1
|
Kiang JG, Cannon G, Singh VK. An Overview of Radiation Countermeasure Development in Radiation Research from 1954 to 2024. Radiat Res 2024; 202:420-431. [PMID: 38964743 PMCID: PMC11385179 DOI: 10.1667/rade-24-00036.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/21/2024] [Indexed: 07/06/2024]
Abstract
Preparation for medical responses to major radiation accidents, further driven by increases in the threat of nuclear warfare, has led to a pressing need to understand the underlying mechanisms of radiation injury (RI) alone or in combination with other trauma (combined injury, CI). The identification of these mechanisms suggests molecules and signaling pathways that can be targeted to develop radiation medical countermeasures. Thus far, the United States Food and Drug Administration (U.S. FDA) has approved seven countermeasures to mitigate hematopoietic acute radiation syndrome (H-ARS), but no drugs are available for prophylaxis and no agents have been approved to combat the other sub-syndromes of ARS, let alone delayed effects of acute radiation exposure or the effects of combined injury. From its inception, Radiation Research has significantly contributed to the understanding of the underlying mechanisms of radiation injury and combined injury, and to the development of radiation medical countermeasures for these indications through the publication of peer-reviewed research and review articles.
Collapse
Affiliation(s)
- Juliann G Kiang
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Department of Pharmacology and Molecular Therapeutics, School of Medicine
- Department of Medicine, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Georgetta Cannon
- Scientific Research Department, Armed Forces Radiobiology Research Institute
| | - Vijay K Singh
- Scientific Research Department, Armed Forces Radiobiology Research Institute
- Department of Pharmacology and Molecular Therapeutics, School of Medicine
| |
Collapse
|
2
|
Bunin DI, Javitz HS, Gahagen J, Bakke J, Lane JH, Andrews DA, Chang PY. Survival and Hematologic Benefits of Romiplostim After Acute Radiation Exposure Supported FDA Approval Under the Animal Rule. Int J Radiat Oncol Biol Phys 2023; 117:705-717. [PMID: 37224926 DOI: 10.1016/j.ijrobp.2023.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/19/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
PURPOSE Patients exposed to acute high doses of ionizing radiation are susceptible to dose-dependent bone marrow depression with resultant pancytopenia. Romiplostim (RP; Nplate) is a recombinant thrombopoietin receptor agonist protein that promotes progenitor megakaryocyte proliferation and platelet production and is an approved treatment for patients with chronic immune thrombocytopenia. The goal of our study was to evaluate the postirradiation survival and hematologic benefits of a single dose of RP with or without pegfilgrastim (PF; Neulasta, granulocyte colony stimulating factor) by conducting a well-controlled, treatment-concealed, good laboratory practice-compliant study in rhesus macaques that was compliant with the United States Food and Drug Administration Animal Rule regulatory approval pathway. METHODS AND MATERIALS Irradiated male and female rhesus macaques (20/sex in each of 3 groups: control, RP, and RP + PF) were subcutaneously administered vehicle or RP (5 mg/kg, 10 mL/kg) on day 1 in the presence or absence of 2 doses of PF (0.3 mg/kg, 0.03 mL/kg, days 1 and 8). Total body radiation (680 cGy, 50 cGy/min from cobalt-60 gamma ray source) occurred 24 ± 2 hours previously at a dose targeting 70% lethality for the control cohort over 60 days. The study examined 60-day survival postirradiation as the primary endpoint. Secondary endpoints included incidence, severity, and duration of thrombocytopenia and neutropenia, other hematology parameters, coagulation parameters, and body weight change to provide insights into potential mechanisms of action. RESULTS Compared with sham-treated controls, treated animals demonstrated a 40% to 55% survival benefit compared with controls, less severe clinical signs, reduced incidence of thrombocytopenia and/or neutropenia, earlier hematologic recovery, and reduced morbidity from bacterial infection. CONCLUSIONS These results were pivotal in obtaining Food and Drug Administration approval in January 2021 for RP's new indication as a single administration therapy to increase survival in adults and pediatric patients acutely exposed to myelosuppressive doses of radiation.
Collapse
Affiliation(s)
| | | | - Janet Gahagen
- SRI Biosciences, SRI International, Menlo Park, California
| | - James Bakke
- SRI Biosciences, SRI International, Menlo Park, California
| | | | | | - Polly Y Chang
- SRI Biosciences, SRI International, Menlo Park, California.
| |
Collapse
|
3
|
Garg TK, Garg S, Miousse IR, Wise SY, Carpenter AD, Fatanmi OO, van Rhee F, Singh VK, Hauer-Jensen M. Gamma-Tocotrienol Modulates Total-Body Irradiation-Induced Hematopoietic Injury in a Nonhuman Primate Model. Int J Mol Sci 2022; 23:ijms232416170. [PMID: 36555814 PMCID: PMC9784560 DOI: 10.3390/ijms232416170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Radiation exposure causes acute damage to hematopoietic and immune cells. To date, there are no radioprotectors available to mitigate hematopoietic injury after radiation exposure. Gamma-tocotrienol (GT3) has demonstrated promising radioprotective efficacy in the mouse and nonhuman primate (NHP) models. We determined GT3-mediated hematopoietic recovery in total-body irradiated (TBI) NHPs. Sixteen rhesus macaques divided into two groups received either vehicle or GT3, 24 h prior to TBI. Four animals in each treatment group were exposed to either 4 or 5.8 Gy TBI. Flow cytometry was used to immunophenotype the bone marrow (BM) lymphoid cell populations, while clonogenic ability of hematopoietic stem cells (HSCs) was assessed by colony forming unit (CFU) assays on day 8 prior to irradiation and days 2, 7, 14, and 30 post-irradiation. Both radiation doses showed significant changes in the frequencies of B and T-cell subsets, including the self-renewable capacity of HSCs. Importantly, GT3 accelerated the recovery in CD34+ cells, increased HSC function as shown by improved recovery of CFU-granulocyte macrophages (CFU-GM) and burst-forming units erythroid (B-FUE), and aided the recovery of circulating neutrophils and platelets. These data elucidate the role of GT3 in hematopoietic recovery, which should be explored as a potential medical countermeasure to mitigate radiation-induced injury to the hematopoietic system.
Collapse
Affiliation(s)
- Tarun K. Garg
- UAMS Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Sarita Garg
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Isabelle R. Miousse
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alana D. Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Frits van Rhee
- UAMS Myeloma Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence: (V.K.S.); (M.H.-J.); Tel.: +1-301-295-2347 (V.K.S.); +1-501-686-7912 (M.H.-J.); Fax: +1-501-421-0022 (M.H.-J.)
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: (V.K.S.); (M.H.-J.); Tel.: +1-301-295-2347 (V.K.S.); +1-501-686-7912 (M.H.-J.); Fax: +1-501-421-0022 (M.H.-J.)
| |
Collapse
|
4
|
Wang L, Lin B, Zhai M, Cui W, Hull L, Zizzo A, Li X, Kiang JG, Xiao M. Deteriorative Effects of Radiation Injury Combined with Skin Wounding in a Mouse Model. TOXICS 2022; 10:toxics10120785. [PMID: 36548618 PMCID: PMC9783596 DOI: 10.3390/toxics10120785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 05/14/2023]
Abstract
Radiation-combined injury (RCI) augments the risk of morbidity and mortality when compared to radiation injury (RI) alone. No FDA-approved medical countermeasures (MCMs) are available for treating RCI. Previous studies implied that RI and RCI elicit differential mechanisms leading to their detrimental effects. We hypothesize that accelerating wound healing improves the survival of RCI mice. In the current study, we examined the effects of RCI at different doses on lethality, weight loss, wound closure delay, and proinflammatory status, and assessed the relative contribution of systemic and local elements to their delayed wound closure. Our data demonstrated that RCI increased the lethality and weight loss, delayed skin wound closure, and induced a systemic proinflammatory status in a radiation dose-dependent manner. We also demonstrated that delayed wound closure did not specifically depend on the extent of hematopoietic suppression, but was significantly influenced by the toxicity of the radiation-induced systemic inflammation and local elements, including the altered levels of proinflammatory chemokines and factors, and the dysregulated collagen homeostasis in the wounded area. In conclusion, the results from our study indicate a close association between delayed wound healing and the significantly altered pathways in RCI mice. This insightful information may contribute to the evaluation of the prognosis of RCI and development of MCMs for RCI.
Collapse
Affiliation(s)
- Li Wang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Bin Lin
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Min Zhai
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Wanchang Cui
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Lisa Hull
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Alex Zizzo
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Xianghong Li
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Mang Xiao
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-2597
| |
Collapse
|
5
|
Shi T, Jiang J, Gao M, Ma R, Chen X, Zhang R, Xu J, Wang W, Xu S, Liu X, Zheng H, Wang C, Li L, Li R. Editing flagellin derivatives for exploration of potent radioprotective agents. Eur J Pharmacol 2021; 907:174259. [PMID: 34153338 DOI: 10.1016/j.ejphar.2021.174259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 11/30/2022]
Abstract
Exploration of medical radiation countermeasures (MRCs) has great implications in protection of mammals from radiation damages. While flagellin has been recently reported to show radioprotective effects, the relationships between flagellin structure and radioprotective activity are rarely explored. Herein, we deliberately edited the amino acid sequence of flagellin in its binding domain with toll-like receptor 5 (TLR5) for exploration of potent flagellin derivatives (Fds). An in vitro screening paradigm was developed to examine the radioprotective effects of six engineered Fds. Notably, mutation of 103 threonine on flagellin into asparagine resulted in a potent MRC candidate (Fd-T103N) displaying 1.28-fold increment of interactions with TLR5. Fd-T103N was able to further activate NF-κB pathway, induce immune protective cytokine (e.g. G-CSF) release, and significantly ameliorate γ-irradiation induced cell death. The protection effects of Fd-T103N were further validated in mice exposed to 10 Gy γ-irradiations. Compared to parent flagellin, Fd-T103N treatment showed higher G-CSF release in mouse blood, lower intestine damages, and 13% increments of mouse survival rates. In short, the established predictive paradigm could greatly reduce the labor-, time- and animal-costs in exploration of MRC candidates. Fd-T103N is a promising candidate of investigational new drug for radioprotection.
