1
|
Lu Y, Zhang X, Guan Z, Ji R, Peng F, Zhao C, Gao W, Gao F. Molecular pathogenesis of Cryptosporidium and advancements in therapeutic interventions. Parasite 2025; 32:7. [PMID: 39902829 PMCID: PMC11792522 DOI: 10.1051/parasite/2025001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Cryptosporidiosis, caused by a Cryptosporidium infection, is a serious gastrointestinal disease commonly leading to diarrhea in humans. This disease poses a particular threat to infants, young children, and those with weakened immune systems. The treatment of cryptosporidiosis is challenging due to the current lack of an effective treatment or vaccine. Ongoing research is focused on understanding the molecular pathogenesis of Cryptosporidium and developing pharmacological treatments. In this review, we examine the signaling pathways activated by Cryptosporidium infection within the host and their role in protecting host epithelial cells. Additionally, we also review the research progress of chemotherapeutic targets against cryptosporidia-specific enzymes and anti-Cryptosporidium drugs (including Chinese and Western medicinal drugs), aiming at the development of more effective treatments for cryptosporidiosis.
Collapse
Affiliation(s)
- Yilong Lu
- College of Basic Medical Sciences, Shandong Second Medical University Weifang China
| | - Xiaoning Zhang
- College of Basic Medical Sciences, Shandong Second Medical University Weifang China
| | - Zhiyu Guan
- College of Basic Medical Sciences, Shandong Second Medical University Weifang China
| | - Rui Ji
- College of Traditional Chinese Medicine, Shandong Second Medical University Weifang China
| | - Fujun Peng
- College of Basic Medical Sciences, Shandong Second Medical University Weifang China
| | - Chunzhen Zhao
- College of Pharmacy, Shandong Second Medical University Weifang China
| | - Wei Gao
- College of Clinical Medicine, Shandong Second Medical University Weifang China
| | - Feng Gao
- College of Pharmacy, Shandong Second Medical University Weifang China
| |
Collapse
|
2
|
Xue Q. Pathogen proteases and host protease inhibitors in molluscan infectious diseases. J Invertebr Pathol 2019; 166:107214. [PMID: 31348922 DOI: 10.1016/j.jip.2019.107214] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/11/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022]
Abstract
The development of infectious diseases represents an outcome of dynamic interactions between the disease-producing agent's pathogenicity and the host's self-defense mechanism. Proteases secreted by pathogenic microorganisms and protease inhibitors produced by host species play an important role in the process. This review aimed at summarizing major findings in research on pathogen proteases and host protease inhibitors that had been proposed to be related to the development of mollusk diseases. Metalloproteases and serine proteases respectively belonging to Family M4 and Family S8 of the MEROPS system are among the most studied proteases that may function as virulence factors in mollusk pathogens. On the other hand, a mollusk-specific family (Family I84) of novel serine protease inhibitors and homologues of the tissue inhibitor of metalloprotease have been studied for their potential in the molluscan host defense. In addition, research at the genomic and transcriptomic levels showed that more proteases of pathogens and protease inhibitor of hosts are likely involved in mollusk disease processes. Therefore, the pathological significance of interactions between pathogen proteases and host protease inhibitors in the development of molluscan infectious diseases deserves more research efforts.
Collapse
Affiliation(s)
- Qinggang Xue
- Zhejiang Key Lab of Aquatic Germplasm Resources, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
3
|
Ch Stratakos A, Sima F, Ward P, Linton M, Kelly C, Pinkerton L, Stef L, Pet I, Iancu T, Pircalabioru G, Corcionivoschi N. The in vitro and ex vivo effect of Auranta 3001 in preventing Cryptosporidium hominis and Cryptosporidium parvum infection. Gut Pathog 2017; 9:49. [PMID: 28883891 PMCID: PMC5580208 DOI: 10.1186/s13099-017-0192-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/27/2017] [Indexed: 01/22/2023] Open
Abstract
Background Cryptosporidium is a major cause of diarrhea worldwide in both humans and farm animals with no completely effective treatment available at present. In this study, we assessed the inhibitory effect of different concentrations of Auranta 3001 (0.1, 0.5 and 1%), a novel natural feed supplement, on C. hominis and C. parvum invasion of human ileocecal adenocarcinoma (HCT-8), bovine primary cells and C. parvum invasion of HCT-8, bovine primary cells and bovine intestinal biopsies. The effect of the feed supplement on the production of pro-inflammatory cytokines IL-8 and INF-γ, the anti-inflammatory cytokine IL-10, the expression of CpSUB1 protease gene during infection was also assessed by quantitative PCR (q-PCR). Transepithelial electrical resistance (TEER) was employed to measure the integrity of tight junction dynamics of the culture models. Results Pre-treatment of intestinal cells or oocysts with the Auranta 3001 significantly reduced the invasiveness of C. hominis and C. parvum against HCT-8 and bovine primary cells in a dose dependent manner. The most pronounced reduction in the invasiveness of both parasites was observed when Auranta 3001 was present during infection. Levels of IL-8 were significantly reduced in both HCT-8 and bovine primary cells, while the levels of INF-γ and IL-10 showed opposite trends in the two cell lines during infection in the presence of Auranta 3001. CpSUB1 gene protease expression, which mediates infection, was significantly reduced suggesting that this enzyme is a possible target of Auranta 3001. Conclusions Although, C. hominis and C. parvum use different invasion mechanisms to infect cells, the novel feed additive can significantly attenuate the entry of Cryptosporidium in HCT-8 cells, primary bovine cells and bovine intestinal biopsies and thus provide an alternative method to control cryptosporidiosis.
