1
|
Liu T, Lin L, Pan Y, Lin X, Liang M, Shao G, Feng K, Liu Y, Zhang X, Xie Q. Construction and efficacy of recombinant Newcastle disease virus co-expressing VP2 and VP3 proteins of very virulent infectious bursal disease virus. Poult Sci 2025; 104:104388. [PMID: 39644723 PMCID: PMC11665685 DOI: 10.1016/j.psj.2024.104388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 12/09/2024] Open
Abstract
Infectious bursal disease (IBD), triggered by the infectious bursal disease virus (IBDV), poses a substantial risk to the poultry industry due to its immunosuppressive nature and the emergence of highly virulent strains. Traditional vaccination strategies have limitations, prompting the need for novel approaches. This study aimed to develop a recombinant Newcastle disease virus (NDV) vector vaccine co-expressing IBDV VP2 and VP3 proteins to enhance immunogenicity and protective efficacy against IBDV. The recombinant Newcastle disease virus (rNDV) expressing both VP2 and VP3 (rNDV-VP2-VP3) was generated and compared to rNDV expressing VP2 alone (rNDV-VP2). The genetic stability and growth pattern of rNDV were evaluated and its immunogenicity was assessed in specific pathogen free (SPF) chickens. rNDV-VP2-VP3 vaccines induced higher levels of neutralising antibodies, no damage to immune organs, and significantly lower viral loads in the bursa of the falciparum. rNDV-VP2 group showed partial protection, while the placebo group exhibited severe lesions and higher mortality, suggesting that the vaccine was effective in preventing IBDV-induced damage. These findings suggest that co-expression of VP2 and VP3 in NDV vectors is a viable strategy for the development of an effective IBDV vaccine, providing a safe and effective method for controlling IBD in poultry.
Collapse
Affiliation(s)
- Tongfei Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Lin Lin
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yun Pan
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Xiaoling Lin
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Ming Liang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Guanming Shao
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Keyu Feng
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Yaxin Liu
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Xinheng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China
| | - Qingmei Xie
- State Key Laboratory of Swine and Poultry Breeding Industry & Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou 51064, China; Guangdong Provincial Key Lab of AgroAnimal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, China; Zhongshan Innovation Center of South China Agricultural University, Zhongshan 528400, China.
| |
Collapse
|
2
|
Raji AA, Dastjerdi PZ, Omar AR. Virus-like particles in poultry disease: an approach to effective and safe vaccination. Front Vet Sci 2024; 11:1405605. [PMID: 39315089 PMCID: PMC11417104 DOI: 10.3389/fvets.2024.1405605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The poultry industry, a cornerstone of global food security, faces dynamic challenges exacerbated by viral diseases. This review traces the trajectory of poultry vaccination, evolving from traditional methods to the forefront of innovation Virus-Like Particle (VLP) vaccines. Vaccination has been pivotal in disease control, but traditional vaccines exhibit some limitations. This review examines the emergence of VLPs as a game-changer in poultry vaccination. VLPs, mimicking viruses without replication, offer a safer, targeted alternative with enhanced immunogenicity. The narrative encompasses VLP design principles, production methods, immunogenicity, and efficacy against major poultry viruses. Challenges and prospects are explored, presenting VLP vaccines as a transformative technique in poultry disease control. Understanding their potential empowers industry stakeholders to navigate poultry health management with precision, promising improved welfare, reduced economic losses, and heightened food safety.
Collapse
Affiliation(s)
- Abdullahi Abdullahi Raji
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Paniz Zarghami Dastjerdi
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdul Rahman Omar
- Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
3
|
Jaton J, Gómez E, Lucero MS, Rizzi L, Gravisaco MJ, Pinto S, Berinstein A, Chimeno Zoth S. Evasion of maternal antibody protection by an IBDV Argentine variant. Poult Sci 2024; 103:103431. [PMID: 38295501 PMCID: PMC10846382 DOI: 10.1016/j.psj.2024.103431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/02/2024] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Infectious bursal disease (IBD) is a viral disease that affects the ability of chickens to produce humoral immune responses. One way to prevent the disease is the passage of maternally derived antibodies (MDA) from dams to offsprings via the yolk. Despite sanitary measures, which include immunization with genogroup 1 (G1) vaccines, infections with IBDV genogroup 4 (G4) in young animals have been detected. The aim of this study was to determine whether a local IBDV isolate belonging to G4 could evade the immunity generated by MDAs. Twelve-day-old animals positive for MDA, were inoculated with G1 or G4 isolates or phosphate buffered saline (PBS) as a control. After 1 wk, the animals were sacrificed and the following parameters were evaluated: bursa-body (BB) ratio, viral load, and histologic damage in the bursa of Fabricius. Results showed that G4-infected animals had significant differences in the BB ratio compared to the PBS group. In addition, viral load was significantly higher in the G4 group than in the G1 group. Histologic damage in the bursa of Fabricius was detected only in G4-infected MDA chickens. Our results suggest that infection with G4 local isolate can circumvent the immunity generated by MDA and, furthermore, that G4 isolate does not differ in its pathogenicity from G1 isolate, which underlines the need to include variant strains in vaccine formulations to reduce potential losses caused by these viruses.
