1
|
Pfenning-Butterworth AC, Davies TJ, Cressler CE. Identifying co-phylogenetic hotspots for zoonotic disease. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200363. [PMID: 34538148 PMCID: PMC8450626 DOI: 10.1098/rstb.2020.0363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
The incidence of zoonotic diseases is increasing worldwide, which makes identifying parasites likely to become zoonotic and hosts likely to harbour zoonotic parasites a critical concern. Prior work indicates that there is a higher risk of zoonotic spillover accruing from closely related hosts and from hosts that are infected with a high phylogenetic diversity of parasites. This suggests that host and parasite evolutionary history may be important drivers of spillover, but identifying whether host-parasite associations are more strongly structured by the host, parasite or both requires co-phylogenetic analyses that combine host-parasite association data with host and parasite phylogenies. Here, we use host-parasite datasets containing associations between helminth taxa and free-range mammals in combination with phylogenetic models to explore whether host, parasite, or both host and parasite evolutionary history influences host-parasite associations. We find that host phylogenetic history is most important for driving patterns of helminth-mammal association, indicating that zoonoses are most likely to come from a host's close relatives. More broadly, our results suggest that co-phylogenetic analyses across broad taxonomic scales can provide a novel perspective for surveying potential emerging infectious diseases. This article is part of the theme issue 'Infectious disease macroecology: parasite diversity and dynamics across the globe'.
Collapse
Affiliation(s)
| | - T. Jonathan Davies
- Departments of Botany, Forest, and Conservation Science, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
2
|
Spradling TA, Place AC, Campbell AL, Demastes JW. Mitochondrial genome of Geomydoecus aurei, a pocket-gopher louse. PLoS One 2021; 16:e0254138. [PMID: 34314423 PMCID: PMC8315533 DOI: 10.1371/journal.pone.0254138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/18/2021] [Indexed: 11/28/2022] Open
Abstract
Parasitic lice demonstrate an unusual array of mitochondrial genome architectures and gene arrangements. We characterized the mitochondrial genome of Geomydoecus aurei, a chewing louse (Phthiraptera: Trichodectidae) found on pocket gophers (Rodentia: Geomyidae) using reads from both Illumina and Oxford Nanopore sequencing coupled with PCR, cloning, and Sanger sequencing to verify structure and arrangement for each chromosome. The genome consisted of 12 circular mitochondrial chromosomes ranging in size from 1,318 to 2,088 nucleotides (nt). Total genome size was 19,015 nt. All 37 genes typical of metazoans (2 rRNA genes, 22 tRNA genes, and 13 protein-coding genes) were present. An average of 26% of each chromosome was composed of non-gene sequences. Within the non-gene region of each chromosome, there was a 79-nt nucleotide sequence that was identical among chromosomes and a conserved sequence with secondary structure that was always followed by a poly-T region. We hypothesize that these regions may be important in the initiation of transcription and DNA replication, respectively. The G. aurei genome shares 8 derived gene clusters with other chewing lice of mammals, but in G. aurei, genes on several chromosomes are not contiguous.
Collapse
Affiliation(s)
- Theresa A. Spradling
- Department of Biology, University of Northern Iowa, Cedar Falls, Iowa, United States of America
| | - Alexandra C. Place
- Department of Biology, University of Northern Iowa, Cedar Falls, Iowa, United States of America
| | - Ashley L. Campbell
- Department of Biology, University of Northern Iowa, Cedar Falls, Iowa, United States of America
| | - James W. Demastes
- Department of Biology, University of Northern Iowa, Cedar Falls, Iowa, United States of America
| |
Collapse
|
3
|
Molecular identification of Campanulotes bidentatus Scopoli, 1763 (Phthiraptera, Philopteridae) infecting the domestic pigeon Columba livia from Saudi Arabia. Saudi J Biol Sci 2021; 28:2613-2617. [PMID: 33911972 PMCID: PMC8071883 DOI: 10.1016/j.sjbs.2021.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/02/2022] Open
Abstract
The taxonomy of the order Phthiraptera is unstable and still problematic to researchers. Most of the current taxon classifications are mainly based on morphological features. Campanulotes bidentatus belongs to the chewing lice of the Philopteridae family that mostly parasitic on birds. There is a lack of sequence data and phylogenetic analyses on the family Philopteridae. In the current study, C. bidentatus was collected from the domestic pigeon Columba livia and identified morphologically and molecularly based on the mitochondrial cytochrome c oxidase subunit 1 gene (COI). The infection rate of the Campanulotes genus was approximately 58.82% in this study. Phylogenetic analysis based on the mt COI gene was informative for members of Philopteridae and the group taxon genera formed distinct clades. Future studies were recommended using the 16s rRNA to enhance the tree topology and obtain clear differentiation between genera.