Collapse
Affiliation(s)
- Tong Shi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Meng Gao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Ronglin Ma
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xuejun Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Ruihua Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Jianfu Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Weili Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Shujuan Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Xi Liu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Chen Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Liqin Li
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
6
|
Clayton NP, Khan-Malek RC, Dangler CA, Zhang D, Ascah A, Gains M, Gardner B, Mockbee C, Keutzer JM, McManus J, Authier S. Sargramostim (rhu GM-CSF) Improves Survival of Non-Human Primates with Severe Bone Marrow Suppression after Acute, High-Dose, Whole-Body Irradiation. Radiat Res 2021; 195:191-199. [PMID: 33302291 DOI: 10.1667/rade-20-00131.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/02/2020] [Indexed: 11/03/2022]
Abstract
Exposure to acute, high-dose, whole-body ionizing radiation results in bone marrow failure (hematopoietic acute radiation syndrome with resultant infection, bleeding, anemia, and increased risk of death). Sargramostim (yeast-derived rhu GM-CSF), a yeast-derived, molecularly cloned, hematopoietic growth factor and pleiotropic cytokine supports proliferation, differentiation, maturation and survival of cells of several myeloid lineages. We evaluated the efficacy of sargramostim in non-human primates (rhesus macaques) exposed to whole-body ionizing radiation at a 50-60% lethal dose. The primary end point was day 60 survival. Non-human primates received daily subcutaneous sargramostim (7 mcg/kg/day) or control. To reflect the anticipated setting of a nuclear or radiologic event, treatment began 48 h postirradiation, and non-human primates received only moderate supportive care (no whole blood transfusions or individualized antibiotics). Sargramostim significantly increased day 60 survival to 78% (95% confidence interval, 61-90%) vs. 42% (26-59%; P = 0.0018) in controls. Neutrophil, platelet and lymphocyte recovery rates were accelerated and infection rates decreased. Improved survival when sargramostim was started 48 h postirradiation, without use of intensive supportive care, suggests sargramostim may be effective in treating humans exposed to acute, high-dose whole-body, ionizing radiation in a scenario such as a mass casualty event.
Collapse
Affiliation(s)
| | | | | | - Donghui Zhang
- Global Biostatistics and Programming, Sanofi, Bridgewater, New Jersey
| | | | | | | | | | - Joan M Keutzer
- Global Rare Diseases, Sanofi Genzyme, Cambridge, Massachusetts
| | - John McManus
- Partner Therapeutics, Inc, Lexington, Massachusetts
| | | |
Collapse
|
7
|
Mechanisms of radiation-induced endothelium damage: Emerging models and technologies. Radiother Oncol 2021; 158:21-32. [PMID: 33581220 DOI: 10.1016/j.radonc.2021.02.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/24/2022]
Abstract
Radiation-induced endothelial/vascular injury is a major complicating factor in radiotherapy and a leading cause of morbidity and mortality in nuclear or radiological catastrophes. Exposure of tissue to ionizing radiation (IR) leads to the release of oxygen radicals and proteases that result in loss of endothelial barrier function and leukocyte dysfunction leading to tissue injury and organ damage. Microvascular endothelial cells are particularly sensitive to IR and radiation-induced alterations in endothelial cell function are thought to be a critical factor in organ damage through endothelial cell activation, enhanced leukocyte-endothelial cell interactions, increased barrier permeability and initiation of apoptotic pathways. These radiation-induced inflammatory responses are important in early and late radiation pathologies in various organs. A better understanding of mechanisms of radiation-induced endothelium dysfunction is therefore vital, as radiobiological response of endothelium is of major importance for medical management and therapeutic development for radiation injuries. In this review, we summarize the current knowledge of cellular and molecular mechanisms of radiation-induced endothelium damage and their impact on early and late radiation injury. Furthermore, we review established and emerging in vivo and in vitro models that have been developed to study the mechanisms of radiation-induced endothelium damage and to design, develop and rapidly screen therapeutics for treatment of radiation-induced vascular damage. Currently there are no specific therapeutics available to protect against radiation-induced loss of endothelial barrier function, leukocyte dysfunction and resulting organ damage. Developing therapeutics to prevent endothelium dysfunction and normal tissue damage during radiotherapy can serve as the urgently needed medical countermeasures.
Collapse
|
8
|
Kiang JG, Zhai M, Lin B, Smith JT, Anderson MN, Jiang S. Co-Therapy of Pegylated G-CSF and Ghrelin for Enhancing Survival After Exposure to Lethal Radiation. Front Pharmacol 2021; 12:628018. [PMID: 33603673 PMCID: PMC7884820 DOI: 10.3389/fphar.2021.628018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Exposure to ionizing radiation (radiation injury, RI) in nuclear-related episode is evident to be life-threatening. RI occurs at levels of organs, tissues, cytosols, or nucleus. Their mechanisms are still not fully understood. FDA approves pegylated granulocyte colony-stimulating factor (Neulasta™, Peg-G-CSF) for acute hematopoietic syndrome and has been shown to save lives after lethal RI. We aimed to test whether Ghrelin enhanced Peg-G-CSF's efficacy to save more lives after lethal RI. B6D2F1/J female mice were used for the study. They received 9.5 Gy (LD50/30 at 0.4 Gy/min) emitted from the 60Co-γ-photon radiation facility. Peg-G-CSF was injected subcutaneously at 1 mg/kg once on days 1, 8, and 15 after irradiation. Ghrelin contains 28 amino acid and is a hunger peptide that has been shown to stimulate food intake, promote intestinal epithelial cell proliferation, elevates immunity, inhibits brain hemorrhage, and increases stress-coping. Ghrelin was injected subcutaneously at 113 μg/kg once on days 1, 2, and 3 after irradiation. Survival, body weight, water consumption, hematology, spleen weight, splenocytes, bone marrow cells, and histology of bone marrow and ileum were performed. We observed that radiation resulted in 30-days survival by 30%. RI decreased their body weights and water consumption volumes. On the 30th day post-RI, platelets and WBCs such as basophils, eosinophils, monocytes, lymphocytes, neutrophils and leukocytes were still significantly decreased in surviving mice. Likewise, their RBC, hemoglobin, hematocrit, and splenocytes remained low; splenomegaly was found in these mice. Bone marrow in surviving RI animals maintained low cellularity with high counts of fat cells and low counts of megakaryocytes. Meanwhile, ileum histology displayed injury. However, mice co-treated with both drugs 24 h after RI resulted in 30-days survival by 45% above the vehicle group. Additionally, the body-weight loss was mitigated, the acute radiation syndrome was reduced. This co-therapy significantly increased neutrophils, eosinophils, leukocytes, and platelets in circulation, inhibited splenomegaly, and increased bone marrow cells. Histopathological analysis showed significant improvement on bone marrow cellularity and ileum morphology. In conclusion, the results provide a proof of concept and suggest that the co-therapy of Peg-G-CSF and Ghrelin is efficacious to ameliorate RI.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Min Zhai
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Bin Lin
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Joan T. Smith
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Marsha N. Anderson
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| | - Suping Jiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD, United States
| |
Collapse
|
9
|
Patterson AM, Plett PA, Chua HL, Sampson CH, Fisher A, Feng H, Unthank JL, Miller SJ, Katz BP, MacVittie TJ, Orschell CM. Development of a Model of the Acute and Delayed Effects of High Dose Radiation Exposure in Jackson Diversity Outbred Mice; Comparison to Inbred C57BL/6 Mice. HEALTH PHYSICS 2020; 119:633-646. [PMID: 32932286 PMCID: PMC9374540 DOI: 10.1097/hp.0000000000001344] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Development of medical countermeasures against radiation relies on robust animal models for efficacy testing. Mouse models have advantages over larger species due to economics, ease of conducting aging studies, existence of historical databases, and research tools allowing for sophisticated mechanistic studies. However, the radiation dose-response relationship of inbred strains is inherently steep and sensitive to experimental variables, and inbred models have been criticized for lacking genetic diversity. Jackson Diversity Outbred (JDO) mice are the most genetically diverse strain available, developed by the Collaborative Cross Consortium using eight founder strains, and may represent a more accurate model of humans than inbred strains. Herein, models of the Hematopoietic-Acute Radiation Syndrome and the Delayed Effects of Acute Radiation Exposure were developed in JDO mice and compared to inbred C57BL/6. The dose response relationship curve in JDO mice mirrored the more shallow curves of primates and humans, characteristic of genetic diversity. JDO mice were more radioresistant than C57BL/6 and differed in sensitivity to antibiotic countermeasures. The model was validated with pegylated-G-CSF, which provided significantly enhanced 30-d survival and accelerated blood recovery. Long-term JDO survivors exhibited increased recovery of blood cells and functional bone marrow hematopoietic progenitors compared to C57BL/6. While JDO hematopoietic stem cells declined more in number, they maintained a greater degree of quiescence compared to C57BL/6, which is essential for maintaining function. These JDO radiation models offer many of the advantages of small animals with the genetic diversity of large animals, providing an attractive alternative to currently available radiation animal models.
