1
|
Xiao Y, He J, Guo X, Zheng X, Zhu Z, Zhou Q, Liao X, Chen D. Transcriptomic profiling revealed immune-related signaling pathways in response to experimental infection of Leishmania donovani in two desert lizards from Northwest China. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105173. [PMID: 38548000 DOI: 10.1016/j.dci.2024.105173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Little is known about the immune response of lizards to Leishmania parasties. In this study, we conducted the first liver transcriptome analysis of two lizards (Phrynocephalus przewalskii and Eremias multiocellata) challenged with L. donovani, endemic to the steppe desert region of northwestern China. Our results revealed that multiple biological processes and immune-related signaling pathways are closely associated with the immune response to experimental L. donovani infection in the two lizards, and that both lizards show similar changes to mammals in terms of immunity to Leishmania. However, the interspecific divergence of the two lizards leads to different transcriptomic changes. In particular, in contrast to P. przewalskii, the challenged E. mutltiocellata was characterized by the induction of down-regulation of most DEGs. These findings will contribute to the scarce resources on lizard immunity and provide a reference for further research on immune mechanisms in reptiles.
Collapse
Affiliation(s)
- Yuying Xiao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jinlei He
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xianguang Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaoting Zheng
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Zheying Zhu
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Qi Zhou
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xuechun Liao
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Pu P, Niu Z, Ma M, Tang X, Chen Q. Convergent High O 2 Affinity but Distinct ATP-Mediated Allosteric Regulation of Hemoglobins in Oviparous and Viviparous Eremias Lizards from the Qinghai-Tibet Plateau. Animals (Basel) 2024; 14:1440. [PMID: 38791658 PMCID: PMC11117339 DOI: 10.3390/ani14101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The functional adaptation and underlying molecular mechanisms of hemoglobins (Hbs) have primarily concentrated on mammals and birds, with few reports on reptiles. This study aimed to investigate the convergent and species-specific high-altitude adaptation mechanisms of Hbs in two Eremias lizards from the Qinghai-Tibet Plateau. The Hbs of high-altitude E. argus and E. multiocellata were characterized by significantly high overall and intrinsic Hb-O2 affinity compared to their low-altitude populations. Despite the similarly low Cl- sensitivities, the Hbs of high-altitude E. argus exhibited higher ATP sensitivity and ATP-dependent Bohr effects than that of E. multiocellata, which could facilitate O2 unloading in respiring tissues. Eremias lizards Hbs exhibited similarly low temperature sensitivities and relatively high Bohr effects at lower temperatures, which could help to stably deliver and release O2 to cold extremities at low temperatures. The oxygenation properties of Hbs in high-altitude populations might be attributed to varying ratios of β2/β1 globin and substitutions on the β2-type globin. Notably, the Asn12Ala in lowland E. argus could cause localized destabilization of the E-helix in the tetrameric Hb by elimination of hydrogen bonds, thereby resulting in its lowest O2 affinity. This study provides a valuable reference for the high-altitude adaptation mechanisms of hemoglobins in reptiles.
Collapse
Affiliation(s)
- Peng Pu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Zhiyi Niu
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, No. 222 Tianshui South Road, Lanzhou 730000, China; (Z.N.); (M.M.); (X.T.)
| | - Ming Ma
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, No. 222 Tianshui South Road, Lanzhou 730000, China; (Z.N.); (M.M.); (X.T.)
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, No. 222 Tianshui South Road, Lanzhou 730000, China; (Z.N.); (M.M.); (X.T.)
| | - Qiang Chen
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, No. 222 Tianshui South Road, Lanzhou 730000, China; (Z.N.); (M.M.); (X.T.)