Collapse
Affiliation(s)
- Juan Jaton
- Laboratorio de Inmunología y Vacunas Aviares, Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Buenos Aires, Argentina
| | - Evangelina Gómez
- Laboratorio de Inmunología y Vacunas Aviares, Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Buenos Aires, Argentina
| | - María Soledad Lucero
- Laboratorio de Inmunología y Vacunas Aviares, Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Buenos Aires, Argentina
| | - Lucía Rizzi
- Laboratorio de Inmunología y Vacunas Aviares, Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Buenos Aires, Argentina
| | - María José Gravisaco
- Laboratorio de Inmunología y Vacunas Aviares, Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Buenos Aires, Argentina
| | - Silvina Pinto
- Cátedra de Patología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Analía Berinstein
- Laboratorio de Inmunología y Vacunas Aviares, Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Buenos Aires, Argentina
| | - Silvina Chimeno Zoth
- Laboratorio de Inmunología y Vacunas Aviares, Instituto de Agrobiotecnología y Biología Molecular, INTA-CONICET, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Li H, Hua D, Qu Q, Cao H, Feng Z, Liu N, Huang J, Zhang L. Oral Immunization with Recombinant Saccharomyces cerevisiae Expressing Viral Capsid Protein 2 of Infectious Bursal Disease Virus Induces Unique Specific Antibodies and Protective Immunity. Vaccines (Basel) 2023; 11:1849. [PMID: 38140252 PMCID: PMC10747824 DOI: 10.3390/vaccines11121849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Infectious bursal disease (IBD), as a highly infectious immunosuppressive disease, causes severe economic losses in the poultry industry worldwide. Saccharomyces cerevisiae is an appealing vehicle used in oral vaccine formulations to safely and effectively deliver heterologous antigens. It can elicit systemic and mucosal responses. This study aims to explore the potential as oral an vaccine for S. cerevisiae expressing the capsid protein VP2 of IBDV. We constructed the recombinant S. cerevisiae, demonstrated that VP2 was displayed on the cell surface and had high immunoreactivity. By using the live ST1814G/Aga2-VP2 strain to immunize the mice, the results showed that recombinant S. cerevisiae significantly increased specific IgG and sIgA antibody titers, indicating the potential efficacy of vaccine-induced protection. These results suggested that the VP2 protein-expressing recombinant S. cerevisiae strain was a promising candidate oral subunit vaccine to prevent IBDV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinhai Huang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (H.L.); (D.H.); (Q.Q.); (H.C.); (Z.F.); (N.L.)
| | - Lei Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, China; (H.L.); (D.H.); (Q.Q.); (H.C.); (Z.F.); (N.L.)
| |
Collapse
|
5
|
Shah AU, Wang Z, Zheng Y, Guo R, Chen S, Xu M, Zhang C, Liu Y, Wang J. Construction of a Novel Infectious Clone of Recombinant Herpesvirus of Turkey Fc-126 Expressing VP2 of IBDV. Vaccines (Basel) 2022; 10:vaccines10091391. [PMID: 36146468 PMCID: PMC9501487 DOI: 10.3390/vaccines10091391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
The increased virulence of infectious bursal disease virus (IBDV) is a threat to the chicken industry. The construction of novel herpesvirus of turkey-vectored (HVT) vaccines expressing VP2 of virulent IBDV may be a promising vaccine candidate for controlling this serious disease in chickens. We generated a novel infectious clone of HVT Fc-126 by inserting mini-F sequences in lieu of the glycoprotein C (gC) gene. Based on this bacterial artificial chromosome (BAC), a VP2 expression cassette containing the pMCMV IE promoter and a VP2 sequence from the virulent IBDV NJ09 strain was inserted into the noncoding area between the UL55 and UL56 genes to generate the HVT vector VP2 recombinant, named HVT-VP2-09. The recovered vectored mutant HVT-VP2-09 exhibited higher titers (p = 0.0202 at 36 h) or similar growth kinetics to the parental virus HVT Fc-126 (p = 0.1181 at 48 h and p = 0.1296 at 64 h). The high reactivation ability and strong expression of VP2 by HVT-VP2-09 in chicken embryo fibroblasts (CEFs) were confirmed by indirect immunofluorescence (IFA) and Western blotting. The AGP antibodies against IBDV were detected beginning at 3 weeks post-inoculation (P.I.) of HVT-VP2-09 in 1-day-old SPF chickens. Seven of ten chickens immunized with HVT-VP2-09 were protected post-challenge (P.C.) with the virulent IBDV NJ09 strain. In contrast, all chickens in the challenge control group showed typical IBD lesions in bursals, and eight of ten died P.C. In this study, we demonstrated that (i) a novel HVT BAC with the whole genome of the Fc-126 strain was obtained with the insertion of mini-F sequences in lieu of the gC gene; (ii) HVT-VP2-09 harboring the VP2 expression cassette from virulent IBDV exhibited in vitro growth properties similar to those of the parental HVT virus in CEF cells; and (iii) HVT-VP2-09 can provide efficient protection against the IBDV NJ09 strain.