Collapse
Affiliation(s)
- Andrea M. Patterson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - P. Artur Plett
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Hui Lin Chua
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Carol H. Sampson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Alexa Fisher
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Hailin Feng
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Joseph L. Unthank
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Steve J. Miller
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Barry P. Katz
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Thomas J. MacVittie
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|
10
|
Zhong Y, Pouliot M, Downey AM, Mockbee C, Roychowdhury D, Wierzbicki W, Authier S. Efficacy of delayed administration of sargramostim up to 120 hours post exposure in a nonhuman primate total body radiation model. Int J Radiat Biol 2020; 97:S100-S116. [PMID: 32960660 DOI: 10.1080/09553002.2019.1673499] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/09/2019] [Accepted: 09/18/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND High dose ionizing radiation exposure is associated with myelo-depression leading to pancytopenia and the expected clinical manifestations of acute radiation syndrome (ARS). Herein, we evaluated the efficacy of sargramostim (Leukine®, yeast-derived rhu GM-CSF), with regimens delivered at 48, 72, 96, or 120 h after radiation exposure. METHODS A randomized and blinded nonhuman primate (NHP) study was conducted to assess the effects of sargramostim treatment on ARS. NHPs were exposed to total body radiation (LD83/60 or lethal dose 83% by Day 60) and were randomized to groups receiving daily subcutaneous dosing of sargramostim starting from either 48, 72, 96, or 120 h post-irradiation. Additionally, separate groups receiving sargramostim treatment at 48 h post-irradiation also received prophylactic treatment with azithromycin. Sargramostim treatment of each animal continued until the preliminary absolute neutrophil count (ANC) returned to ≥1000/μL post-nadir for three consecutive days or the preliminary ANC exceeded 10,000/μL, which amounted to be an average of 15.95 days for all treatment groups. Prophylactic administration of enrofloxacin was included in the supportive care given to all animals in all groups. All animals were monitored for 60 days post-irradiation for mortality, hematological parameters, and sepsis. RESULTS Delayed sargramostim treatment at 48 h post-irradiation significantly reduced mortality (p = .0032) and improved hematological parameters including neutrophil but also lymphocyte and platelet counts. Additional delays in sargramostim administration at 72, 96, and 120 h post-irradiation were also similarly effective at enhancing the recovery of lymphocyte, neutrophil, and platelet counts compared to control. Sargramostim treatment also improved the survival of the animals when administered at up to 96 h post-irradiation. While sargramostim treatment at 48 h significantly reduced mortality associated with sepsis (p ≤ .01), the additional prophylactic treatment with azithromycin did not have clinically significant effects. CONCLUSION In a NHP ARS model, sargramostim administered starting at 48 h post-radiation was effective to improve survival, while beneficial hematological effects were observed with sargramostim initiated up to 120 h post exposure.
Collapse
|
11
|
Qian L, Cen J. Hematopoietic Stem Cells and Mesenchymal Stromal Cells in Acute Radiation Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8340756. [PMID: 32855768 PMCID: PMC7443042 DOI: 10.1155/2020/8340756] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/02/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023]
Abstract
With the extensive utilization of radioactive materials for medical, industrial, agricultural, military, and research purposes, medical researchers are trying to identify new methods to treat acute radiation syndrome (ARS). Radiation may cause injury to different tissues and organs, but no single drug has been proven to be effective in all circumstances. Radioprotective agents are always effective if given before irradiation, but many nuclear accidents are unpredictable. Medical countermeasures that can be beneficial to different organ and tissue injuries caused by radiation are urgently needed. Cellular therapy, especially stem cell therapy, has been a promising approach in ARS. Hematopoietic stem cells (HSCs) and mesenchymal stromal cells (MSCs) are the two main kinds of stem cells which show good efficacy in ARS and have attracted great attention from researchers. There are also some limitations that need to be investigated in future studies. In recent years, there are also some novel methods of stem cells that could possibly be applied on ARS, like "drug" stem cell banks obtained from clinical grade human induced pluripotent stem cells (hiPSCs), MSC-derived products, and infusion of HSCs without preconditioning treatment, which make us confident in the future treatment of ARS. This review focuses on major scientific and clinical advances of hematopoietic stem cells and mesenchymal stromal cells on ARS.
Collapse
Affiliation(s)
- Liren Qian
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Fucheng Road #6, Beijing 100048, China
| | - Jian Cen
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, Fucheng Road #6, Beijing 100048, China
| |
Collapse
|
12
|
Xing S, Shen X, Yang JK, Wang XR, Ou HL, Zhang XW, Xiong GL, Shan YJ, Cong YW, Luo QL, Yu ZY. Single-Dose Administration of Recombinant Human Thrombopoietin Mitigates Total Body Irradiation-Induced Hematopoietic System Injury in Mice and Nonhuman Primates. Int J Radiat Oncol Biol Phys 2020; 108:1357-1367. [PMID: 32758640 DOI: 10.1016/j.ijrobp.2020.07.2325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 02/03/2023]
Abstract
PURPOSE Recombinant human thrombopoietin (rhTPO) has been evaluated as a therapeutic intervention for radiation-induced myelosuppression. However, the immunogenicity induced by a repeated-dosing strategy raises concerns about the therapeutic use of rhTPO. In this study, single-dose administration of rhTPO was evaluated for efficacy in the hematopoietic response and survival effect on mice and nonhuman primates exposed to total body irradiation (TBI). METHODS AND MATERIALS Survival of lethally (9.0 Gy) irradiated C57BL/6J male mice was observed for 30 days after irradiation. Hematologic evaluations were performed on C57BL/6J male mice given a sublethal dose of radiation (6.5 Gy). Furthermore, in sublethally irradiated mice, we performed bone marrow (BM) histologic evaluation and evaluated BM-derived clonogenic activity. Next, the proportion and number of hematopoietic stem cells (HSCs) were analyzed. Competitive repopulation experiments were conducted to assess the multilineage engraftment of irradiated HSCs after BM transplantation. Flow cytometry was used to evaluate DNA damage, cell apoptosis, and cell cycle stage in HSCs after irradiation. Finally, we evaluated the efficacy of a single dose of rhTPO administered after 7 Gy TBI in male and female rhesus monkeys. RESULTS A single administration of rhTPO 2 hours after irradiation significantly mitigated TBI-induced death in mice. rhTPO promoted multilineage hematopoietic recovery, increasing peripheral blood cell counts, BM cellularity, and BM colony-forming ability. rhTPO administration led to an accelerated recovery of BM HSC frequency and multilineage engraftment after transplantation. rhTPO treatment reduced radiation-induced DNA damage and apoptosis and promoted HSC proliferation after TBI. Notably, a single administration of rhTPO significantly promoted multilineage hematopoietic recovery and improved survival in nonhuman primates after TBI. CONCLUSIONS These findings indicate that early intervention with a single administration of rhTPO may represent a promising and effective radiomitigative strategy for victims of radiation disasters.
Collapse
Affiliation(s)
- Shuang Xing
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xing Shen
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jin-Kun Yang
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xin-Ru Wang
- Department of Clinical Laboratory, PLA Rocket Characteristic Medical Center, Beijing, China
| | - Hong-Ling Ou
- Department of Clinical Laboratory, PLA Rocket Characteristic Medical Center, Beijing, China
| | - Xue-Wen Zhang
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Guo-Lin Xiong
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ya-Jun Shan
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yu-Wen Cong
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qing-Liang Luo
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zu-Yin Yu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China; Guangdong Pharmaceutical University, Guangzhou, China; School of Life Science, Anhui Medical University, Hefei, China.
| |
Collapse
|
13
|
Repurposing Drugs for Cancer Radiotherapy: Early Successes and Emerging Opportunities. ACTA ACUST UNITED AC 2020; 25:106-115. [PMID: 30896532 DOI: 10.1097/ppo.0000000000000369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It has long been recognized that combining radiotherapy with cytotoxic drugs such as cisplatin can improve efficacy. However, while concurrent chemoradiotherapy improves patient outcomes, it comes at costs of increased toxicity. A tremendous opportunity remains to investigate drug combinations in the clinical setting that might increase the benefits of radiation without additional toxicity. This chapter highlights opportunities to apply repurposing of drugs along with a mechanistic understanding of radiation effects on cancer and normal tissue to discover new therapy-modifying drugs and help rapidly translate them to the clinic. We survey candidate radiosensitizers that alter DNA repair, decrease hypoxia, block tumor survival signaling, modify tumor metabolism, block growth factor signaling, slow tumor invasiveness, impair angiogenesis, or stimulate antitumor immunity. Promising agents include widely used drugs such as aspirin, metformin, and statins, offering the potential to improve outcomes, decrease radiation doses, and lower costs. Many other candidate drugs are also discussed.