| |
Collapse
|
3
|
Tian L, Xu R, Chen D, Ananjeva NB, Brown RM, Min MS, Cai B, Mijidsuren B, Zhang B, Guo X. Range-Wide Phylogeography and Ecological Niche Modeling Provide Insights into the Evolutionary History of the Mongolian Racerunner ( Eremias argus) in Northeast Asia. Animals (Basel) 2024; 14:1124. [PMID: 38612363 PMCID: PMC11011046 DOI: 10.3390/ani14071124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
The Mongolian racerunner, Eremias argus, is a small lizard endemic to Northeast Asia that can serve as an excellent model for investigating how geography and past climate change have jointly influenced the evolution of biodiversity in this region. To elucidate the processes underlying its diversification and demography, we reconstructed the range-wide phylogeographic pattern and evolutionary trajectory, using phylogenetic, population genetic, landscape genetic, Bayesian phylogeographic reconstruction and ecological niche modeling approaches. Phylogenetic analyses of the mtDNA cyt b gene revealed eight lineages that were unbounded by geographic region. The genetic structure of E. argus was mainly determined by geographic distance. Divergence dating indicated that E. argus and E. brenchleyi diverged during the Mid-Pliocene Warm Period. E. argus was estimated to have coalesced at~0.4351 Ma (Marine Isotope Stage 19). Bayesian phylogeographic diffusion analysis revealed out-of-Inner Mongolia and rapid colonization events from the end of the Last Interglacial to the Last Glacial Maximum, which is consistent with the expanded suitable range of the Last Glacial Maximum. Pre-Last Glacial Maximum growth of population is presented for most lineages of E. argus. The Glacial Maximum contraction model and the previous multiple glacial refugia hypotheses are rejected. This may be due to an increase in the amount of climatically favorable habitats in Northeast Asia. Furthermore, E. argus barbouri most likely represents an invalid taxon. The present study is the first to report a range-wide phylogeography of reptiles over such a large region in Northeast Asia. Our results make a significant contribution towards understanding the biogeography of the entire Northeast Asia.
Collapse
Affiliation(s)
- Lili Tian
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China;
| | - Natalia B. Ananjeva
- Zoological Institute, Russian Academy of Sciences, St. Petersburg 199034, Russia;
| | - Rafe M. Brown
- Biodiversity Institute, Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA;
| | - Mi-Sook Min
- Conservation Genome Resource Bank for Korean Wildlife, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea;
| | - Bo Cai
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
| | - Byambasuren Mijidsuren
- Plant Protection Research Institute, Mongolian University of Life Sciences, Ulaanbaatar 210153, Mongolia;
| | - Bin Zhang
- College of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot 010022, China;
| | - Xianguang Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610223, China; (L.T.); (R.X.); (B.C.)
| |
Collapse
|
4
|
Ding Z, Wang X, Zou T, Hao X, Zhang Q, Sun B, Du W. Climate warming has divergent physiological impacts on sympatric lizards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168992. [PMID: 38052387 DOI: 10.1016/j.scitotenv.2023.168992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Climate warming is expected to affect the vulnerability of sympatric species differentially due to their divergent traits, but the underlying physiological mechanisms of those impacts are poorly understood. We conducted field warming experiments (present climate vs. warm climate) using open-top chambers to determine the effects of climate warming on active body temperature, oxidative damage, immune competence, growth and survival in two sympatric desert-dwelling lizards, Eremias multiocellata and Eremias argus from May 2019 to September 2020. Our climate warming treatment did not affect survival of the two species, but it did increase active body temperatures and growth rate in E. multiocellata compared to E. argus. Climate warming also induced greater oxidative damage (higher malondialdehyde content and catalase activity) in E. multiocellata, but not in E. argus. Further, climate warming increased immune competence in E. multiocellata, but decreased immune competence in E. argus, with regards to white blood cell counts, bacteria killing ability and relative expression of immunoglobulin M. Our results suggest that climate warming enhances body temperature, and thereby oxidative stress, immune competence and growth in E. multiocellata, but decreases immune competence of E. argus, perhaps as a cost of thermoregulation to maintain body temperatures under climate warming. The divergent physiological effects of climate warming on sympatric species may have profound ecological consequences if it eventually leads to changes in reproductive activities, population dynamics and community structure. Our study highlights the importance of considering interspecific differences in physiological traits when we evaluate the impact of climate warming on organisms, even for those closely-related species coexisting within the same geographical area.