Collapse
Affiliation(s)
- Abid Ullah Shah
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal, Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Food Quality and Safety, State Key Laboratory Cultivation Base of MOST, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhisheng Wang
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal, Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Jiangsu Key Laboratory of Food Quality and Safety, State Key Laboratory Cultivation Base of MOST, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yating Zheng
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal, Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Saisai Chen
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal, Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Mengwei Xu
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal, Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Chuanjian Zhang
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal, Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yamei Liu
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal, Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jichun Wang
- National Research Center of Engineering and Technology for Veterinary Biologicals/Institute of Veterinary Immunology and Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal, Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-25-84395605
| |
Collapse
|
6
|
Hu X, Chen Z, Wu X, Ding Z, Zeng Q, Wu H. An Improved, Dual-Direction, Promoter-Driven, Reverse Genetics System for the Infectious Bursal Disease Virus (IBDV). Viruses 2022; 14:v14071396. [PMID: 35891377 PMCID: PMC9324645 DOI: 10.3390/v14071396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
The infectious bursal disease virus (IBDV), one member of the Birnaviridae family, causes immunosuppression in young chickens by damaging the mature B cells of the bursa of Fabricius (BF), the central immune system of young chickens. The genome of IBDV is a bisegmented, double-strand RNA (dsRNA). Reverse genetics systems for IBDV allow the generation of genetically manipulated infectious virus via transfected plasmid DNA, encoding the two genomic viral RNA segments as well as major viral proteins. For this purpose, the minus-sense of both segment A and segment B are inserted into vectors between the polymerase I promoter and the corresponding terminator I. These plasmids facilitate the transcription of the viral minus-sense genome but copy the plus-sense genome as well viral protein translation depends on the activity of VP1 and VP3, when transfected into 293T cells. To further improve rescue efficiency, dual-direction promoters were generated based on the polymerase II promoter in the reverse direction in the backbone of the pCDNA3.0 vector. Therefore, the polymerase I promoter transcribes the viral minus-sense genome in the forward direction and the polymerase II promoter transcribes viral mRNA, translated into viral proteins that produce infectious IBDV. We also found that the rescue efficiency of transfecting two plasmids is significantly higher than that of transfecting four plasmids. In addition, this dual-direction promoter rescue system was used to generate R186A mutant IBDV since Arg186 is the arginine monomer-methylation site identified by LC–MS. Our data furtherly showed that the Arg186 monomer methylation mutant was due to a reduction in VP1 polymerase activity as well as virus replication, suggesting that the Arg186 methylation site is essential for IBDV replication.
Collapse
Affiliation(s)
- Xifeng Hu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, China; (X.H.); (Z.C.); (X.W.); (Z.D.); (Q.Z.)
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zheng Chen
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, China; (X.H.); (Z.C.); (X.W.); (Z.D.); (Q.Z.)
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiangdong Wu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, China; (X.H.); (Z.C.); (X.W.); (Z.D.); (Q.Z.)
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhen Ding
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, China; (X.H.); (Z.C.); (X.W.); (Z.D.); (Q.Z.)
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qinghua Zeng
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, China; (X.H.); (Z.C.); (X.W.); (Z.D.); (Q.Z.)
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Huansheng Wu
- Department of Preventive Veterinary Medicine, College of Animal Science and Technology, Jiangxi Agricultural University, Zhimin Street, Qingshan Lake, Nanchang 330045, China; (X.H.); (Z.C.); (X.W.); (Z.D.); (Q.Z.)
- Jiangxi Provincial Key Laboratory for Animal Science and Technology, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence:
| |
Collapse
|
7
|
Evaluation of Protective Efficacy of Influenza Virus Like Particles Prepared from H5N1 Virus of Clade 2.2.1.2 in Chickens. Vaccines (Basel) 2021; 9:vaccines9070715. [PMID: 34358131 PMCID: PMC8310281 DOI: 10.3390/vaccines9070715] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/24/2022] Open
Abstract
Highly pathogenic Avian Influenza (HPAI) viruses continue to cause severe economic losses in poultry species worldwide. HPAI virus of subtype H5N1 was reported in Egypt in 2006, and despite vaccination efforts, the virus has become endemic. The current study aims to evaluate the efficacy of a virus-like particle (VLP) based vaccine in vivo using specific pathogen-free (SPF) chickens. The vaccine was prepared from the HPAI H5N1 virus of clade 2.2.1.2 using the baculovirus expression system. The VLPs were quantitated and characterized, including electron microscopy. In addition, the protection level of the VLPs was evaluated by using two different regimens, including one dose and two-dose vaccinated groups, which gave up to 70% and 100% protection level, respectively. The results of this study emphasize the potential usefulness of the VLPs-based vaccine as an alternative vaccine candidate for the control of AIV infection in poultry.