Collapse
|
14
|
Harrold J, Gisleskog PO, Delor I, Jacqmin P, Perez-Ruixo JJ, Narayanan A, Doshi S, Chow A, Yang BB, Melhem M. Quantification of Radiation Injury on Neutropenia and the Link between Absolute Neutrophil Count Time Course and Overall Survival in Nonhuman Primates Treated with G-CSF. Pharm Res 2020; 37:102. [PMID: 32440783 PMCID: PMC7242243 DOI: 10.1007/s11095-020-02839-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/02/2020] [Indexed: 01/09/2023]
Abstract
Purpose To model absolute neutrophil count (ANC) suppression in response to acute radiation (AR) exposure and evaluate ANC time course as a predictor of overall survival (OS) in response to AR exposure with or without treatment with granulocyte colony-stimulating factor in nonhuman primates. Methods Source data were obtained from two pivotal studies conducted in rhesus macaques exposed to 750 cGy of whole body irradiation on day 0 that received either placebo, daily filgrastim, or pegfilgrastim (days 1 and 8 after irradiation). Animals were observed for 60 days with ANC measured every 1 to 2 days. The population model of ANC response to AR and the link between observed ANC time course and OS consisted of three submodels characterizing injury due to radiation, granulopoiesis, and a time-to-event model of OS. Results The ANC response model accurately described the effects of AR exposure on the duration of neutropenia. ANC was a valid surrogate for survival because it explained 76% (95% CI, 41%–97%) and 73.2% (95% CI, 38.7%–99.9%) of the treatment effect for filgrastim and pegfilgrastim, respectively. Conclusion The current model linking radiation injury to neutropenia and ANC time course to OS can be used as a basis for translating these effects to humans. Electronic supplementary material The online version of this article (10.1007/s11095-020-02839-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John Harrold
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, USA.,Seattle Genetics, Bothell Washington, Massachusetts, USA
| | | | | | | | - Juan Jose Perez-Ruixo
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, USA.,Janssen Research & Development, Valencia, Spain
| | - Adimoolam Narayanan
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, USA
| | - Sameer Doshi
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, USA
| | - Andrew Chow
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, USA.,Rigel Pharmaceuticals Inc., South San Francisco, California, USA
| | - Bing-Bing Yang
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, USA
| | - Murad Melhem
- Department of Clinical Pharmacology, Modeling and Simulation, Amgen Inc., Thousand Oaks, California, USA. .,Vertex Pharmaceuticals, Boston, Massachusetts, USA.
| |
Collapse
|
15
|
|
16
|
Singh VK, Seed TM. Pharmacological management of ionizing radiation injuries: current and prospective agents and targeted organ systems. Expert Opin Pharmacother 2020; 21:317-337. [PMID: 31928256 PMCID: PMC6982586 DOI: 10.1080/14656566.2019.1702968] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022]
Abstract
Introduction: There is a limited array of currently available medicinals that are useful for either the prevention, mitigation or treatment of bodily injuries arising from ionizing radiation exposure.Area covered: In this brief article, the authors review those pharmacologic agents that either are currently being used to counter the injurious effects of radiation exposure, or those that show promise and are currently under development.Expert opinion: Although significant, but limited progress has been made in the development and fielding of safe and effective pharmacotherapeutics for select types of acute radiation-associated injuries, additional effort is needed to broaden the scope of drug development so that overall health risks associated with both short- and long-term injuries in various organ systems can be reduced and effectively managed. There are several promising radiation countermeasures that may gain regulatory approval from the government in the near future for use in clinical settings and in the aftermath of nuclear/radiological exposure contingencies.
Collapse
Affiliation(s)
- Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD 20814, USA
| |
Collapse
|
17
|
Bunin DI, Bakke J, Green CE, Javitz HS, Fielden M, Chang PY. Romiplostim (Nplate ®) as an effective radiation countermeasure to improve survival and platelet recovery in mice. Int J Radiat Biol 2019; 96:145-154. [PMID: 31021662 DOI: 10.1080/09553002.2019.1605465] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Purpose: Rapid depletion of white blood cells, platelets, and reticulocytes are hallmarks of hematopoietic injury of acute radiation syndrome (H-ARS) and, if left untreated, can lead to severe health consequences including death. While the granulocyte colony stimulating factors (G-CSF) filgrastim (Neupogen®), pegfilgrastim (Neulasta®), and sargramostim (Leukine®) are approved to increase survival in patients exposed to a myelosuppressive dose of radiation, no medical countermeasure is currently available for treatment of the thrombocytopenia that also results following radiation exposure. Romiplostim (Nplate®), a thrombopoietin receptor agonist, is the first FDA-approved thrombopoiesis-stimulating protein for the treatment of low platelet (PLT) counts in adults with chronic immune thrombocytopenia. Herein, we present the results of an analysis in mice of romiplostim as a medical countermeasure to improve survival and PLT recovery following acute radiation.Materials and methods: Male and female C57BL/6J mice (11 - 12 weeks of age, n = 21/sex/group) were total body irradiated (TBI) with 6.8 Gy X-rays that reduces 30-day survival to 30% (LD70/30). Vehicle, romiplostim, and/or pegfilgrastim were administered subcutaneously beginning 24 h after TBI for 1-5 days. Evaluation parameters included 30-day survival, pharmacokinetics, and hematology.Results: Full or maximal efficacy with an ∼40% increase in survival was achieved after a single 30 µg/kg dose of romiplostim. No further survival benefit was seen with higher (100 µg/kg) or more frequent dosing (3 or 5 once daily doses at 30 µg/kg) of romiplostim or combined treatment with pegfilgrastim. Pharmacodynamic analysis revealed that the platelet nadir was not as low and recovery was faster in the irradiated mice treated with romiplostim when compared with irradiated control animals (Day 8 versus 10 nadir; Day 22 versus 29 recovery to near baseline). Platelet volume also increased more rapidly after romiplostim injection. Kinetic profiles of other hematology parameters were similar between TBI romiplostim-treated and control mice. Peak serum levels of romiplostim in TBI mice occurred 4 - 24 h (Tmax) after injection with a t1/2 of ∼24 h. Cmax values were at ∼6 ng/ml after 30 µg/kg ± TBI and ∼200 ng/ml after 300 µg/kg. A 10-fold higher romiplostim dose increased the AUClast values by ∼35-fold.Conclusion: A single injection of romiplostim administered 24 h after TBI is a promising radiation medical countermeasure that dramatically increased survival, with or without pegfilgrastim, and hastened PLT recovery in mice.
Collapse
Affiliation(s)
| | - James Bakke
- SRI Biosciences, SRI International, Menlo Park, CA, USA
| | - Carol E Green
- SRI Biosciences, SRI International, Menlo Park, CA, USA
| | | | | | - Polly Y Chang
- SRI Biosciences, SRI International, Menlo Park, CA, USA
| |
Collapse
|
18
|
Farese AM, Bennett AW, Gibbs AM, Hankey KG, Prado K, Jackson W, MacVittie TJ. Efficacy of Neulasta or Neupogen on H-ARS and GI-ARS Mortality and Hematopoietic Recovery in Nonhuman Primates After 10-Gy Irradiation With 2.5% Bone Marrow Sparing. HEALTH PHYSICS 2019; 116:339-353. [PMID: 30281533 PMCID: PMC6349470 DOI: 10.1097/hp.0000000000000878] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A nonhuman primate model of acute, partial-body, high-dose irradiation with minimal (2.5%) bone marrow sparing was used to assess endogenous gastrointestinal and hematopoietic recovery and the ability of Neulasta (pegylated granulocyte colony-stimulating factor) or Neupogen (granulocyte colony-stimulating factor) to enhance recovery from myelosuppression when administered at an increased interval between exposure and initiation of treatment. A secondary objective was to assess the effect of Neulasta or Neupogen on mortality and morbidity due to the hematopoietic acute radiation syndrome and concomitant gastrointestinal acute radiation syndrome. Nonhuman primates were exposed to 10.0 Gy, 6 MV, linear accelerator-derived photons delivered at 0.80 Gy min. All nonhuman primates received subject-based medical management. Nonhuman primates were dosed daily with control article (5% dextrose in water), initiated on day 1 postexposure; Neulasta (300 μg kg), administered on days 1, 8, and 15 or days 3, 10, and 17 postexposure; or Neupogen (10 μg kg), administered daily postexposure following its initiation on day 1 or day 3 until neutrophil recovery (absolute neutrophil count ≥1,000 cells μL for 3 consecutive days). Mortality in the irradiated cohorts suggested that administration of Neulasta or Neupogen on either schedule did not affect mortality due to gastrointestinal acute radiation syndrome or mitigate mortality due to hematopoietic acute radiation syndrome (plus gastrointestinal damage). Following 10.0 Gy partial-body irradiation with 2.5% bone marrow sparing, the mean duration of neutropenia (absolute neutrophil count <500 cells μL) was 22.4 d in the control cohort vs. 13.0 and 15.3 d in the Neulasta day 1, 8, 15 and day 3, 10, 17 cohorts, relative to 16.2 and 17.4 d in the Neupogen cohorts initiated on day 1 and day 3, respectively. The absolute neutrophil count nadirs were 48 cells μL in the controls; 117 cells μL and 40 cells μL in the Neulasta days 1, 8, and 15 or days 3, 10, and 17 cohorts, respectively; and 75 cells μL and 37 cells μL in the Neupogen day 1 and day 3 cohorts, respectively. Therefore, the earlier administration of Neulasta or Neupogen was more effective in this model of marginal 2.5% bone marrow sparing. The approximate 2.5% bone marrow sparing may approach the threshold for efficacy of the lineage-specific medical countermeasure. The partial-body irradiation with 2.5% bone marrow sparing model can be used to assess medical countermeasure efficacy in the context of the concomitant gastrointestinal and hematopoietic acute radiation syndrome sequelae.