Collapse
|
4
|
Boumbanda-Koyo CS, Mediannikov O, Amanzougaghene N, Oyegue-Liabagui SL, Imboumi-Limoukou RK, Raoult D, Lekana-Douki JB, Fenollar F. Molecular identification of head lice collected in Franceville (Gabon) and their associated bacteria. Parasit Vectors 2020; 13:410. [PMID: 32782016 PMCID: PMC7422577 DOI: 10.1186/s13071-020-04293-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pediculus humanus, which includes two ecotypes (body and head lice), is an obligate bloodsucking parasite that co-evolved with their human hosts over thousands of years, thus providing a valuable source of information to reconstruct the human migration. Pediculosis due to head lice occurred each year throughout the world and several pathogenic bacteria, which are usually associated with body lice, are increasingly detected in them. In Gabon, where this pediculosis is still widespread, there is a lack of data on genetic diversity of head lice and their associated bacteria. METHODS This study aimed to investigate the phylogeny of head lice collected in Gabon and their associated bacteria, using molecular tools. Between 26 March and 11 April 2018, 691 head lice were collected from 86 women in Franceville. We studied the genetic diversity of these lice based on the cytochrome b gene, then we screened them for DNA of Bartonella quintana, Borrelia spp., Acinetobacter spp., Yersinia pestis, Rickettsia spp., R. prowazekii, Anaplasma spp. and C. burnetii, using real time or standard PCR and sequencing. RESULTS Overall 74.6% of studied lice belonged to Clade A, 25.3% to Clade C and 0.1% to Clade E. The phylogenetic analysis of 344 head lice yielded 45 variable positions defining 13 different haplotypes from which 8 were novel. Bacterial screening revealed the presence of Borrelia spp. DNA in 3 (0.4%) of 691 head lice belonging to Clade A and infesting one individual. This Borrelia is close to B. theileri (GenBank: MN621894). Acinetobacter spp. DNA has been detected in 39 (25%) of the 156 screened lice; of these 13 (8.3%) corresponded to A. baumannii. Acinetobacter nosocomialis (n = 2) and A. pittii (n = 1) were also recorded. CONCLUSIONS To of our knowledge, this study is the first to investigate the genetic diversity of head lice from Gabon. It appears that Clade C is the second most important clade in Gabon, after Clade A which is known to have a global distribution. The detection of Borrelia spp. DNA in these lice highlight the potential circulation of these bacteria in Gabon.
Collapse
Affiliation(s)
- Celia Scherelle Boumbanda-Koyo
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,Unité d'Evolution, Epidémiologie et Résistances Parasitaires (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), B.P. 769, Franceville, Gabon.,Ecole Doctorale Régionale en Infectiologie Tropicale d'Afrique Centrale, B.P. 876, Franceville, Gabon
| | - Oleg Mediannikov
- IHU-Méditerranée Infection, Marseille, France. .,Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France.