Collapse
|
8
|
Development of a Viral-Like Particle Candidate Vaccine Against Novel Variant Infectious Bursal Disease Virus. Vaccines (Basel) 2021; 9:vaccines9020142. [PMID: 33579020 PMCID: PMC7916800 DOI: 10.3390/vaccines9020142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/25/2022] Open
Abstract
Infectious bursal disease (IBD), an immunosuppressive disease of young chickens, is caused by infectious bursal disease virus (IBDV). Novel variant IBDV (nVarIBDV), a virus that can evade immune protection against very virulent IBDV (vvIBDV), is becoming a threat to the poultry industry. Therefore, nVarIBDV-specific vaccine is much needed for nVarIBDV control. In this study, the VP2 protein of SHG19 (a representative strain of nVarIBDV) was successfully expressed using an Escherichia coli expression system and further purified via ammonium sulfate precipitation and size-exclusion chromatography. The purified protein SHG19-VP2-466 could self-assemble into 25-nm virus-like particle (VLP). Subsequently, the immunogenicity and protective effect of the SHG19-VLP vaccine were evaluated using animal experiments, which indicated that the SHG19-VLP vaccine elicited neutralization antibodies and provided 100% protection against the nVarIBDV. Furthermore, the protective efficacy of the SHG19-VLP vaccine against the vvIBDV was evaluated. Although the SHG19-VLP vaccine induced a comparatively lower vvIBDV-specific neutralization antibody titer, it provided good protection against the lethal vvIBDV. In summary, the SHG19-VLP candidate vaccine could provide complete immune protection against the homologous nVarIBDV as well as the heterologous vvIBDV. This study is of significance to the comprehensive prevention and control of the recent atypical IBD epidemic.
Collapse
|
9
|
Wang Z, Mi J, Wang Y, Wang T, Qi X, Li K, Pan Q, Gao Y, Gao L, Liu C, Zhang Y, Wang X, Cui H. Recombinant Lactococcus Expressing a Novel Variant of Infectious Bursal Disease Virus VP2 Protein Can Induce Unique Specific Neutralizing Antibodies in Chickens and Provide Complete Protection. Viruses 2020; 12:v12121350. [PMID: 33255742 PMCID: PMC7760868 DOI: 10.3390/v12121350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Recent reports of infectious bursal disease virus (IBDV) infections in China, Japan, and North America have indicated the presence of variant, and the current conventional IBDV vaccine cannot completely protect against variant IBDV. In this study, we constructed recombinant Lactococcus lactis (r-L. lactis) expressing a novel variant of IBDV VP2 (avVP2) protein along with the Salmonella resistance to complement killing (RCK) protein, and Western blotting analysis confirmed that r-L. lactis successfully expressed avVP2-RCK fusion protein. We immunized chickens with this vaccine and subsequently challenged them with the very virulent IBDV (vvIBDV) and a novel variant wild IBDV (avIBDV) to evaluate the immune effect of the vaccine. The results show that the r-L. lactis-avVP2-RCK-immunized group exhibited a 100% protection rate when challenged with avIBDV and 100% survival rate to vvIBDV. Furthermore, this immunization resulted in the production of unique neutralizing antibodies that cannot be detected by conventional ELISA. These results indicate that r-L. lactis-avVP2-RCK is a promising candidate vaccine against IBDV infections, which can produce unique neutralizing antibodies that cannot be produced by other vaccines and protect against IBDV infection, especially against the variant strain.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiaomei Wang
- Correspondence: (X.W.); (H.C.); Tel.: +86-0451-5105-1693 (H.C.)
| | - Hongyu Cui
- Correspondence: (X.W.); (H.C.); Tel.: +86-0451-5105-1693 (H.C.)
| |
Collapse
|
10
|
Rybka JD, Mieloch AA, Plis A, Pyrski M, Pniewski T, Giersig M. Assembly and Characterization of HBc Derived Virus-like Particles with Magnetic Core. NANOMATERIALS 2019; 9:nano9020155. [PMID: 30691173 PMCID: PMC6409934 DOI: 10.3390/nano9020155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/12/2022]
Abstract
Core-virus like particles (VLPs) assembly is a kinetically complex cascade of interactions between viral proteins, nanoparticle's surface and an ionic environment. Despite many in silico simulations regarding this process, there is still a lack of experimental data. The main goal of this study was to investigate the capsid protein of hepatitis B virus (HBc) assembly into virus-like particles with superparamagnetic iron oxide nanoparticles (SPIONs) as a magnetic core in relation to their characteristics. The native form of HBc was obtained via agroinfection of Nicotiana benthamiana with pEAQ-HBc plasmid. SPIONs of diameter of 15 nm were synthesized and functionalized with two ligands, providing variety in ζ-potential and hydrodynamic diameter. The antigenic potential of the assembled core-VLPs was assessed with enzyme-linked immunosorbent assay (ELISA). Morphology of SPIONs and core-VLPs was evaluated via transmission electron microscopy (TEM). The most successful core-VLPs assembly was obtained for SPIONs functionalized with dihexadecyl phosphate (DHP) at SPIONs/HBc ratio of 0.2/0.05 mg/mL. ELISA results indicate significant decrease of antigenicity concomitant with core-VLPs assembly. In summary, this study provides an experimental assessment of the crucial parameters guiding SPION-HBc VLPs assembly and evaluates the antigenicity of the obtained structures.
Collapse
Affiliation(s)
- Jakub Dalibor Rybka
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Umultowska 89C, 61-614 Poznań, Poland.
| | - Adam Aron Mieloch
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Umultowska 89C, 61-614 Poznań, Poland.