Collapse
Affiliation(s)
- Alexandros Ch Stratakos
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast, BT9 5PX Northern Ireland, UK
| | - Filip Sima
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast, BT9 5PX Northern Ireland, UK.,School of Biology, University of Bucharest, Splaiul Independentei 91-95, Bucharest, Romania
| | - Patrick Ward
- Auranta, NovaUCD, Belfield Innovation Park, Belfield, Dublin 4, Ireland
| | - Mark Linton
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast, BT9 5PX Northern Ireland, UK
| | - Carmel Kelly
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast, BT9 5PX Northern Ireland, UK
| | - Laurette Pinkerton
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast, BT9 5PX Northern Ireland, UK
| | - Lavinia Stef
- Banat's University of Agricultural Sciences and Veterinary Medicine, King Michael I of Romania, Calea Aradului 119, 300645 Timisoara, Romania
| | - Ioan Pet
- Banat's University of Agricultural Sciences and Veterinary Medicine, King Michael I of Romania, Calea Aradului 119, 300645 Timisoara, Romania
| | - Tiberiu Iancu
- Banat's University of Agricultural Sciences and Veterinary Medicine, King Michael I of Romania, Calea Aradului 119, 300645 Timisoara, Romania
| | - Gratiela Pircalabioru
- Research Institute of University of Bucharest, 36-46 Bd. M. Kogalniceanu, 5th District, 050107 Bucharest, Romania
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Newforge Lane, Belfast, BT9 5PX Northern Ireland, UK.,Banat's University of Agricultural Sciences and Veterinary Medicine, King Michael I of Romania, Calea Aradului 119, 300645 Timisoara, Romania
| |
Collapse
|
4
|
Frequencies and spatial distributions of Cryptosporidium in livestock animals and children in the Ismailia province of Egypt. Epidemiol Infect 2014; 143:1208-18. [PMID: 25084317 DOI: 10.1017/s0950268814001824] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Faecal samples from 804 cattle and buffaloes and 165 diarrhoeal children of Ismailia province were investigated by an immunochromatographic screening test and PCR to determine prevalences and distributions of Cryptosporidium spp. Results were analysed statistically for clustering of animal and human cases. Cryptosporidium herd prevalence was 73·3% and individual animal prevalence 32·3%. C. parvum was the dominant species in animals (65·7%). Young calves watered with canal or underground water were at particular risk of infection. Detection rates were higher when calves showed diarrhoea, fever and dehydration. Human Cryptosporidium prevalence was 49·1%. C. hominis dominated in humans (60·5%), followed by C. parvum (38·3%). Living in villages, drinking underground water and having contact with animals were risk factors. Cluster analysis revealed differences in the distribution of infections between animals and humans and suggests different transmission dynamics.
Collapse
|
5
|
Molecular cloning and characterization of a M17 leucine aminopeptidase of Cryptosporidium parvum. Parasitology 2011; 138:682-90. [DOI: 10.1017/s0031182011000199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYLeucine aminopeptidases (LAPs) are a group of metalloexopeptidases that catalyse the sequential removal of amino acids from the N-termini of polypeptides or proteins. They play an important role in regulating the balance between catabolism and anabolism in living cells. LAPs of apicomplexa parasitic protozoa have been intensively investigated due to their crucial roles in parasite biology as well as their potentials as drug targets. In this study, we identified an M17 leucine aminopeptidase of Cryptosporidium parvum (CpLAP) and characterized the biochemical properties of the recombinant protein. Multiple sequence alignment of the deduced amino acid sequence of CpLAP with those of other organisms revealed that typical amino acid residues essential for metal binding and active-site formation in M17 LAPs were well conserved in CpLAP. Recombinant CpLAP shared similar biochemical properties such as optimal pH, stability at neutral pHs, and metal-binding characteristics with other characterized LAPs. The enzyme showed a marked preference for Leu and its activity was effectively inhibited by bestatin. These results collectively suggest that CpLAP is a typical member of the M17 LAP family and may play an important role in free amino acid regulation in the parasite.