| | - Nadia Amanzougaghene
- IHU-Méditerranée Infection, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | | | - Roméo Karl Imboumi-Limoukou
- Unité d'Evolution, Epidémiologie et Résistances Parasitaires (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), B.P. 769, Franceville, Gabon
| | - Didier Raoult
- IHU-Méditerranée Infection, Marseille, France.,Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
| | - Jean Bernard Lekana-Douki
- Unité d'Evolution, Epidémiologie et Résistances Parasitaires (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), B.P. 769, Franceville, Gabon.,Ecole Doctorale Régionale en Infectiologie Tropicale d'Afrique Centrale, B.P. 876, Franceville, Gabon.,Département de Parasitologie-Mycologie et Médecine Tropicale, Faculté de Médecine, Université des Sciences de la Santé (USS), B.P. 4009, Libreville, Gabon
| | - Florence Fenollar
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
5
|
Hafner DJ, Hafner MS, Spradling TA, Light JE, Demastes JW. Temporal and spatial dynamics of competitive parapatry in chewing lice. Ecol Evol 2019; 9:7410-7424. [PMID: 31346412 PMCID: PMC6635930 DOI: 10.1002/ece3.5183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/22/2019] [Accepted: 03/29/2019] [Indexed: 12/04/2022] Open
Abstract
We synthesize observations from 1979 to 2016 of a contact zone involving two subspecies of pocket gophers (Thomomys bottae connectens and T. b. opulentus) and their respective chewing lice (Geomydoecus aurei and G. centralis) along the Río Grande Valley in New Mexico, U.S.A., to test predictions about the dynamics of the zone. Historically, the natural flood cycle of the Rio Grande prevented contact between the two subspecies of pocket gophers. Flood control measures completed in the 1930s permitted contact, thus establishing the hybrid zone between the pocket gophers and the contact zone between their lice (without hybridization). Since that time, the pocket gopher hybrid zone has stabilized, whereas the northern chewing louse species has replaced the southern louse species at a consistent rate of ~150 m/year. The 0.2-0.8 width of the replacement zone has remained constant, reflecting the constant rate of chewing louse species turnover on a single gopher and within a local pocket gopher population. In contrast, the full width of the replacement zone (northernmost G. centralis to southernmost G. aurei) has increased annually. By employing a variety of metrics of the species replacement zone, we are better able to understand the dynamics of interactions between and among the chewing lice and their pocket gopher hosts. This research provides an opportunity to observe active species replacement and resulting distributional shifts in a parasitic organism in its natural setting.
Collapse
Affiliation(s)
- David J. Hafner
- Museum of Southwestern BiologyUniversity of New MexicoAlbuquerqueNew Mexico
| | - Mark S. Hafner
- Museum of Natural Science and Department of Biological SciencesLouisiana State UniversityBaton RougeLouisiana
| | | | - Jessica E. Light
- Department of Wildlife and Fisheries SciencesTexas A&M UniversityCollege StationTexas
| | | |
Collapse
|
6
|
Boumbanda Koyo CS, Amanzougaghene N, Davoust B, Tshilolo L, Lekana-Douki JB, Raoult D, Mediannikov O, Fenollar F. Genetic diversity of human head lice and molecular detection of associated bacterial pathogens in Democratic Republic of Congo. Parasit Vectors 2019; 12:290. [PMID: 31174587 PMCID: PMC6555951 DOI: 10.1186/s13071-019-3540-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Head louse, Pediculus humanus capitis, is an obligatory blood-sucking ectoparasite, distributed worldwide. Phylogenetically, it occurs in five divergent mitochondrial clades (A-E); each exhibiting a particular geographical distribution. Recent studies suggest that, as in the case of body louse, head louse could be a disease vector. We aimed to study the genetic diversity of head lice collected in the Democratic Republic of the Congo (DR Congo) and to screen for louse-borne pathogens in these lice. METHODS A total of 181 head lice were collected from 27 individuals at the Monkole Hospital Center located in Kinshasa. All head lice were genotyped and screened for the presence of louse-borne bacteria using molecular methods. We searched for Bartonella quintana, Borrelia recurrentis, Rickettsia prowazekii, Anaplasma spp., Yersinia pestis, Coxiella burnetii and Acinetobacter spp. RESULTS Among these head lice, 67.4% (122/181) belonged to clade A and 24.3% (44/181) belonged to clade D. Additionally, for the first time in this area, we found clade E in 8.3% (15/181) of tested lice, from two infested individuals. Dual infestation with clades A and D was observed for 44.4% individuals. Thirty-three of the 181 head lice were infected only by different bacterial species of the genus Acinetobacter. Overall, 16 out of 27 individuals were infested (59.3%). Six Acinetobacter species were detected including Acinetobacter baumannii (8.3%), Acinetobacter johnsonii (1.7%), Acinetobacter soli (1.7%), Acinetobacter pittii (1.7%), Acinetobacter guillouiae (1.1%), as well as a new potential species named "Candidatus Acinetobacter pediculi". CONCLUSIONS To our knowledge, this study reports for the first time, the presence of clade E head lice in DR Congo. This study is also the first to report the presence of Acinetobacter species DNAs in human head lice in DR Congo.