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Umultowska 89B, 61-614 Poznań, Poland.
| | - Alicja Plis
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Umultowska 89C, 61-614 Poznań, Poland.
| | - Marcin Pyrski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Tomasz Pniewski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Michael Giersig
- Center for Advanced Technology, Adam Mickiewicz University in Poznań, Umultowska 89C, 61-614 Poznań, Poland.
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| |
Collapse
|
11
|
Jackwood DJ, Schat KA, Michel LO, de Wit S. A proposed nomenclature for infectious bursal disease virus isolates. Avian Pathol 2018; 47:576-584. [PMID: 30086652 DOI: 10.1080/03079457.2018.1506092] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Infectious bursal disease virus (IBDV) was initially identified in the USA. For decades, these viruses were not categorized using a typing system because they were considered to be antigenically and pathogenically similar. In the 1980s, a second major serotype, serotype 2, was found in turkeys. Classification of IBDV became more complex with the discovery of antigenic variant strains called "variants" in the United States and a highly virulent strain known as "very virulent" or vvIBDV identified in Europe. To distinguish the IBDV strains identified prior to this time from the antigenic variant viruses, the term "classic viruses" was adopted. Studies over the next three decades produced a wealth of information on the antigenicity, pathogenicity and molecular structure of IBDV isolates. These data made it clear that the descriptive nomenclature used for IBDV was inadequate. For example, not all viruses identified as vvIBDV by genotyping are highly pathogenic; some have reassorted genome segments that result in lower virulence. Furthermore, variant viruses are not an antigenically homogeneous group and the term "classic virus" has been used interchangeably to describe antigenic and pathogenic types of IBDV. These and other issues make the current naming system for strains of IBDV archaic. The lack of uniform testing and standards for antigenicity and pathogenicity makes it difficult to categorize IBDV strains on a global basis. A new nomenclature that includes a genotyping system that can easily be applied worldwide is proposed and serves as a platform to begin discussions on its value to the scientific community.
Collapse
Affiliation(s)
- Daral J Jackwood
- a Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center , The Ohio State University , Wooster , OH , USA
| | - Karel A Schat
- b Department of Microbiology and Immunology, College of Veterinary Medicine , Cornell University , Ithaca , NY , USA
| | - Linda O Michel
- a Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center , The Ohio State University , Wooster , OH , USA
| | - Sjaak de Wit
- c GD Animal Health, Department R&D , Deventer , The Netherlands
| |
Collapse
|
12
|
Inactivated and live bivalent fowl adenovirus (FAdV8b + FAdV11) breeder vaccines provide broad-spectrum protection in chicks against inclusion body hepatitis (IBH). Vaccine 2017; 36:744-750. [PMID: 29292175 DOI: 10.1016/j.vaccine.2017.12.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/06/2017] [Accepted: 12/09/2017] [Indexed: 01/25/2023]
Abstract
Fowl adenovirus (FAdV) is comprised of five species (A to E) and 12 serotypes (1-7, 8a, 8b, 9-11). Inclusion body hepatitis (IBH) is caused by FAdV-7, 8a, 8b (species E) and FAdV-2 and 11 (species D). Commercial vaccines against IBH are not available in Canada. Autogenous FAdV broiler breeder vaccines are now used in some areas where outbreaks of IBH are occurring. The objective of this study was to evaluate the efficacy of a bivalent (species D and E) live and an inactivated FAdV broiler breeder vaccine in protecting broiler chicks against IBH through maternal antibody (MtAb) transfer. FAdV seronegative broiler breeders (n = 300/group) received either a live or inactivated bivalent (FAdV-8b-SK + FAdV-11-1047) vaccine. The live vaccine (1 × 104 TCID50 of each virus/bird) was given orally once at 16 weeks of age and the inactivated vaccine (1 × 106TCID50 of each virus + 20% Emulsigen D) was given intramuscularly at 16 and 19 weeks of age. Controls (n = 150) were given saline orally. The inactivated vaccine group was boosted 3 weeks later with the same vaccine. Neutralizing antibodies (NAb) in sera (n = 10) were detected at 19, 22, 30 and 48 weeks of age. NAb were able to neutralize various FAdV serotypes within species D and E. Mean NAb were similar in the both live and killed vaccine groups at 19, 30 and 48 weeks and ranged from 2.4 to 3.7 log10. Approximately 26 ± 7% of MtAbs were passively transferred through eggs to day-old chicks. Progeny challenged with a lethal dose (1 × 107 TCID50/bird intramuscularly) of FAdV-8b-SK, FAdV-11-1047, or FAdV-2-685 (n = 90/group) at 14 days post-hatch (dph) showed 98-100% protection in broiler chicks to homologous or heterologous FAdV challenges. Our data suggests that a bivalent live and an inactivated FAdV vaccine are equally effective and have the potential for the control of IBH.