Collapse
|
6
|
Global identification of multiple substrates for Plasmodium falciparum SUB1, an essential malarial processing protease. Infect Immun 2011; 79:1086-97. [PMID: 21220481 DOI: 10.1128/iai.00902-10] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protozoan pathogen responsible for the most severe form of human malaria, Plasmodium falciparum, replicates asexually in erythrocytes within a membrane-bound parasitophorous vacuole (PV). Following each round of intracellular growth, the PV membrane (PVM) and host cell membrane rupture to release infectious merozoites in a protease-dependent process called egress. Previous work has shown that, just prior to egress, an essential, subtilisin-like parasite protease called PfSUB1 is discharged into the PV lumen, where it directly cleaves a number of important merozoite surface and PV proteins. These include the essential merozoite surface protein complex MSP1/6/7 and members of a family of papain-like putative proteases called SERA (serine-rich antigen) that are implicated in egress. To determine whether PfSUB1 has additional, previously unrecognized substrates, we have performed a bioinformatic and proteomic analysis of the entire late asexual blood stage proteome of the parasite. Our results demonstrate that PfSUB1 is responsible for the proteolytic processing of a range of merozoite, PV, and PVM proteins, including the rhoptry protein RAP1 (rhoptry-associated protein 1) and the merozoite surface protein MSRP2 (MSP7-related protein-2). Our findings imply multiple roles for PfSUB1 in the parasite life cycle, further supporting the case for considering the protease as a potential new antimalarial drug target.
Collapse
|
7
|
Davids BJ, Gilbert MA, Liu Q, Reiner DS, Smith AJ, Lauwaet T, Lee C, McArthur AG, Gillin FD. An atypical proprotein convertase in Giardia lamblia differentiation. Mol Biochem Parasitol 2010; 175:169-80. [PMID: 21075147 DOI: 10.1016/j.molbiopara.2010.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 10/29/2010] [Accepted: 11/05/2010] [Indexed: 01/24/2023]
Abstract
Proteolytic activity is important in the lifecycles of parasites and their interactions with hosts. Cysteine proteases have been best studied in Giardia, but other protease classes have been implicated in growth and/or differentiation. In this study, we employed bioinformatics to reveal the complete set of putative proteases in the Giardia genome. We identified 73 peptidase homologs distributed over 5 catalytic classes in the genome. Serial analysis of gene expression of the G. lamblia lifecycle found thirteen protease genes with significant transcriptional variation over the lifecycle, with only one serine protease transcript upregulated late in encystation. The translated gene sequence of this encystation-specific transcript was most similar to eukaryotic subtilisin-like proprotein convertases (SPC), although the typical catalytic triad was not identified. Epitope-tagged gSPC protein expressed in Giardia under its own promoter was upregulated during encystation with highest expression in cysts and it localized to encystation-specific secretory vesicles (ESV). Total gSPC from encysting cells produced proteolysis in gelatin gels that co-migrated with the epitope-tagged protease in immunoblots. Immuno-purified gSPC also had gelatinase activity. To test whether endogenous gSPC activity is involved in differentiation, trophozoites and cysts were exposed to the specific serine proteinase inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride hydrochloride (AEBSF). After 21 h encystation, a significant decrease in ESV was observed with 1mM AEBSF and by 42 h the number of cysts was significantly reduced, but trophozoite growth was not inhibited. Concurrently, levels of cyst wall proteins 1 and 2, and AU1-tagged gSPC protein itself were decreased. Excystation of G. muris cysts was also significantly reduced in the presence of AEBSF. These results support the idea that serine protease activity is essential for Giardia encystation and excystation.