Collapse
Affiliation(s)
- Celia Scherelle Boumbanda Koyo
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France.,Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon.,Ecole Doctorale Régionale en Infectiologie Tropicale d'Afrique Centrale, Franceville, Gabon
| | - Nadia Amanzougaghene
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Bernard Davoust
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Leon Tshilolo
- Monkole Mother and Child Hospital, Kinshasa, Democratic Republic of the Congo
| | - Jean Bernard Lekana-Douki
- Unité d'Evolution Epidémiologie et Résistances Parasitaires (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon.,Ecole Doctorale Régionale en Infectiologie Tropicale d'Afrique Centrale, Franceville, Gabon.,Département de Parasitologie-Mycologie Médecine Tropicale, Faculté de Médecine, Université des Sciences de la Santé (USS), Libreville, Gabon
| | - Didier Raoult
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| | - Oleg Mediannikov
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France. .,IHU-Méditerranée Infection, Marseille, France.
| | - Florence Fenollar
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
7
|
Zohdy S, Schwartz TS, Oaks JR. The Coevolution Effect as a Driver of Spillover. Trends Parasitol 2019; 35:399-408. [PMID: 31053334 DOI: 10.1016/j.pt.2019.03.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/31/2022]
Abstract
Global habitat fragmentation is associated with the emergence of infectious diseases of wildlife origins in human populations. Despite this well-accepted narrative, the underlying mechanisms driving this association remain unclear. We introduce a nuanced hypothesis, the 'coevolution effect'. The central concept is that the subdivision of host populations which occurs with habitat fragmentation causes localized coevolution of hosts, obligate parasites, and pathogens which act as 'coevolutionary engines' within each fragment, accelerating pathogen diversification, and increasing pathogen diversity across the landscape. When combined with a mechanism to exit a fragment (e.g., mosquitoes), pathogen variants will spill over into human communities. Through this combined ecoevolutionary approach we may be able to understand the fine-scale mechanisms that drive disease emergence in the Anthropocene.
Collapse
Affiliation(s)
- Sarah Zohdy
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, USA; College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jamie R Oaks
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
8
|
Sweet AD, Johnson KP. The role of parasite dispersal in shaping a host–parasite system at multiple evolutionary scales. Mol Ecol 2018; 27:5104-5119. [DOI: 10.1111/mec.14937] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/13/2018] [Accepted: 10/23/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Andrew D. Sweet
- Illinois Natural History Survey, Prairie Research Institute University of Illinois at Urbana‐Champaign Champaign Illinois
| | - Kevin P. Johnson
- Illinois Natural History Survey, Prairie Research Institute University of Illinois at Urbana‐Champaign Champaign Illinois
| |
Collapse
|
9
|
Light JE, Harper SE, Johnson KP, Demastes JW, Spradling TA. Development and Characterization of 12 Novel Polymorphic Microsatellite Loci for the Mammal Chewing Louse Geomydoecus aurei (Insecta: Phthiraptera) and a Comparison of Next-Generation Sequencing Approaches for Use in Parasitology. J Parasitol 2017; 104:89-95. [PMID: 28985160 DOI: 10.1645/17-130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Next-generation sequencing methodologies open the door for evolutionary studies of wildlife parasites. We used 2 next-generation sequencing approaches to discover microsatellite loci in the pocket gopher chewing louse Geomydoecus aurei for use in population genetic studies. In one approach, we sequenced a library enriched for microsatellite loci; in the other approach, we mined microsatellites from genomic sequences. Following microsatellite discovery, promising loci were tested for amplification and polymorphism in 390 louse individuals from 13 pocket gopher hosts. In total, 12 loci were selected for analysis (6 from each methodology), none of which exhibited evidence of null alleles or heterozygote deficiencies. These 12 loci showed adequate genetic diversity for population-level analyses, with 3-9 alleles per locus with an average HE per locus ranging from 0.32 to 0.70. Analysis of Molecular Variance (AMOVA) indicated that genetic variation among infrapopulations accounts for a low, but significant, percentage of the overall genetic variation, and individual louse infrapopulations showed FST values that were significantly different from zero in the majority of pairwise infrapopulation comparisons, despite all 13 infrapopulations being taken from the same locality. Therefore, these 12 polymorphic markers will be useful at the infrapopulation and population levels for future studies involving G. aurei. This study shows that next-generation sequencing methodologies can successfully be used to efficiently obtain data for a variety of evolutionary questions.