Collapse
|
13
|
Michel LO, Jackwood DJ. Classification of infectious bursal disease virus into genogroups. Arch Virol 2017; 162:3661-3670. [PMID: 28825213 PMCID: PMC5671532 DOI: 10.1007/s00705-017-3500-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/16/2017] [Indexed: 11/29/2022]
Abstract
Infectious bursal disease virus (IBDV) causes infectious bursal disease (IBD), an immunosuppressive disease of poultry. The current classification scheme of IBDV is confusing because it is based on antigenic types (variant and classical) as well as pathotypes. Many of the amino acid changes differentiating these various classifications are found in a hypervariable region of the capsid protein VP2 (hvVP2), the major host protective antigen. Data from this study were used to propose a new classification scheme for IBDV based solely on genogroups identified from phylogenetic analysis of the hvVP2 of strains worldwide. Seven major genogroups were identified, some of which are geographically restricted and others that have global dispersion, such as genogroup 1. Genogroup 2 viruses are predominately distributed in North America, while genogroup 3 viruses are most often identified on other continents. Additionally, we have identified a population of genogroup 3 vvIBDV isolates that have an amino acid change from alanine to threonine at position 222 while maintaining other residues conserved in this genogroup (I242, I256 and I294). A222T is an important mutation because amino acid 222 is located in the first of four surface loops of hvVP2. A similar shift from proline to threonine at 222 is believed to play a role in the significant antigenic change of the genogroup 2 IBDV strains, suggesting that antigenic drift may be occurring in genogroup 3, possibly in response to antigenic pressure from vaccination.
Collapse
Affiliation(s)
- Linda O Michel
- Food Animal Health Research Program, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH, 44691, USA
| | - Daral J Jackwood
- Food Animal Health Research Program, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH, 44691, USA. .,Department of Veterinary Preventive Medicine, The Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH, 44691, USA.
| |
Collapse
|
14
|
Kurukulasuriya S, Ahmed KA, Ojkic D, Gunawardana T, Goonewardene K, Gupta A, Chow-Lockerbie B, Popowich S, Willson P, Tikoo SK, Gomis S. Modified live infectious bursal disease virus (IBDV) vaccine delays infection of neonatal broiler chickens with variant IBDV compared to turkey herpesvirus (HVT)-IBDV vectored vaccine. Vaccine 2017; 35:882-888. [PMID: 28089549 DOI: 10.1016/j.vaccine.2017.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/24/2016] [Accepted: 01/04/2017] [Indexed: 11/18/2022]
Abstract
Chickens are commonly processed around 35-45days of age in broiler chicken industry hence; diseases that occur at a young age are of paramount economic importance. Early age infection with infectious bursal disease virus (IBDV) results in long-lasting immunosuppression and profound economic losses. To our knowledge, this is the first study comparing the protection efficacy of modified live (MdLV) IBDV and herpesvirus turkey (HVT)-IBDV vaccines against early age variant IBDV (varIBDV) infection in chicks. Experiments were carried out in IBDV maternal antibody (MtAb) positive chicks (n=330), divided into 6 groups (n=50-60/group), namely Group 1 (saline), Group 2 (saline+varIBDV), Group 3 (HVT-IBDV), Group 4 (HVT-IBDV+varIBDV), Group 5 (MdLV) and Group 6 (MdLV+varIBDV). HVT-IBDV vaccination was given via the in ovo route to 18-day-old embryonated eggs. MdLV was administered via the subcutaneous route in day-old broilers. Group 2, Group 4 and Group 6 were orally challenged with varIBDV (SK-09, 3×103 EID50) at day 6 post-hatch. IBDV seroconversion, bursal weight to body weight ratio (BBW) and bursal histopathology were assessed at 19 and 35days of age. Histopathological examination at day 19 revealed that varIBDV-SK09 challenge caused severe bursal atrophy and lower BBW in HVT-IBDV but not in MdLV vaccinated chicks. However by day 35, all challenged groups showed bursal atrophy and seroconversion. Interestingly, RT-qPCR analysis after varIBDV-SK09 challenge demonstrated an early (9days of age) and significantly high viral load (∼5744 folds) in HVT-IBDV vaccinated group vs unvaccinated challenged group (∼2.25 folds). Furthermore, flow cytometry analysis revealed inhibition of cytotoxic CD8+ T-cell response (CD44-downregulation) and decreased splenic lymphocytes counts in chicks after HVT-IBDV vaccination. Overall, our data suggest that MdLV delays varIBDV pathogenesis, whereas, HVT-IBDV vaccine is potentially immunosuppressive, which may increase the risk of early age varIBDV infection in broilers.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibodies, Viral/biosynthesis
- Birnaviridae Infections/immunology
- Birnaviridae Infections/pathology
- Birnaviridae Infections/prevention & control
- Birnaviridae Infections/virology
- Bursa of Fabricius/drug effects
- Bursa of Fabricius/immunology
- Bursa of Fabricius/pathology
- Bursa of Fabricius/virology
- Chick Embryo
- Chickens/immunology
- Chickens/virology
- Herpesvirus 1, Meleagrid/drug effects
- Herpesvirus 1, Meleagrid/immunology
- Herpesvirus 1, Meleagrid/pathogenicity
- Infectious bursal disease virus/drug effects
- Infectious bursal disease virus/immunology
- Infectious bursal disease virus/pathogenicity
- Marek Disease/immunology
- Marek Disease/pathology
- Marek Disease/prevention & control
- Marek Disease/virology
- Organ Size/drug effects
- Poultry Diseases/immunology
- Poultry Diseases/pathology
- Poultry Diseases/prevention & control
- Poultry Diseases/virology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
- Time Factors
- Vaccination
- Vaccines, Live, Unattenuated
- Viral Vaccines/administration & dosage
- Zygote/drug effects
Collapse
Affiliation(s)
- Shanika Kurukulasuriya
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Khawaja Ashfaque Ahmed
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Davor Ojkic
- Animal Health Laboratory, University of Guelph, P.O. Box 3612, Guelph, ON N1H 6R8, Canada
| | - Thushari Gunawardana
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Kalhari Goonewardene
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Ashish Gupta
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Betty Chow-Lockerbie
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Shelly Popowich
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Philip Willson
- Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Suresh K Tikoo
- Vaccinology and Immunotherapeutic Program, School of Public Health, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada; Vaccine and Infectious Disease Organization, 120 Veterinary Road, University of Saskatchewan, Saskatoon, SK S7N 5E3, Canada
| | - Susantha Gomis
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada.