Collapse
Affiliation(s)
- B J Davids
- Department of Pathology, University of California, San Diego, CA 92103-8416, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lee S, Belitsky BR, Brown DW, Brinker JP, Kerstein KO, Herrmann JE, Keusch GT, Sonenshein AL, Tzipori S. Efficacy, heat stability and safety of intranasally administered Bacillus subtilis spore or vegetative cell vaccines expressing tetanus toxin fragment C. Vaccine 2010; 28:6658-65. [PMID: 20709005 DOI: 10.1016/j.vaccine.2010.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/07/2010] [Accepted: 08/02/2010] [Indexed: 11/16/2022]
Abstract
Bacillus subtilis strains expressing tetanus toxin fragment C (TTFC) were tested as vaccine candidates against tetanus in adult mice. Mice received three intranasal (IN) exposures to 10(9) spores or 10(8) vegetative cells of B. subtilis expressing recombinant TTFC. Immunized mice generated protective systemic and mucosal antibodies and survived challenge with 2× LD(100) of tetanus toxin. Isotype analysis of serum antibody indicated a balanced Th1/Th2 response. Lyophilized vaccines stored at 45° C for ≥ 12 months, remained effective. Immunized conventional and SCID mice remained well, and no histological changes in brain or respiratory tract were detected. Lyophilized/reconstituted B. subtilis tetanus vaccines administered IN to mice appear safe, heat-stable, and protective against lethal tetanus challenge.
Collapse
Affiliation(s)
- Sangun Lee
- Division of Infectious Diseases, Tufts University, Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wyatt CR, Riggs MW, Fayer R. Cryptosporidiosis in Neonatal Calves. Vet Clin North Am Food Anim Pract 2010; 26:89-103, table of contents. [DOI: 10.1016/j.cvfa.2009.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
10
|
Pietrusewicz E, Sieńczyk M, Oleksyszyn J. Novel diphenyl esters of peptidyl α-aminoalkylphosphonates as inhibitors of chymotrypsin and subtilisin. J Enzyme Inhib Med Chem 2009; 24:1229-36. [DOI: 10.3109/14756360902781512] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ewa Pietrusewicz
- Division of Medicinal Chemistry and Microbiology, Chemistry Department, Wrocław University of Technology, Wrocław, Poland
| | - Marcin Sieńczyk
- Division of Medicinal Chemistry and Microbiology, Chemistry Department, Wrocław University of Technology, Wrocław, Poland
| | - Józef Oleksyszyn
- Division of Medicinal Chemistry and Microbiology, Chemistry Department, Wrocław University of Technology, Wrocław, Poland
| |
Collapse
|
11
|
Role of CpSUB1, a subtilisin-like protease, in Cryptosporidium parvum infection in vitro. EUKARYOTIC CELL 2009; 8:470-7. [PMID: 19168760 DOI: 10.1128/ec.00306-08] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The apicomplexan parasite Cryptosporidium is a significant cause of diarrheal disease worldwide. Previously, we reported that a Cryptosporidium parvum subtilisin-like serine protease activity with furin-type specificity cleaves gp40/15, a glycoprotein that is proteolytically processed into gp40 and gp15, which are implicated in mediating infection of host cells. Neither the enzyme(s) responsible for the protease activity in C. parvum lysates nor those that process gp40/15 are known. There are no furin or other proprotein convertase genes in the C. parvum genome. However, a gene encoding CpSUB1, a subtilisin-like serine protease, is present. In this study, we cloned the CpSUB1 genomic sequence and expressed and purified the recombinant prodomain. Reverse transcriptase PCR analysis of RNA from C. parvum-infected HCT-8 cells revealed that CpSUB1 is expressed throughout infection in vitro. In immunoblots, antiserum to the recombinant CpSUB1 prodomain revealed two major bands, of approximately 64 kDa and approximately 48 kDa, for C. parvum lysates and proteins "shed" during excystation. In immunofluorescence assays, the antiserum reacted with the apical region of sporozoites and merozoites. The recombinant prodomain inhibited protease activity and processing of recombinant gp40/15 by C. parvum lysates but not by furin. Since prodomains are often selective inhibitors of their cognate enzymes, these results suggest that CpSUB1 may be a likely candidate for the protease activity in C. parvum and for processing of gp40/15. Importantly, the recombinant prodomain inhibited C. parvum infection of HCT-8 cells. These studies indicate that CpSUB1 plays a significant role in infection of host cells by the parasite and suggest that this enzyme may serve as a target for intervention.
Collapse
|
12
|
Hyde JE. Fine targeting of purine salvage in Cryptosporidium parasites. Trends Parasitol 2008; 24:336-9. [DOI: 10.1016/j.pt.2008.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 05/06/2008] [Accepted: 05/07/2008] [Indexed: 12/30/2022]
|