Collapse
Affiliation(s)
- Zihan Ding
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Xifeng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingting Zou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Xin Hao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Qiong Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baojun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
5
|
Stark G, Ma L, Zeng ZG, Du WG, Levy O. Cool shade and not-so-cool shade: How habitat loss may accelerate thermal stress under current and future climate. GLOBAL CHANGE BIOLOGY 2023; 29:6201-6216. [PMID: 37280748 DOI: 10.1111/gcb.16802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/23/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023]
Abstract
Worldwide habitat loss, land-use changes, and climate change threaten biodiversity, and we urgently need models that predict the combined impacts of these threats on organisms. Current models, however, overlook microhabitat diversity within landscapes and so do not accurately inform conservation efforts, particularly for ectotherms. Here, we built and field-parameterized a model to examine the effects of habitat loss and climate change on activity and microhabitat selection by a diurnal desert lizard. Our model predicted that lizards in rock-free areas would reduce summer activity levels (e.g. foraging, basking) and that future warming will gradually decrease summer activity in rocky areas, as even large rocks become thermally stressful. Warmer winters will enable more activity but will require bushes and small rocks as shade retreats. Hence, microhabitats that may seem unimportant today will become important under climate change. Modelling frameworks should consider the microhabitat requirements of organisms to improve conservation outcomes.
Collapse
Affiliation(s)
- Gavin Stark
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Liang Ma
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
- Princeton School of Public and International Affairs, Princeton University, Princeton, New Jersey, USA
| | - Zhi-Gao Zeng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ofir Levy
- Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Stark G, Ma L, Zeng ZG, Du WG, Levy O. Rocks and Vegetation Cover Improve Body Condition of Desert Lizards During Both Summer and Winter. Integr Comp Biol 2022; 62:1031-1041. [PMID: 35776965 DOI: 10.1093/icb/icac104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 11/14/2022] Open
Abstract
Microhabitats provide ecological and physiological benefits to animals, sheltering them from predation and extreme temperatures and offering an additional supply of water and food. However, most studies have assumed no energetic costs of searching for microhabitats or moving between them, or considered how the availability of microhabitats may affect the energy reserves of animals and how such effects may differ between seasons. To fill these gaps, we studied how the body condition of lizards is affected by microhabitat availability in the extreme environment of the Judean Desert. In particular, we quantified how vegetation and rock cover in the vicinity of these lizards affect their body condition during summer and winter. First, we used aerial imagery to map the vegetation/rock cover at two study sites. Next, we collected 68 adult lizards and examined how their body condition varies across seasons and availability of vegetation and rock cover. In addition, we examined how vegetation and rock cover may differ in their effective distance (i.e, the distance that best explains body condition of lizards). We found that lizards body condition was better if they were collected closer to a higher availability of vegetation or rocks. However, while close proximity (within 10 m) was the best predictor for the positive effect of rocks, a greater distance (up to 90 m) was the best predictor for the effect of the vegetation cover. Moreover, the positive effect of vegetation was 12-fold higher than the effect of rocks. Interestingly, although the lizards' body condition during winter was poorer than during summer, the positive effects of rock and vegetation cover remained constant between the seasons. This similarity of benefits across seasons suggests that shaded microhabitats have important additional ecological roles regardless of climate, and that they may provide thermoregulatory benefits in winter too. We also found a synergic effect of vegetation and rock cover on the lizards' body condition, suggesting that their roles are complementary rather than overlapping. Our research has revealed the importance of shade- and shelter-providing microhabitats in both summer and winter. We suggest that proximity to microhabitat diversity may contribute to better body condition in lizards; or, alternatively, facilitates competition and attracts lizards with better body condition. Comprehending the complex interactions between animals and different microhabitats is critical for developing better conservation plans, understanding the risks of climate change, and suggesting mitigation strategies.