| |
Collapse
|
15
|
Jackwood DJ. Advances in vaccine research against economically important viral diseases of food animals: Infectious bursal disease virus. Vet Microbiol 2016; 206:121-125. [PMID: 27916318 DOI: 10.1016/j.vetmic.2016.11.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/16/2016] [Accepted: 11/21/2016] [Indexed: 11/25/2022]
Abstract
Numerous reviews have been published on infectious bursal disease (IBD) and infectious bursal disease virus (IBDV). Many high quality vaccines are commercially available for the control of IBD that, when used correctly, provide solid protection against infection and disease caused by IBDV. Viruses are not static however; they continue to evolve and vaccines need to keep pace with them. The evolution of IBDV has resulted in very virulent strains and new antigenic types of the virus. This review will discuss some of the limitations associated with existing vaccines, potential solutions to these problems and advances in new vaccines for the control of IBD.
Collapse
Affiliation(s)
- Daral J Jackwood
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, The Ohio State University/OARDC, 1680 Madison Ave., Wooster, OH 44691, USA.
| |
Collapse
|
16
|
Wang M, Pan Q, Lu Z, Li K, Gao H, Qi X, Gao Y, Wang X. An optimized, highly efficient, self-assembled, subvirus-like particle of infectious bursal disease virus (IBDV). Vaccine 2016; 34:3508-14. [PMID: 27164218 DOI: 10.1016/j.vaccine.2016.02.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/24/2016] [Accepted: 02/29/2016] [Indexed: 12/01/2022]
Abstract
Infectious bursal disease virus (IBDV) causes immunosuppression in young chickens, leading to increased susceptibility to other diseases and a reduction in the immune response to other vaccines. Thus, IBDV results in great economic losses to the poultry industry. The most effective method of prevention is vaccination. However, medium-virulence vaccines can cause bursal pathological damage and immunosuppression. Here, we describe a safer, self-assembled, subvirus-like particle (sVP) vaccine without a complex purification process. The IBD-VP2 gene was cloned into Pichia pastoris, and the expressed protein self-assembled into T=1 sVPs (∼23nm). Immunization experiments showed that the sVP vaccine elicited high IBDV-neutralizing antibodies in each group, and all birds survived challenge with very virulent IBDV (vvIBDV). Additionally, IBDV RNA was not detected, and sterile immunity was achieved. In conclusion, the IBD-sVP is a suitable candidate for a recombinant subunit vaccine against IBDV.
Collapse
Affiliation(s)
- Miao Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Qing Pan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Zhen Lu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Honglei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Nan Gang District, Harbin 150001, Heilongjiang Province, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou 225009, PR China.
| |
Collapse
|
17
|
Development of a porcine reproductive and respiratory syndrome virus-like-particle-based vaccine and evaluation of its immunogenicity in pigs. Arch Virol 2016; 161:1579-89. [DOI: 10.1007/s00705-016-2812-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/26/2016] [Indexed: 10/22/2022]
|
18
|
Lee HJ, Kim JY, Kye SJ, Seul HJ, Jung SC, Choi KS. Efficient self-assembly and protective efficacy of infectious bursal disease virus-like particles by a recombinant baculovirus co-expressing precursor polyprotein and VP4. Virol J 2015; 12:177. [PMID: 26502988 PMCID: PMC4621879 DOI: 10.1186/s12985-015-0403-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022] Open
Abstract
Background Virus-like particle (VLP) technology is considered one of the most promising approaches in animal vaccines, due to the intrinsic immunogenic properties as well as high safety profile of VLPs. In this study, we developed a VLP vaccine against infectious bursal disease virus (IBDV), which causes morbidity and mortality in chickens, by expressing a baculovirus in insect cells. Methods To improve the self-proteolytic processing of precursor polyprotein (PP), we constructed a recombinant baculovirus transfer vector that co-expresses PP and the VP4 protease gene of IBDV. Results Expression and VLP assembly of recombinant proteins and antigenicity of the VLP were examined by Western blotting, ELISA, and transmission electron microscopy. In animal experiments, vaccination with the recombinant VLP induced strong and uniform humoral immunity and provided complete protection against challenge with very virulent (vv) IBDV in SPF chickens (n = 12). As determined by the bursa of Fabricius (BF)/body weight (B/BW) ratio, the protection against post-challenge bursal atrophy was significantly higher (P < 0.001) in VLP-vaccinated birds than in non-vaccinated controls. Conclusions Since the protective efficacy of the VLP vaccine was comparable to that of a commercially available inactivated vaccine, the recombinant VLP merits further investigation as an alternative means of protection against vvIBD.