Collapse
Affiliation(s)
- J E Light
- Department of Wildlife and Fisheries Sciences, Texas A&M University, 534 John Kimbrough Blvd., College Station, Texas 77843
| | - S E Harper
- Department of Wildlife and Fisheries Sciences, Texas A&M University, 534 John Kimbrough Blvd., College Station, Texas 77843
| | - K P Johnson
- Department of Wildlife and Fisheries Sciences, Texas A&M University, 534 John Kimbrough Blvd., College Station, Texas 77843
| | - J W Demastes
- Department of Wildlife and Fisheries Sciences, Texas A&M University, 534 John Kimbrough Blvd., College Station, Texas 77843
| | - T A Spradling
- Department of Wildlife and Fisheries Sciences, Texas A&M University, 534 John Kimbrough Blvd., College Station, Texas 77843
| |
Collapse
|
10
|
Klimov PB, Mironov SV, OConnor BM. Detecting ancient codispersals and host shifts by double dating of host and parasite phylogenies: Application in proctophyllodid feather mites associated with passerine birds. Evolution 2017; 71:2381-2397. [DOI: 10.1111/evo.13309] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 06/25/2017] [Accepted: 07/07/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Pavel B. Klimov
- Department of Ecology and Evolutionary Biology University of Michigan, Museum of Zoology Ann Arbor Michigan 48109
- Faculty of Biology Tyumen State University Tyumen 625003 Russia
| | - Sergey V. Mironov
- Faculty of Biology Tyumen State University Tyumen 625003 Russia
- Department of Parasitology, Zoological Institute Russian Academy of Sciences 1 Universitetskaya embankment Saint Petersburg 199034 Russia
| | - Barry M. OConnor
- Department of Ecology and Evolutionary Biology University of Michigan, Museum of Zoology Ann Arbor Michigan 48109
| |
Collapse
|
11
|
Alcala N, Jenkins T, Christe P, Vuilleumier S. Host shift and cospeciation rate estimation from co‐phylogenies. Ecol Lett 2017; 20:1014-1024. [DOI: 10.1111/ele.12799] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/25/2017] [Accepted: 05/15/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Nicolas Alcala
- Department of Ecology and Evolution University of Lausanne Biophore, Sorge CH‐1015 Lausanne Switzerland
- Department of Biology Stanford University Stanford CA94305‐5020 USA
| | - Tania Jenkins
- Department of Ecology and Evolution University of Lausanne Biophore, Sorge CH‐1015 Lausanne Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution University of Lausanne Biophore, Sorge CH‐1015 Lausanne Switzerland
| | - Séverine Vuilleumier
- Department of Ecology and Evolution University of Lausanne Biophore, Sorge CH‐1015 Lausanne Switzerland
- School of Life Sciences Ecole Polytechnique Fédérale de Lausanne CH‐1015 Lausanne Switzerland
- School of Nursing Sciences, La Source University of Applied Sciences & Arts of Western Switzerland CH‐1004 Lausanne Switzerland
| |
Collapse
|
12
|
Rivera‐Parra JL, Levin II, Johnson KP, Parker PG. Host sympatry and body size influence parasite straggling rate in a highly connected multihost, multiparasite system. Ecol Evol 2017; 7:3724-3731. [PMID: 28616169 PMCID: PMC5468160 DOI: 10.1002/ece3.2971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/03/2017] [Accepted: 03/16/2017] [Indexed: 11/07/2022] Open
Abstract
Parasite lineages commonly diverge when host lineages diverge. However, when large clades of hosts and parasites are analyzed, some cases suggest host switching as another major diversification mechanism. The first step in host switching is the appearance of a parasite on an atypical host, or “straggling.” We analyze the conditions associated with straggling events. We use five species of colonially nesting seabirds from the Galapagos Archipelago and two genera of highly specific ectoparasitic lice to examine host switching. We use both genetic and morphological identification of lice, together with measurements of spatial distribution of hosts in mixed breeding colonies, to test: (1) effects of local host community composition on straggling parasite identity; (2) effects of relative host density within a mixed colony on straggling frequency and parasite species identity; and (3) how straggling rates are influenced by the specifics of louse attachment. Finally, we determine whether there is evidence of breeding in cases where straggling adult lice were found, which may indicate a shift from straggling to the initial stages of host switching. We analyzed more than 5,000 parasite individuals and found that only ~1% of lice could be considered stragglers, with ~5% of 436 host individuals having straggling parasites. We found that the presence of the typical host and recipient host in the same locality influenced straggling. Additionally, parasites most likely to be found on alternate hosts are those that are smaller than the typical parasite of that host, implying that the ability of lice to attach to the host might limit host switching. Given that lice generally follow Harrison's rule, with larger parasites on larger hosts, parasites infecting the larger host species are less likely to successfully colonize smaller host species. Moreover, our study supports the general perception that successful colonization of a novel host is extremely rare, as we found only one nymph of a straggling species, which may indicate successful reproduction.