Collapse
Affiliation(s)
- Gavin Stark
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Liang Ma
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,Princeton School of Public and International Affairs, Princeton University, Princeton, NJ 08544, USA
| | - Zhi-Gao Zeng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, People's Republic of China
| | - Ofir Levy
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
7
|
Li S, Hao X, Sun B, Bi J, Zhang Y, DU W. Phenotypic consequences of maternally selected nests: a cross-fostering experiment in a desert lizard. Integr Zool 2020; 16:741-754. [PMID: 33190392 DOI: 10.1111/1749-4877.12505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite the importance of maternally selected nests in shaping offspring phenotypes, our understanding of how the nest environment affects embryonic development and offspring traits of most non-avian reptiles is rather limited largely due to the logistical difficulty in locating their nests. To identify the relative contributions of environmental (temporal [seasonal] and spatial [nest-site]) and intrinsic (clutch) factors on embryonic development and offspring traits, we conducted a cross-fostering experiment by swapping eggs between maternally-selected nests of the toad-headed agama (Phrynocephalus przewalskii) in the field. We found that nest environment explained a large proportion of variation in incubation duration, hatching success, and offspring size and growth. In contrast, clutch only explained a small proportion of variation in these embryonic and offspring traits. More significantly, compared with spatial effects, seasonal effects explained more phenotypic variation in both embryonic development and offspring traits. Eggs laid early in the nesting season had longer incubation durations and produced smaller hatchlings with higher post-hatching growth rates than did later-laid eggs. Consequently, hatchlings from early-laid eggs reached larger body sizes prior to winter. In addition, we found that female toad-headed agama did not select nests specific to reaction norms of their own offspring because hatchlings from original or translocated nests had similar phenotypic traits. Overall, our study demonstrates the importance of seasonal variation in nest environments in determining embryonic development and offspring phenotypes, which has not been widely appreciated at least in non-avian reptiles.
Collapse
Affiliation(s)
- Shuran Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China.,International Society of Zoological Sciences, Beijing, China
| | - Xin Hao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Baojun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Junhuai Bi
- College of Life Science, Inner Mongolia Normal University, Hohhot, Inner Mongolia, China
| | - Yongpu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang, China
| | - Weiguo DU
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
8
|
LI X, WU P, MA L, HUEBNER C, SUN B, LI S. Embryonic and post‐embryonic responses to high‐elevation hypoxia in a low‐elevation lizard. Integr Zool 2020; 15:338-348. [DOI: 10.1111/1749-4877.12441] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinghan LI
- College of Life and Environmental ScienceWenzhou University Wenzhou China
| | - Pengfei WU
- Key Laboratory of Animal Ecology and Conservation BiologyChinese Academy of SciencesInstitute of Zoology Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Liang MA
- Key Laboratory of Animal Ecology and Conservation BiologyChinese Academy of SciencesInstitute of Zoology Beijing China
| | - Christopher HUEBNER
- Department of Integrative BiologyUniversity of California Berkeley California USA
| | - Baojun SUN
- Key Laboratory of Animal Ecology and Conservation BiologyChinese Academy of SciencesInstitute of Zoology Beijing China
| | - Shuran LI
- College of Life and Environmental ScienceWenzhou University Wenzhou China
| |
Collapse
|
9
|
Sun B, Ma L, Li S, Williams CM, Wang Y, Hao X, Du W. Phenology and the physiological niche are co‐adapted in a desert‐dwelling lizard. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bao‐Jun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- Department of Integrative Biology University of California Berkeley California
| | - Liang Ma
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Shu‐Ran Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | | | - Yang Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Xin Hao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Wei‐Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of SciencesKunming China
| |
Collapse
|
10
|
Ma L, Sun BJ, Li SR, Hao X, Bi JH, Du WG. The vulnerability of developing embryos to simulated climate warming differs between sympatric desert lizards. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 329:252-261. [DOI: 10.1002/jez.2179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Liang Ma
- Key Laboratory of Animal Ecology and Conservation Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing People's Republic of China
| | - Bao-Jun Sun
- Key Laboratory of Animal Ecology and Conservation Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing People's Republic of China
| | - Shu-Ran Li
- Key Laboratory of Animal Ecology and Conservation Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing People's Republic of China
- College of Life and Environmental Science; Wenzhou University; Wenzhou People's Republic of China
| | - Xin Hao
- Key Laboratory of Animal Ecology and Conservation Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing People's Republic of China