Collapse
Affiliation(s)
- Ann M. Farese
- University of Maryland School of Medicine, Baltimore, MD
| | | | | | - Kim G. Hankey
- University of Maryland School of Medicine, Baltimore, MD
| | - Karl Prado
- University of Maryland Medical System, Department of Radiation Oncology, Baltimore, MD
| | | | | |
Collapse
|
19
|
MacVittie TJ, Farese AM, Kane MA. ARS, DEARE, and Multiple-organ Injury: A Strategic and Tactical Approach to Link Radiation Effects, Animal Models, Medical Countermeasures, and Biomarker Development to Predict Clinical Outcome. HEALTH PHYSICS 2019; 116:297-304. [PMID: 30608246 PMCID: PMC8439279 DOI: 10.1097/hp.0000000000001045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
| | - Ann M Farese
- University of Maryland School of Medicine, Baltimore, MD
| | - Maureen A Kane
- University of Maryland School of Pharmacy, Baltimore, MD
| |
Collapse
|
20
|
MacVittie TJ, Farese AM, Parker GA, Jackson W, Booth C, Tudor GL, Hankey KG, Potten CS. The Gastrointestinal Subsyndrome of the Acute Radiation Syndrome in Rhesus Macaques: A Systematic Review of the Lethal Dose-response Relationship With and Without Medical Management. HEALTH PHYSICS 2019; 116:305-338. [PMID: 30624353 PMCID: PMC9446380 DOI: 10.1097/hp.0000000000000903] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Well-characterized animal models that mimic the human response to potentially lethal doses of radiation are required to assess the efficacy of medical countermeasures under the criteria of the US Food and Drug Administration's Animal Rule. Development of a model for the gastrointestinal acute radiation syndrome requires knowledge of the radiation dose-response relationship and time course of mortality and morbidity across the acute and prolonged gastrointestinal radiation syndrome. The nonhuman primate, rhesus macaque, is a relevant animal model that has been used to determine the efficacy of medical countermeasures to mitigate major signs of morbidity and mortality relative to the hematopoietic acute radiation syndrome, gastrointestinal acute radiation syndrome, and lung injury. It can be used to assess the natural history of gastrointestinal damage, concurrent multiple organ injury, and aspects of the mechanism of action for acute radiation exposure and treatment. A systematic review of relevant studies that determined the dose-response relationship for the gastrointestinal acute and prolonged radiation syndrome in the rhesus macaque relative to radiation dose, quality, dose rate, exposure uniformity, and use of medical management has never been performed.
Collapse
Affiliation(s)
| | - Ann M Farese
- University of Maryland School of Medicine, Baltimore, MD
| | | | | | | | | | - Kim G Hankey
- University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|
21
|
Legesse B, Kaur A, Kenchegowda D, Hritzo B, Culp WE, Moroni M. Neulasta Regimen for the Hematopoietic Acute Radiation Syndrome: Effects Beyond Neutrophil Recovery. Int J Radiat Oncol Biol Phys 2018; 103:935-944. [PMID: 30496878 DOI: 10.1016/j.ijrobp.2018.11.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/19/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Understanding the physiopathology underlying the acute radiation syndrome (ARS) and the mechanism of action of drugs known to ameliorate ARS is expected to help identify novel countermeasure candidates and improve the outcome for victims exposed to radiation. Granulocyte colony-stimulating factor (G-CSF) has been approved by the US Food and Drug Administration for treatment of hematopoietic ARS (H-ARS) because of its ability to alleviate myelosuppression. Besides its role in hematopoiesis, G-CSF is known to protect the cardiovascular and neurologic systems, to attenuate vascular injury and cardiac toxicity, to preserve gap junction function, and to modulate inflammation and oxidative stress. Here, we characterized the protective effects of G-CSF beyond neutrophil recovery in minipigs exposed to H-ARS doses. METHODS AND MATERIALS Twenty male Göttingen minipigs were exposed to total body, acute ionizing radiation. Animals received either pegylated G-CSF (Neulasta) or dextrose at days 1 and 8 after irradiation. Survival was monitored over a 45-day period. RESULTS Neulasta decreased mortality compared with the control, reduced nadir and duration of neutropenia, and lowered prevalence of organ hemorrhage and frank bleeding episodes. Neulasta also increased plasma concentration of IGF-1 hormone, activated the cardiovascular protective IGF-1R/PI3K/Akt/eNOS/NO pathway, and enhanced membrane expression of VE-cadherin in the heart, improving vascular tone and barrier function. Expression of the acute phase protein CRP, a mediator of cardiovascular diseases and a negative regulator of the IGF-1 pathway, was also induced but at much lower extent compared with IGF-1. Activity of catalase and superoxide dismutase (SOD-1) was only marginally affected, whereas activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase was downregulated. CONCLUSIONS In addition to a neutrophilic effect, amelioration of endothelial homeostasis and barrier function and reduction in NADPH oxidase contribute to the beneficial effects of Neulasta for the treatment of H-ARS.
Collapse
Affiliation(s)
- Betre Legesse
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Amandeep Kaur
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Doreswamy Kenchegowda
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Bernadette Hritzo
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - William E Culp
- Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Maria Moroni
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland.
| |
Collapse
|
22
|
Kiang JG, Zhai M, Bolduc DL, Smith JT, Anderson MN, Ho C, Lin B, Jiang S. Combined Therapy of Pegylated G-CSF and Alxn4100TPO Improves Survival and Mitigates Acute Radiation Syndrome after Whole-Body Ionizing Irradiation Alone and Followed by Wound Trauma. Radiat Res 2017; 188:476-490. [PMID: 28850300 PMCID: PMC5743055 DOI: 10.1667/rr14647.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exposure to ionizing radiation alone or combined with traumatic tissue injury is a crucial life-threatening factor in nuclear and radiological incidents. Radiation injuries occur at the molecular, cellular, tissue and systemic levels; their mechanisms, however, remain largely unclear. Exposure to radiation combined with skin wounding, bacterial infection or burns results in greater mortality than radiation exposure alone in dogs, pigs, rats, guinea pigs and mice. In the current study we observed that B6D2F1/J female mice exposed to 60Co gamma-photon radiation followed by 15% total-body-surface-area skin wounds experienced an increment of 25% higher mortality over a 30-day observation period compared to those subjected to radiation alone. Radiation exposure delayed wound healing by approximately 14 days. On day 30 post-injury, bone marrow and ileum in animals from both groups (radiation alone or combined injury) still displayed low cellularity and structural damage. White blood cell counts, e.g., neutrophils, lymphocytes, monocytes, eosinophils, basophils and platelets, still remained very low in surviving irradiated alone animals, whereas only the lymphocyte count was low in surviving combined injury animals. Likewise, in surviving animals from radiation alone and combined injury groups, the RBCs, hemoglobin, hematocrit and platelets remained low. We observed, that animals treated with both pegylated G-CSF (a cytokine for neutrophil maturation and mobilization) and Alxn4100TPO (a thrombopoietin receptor agonist) at 4 h postirradiation, a 95% survival (vehicle: 60%) over the 30-day period, along with mitigated body-weight loss and significantly reduced acute radiation syndrome. In animals that received combined treatment of radiation and injury that received pegylated G-CSF and Alxn4100TPO, survival was increased from 35% to 55%, but did not accelerate wound healing. Hematopoiesis and ileum showed significant improvement in animals from both groups (irradiation alone and combined injury) when treated with pegylated G-CSF and Alxn4100TPO. Treatment with pegylated G-CSF alone increased survival after irradiation alone and combined injury by 33% and 15%, respectively, and further delayed wound healing, but increased WBC, RBC and platelet counts after irradiation alone, and only RBCs and platelets after combined injury. Treatment with Alxn4100TPO alone increased survival after both irradiation alone and combined injury by 4 and 23%, respectively, and delayed wound healing after combined injury, but increased RBCs, hemoglobin concentrations, hematocrit values and platelets after irradiation alone and only platelets after combined injury. Taken together, the results suggest that combined treatment with pegylated G-CSF and Alxn4100TPO is effective for mitigating effects of both radiation alone and in combination with injury.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
- Department of Pharmacology and Molecular Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Min Zhai
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - David L. Bolduc
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Joan T. Smith
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Marsha N. Anderson
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Connie Ho
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
- College of Letters and Science, University of California, Berkeley, Berkeley, California, 94720
| | - Bin Lin
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Suping Jiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| |
Collapse
|
23
|
Singh VK, Hanlon BK, Santiago PT, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part III. Countermeasures under early stages of development along with 'standard of care' medicinal and procedures not requiring regulatory approval for use. Int J Radiat Biol 2017; 93:885-906. [PMID: 28657400 DOI: 10.1080/09553002.2017.1332440] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Terrorist attacks, with their intent to maximize psychological and economic damage as well as inflicting sickness and death on given targeted populations, are an ever-growing worldwide concern in government and public sectors as they become more frequent, violent, and sensational. If given the chance, it is likely that terrorists will use radiological or nuclear weapons. To thwart these sinister efforts, both physical and medical countermeasures against these weapons are currently being researched and developed so that they can be utilized by the first responders, military, and medical providers alike. This is the third article of a three-part series in which we have reviewed additional radiation countermeasures that are currently under early preclinical phases of development using largely animal models and have listed and discussed clinical support measures, including agents used for radiation-induced emesis, as well as countermeasures not requiring Food and Drug Administration approval. CONCLUSIONS Despite the significant progress that has been made in this area during the last several years, additional effort is needed in order to push promising new agents, currently under development, through the regulatory pipeline. This pipeline for new promising drugs appears to be unreasonably slow and cumbersome; possible reasons for this inefficiency are briefly discussed. Significant and continued effort needs to be afforded to this research and development area, as to date, there is no approved radioprotector that can be administered prior to high dose radiation exposure. This represents a very significant, unmet medical need and a significant security issue. A large number of agents with potential to interact with different biological targets are under development. In the next few years, several additional radiation countermeasures will likely receive Food and Drug Administration approval, increasing treatment options for victims exposed to unwanted ionizing irradiation.