Collapse
Affiliation(s)
- Jose L. Rivera‐Parra
- Department of Biology and Whitney R. Harris World Ecology CenterUniversity of Missouri—St LouisSt LouisMOUSA
- Departamento de PetróleosFacultad de Geología y PetróleosEscuela Politécnica NacionalQuitoEcuador
| | - Iris I. Levin
- Department of Biology and Whitney R. Harris World Ecology CenterUniversity of Missouri—St LouisSt LouisMOUSA
- Present address: Department of BiologyAgnes Scott CollegeDecaturGAUSA
| | - Kevin P. Johnson
- Illinois Natural History SurveyUniversity of IllinoisChampaignILUSA
| | - Patricia G. Parker
- Department of Biology and Whitney R. Harris World Ecology CenterUniversity of Missouri—St LouisSt LouisMOUSA
- Saint Louis Zoo WildCare InstituteOne Government DriveSaint LouisMOUSA
| |
Collapse
|
13
|
Pietan LL, Spradling TA, Demastes JW. The Mitochondrial Cytochrome Oxidase Subunit I Gene Occurs on a Minichromosome with Extensive Heteroplasmy in Two Species of Chewing Lice, Geomydoecus aurei and Thomomydoecus minor. PLoS One 2016; 11:e0162248. [PMID: 27589589 PMCID: PMC5010254 DOI: 10.1371/journal.pone.0162248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/21/2016] [Indexed: 12/02/2022] Open
Abstract
In animals, mitochondrial DNA (mtDNA) typically occurs as a single circular chromosome with 13 protein-coding genes and 22 tRNA genes. The various species of lice examined previously, however, have shown mitochondrial genome rearrangements with a range of chromosome sizes and numbers. Our research demonstrates that the mitochondrial genomes of two species of chewing lice found on pocket gophers, Geomydoecus aurei and Thomomydoecus minor, are fragmented with the 1,536 base-pair (bp) cytochrome-oxidase subunit I (cox1) gene occurring as the only protein-coding gene on a 1,916-1,964 bp minicircular chromosome in the two species, respectively. The cox1 gene of T. minor begins with an atypical start codon, while that of G. aurei does not. Components of the non-protein coding sequence of G. aurei and T. minor include a tRNA (isoleucine) gene, inverted repeat sequences consistent with origins of replication, and an additional non-coding region that is smaller than the non-coding sequence of other lice with such fragmented mitochondrial genomes. Sequences of cox1 minichromosome clones for each species reveal extensive length and sequence heteroplasmy in both coding and noncoding regions. The highly variable non-gene regions of G. aurei and T. minor have little sequence similarity with one another except for a 19-bp region of phylogenetically conserved sequence with unknown function.
Collapse
Affiliation(s)
- Lucas L. Pietan
- Department of Biology, University of Northern Iowa, Cedar Falls, Iowa, United States of America
| | - Theresa A. Spradling
- Department of Biology, University of Northern Iowa, Cedar Falls, Iowa, United States of America
| | - James W. Demastes
- Department of Biology, University of Northern Iowa, Cedar Falls, Iowa, United States of America
| |
Collapse
|
14
|
Martínez-Aquino A. Phylogenetic framework for coevolutionary studies: a compass for exploring jungles of tangled trees. Curr Zool 2016; 62:393-403. [PMID: 29491928 PMCID: PMC5804275 DOI: 10.1093/cz/zow018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 11/17/2015] [Indexed: 01/19/2023] Open
Abstract
Phylogenetics is used to detect past evolutionary events, from how species originated to how their ecological interactions with other species arose, which can mirror cophylogenetic patterns. Cophylogenetic reconstructions uncover past ecological relationships between taxa through inferred coevolutionary events on trees, for example, codivergence, duplication, host-switching, and loss. These events can be detected by cophylogenetic analyses based on nodes and the length and branching pattern of the phylogenetic trees of symbiotic associations, for example, host-parasite. In the past 2 decades, algorithms have been developed for cophylogetenic analyses and implemented in different software, for example, statistical congruence index and event-based methods. Based on the combination of these approaches, it is possible to integrate temporal information into cophylogenetical inference, such as estimates of lineage divergence times between 2 taxa, for example, hosts and parasites. Additionally, the advances in phylogenetic biogeography applying methods based on parametric process models and combined Bayesian approaches, can be useful for interpreting coevolutionary histories in a scenario of biogeographical area connectivity through time. This article briefly reviews the basics of parasitology and provides an overview of software packages in cophylogenetic methods. Thus, the objective here is to present a phylogenetic framework for coevolutionary studies, with special emphasis on groups of parasitic organisms. Researchers wishing to undertake phylogeny-based coevolutionary studies can use this review as a "compass" when "walking" through jungles of tangled phylogenetic trees.