- University of Chinese Academy of Sciences; Beijing People's Republic of China
| | - Jun-Huai Bi
- College of Life Sciences; Inner Mongolia Normal University; Hohhot People's Republic of China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing People's Republic of China
| |
Collapse
|
11
|
Li S, Hao X, Wang Y, Sun B, Bi J, Zhang Y, Janzen FJ, Du W. Female lizards choose warm, moist nests that improve embryonic survivorship and offspring fitness. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12995] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Shu‐Ran Li
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
- College of Life and Environmental ScienceWenzhou University Wenzhou Zhejiang China
| | - Xin Hao
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Yang Wang
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Bao‐Jun Sun
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of Sciences Beijing China
| | - Jun‐Huai Bi
- College of Life ScienceInner Mongolia Normal University Hohhot Inner Mongolia China
| | - Yong‐Pu Zhang
- College of Life and Environmental ScienceWenzhou University Wenzhou Zhejiang China
| | - Fredric J. Janzen
- Department of Ecology, Evolution and Organismal BiologyIowa State University Ames IA USA
| | - Wei‐Guo Du
- Key Laboratory of Animal Ecology and Conservation BiologyInstitute of ZoologyChinese Academy of Sciences Beijing China
| |
Collapse
|
12
|
Wang Y, Li S, Zeng Z, Liang L, Du W. Maternal food availability affects offspring performance and survival in a viviparous lizard. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12903] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Yang Wang
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing100101 China
- University of Chinese Academy of Science Beijing China
| | - Shu‐Ran Li
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing100101 China
- University of Chinese Academy of Science Beijing China
| | - Zhi‐Gao Zeng
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing100101 China
| | - Liang Liang
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing100101 China
- University of Chinese Academy of Science Beijing China
| | - Wei‐Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing100101 China
| |
Collapse
|
13
|
Thermal ecology of three coexistent desert lizards: Implications for habitat divergence and thermal vulnerability. J Comp Physiol B 2017; 187:1009-1018. [PMID: 28324161 DOI: 10.1007/s00360-017-1087-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 10/19/2022]
Abstract
How ectotherms exploit thermal resources has important implications for their habitat utilization and thermal vulnerability to climate warming. To address this issue, we investigated thermal relations of three sympatric lizard species (Eremias argus, Eremias multiocellata, and Phrynocephalus przewalskii) in the desert steppe of Inner Mongolia, China. We determined the thermoregulatory behavior, body temperature (T b), operative temperature (T e), selected body temperature (T sel), and critical thermal maximum (CTmax) of adult lizards. Based on these physiological parameters, we quantified the accuracy and effectiveness of thermoregulation as well as thermal-safety margin for these species. The three species were accurate and effective thermoregulators. The P. przewalskii preferred open habitats, and had a higher T b than the two Eremias lizards, which preferred shade habitats and shuttled more frequently between the shade and sun. This indicated that the three sympatric lizards have different thermoregulatory behavior and thermal physiology, which might facilitate their coexistence in the desert steppe ecosystem. In addition, the P. przewalskii had higher T sel and CTmax, and a wider thermal-safety margin than the two Eremias lizards, suggesting that the two Eremias lizards would be more vulnerable to climate warming than P. przewalskii.
Collapse
|
14
|
Abstract
Many oviparous animals construct well-designed nests to provide relatively favourable conditions for their eggs and hatchlings, but the direct evidence that nest structure can determine their reproductive success is insufficient. In the present study, we explored the structure of nests and its effect on nest environments and reproductive success in the toad-headed agama (Phrynocephalus przewalskii). We observed that female P. przewalskii constructed burrow nest consisting of an inclined tunnel and an expanded chamber. We constructed artificial nests with or without the burrow to determine how burrows influence nest environments, egg survival and successful emergence of hatchlings. Our results indicated that burrow nests had higher and more stable humidity than non-burrow nests. More importantly, egg survival and the emergence success of hatchlings were significantly higher for burrow nests than for non-burrow nests. Therefore, our manipulation experiments provide direct evidence that maternal nest construction behaviour could determine parental reproductive success in reptile.
Collapse
Affiliation(s)
- Shu-Ran Li
- aKey Laboratory of Animal Ecology and Conservation Biology, Inst. of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
- bUniversity of Chinese Academy of Sciences, Beijing, P.R. China
| | - Xin Hao
- aKey Laboratory of Animal Ecology and Conservation Biology, Inst. of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
- bUniversity of Chinese Academy of Sciences, Beijing, P.R. China
| | - Jun-Huai Bi
- cCollege of Life Science, Inner Mongolia Normal University, Hohhot, P.R. China
| | - Wei-Guo Du
- aKey Laboratory of Animal Ecology and Conservation Biology, Inst. of Zoology, Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|