stem cell research of direct relevance to clinical application in PD and highlight the pros and cons of the different sources of cells. We draw special attention to some key problems that face the translation of stem cell technology into the clinical arena.
Collapse
|
47
|
Anderson D, Self T, Mellor IR, Goh G, Hill SJ, Denning C. Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther 2007; 15:2027-36. [PMID: 17895862 DOI: 10.1038/sj.mt.6300303] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To realize the full scientific and clinical potential of human embryonic stem cell (hESC)-cardiomyocytes, strategies to overcome the high degree of heterogeneity of differentiated populations are required. Here we demonstrate the utility of two transgenic approaches in enrichment of cardiomyocytes derived from HUES-7 cells: (i) negative selection of proliferating cells with the herpes simplex virus thymidine kinase/ganciclovir (HSVtk/GCV) suicide gene system; and (ii) positive selection of cardiomyocytes expressing a bicistronic reporter [green fluorescent protein (GFP)-internal ribosome entry site (IRES)-puromycin-N-acetyltransferase (PAC)] from the human alphamyosin heavy chain promoter. Parental and transgenic HUES-7 cells were similar with regard to morphology, pluripotency marker expression, differentiation, and cardiomyocyte electrophysiology. Whereas immunostaining of dissociated cardiomyocyte preparations expressing HSVtk or PAC contained <7% cardiomyocytes, parallel cultures treated with GCV or puromycin, respectively, contained 33.4 +/- 2.1% or 91.5 +/- 4.3% cardiomyocytes corresponding to an enrichment factor of 6.7- or 14.5-fold. Drug-selected cardiomyocytes responded to chronotropic stimulation and displayed cardiac-specific action potentials, demonstrating that functionality was retained. Both transgenic strategies will be generically applicable and should readily translate to the enrichment of many other differentiated lineages derived from hESCs.
Collapse
Affiliation(s)
- David Anderson
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, University of Nottingham, Nottingham, UK
| | | | | | | | | | | |
Collapse
|
48
|
Takahashi J. Stem cell therapy for Parkinson's disease. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2007:229-44. [PMID: 16903426 DOI: 10.1007/3-540-31437-7_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Transplantation of fetal dopaminergic (DA) neurons can produce symptomatic relief for patients with Parkinson's disease, but the technical and ethical difficulties have limited the application of this therapy. Neural precursor cells and embryonic stem cells (ESCs) are expected to be candidates of potential donor cells for transplantation. Human neural precursor cells obtained from the midbrain give rise to TH-positive neurons. The growth of the cells, however, is slow and the differentiation rate of DA neurons is still low for clinical application. Monkey ESCs give rise to midbrain DA neurons, and the transplanted ESC-derived neurospheres function as DA neurons, attenuating the neurological symptoms of the monkey Parkinson's disease model. These results suggest the possibility of using stem cells for the treatment of Parkinson's disease, but problems such as the low survival rate in vivo and tumor formation must be solved.
Collapse
Affiliation(s)
- J Takahashi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan.
| |
Collapse
|
49
|
Moriya K, Yoshikawa M, Saito K, Ouji Y, Nishiofuku M, Hayashi N, Ishizaka S, Fukui H. Embryonic stem cells develop into hepatocytes after intrasplenic transplantation in CCl 4-treated mice. World J Gastroenterol 2007; 13:866-73. [PMID: 17352015 PMCID: PMC4065921 DOI: 10.3748/wjg.v13.i6.866] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To transplant undifferentiated embryonic stem (ES) cells into the spleens of carbon tetrachloride (CCl4)-treated mice to determine their ability to differentiate into hepatocytes in the liver.
METHODS: CCl4, 0.5 mL/kg body weight, was injected into the peritoneum of C57BL/6 mice twice a week for 5 wk. In group 1 (n = 12), 1 x 105 undifferentiated ES cells (0.1 mL of 1 x 106/mL solution), genetically labeled with GFP, were transplanted into the spleens 1 d after the second injection. Group 2 mice (n = 12) were injected with 0.2 mL of saline twice a week, instead of CCl4, and the same amount of ES cells was transplanted into the spleens. Group 3 mice (n = 6) were treated with CCl4 and injected with 0.1 mL of saline into the spleen, instead of ES cells. Histochemical analyses of the livers were performed on post-transplantation d (PD) 10, 20, and 30.
RESULTS: Considerable numbers of GFP-immunopositive cells were found in the periportal regions in group 1 mice (CCl4-treated) on PD 10, however, not in those untreated with CCl4 (group 2). The GFP-positive cells were also immunopositive for albumin (ALB), alpha-1 antitrypsin, cytokeratin 18, and hepatocyte nuclear factor 4 alpha on PD 20. Interestingly, most of the GFP-positive cells were immunopositive for DLK, a hepatoblast marker, on PD 10. Although very few ES-derived cells were demonstrated immunohistologically in the livers of group 1 mice on PD 30, improvements in liver fibrosis were observed. Unexpectedly, liver tumor formation was not observed in any of the mice that received ES cell transplantation during the experimental period.
CONCLUSION: Undifferentiated ES cells developed into hepatocyte-like cells with appropriate integration into tissue, without uncontrolled cell growth.
Collapse
Affiliation(s)
- Kei Moriya
- Division of Hepatology, Third Department of Internal Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Saito K, Yoshikawa M, Ouji Y, Moriya K, Nishiofuku M, Ueda S, Hayashi N, Ishizaka S, Fukui H. Promoted differentiation of cynomolgus monkey ES cells into hepatocyte-like cells by co-culture with mouse fetal liver-derived cells. World J Gastroenterol 2006; 12:6818-27. [PMID: 17106931 PMCID: PMC4087437 DOI: 10.3748/wjg.v12.i42.6818] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore whether a co-culture of cynomolgus monkey embryonic stem (cES) cells with embryonic liver cells could promote their differentiation into hepatocytes.
METHODS: Mouse fetal liver-derived cells (MFLCs) were prepared as adherent cells from mouse embryos on embryonic d (ED) 14, after which undifferentiated cES cells were co-cultured with MFLCs. The induction of cES cells along a hepatic lineage was examined in MFLC-assisted differentiation, spontaneous differentiation, and growth factors (GF) and chemicals-induced differentiations (GF-induced differentiation) using retinoic acid, leukemia inhibitory factor (LIF), FGF2, FGF4, hepatocyte growth factor (HGF), oncostatin M (OSM), and dexamethasone.
RESULTS: The mRNA expression of α-fetoprotein, albumin (ALB), α-1-antitrypsin, and hepatocyte nuclear factor 4α was observed earlier in the differentiating cES cells co-cultured with MFLCs, as compared to cES cells undergoing spontaneous differentiation and those subjected to GF-induced differentiation. The expression of cytochrome P450 7a1, a possible marker for embryonic endoderm-derived mature hepatocytes, was only observed in cES cells that had differentiated in a co-culture with MFLCs. Further, the disappearance of Oct3/4, a representative marker of an undifferentiated state, was noted in cells co-cultured with MFLCs, but not in those undergoing spontaneous or GF-induced differentiation. Immunocytochemical analysis revealed an increased ratio of ALB-immunopositive cells among cES cells co-cultured with MFLCs, while glycogen storage and urea synthesis were also demonstrated.
CONCLUSION: MFLCs showed an ability to induce cES cells to differentiate toward hepatocytes. The co-culture system with MFLCs is a useful method for induction of hepatocyte-like cells from undifferentiated cES cells.
Collapse
Affiliation(s)
- Ko Saito
- Department of Gastroenterology and Hepatology, Nara Medical University, Nara, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|