Collapse
Affiliation(s)
- Andrés Martínez-Aquino
- División Zoología Invertebrados, Museo de La Plata, FCNyM, UNLP, Paseo del Bosque s/n, 1900 La Plata, Argentina
| |
Collapse
|
15
|
Harper SE, Spradling TA, Demastes JW, Calhoun CS. Host behaviour drives parasite genetics at multiple geographic scales: population genetics of the chewing louse,Thomomydoecus minor. Mol Ecol 2015; 24:4129-44. [DOI: 10.1111/mec.13306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/12/2015] [Accepted: 07/03/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Sheree E. Harper
- Department of Biology; University of Northern Iowa; Cedar Falls IA 50614-0421 USA
| | - Theresa A. Spradling
- Department of Biology; University of Northern Iowa; Cedar Falls IA 50614-0421 USA
| | - James W. Demastes
- Department of Biology; University of Northern Iowa; Cedar Falls IA 50614-0421 USA
| | - Courtney S. Calhoun
- Department of Biology; University of Northern Iowa; Cedar Falls IA 50614-0421 USA
| |
Collapse
|
16
|
Martinu J, Roubova V, Novakova M, Smith VS, Hypsa V, Stefka J. Characterisation of microsatellite loci in two species of lice, Polyplax serrata (Phthiraptera: Anoplura: Polyplacidae) and Myrsidea nesomimi (Phthiraptera: Amblycera: Menoponidae). Folia Parasitol (Praha) 2015; 62. [PMID: 25960560 DOI: 10.14411/fp.2015.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/09/2015] [Indexed: 11/19/2022]
Abstract
Polymorphic microsatellite loci were characterised for two louse species, the anopluran Polyplax serrata Burmeister, 1839, parasitising Eurasian field mice of the genus Apodemus Kaup, and the amblyceran Myrsidea nesomimi Palma et Price, 2010, found on mocking birds endemic to the Galápagos Islands. Evolutionary histories of the two parasites show complex patterns influenced both by their geographic distribution and through coevolution with their respective hosts, which renders them prospective evolutionary models. In P. serrata, 16 polymorphic loci were characterised and screened across 72 individuals from four European populations that belong to two sympatric mitochondrial lineages differing in their breadth of host-specificity. In M. nesomimi, 66 individuals from three island populations and two host species were genotyped for 15 polymorphic loci. The observed heterozygosity varied from 0.05 to 0.9 in P. serrata and from 0.0 to 0.96 in M. nesomimi. Deviations from the Hardy-Weinberg equilibrium were frequently observed in the populations of both parasites. Fst distances between tested populations correspond with previous phylogenetic data, suggesting the microsatellite loci are an informative resource for ecological and evolutionary studies of the two parasites.
Collapse
Affiliation(s)
- Jana Martinu
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Science, Ceske Budejovice, Czech Republic
| | - Veronika Roubova
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Milena Novakova
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Vincent S Smith
- Life Sciences Department, Natural History Museum, London, United Kingdom
| | - Vaclav Hypsa
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Science, Ceske Budejovice, Czech Republic
| | - Jan Stefka
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.,Institute of Parasitology, Biology Centre of the Czech Academy of Science, Ceske Budejovice, Czech Republic
| |
Collapse
|
17
|
Brooks DR, Hoberg EP, Boeger WA. In the Eye of the Cyclops: The Classic Case of Cospeciation and Why Paradigms are Important. COMP PARASITOL 2015. [DOI: 10.1654/4724c.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Boutellis A, Abi-Rached L, Raoult D. The origin and distribution of human lice in the world. INFECTION GENETICS AND EVOLUTION 2014; 23:209-17. [PMID: 24524985 DOI: 10.1016/j.meegid.2014.01.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/16/2013] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
Abstract
Two genera of lice parasitize humans: Pthirus and Pediculus. The latter is of significant public health importance and comprises two ecotypes: the body louse and the head louse. These ecotypes are morphologically and genetically notably similar; the body louse is responsible for three infectious diseases: Louse-borne epidemic typhus, relapsing fever, and trench fever. Mitochondrial DNA studies have shown that there are three obviously divergent clades of head lice (A, B and C), and only one clade of body lice is shared with head lice (clade A). Each clade has a unique geographic distribution. Lice have been parasitizing humans for millions of years and likely dispersed throughout the World with the human migrations out of Africa, so they can be good markers for studying human evolution. Here, we present an overview of the origin of human lice and their role in vector pathogenic bacteria that caused epidemics, and we review the association between lice clades and human migrations.