Collapse
Affiliation(s)
- Hyun-Jeong Lee
- Avian Disease Division, Animal and Plant Quarantine Agency, 175 Anyangro, Anyang, Gyeonggi, 430-757, Republic of Korea.
| | - Ji-Ye Kim
- Avian Disease Division, Animal and Plant Quarantine Agency, 175 Anyangro, Anyang, Gyeonggi, 430-757, Republic of Korea.
| | - Soo-Jeong Kye
- Avian Disease Division, Animal and Plant Quarantine Agency, 175 Anyangro, Anyang, Gyeonggi, 430-757, Republic of Korea.
| | - Hee-Jung Seul
- Avian Disease Division, Animal and Plant Quarantine Agency, 175 Anyangro, Anyang, Gyeonggi, 430-757, Republic of Korea.
| | - Suk-Chan Jung
- Avian Disease Division, Animal and Plant Quarantine Agency, 175 Anyangro, Anyang, Gyeonggi, 430-757, Republic of Korea.
| | - Kang-Seuk Choi
- Avian Disease Division, Animal and Plant Quarantine Agency, 175 Anyangro, Anyang, Gyeonggi, 430-757, Republic of Korea.
| |
Collapse
|
19
|
Ouyang W, Wang YS, Du XN, Liu HJ, Zhang HB. gga-miR-9* inhibits IFN production in antiviral innate immunity by targeting interferon regulatory factor 2 to promote IBDV replication. Vet Microbiol 2015; 178:41-9. [PMID: 25975521 DOI: 10.1016/j.vetmic.2015.04.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 04/25/2015] [Accepted: 04/27/2015] [Indexed: 01/25/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that contribute to the repertoire of host-pathogen interactions during viral infections. In the current study, miRNA analysis showed that a panel of microRNAs, including gga-miR-9*, were markedly upregulated in specific-pathogen-free (SPF) chickens upon infection with infectious bursal disease virus (IBDV); however, the biological function of gga-miR-9* during viral infection remains unknown. Using a TCID50 assay, it was found that ectopic expression of gga-miR-9* significantly promoted IBDV replication. In turn, gga-miR-9* negatively regulated IBDV-triggered type I IFN production, thus promoting IBDV replication in DF-1 cells. Bioinformatics analysis indicates that the 3' untranslated region (UTR) of interferon regulatory factor 2 (IRF2) has two putative binding sites for gga-miR-9*. Targeting of IRF2 3'UTR by gga-miR-9* was determined by luciferase assay. Functional overexpression of gga-miR-9*, using gga-miR-9* mimics, inhibited IRF2 mRNA and protein expression. Transfection of the gga-miR-9* inhibitor abolished the suppression of IRF2 protein expression. Furthermore, IRF2 knockdown mediated the enhancing effect of gga-miR-9* on the type I IFN-mediated antiviral response. These findings indicate that inducible gga-miR-9* feedback negatively regulates the host antiviral innate immune response by suppressing type I IFN production via targeting IRF2.
Collapse
Affiliation(s)
- Wei Ouyang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture/National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yong-shan Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture/National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Xi-ning Du
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture/National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Hua-jie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences/Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture/National Center for Engineering Research of Veterinary Bio-products, Nanjing 210014, China
| | - Hai-bin Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
DNA vaccine against infectious bursal disease virus: still more to explore. Vet Microbiol 2014; 175:389-90. [PMID: 25554242 DOI: 10.1016/j.vetmic.2014.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 12/02/2014] [Indexed: 11/22/2022]
|
21
|
Induction of humoral and cell-mediated immune responses by hepatitis B virus epitope displayed on the virus-like particles of prawn nodavirus. Appl Environ Microbiol 2014; 81:882-9. [PMID: 25416760 DOI: 10.1128/aem.03695-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is a deadly pathogen that has killed countless people worldwide. Saccharomyces cerevisiae-derived HBV vaccines based upon hepatitis B surface antigen (HBsAg) is highly effective. However, the emergence of vaccine escape mutants due to mutations on the HBsAg and polymerase genes has produced a continuous need for the development of new HBV vaccines. In this study, the "a" determinant within HBsAg was displayed on the recombinant capsid protein of Macrobrachium rosenbergii nodavirus (MrNV), which can be purified easily in a single step through immobilized metal affinity chromatography (IMAC). The purified protein self-assembled into virus-like particles (VLPs) when observed under a transmission electron microscope (TEM). Immunization of BALB/c mice with this chimeric protein induced specific antibodies against the "a" determinant. In addition, it induced significantly more natural killer and cytotoxic T cells, as well as an increase in interferon gamma (IFN-γ) secretion, which are vital for virus clearance. Collectively, these findings demonstrated that the MrNV capsid protein is a potential carrier for the HBV "a" determinant, which can be further extended to display other foreign epitopes. This paper is the first to report the application of MrNV VLPs as a novel platform to display foreign epitopes.
Collapse
|