Collapse
Affiliation(s)
- Vijay K Singh
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | - Briana K Hanlon
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | - Paola T Santiago
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | | |
Collapse
|
24
|
Singh VK, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part I. Radiation sub-syndromes, animal models and FDA-approved countermeasures. Int J Radiat Biol 2017. [PMID: 28650707 DOI: 10.1080/09553002.2017.1332438] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE The increasing global risk of nuclear and radiological accidents or attacks has driven renewed research interest in developing medical countermeasures to potentially injurious exposures to acute irradiation. Clinical symptoms and signs of a developing acute radiation injury, i.e. the acute radiation syndrome, are grouped into three sub-syndromes named after the dominant organ system affected, namely the hematopoietic, gastrointestinal, and neurovascular systems. The availability of safe and effective countermeasures against the above threats currently represents a significant unmet medical need. This is the first article within a three-part series covering the nature of the radiation sub-syndromes, various animal models for radiation countermeasure development, and the agents currently approved by the United States Food and Drug Administration for countering the medical consequences of several of these prominent radiation exposure-associated syndromes. CONCLUSIONS From the U.S. and global perspectives, biomedical research concerning medical countermeasure development is quite robust, largely due to increased government funding following the 9/11 incidence and subsequent rise of terrorist-associated threats. A wide spectrum of radiation countermeasures for specific types of radiation injuries is currently under investigation. However, only a few radiation countermeasures have been fully approved by regulatory agencies for human use during radiological/nuclear contingencies. Additional research effort, with additional funding, clearly will be needed in order to fill this significant, unmet medical health problem.
Collapse
Affiliation(s)
- Vijay K Singh
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | | |
Collapse
|
25
|
Satyamitra M, Kumar VP, Biswas S, Cary L, Dickson L, Venkataraman S, Ghosh SP. Impact of Abbreviated Filgrastim Schedule on Survival and Hematopoietic Recovery after Irradiation in Four Mouse Strains with Different Radiosensitivity. Radiat Res 2017; 187:659-671. [PMID: 28362168 DOI: 10.1667/rr14555.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Filgrastim (Neupogen®, granulocyte-colony stimulating factor) is among the few countermeasures recommended for management of patients in the event of lethal total-body irradiation. Despite the plethora of studies using filgrastim as a radiation countermeasure, relatively little is known about the optimal dose schedule of filgrastim to mitigate radiation lethality. We evaluated the efficacy of filgrastim in improving 30-day survival of CD2F1 mice irradiated with a lethal dose (LD70/30) in the AFRRI cobalt-60 facility. We tested different schedules of 1, 3, 5, 10 or 16 once-daily injections of filgrastim initiated one day after irradiation. Time optimization studies with filgrastim treatment were also performed, beginning 6-48 h postirradiation. Maximum survival was observed with 3 daily doses of 0.17 mg/kg filgrastim. Survival efficacy of the 3-day treatment was compared against the conventional 16-day filgrastim treatment after irradiation in four mouse strains with varying radiation sensitivities: C3H/HeN, C57BL/6, B6C3F1 and CD2F1. Blood indices, bone marrow histopathology and colony forming unit assays were also evaluated. Filgrastim significantly increased 30-day survival (P < 0.001) with a 3-day treatment compared to 16-day treatment. Filgrastim did not prevent cytopenia nadirs, but facilitated faster recovery of white blood cells, neutrophils, red blood cells, platelets, lymphocytes and hematocrits in all four strains. Accelerated hematopoietic recovery was also reflected in faster bone marrow reconstitution and significant increase in hematopoietic progenitors (P < 0.001) in all four mouse strains. These data indicate that prompt and abbreviated filgrastim treatment has potential benefit for triage in the event of a radiological incident for treating acute hematopoietic syndrome.
Collapse
Affiliation(s)
- Merriline Satyamitra
- a Radiation and Nuclear Countermeasure Program, DAIT, NIAID, NIH, Bethesda, Maryland 20889
| | - Vidya P Kumar
- b Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Shukla Biswas
- b Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Lynnette Cary
- b Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Leonora Dickson
- b Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Srinivasan Venkataraman
- b Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| | - Sanchita P Ghosh
- b Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences, Bethesda, Maryland 20889
| |
Collapse
|
26
|
Current Status of Targeted Radioprotection and Radiation Injury Mitigation and Treatment Agents: A Critical Review of the Literature. Int J Radiat Oncol Biol Phys 2017; 98:662-682. [PMID: 28581409 DOI: 10.1016/j.ijrobp.2017.02.211] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 01/17/2023]
Abstract
As more cancer patients survive their disease, concerns about radiation therapy-induced side effects have increased. The concept of radioprotection and radiation injury mitigation and treatment offers the possibility to enhance the therapeutic ratio of radiation therapy by limiting radiation therapy-induced normal tissue injury without compromising its antitumor effect. Advances in the understanding of the underlying mechanisms of radiation toxicity have stimulated radiation oncologists to target these pathways across different organ systems. These generalized radiation injury mechanisms include production of free radicals such as superoxides, activation of inflammatory pathways, and vascular endothelial dysfunction leading to tissue hypoxia. There is a significant body of literature evaluating the effectiveness of various treatments in preventing, mitigating, or treating radiation-induced normal tissue injury. Whereas some reviews have focused on a specific disease site or agent, this critical review focuses on a mechanistic classification of activity and assesses multiple agents across different disease sites. The classification of agents used herein further offers a useful framework to organize the multitude of treatments that have been studied. Many commonly available treatments have demonstrated benefit in prevention, mitigation, and/or treatment of radiation toxicity and warrant further investigation. These drug-based approaches to radioprotection and radiation injury mitigation and treatment represent an important method of making radiation therapy safer.
Collapse
|
27
|
Krzyzanski W, Harrold JM, Wu LS, Perez-Ruixo JJ. A cell-level model of pharmacodynamics-mediated drug disposition. J Pharmacokinet Pharmacodyn 2016; 43:513-27. [PMID: 27612462 DOI: 10.1007/s10928-016-9491-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/02/2016] [Indexed: 01/22/2023]
Abstract
We aimed to develop a cell-level pharmacodynamics-mediated drug disposition (PDMDD) model to analyze in vivo systems where the PD response to a drug has an appreciable effect on the pharmacokinetics (PK). An existing cellular level model of PD stimulation was combined with the standard target-mediated drug disposition (TMDD) model and the resulting model structure was parametrically identifiable from typical in vivo PK and PD data. The PD model of the cell population was controlled by the production rate k in and elimination rate k out which could be stimulated or inhibited by the number of bound receptors on a single cell. Simulations were performed to assess the impact of single and repeated dosing on the total drug clearance. The clinical utility of the cell-level PDMDD model was demonstrated by fitting published data on the stimulatory effects of filgrastim on absolute neutrophil counts in healthy subjects. We postulated repeated dosing as a means of detecting and quantifying PDMDD as a single dose might not be sufficient to elicit the cellular response capable of altering the receptor pool to visibly affect drug disposition. In the absence of any PD effect, the model reduces down to the standard TMDD model. The applications of this model can be readily extended to include chemotherapy-induced cytopenias affecting clearance of endogenous hematopoietic growth factors, different monoclonal antibodies and immunogenicity effects on PK.
Collapse
Affiliation(s)
| | - John M Harrold
- Clinical Pharmacology, Modeling, and Simulation, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA.
| | - Liviawati S Wu
- Clinical Pharmacology, Modeling, and Simulation, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA
| | - Juan Jose Perez-Ruixo
- Clinical Pharmacology, Modeling, and Simulation, Amgen Inc., One Amgen Center Dr, Thousand Oaks, CA, 91320, USA.,Janssen Research & Development, Beerse, Antwerp, Belgium
| |
Collapse
|
28
|
Singh VK, Romaine PLP, Newman VL, Seed TM. Medical countermeasures for unwanted CBRN exposures: part II radiological and nuclear threats with review of recent countermeasure patents. Expert Opin Ther Pat 2016; 26:1399-1408. [PMID: 27610458 PMCID: PMC5152556 DOI: 10.1080/13543776.2016.1231805] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: The global threat of a chemical, biological, radiological, or nuclear (CBRN) disaster is an important priority for all government agencies involved in domestic security and public health preparedness. Radiological/nuclear (RN) attacks or accidents have become a larger focus of the United States Food and Drug administration (US FDA) over time because of their increased likeliness. Clinical signs and symptoms of a developing acute radiation syndrome (ARS) are grouped into three sub-syndromes named for the dominant organ system affected, namely the hematopoietic (H-ARS), gastrointestinal (GI-ARS), and neurovascular systems. The availability of safe and effective countermeasures against radiological/nuclear threats currently represents a significant unmet medical need. Areas covered: This article reviews the development of RN threat medical countermeasures and highlights those specific countermeasures that have been recently patented and approved following the FDA Animal Rule. Patents for such agents from 2015 have been presented. Expert opinion: Two granulocyte colony-stimulating factor (G-CSF)-based radiation countermeasures (Neupogen® (Amgen, Thousand Oaks, CA) and Neulasta® (Amgen, Thousand Oaks, CA)) have recently been approved by the FDA for treatment of H-ARS and both these agents are radiomitigators, used after radiation exposure. To date, there are no FDA-approved radioprotectors for ARS.