Collapse
Affiliation(s)
- Amina Boutellis
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes: URMITE, Aix Marseille Université, UMR CNRS 7278, IRD 198, INSERM 1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France
| | - Laurent Abi-Rached
- Centre National de la Recherche Scientifique, Laboratoire d'Analyse, Topologie, Probabilités - Unité Mixte de Recherche 7353, Equipe ATIP, Aix-Marseille Université, 13331 Marseille, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes: URMITE, Aix Marseille Université, UMR CNRS 7278, IRD 198, INSERM 1095, Faculté de Médecine, 27 Bd Jean Moulin, 13005 Marseille, France.
| |
Collapse
|
19
|
Toit ND, van Vuuren BJ, Matthee S, Matthee CA. Biogeography and host-related factors trump parasite life history: limited congruence among the genetic structures of specific ectoparasitic lice and their rodent hosts. Mol Ecol 2013; 22:5185-204. [DOI: 10.1111/mec.12459] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 07/12/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Nina du Toit
- Evolutionary Genomics Group; Department of Botany and Zoology; Stellenbosch University; Private Bag X1 Matieland 7602 South Africa
| | - Bettine J. van Vuuren
- Centre for Invasion Biology; Department of Zoology; University of Johannesburg; PO Box 524 Auckland Park South Africa
| | - Sonja Matthee
- Department of Conservation Ecology and Entomology; Stellenbosch University; Private Bag X1 Matieland 7602 South Africa
| | - Conrad A. Matthee
- Evolutionary Genomics Group; Department of Botany and Zoology; Stellenbosch University; Private Bag X1 Matieland 7602 South Africa
| |
Collapse
|
20
|
de Vienne DM, Refrégier G, López-Villavicencio M, Tellier A, Hood ME, Giraud T. Cospeciation vs host-shift speciation: methods for testing, evidence from natural associations and relation to coevolution. THE NEW PHYTOLOGIST 2013; 198:347-385. [PMID: 23437795 DOI: 10.1111/nph.12150] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 12/19/2012] [Indexed: 05/26/2023]
Abstract
Hosts and their symbionts are involved in intimate physiological and ecological interactions. The impact of these interactions on the evolution of each partner depends on the time-scale considered. Short-term dynamics - 'coevolution' in the narrow sense - has been reviewed elsewhere. We focus here on the long-term evolutionary dynamics of cospeciation and speciation following host shifts. Whether hosts and their symbionts speciate in parallel, by cospeciation, or through host shifts, is a key issue in host-symbiont evolution. In this review, we first outline approaches to compare divergence between pairwise associated groups of species, their advantages and pitfalls. We then consider recent insights into the long-term evolution of host-parasite and host-mutualist associations by critically reviewing the literature. We show that convincing cases of cospeciation are rare (7%) and that cophylogenetic methods overestimate the occurrence of such events. Finally, we examine the relationships between short-term coevolutionary dynamics and long-term patterns of diversification in host-symbiont associations. We review theoretical and experimental studies showing that short-term dynamics can foster parasite specialization, but that these events can occur following host shifts and do not necessarily involve cospeciation. Overall, there is now substantial evidence to suggest that coevolutionary dynamics of hosts and parasites do not favor long-term cospeciation.
Collapse
Affiliation(s)
- D M de Vienne
- Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - G Refrégier
- Université Paris-Sud, Institut de Génétique et Microbiologie, UMR 8621, 91405, Orsay, France
- CNRS, UMR8621, 91405, Orsay, France
| | - M López-Villavicencio
- Muséum National d'Histoire Naturelle, 57 rue Cuvier, F-75231, Paris Cedex 05, France
| | - A Tellier
- Section of Population Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, D-85354, Freising, Germany
| | - M E Hood
- Department of Biology, Amherst College, Amherst, MA, USA
| | - T Giraud
- Université Paris-Sud, Ecologie, Systématique et Evolution, UMR 8079, 91405, Orsay, France
- CNRS, UMR8079, 91405, Orsay, France
| |
Collapse
|