Collapse
Affiliation(s)
- Vijay K Singh
- a Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Patricia L P Romaine
- b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Victoria L Newman
- b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | | |
Collapse
|
29
|
Singh VK, Hauer-Jensen M. γ-Tocotrienol as a Promising Countermeasure for Acute Radiation Syndrome: Current Status. Int J Mol Sci 2016; 17:E663. [PMID: 27153057 PMCID: PMC4881489 DOI: 10.3390/ijms17050663] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/03/2016] [Accepted: 04/25/2016] [Indexed: 01/13/2023] Open
Abstract
The hazard of ionizing radiation exposure due to nuclear accidents or terrorist attacks is ever increasing. Despite decades of research, still, there is a shortage of non-toxic, safe and effective medical countermeasures for radiological and nuclear emergency. To date, the U.S. Food and Drug Administration (U.S. FDA) has approved only two growth factors, Neupogen (granulocyte colony-stimulating factor (G-CSF), filgrastim) and Neulasta (PEGylated G-CSF, pegfilgrastim) for the treatment of hematopoietic acute radiation syndrome (H-ARS) following the Animal Efficacy Rule. Promising radioprotective efficacy results of γ-tocotrienol (GT3; a member of the vitamin E family) in the mouse model encouraged its further evaluation in the nonhuman primate (NHP) model. These studies demonstrated that GT3 significantly aided the recovery of radiation-induced neutropenia and thrombocytopenia compared to the vehicle controls; these results particularly significant after exposure to 5.8 or 6.5 Gray (Gy) whole body γ-irradiation. The stimulatory effect of GT3 on neutrophils and thrombocytes (platelets) was directly and positively correlated with dose; a 75 mg/kg dose was more effective compared to 37.5 mg/kg. GT3 was also effective against 6.5 Gy whole body γ-irradiation for improving neutrophils and thrombocytes. Moreover, a single administration of GT3 without any supportive care was equivalent, in terms of improving hematopoietic recovery, to multiple doses of Neupogen and two doses of Neulasta with full supportive care (including blood products) in the NHP model. GT3 may serve as an ultimate radioprotector for use in humans, particularly for military personnel and first responders. In brief, GT3 is a promising radiation countermeasure that ought to be further developed for U.S. FDA approval for the ARS indication.
Collapse
Affiliation(s)
- Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA.
| | - Martin Hauer-Jensen
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare Systems, Little Rock, AR 72205, USA.
| |
Collapse
|
30
|
Singh VK, Kulkarni S, Fatanmi OO, Wise SY, Newman VL, Romaine PLP, Hendrickson H, Gulani J, Ghosh SP, Kumar KS, Hauer-Jensen M. Radioprotective Efficacy of Gamma-Tocotrienol in Nonhuman Primates. Radiat Res 2016; 185:285-98. [DOI: 10.1667/rr14127.1] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Vijay K. Singh
- Department of Radiation Biology, F. Edward Hébert School of Medicine, “America's Medical School” Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Shilpa Kulkarni
- Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | | | - Stephen Y. Wise
- Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | | | | | - Howard Hendrickson
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare Systems, Little Rock, Arkansas; and
| | - Jatinder Gulani
- Veterinary Sciences Department, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | | | - K. Sree Kumar
- Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Martin Hauer-Jensen
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare Systems, Little Rock, Arkansas; and
| |
Collapse
|
31
|
Colony-stimulating factors for the treatment of the hematopoietic component of the acute radiation syndrome (H-ARS): a review. Cytokine 2016; 71:22-37. [PMID: 25215458 DOI: 10.1016/j.cyto.2014.08.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 01/03/2023]
Abstract
One of the greatest national security threats to the United States is the detonation of an improvised nuclear device or a radiological dispersal device in a heavily populated area. As such, this type of security threat is considered to be of relatively low risk, but one that would have an extraordinary high impact on health and well-being of the US citizenry. Psychological counseling and medical assessments would be necessary for all those significantly impacted by the nuclear/radiological event. Direct medical interventions would be necessary for all those individuals who had received substantial radiation exposures (e.g., >1 Gy). Although no drugs or products have yet been specifically approved by the United States Food and Drug Administration (US FDA) to treat the effects of acute radiation syndrome (ARS), granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), and pegylated G-CSF have been used off label for treating radiation accident victims. Recent threats of terrorist attacks using nuclear or radiologic devices makes it imperative that the medical community have up-to-date information and a clear understanding of treatment protocols using therapeutically effective recombinant growth factors and cytokines such as G-CSF and GM-CSF for patients exposed to injurious doses of ionizing radiation. Based on limited human studies with underlying biology, we see that the recombinants, G-CSF and GM-CSF appear to have modest, but significant medicinal value in treating radiation accident victims. In the near future, the US FDA may approve G-CSF and GM-CSF as ‘Emergency Use Authorization’ (EUA) for managing radiation-induced aplasia, an ARS-related pathology. In this article, we review the status of growth factors for the treatment of radiological/nuclear accident victims.
Collapse
|
32
|
MacVittie TJ, Bennett AW, Farese AM, Taylor-Howell C, Smith CP, Gibbs AM, Prado K, Jackson W. The Effect of Radiation Dose and Variation in Neupogen® Initiation Schedule on the Mitigation of Myelosuppression during the Concomitant GI-ARS and H-ARS in a Nonhuman Primate Model of High-dose Exposure with Marrow Sparing. HEALTH PHYSICS 2015; 109:427-39. [PMID: 26425903 PMCID: PMC9442798 DOI: 10.1097/hp.0000000000000350] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A nonhuman primate (NHP) model of acute high-dose, partial-body irradiation with 5% bone marrow (PBI/BM5) sparing was used to assess the effect of Neupogen® [granulocyte colony stimulating factor (G-CSF)] to mitigate the associated myelosuppression when administered at an increasing interval between exposure and initiation of treatment. A secondary objective was to assess the effect of Neupogen® on the mortality or morbidity of the hematopoietic (H)- acute radiation syndrome (ARS) and concurrent acute gastrointestinal radiation syndrome (GI-ARS). NHP were exposed to 10.0 or 11.0 Gy with 6 MV LINAC-derived photons at approximately 0.80 Gy min. All NHP received medical management. NHP were dosed daily with control article (5% dextrose in water) initiated on day 1 post-exposure or Neupogen® (10 μg kg) initiated on day 1, day 3, or day 5 until recovery [absolute neutrophil count (ANC) ≥ 1,000 cells μL for three consecutive days]. Mortality in both the 10.0 Gy and 11.0 Gy cohorts suggested that early administration of Neupogen® at day 1 post exposure may affect acute GI-ARS mortality, while Neupogen® appeared to mitigate mortality due to the H-ARS. However, the study was not powered to detect statistically significant differences in survival. The ability of Neupogen® to stimulate granulopoiesis was assessed by evaluating key parameters for ANC recovery: the depth of nadir, duration of neutropenia (ANC < 500 cells μL) and recovery time to ANC ≥ 1,000 cells μL. Following 10.0 Gy PBI/BM5, the mean duration of neutropenia was 11.6 d in the control cohort vs. 3.5 d and 4.6 d in the day 1 and day 3 Neupogen® cohorts, respectively. The respective ANC nadirs were 94 cells μL, 220 cells μL, and 243 cells μL for the control and day 1 and day 3 Neupogen® cohorts. Following 11.0 Gy PBI/BM5, the duration of neutropenia was 10.9 d in the control cohort vs. 2.8 d, 3.8 d, and 4.5 d in the day 1, day 3, and day 5 Neupogen® cohorts, respectively. The respective ANC nadirs for the control and day 1, day 3, and day 5 Neupogen® cohorts were 131 cells μL, 292 cells μL, 236 cells μL, and 217 cells μL, respectively. Therefore, the acceleration of granulopoiesis by Neupogen® in this model is independent of the time interval between radiation exposure and treatment initiation up to 5 d post-exposure. The PBI/BM5 model can be used to assess medical countermeasure efficacy in the context of the concurrent GI- and H-ARS.
Collapse
Affiliation(s)
- Thomas J MacVittie
- *University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD; †University of Maryland Medical Center, Department of Radiation Oncology, Baltimore, MD; ‡Statistician, Rockville, MD
| | | | | | | | | | | | | | | |
Collapse
|
33
|
MacVittie TJ. The MCART Consortium Animal Model Series: MCART Animal Model Refinement and MCM Development: Defining organ dose, organ-specific tissue imaging, model validation and the natural history between the acute radiation syndrome (ARS) and the delayed effects of acute radiation exposure (DEARE). HEALTH PHYSICS 2015; 109:335-341. [PMID: 26425896 DOI: 10.1097/hp.0000000000000318] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
|
34
|
Farese AM, Hankey KG, Cohen MV, MacVittie TJ. Lymphoid and Myeloid Recovery in Rhesus Macaques Following Total Body X-Irradiation. HEALTH PHYSICS 2015; 109:414-26. [PMID: 26425902 PMCID: PMC4593069 DOI: 10.1097/hp.0000000000000348] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recovery from severe immunosuppression requires hematopoietic stem cell reconstitution and effective thymopoiesis to restore a functional immune cell repertoire. Herein, a model of immune cell reconstitution consequent to potentially lethal doses of irradiation is described, which may be valuable in evaluating potential medical countermeasures. Male rhesus macaques were total body irradiated by exposure to 6.00 Gy 250 kVp x-radiation (midline tissue dose, 0.13 Gy min), resulting in an approximate LD10/60 (n = 5/59). Animals received medical management, and hematopoietic and immune cell recovery was assessed (n ≤ 14) through 370 d post exposure. A subset of animals (n ≤ 8) was examined through 700 d. Myeloid recovery was assessed by neutrophil and platelet-related parameters. Lymphoid recovery was assessed by the absolute lymphocyte count and FACS-based phenotyping of B- and T-cell subsets. Recent thymic emigrants were identified by T cell receptor excision circle quantification. Severe neutropenia, lymphopenia, and thrombocytopenia resolved within 30 d. Total CD3+ cells μL required 60 d to reach values 60% of normal, followed by subsequent slow recovery to approximately normal by 180 d post irradiation. Recovery of CD3+4+ and CD3+8+ cell memory and naïve subsets were markedly different. Memory populations were ≥ 100% of normal by day 60, whereas naïve populations were only 57% normal at 180 d and never fully recovered to baseline post irradiation. Total (CD20+) B cells μL were within normal levels by 77 d post exposure. This animal model elucidates the variable T- and B-cell subset recovery kinetics after a potentially lethal dose of total-body irradiation that are dependent on marrow-derived stem and progenitor cell recovery, peripheral homeostatic expansion, and thymopoiesis.
Collapse
Affiliation(s)
- Ann M. Farese
- University of Maryland, School of Medicine, Dept. of Radiation Oncology, Baltimore, MD
| | - Kim G. Hankey
- University of Maryland, School of Medicine, Dept. of Radiation Oncology, Baltimore, MD
| | | | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Dept. of Radiation Oncology, Baltimore, MD
| |
Collapse
|
35
|
Carter CL, Jones JW, Barrow K, Kieta K, Taylor-Howell C, Kearney S, Smith CP, Gibbs A, Farese AM, MacVittie TJ, Kane MA. A MALDI-MSI Approach to the Characterization of Radiation-Induced Lung Injury and Medical Countermeasure Development. HEALTH PHYSICS 2015; 109:466-78. [PMID: 26425906 PMCID: PMC4745118 DOI: 10.1097/hp.0000000000000353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Radiation-induced lung injury is highly complex and characterized by multiple pathologies, which occur over time and sporadically throughout the lung. This complexity makes biomarker investigations and medical countermeasure screenings challenging. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has the ability to resolve differences spatially in molecular profiles within the lung following radiation exposure and can aid in biomarker identification and pharmaceutical efficacy investigations. MALDI-MSI was applied to the investigation of a whole-thorax lung irradiation model in non-human primates (NHP) for lipidomic analysis and medical countermeasure distribution.
Collapse
Affiliation(s)
- Claire L. Carter
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences
| | - Jace W. Jones
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences
| | - Kory Barrow
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Kaitlyn Kieta
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Cheryl Taylor-Howell
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Sean Kearney
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Cassandra P. Smith
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Allison Gibbs
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Ann M. Farese
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Thomas J. MacVittie
- University of Maryland, School of Medicine, Department of Radiation Oncology, Baltimore, MD 21201
| | - Maureen A. Kane
- University of Maryland, School of Pharmacy, Department of Pharmaceutical Sciences
| |
Collapse
|
36
|
Singh VK, Romaine PL, Seed TM. Medical Countermeasures for Radiation Exposure and Related Injuries: Characterization of Medicines, FDA-Approval Status and Inclusion into the Strategic National Stockpile. HEALTH PHYSICS 2015; 108:607-630. [PMID: 25905522 PMCID: PMC4418776 DOI: 10.1097/hp.0000000000000279] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 05/28/2023]
Abstract
World events over the past decade have highlighted the threat of nuclear terrorism as well as an urgent need to develop radiation countermeasures for acute radiation exposures and subsequent bodily injuries. An increased probability of radiological or nuclear incidents due to detonation of nuclear weapons by terrorists, sabotage of nuclear facilities, dispersal and exposure to radioactive materials, and accidents provides the basis for such enhanced radiation exposure risks for civilian populations. Although the search for suitable radiation countermeasures for radiation-associated injuries was initiated more than half a century ago, no safe and effective radiation countermeasure for the most severe of these injuries, namely acute radiation syndrome (ARS), has been approved by the United States Food and Drug Administration (FDA). The dearth of FDA-approved radiation countermeasures has prompted intensified research for a new generation of radiation countermeasures. In this communication, the authors have listed and reviewed the status of radiation countermeasures that are currently available for use, or those that might be used for exceptional nuclear/radiological contingencies, plus a limited few medicines that show early promise but still remain experimental in nature and unauthorized for human use by the FDA.
Collapse
Affiliation(s)
- Vijay K. Singh
- *Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Bethesda, MD; †Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; ‡Tech Micro Services, Bethesda, MD
| | - Patricia L.P. Romaine
- *Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Bethesda, MD; †Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; ‡Tech Micro Services, Bethesda, MD
| | - Thomas M. Seed
- *Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Bethesda, MD; †Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; ‡Tech Micro Services, Bethesda, MD
| |
Collapse
|
37
|
Hankey KG, Farese AM, Blaauw EC, Gibbs AM, Smith CP, Katz BP, Tong Y, Prado KL, MacVittie TJ. Pegfilgrastim Improves Survival of Lethally Irradiated Nonhuman Primates. Radiat Res 2015; 183:643-55. [DOI: 10.1667/rr13940.1] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Sanzari JK, Krigsfeld GS, Shuman AL, Diener AK, Lin L, Mai W, Kennedy AR. Effects of a granulocyte colony stimulating factor, Neulasta, in mini pigs exposed to total body proton irradiation. LIFE SCIENCES IN SPACE RESEARCH 2015; 5:13-20. [PMID: 25909052 PMCID: PMC4402939 DOI: 10.1016/j.lssr.2015.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Astronauts could be exposed to solar particle event (SPE) radiation, which is comprised mostly of proton radiation. Proton radiation is also a treatment option for certain cancers. Both astronauts and clinical patients exposed to ionizing radiation are at risk for loss of white blood cells (WBCs), which are the body's main defense against infection. In this report, the effect of Neulasta treatment, a granulocyte colony stimulating factor, after proton radiation exposure is discussed. Mini pigs exposed to total body proton irradiation at a dose of 2 Gy received 4 treatments of either Neulasta or saline injections. Peripheral blood cell counts and thromboelastography parameters were recorded up to 30 days post-irradiation. Neulasta significantly improved WBC loss, specifically neutrophils, in irradiated animals by approximately 60% three days after the first injection, compared to the saline treated, irradiated animals. Blood cell counts quickly decreased after the last Neulasta injection, suggesting a transient effect on WBC stimulation. Statistically significant changes in hemostasis parameters were observed after proton radiation exposure in both the saline and Neulasta treated irradiated groups, as well as internal organ complications such as pulmonary changes. In conclusion, Neulasta treatment temporarily alleviates proton radiation-induced WBC loss, but has no effect on altered hemostatic responses.
Collapse
Affiliation(s)
- Jenine K. Sanzari
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | | | - Anne L. Shuman
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Antonia K. Diener
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Liyong Lin
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| | - Wilfried Mai
- Radiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA
| | - Ann R. Kennedy
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
39
|
Singh VK, Newman VL, Berg AN, MacVittie TJ. Animal models for acute radiation syndrome drug discovery. Expert Opin Drug Discov 2015; 10:497-517. [DOI: 10.1517/17460441.2015.1023290] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Singh VK, Romaine PLP, Newman VL, Seed TM. Tocols induce G-CSF and mobilise progenitors that mitigate radiation injury. RADIATION PROTECTION DOSIMETRY 2014; 162:83-87. [PMID: 24993008 PMCID: PMC4434803 DOI: 10.1093/rpd/ncu223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tocols induce high levels of granulocyte-colony-stimulating factor (G-CSF). G-CSF mobilises progenitors that allow mice that have been severely immunocompromised by exposure to acute, high-dose ionising irradiation to recover and to survive. The neutralisation of G-CSF abrogates the radioprotective efficacy of tocols. This article reviews studies in which CD2F1 mice were irradiated with sufficiently high doses to cause acute radiation syndrome symptoms and then administered (iv) progenitor-enriched whole blood or peripheral blood mononuclear cells from tocol- and AMD3100-injected donor mice (AMD3100 is a chemokine receptor antagonist used to improve the yield of mobilised progenitors). In some experiments, G-CSF was neutralised completely. Irradiated recipient mice were observed for 30 d post-irradiation for survival, a primary endpoint used for determining therapeutic effectiveness. Additionally, potential tocol-induced biomarkers (cytokines, chemokines and growth factors) were quantified. The authors suggest that tocols are highly effective agents for mobilising progenitors with significant therapeutic potential.
Collapse
Affiliation(s)
- Vijay K Singh
- Armed Forces Radiobiology Research Institute, Bethesda, MD, USA
| | | | | | | |
Collapse
|
41
|
Singh VK, Newman VL, Romaine PLP, Wise SY, Seed TM. Radiation countermeasure agents: an update (2011-2014). Expert Opin Ther Pat 2014; 24:1229-55. [PMID: 25315070 PMCID: PMC4438421 DOI: 10.1517/13543776.2014.964684] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Despite significant scientific advances over the past 60 years towards the development of a safe, nontoxic and effective radiation countermeasure for the acute radiation syndrome (ARS), no drug has been approved by the US FDA. A radiation countermeasure to protect the population at large from the effects of lethal radiation exposure remains a significant unmet medical need of the US citizenry and, thus, has been recognized as a high priority area by the government. AREA COVERED This article reviews relevant publications and patents for recent developments and progress for potential ARS treatments in the area of radiation countermeasures. Emphasis is placed on the advanced development of existing agents since 2011 and new agents identified as radiation countermeasure for ARS during this period. EXPERT OPINION A number of promising radiation countermeasures are currently under development, seven of which have received US FDA investigational new drug status for clinical investigation. Four of these agents, CBLB502, Ex-RAD, HemaMax and OrbeShield, are progressing with large animal studies and clinical trials. G-CSF has high potential and well-documented therapeutic effects in countering myelosuppression and may receive full licensing approval by the US FDA in the future.
Collapse
Affiliation(s)
- Vijay K Singh
- Armed Forces Radiobiology Research Institute , 8901 Wisconsin Ave, Bethesda, MD 20889-5603 , USA +1 301 295 2347 ; +1 301 295 6503 ;
| | | | | | | | | |
Collapse
|
42
|
Singh VK, Wise SY, Fatanmi OO, Beattie LA, Seed TM. Preclinical development of a bridging therapy for radiation casualties: appropriate for high risk personnel. HEALTH PHYSICS 2014; 106:689-698. [PMID: 24776901 DOI: 10.1097/hp.0000000000000089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The authors demonstrate the efficacy of a bridging therapy in a preclinical animal model that allows the lymphohematopoietic system of severely immunocompromised individuals exposed to acute, high-dose ionizing irradiation to recover and to survive. CD2F1 mice were irradiated acutely with high doses causing severe, potentially fatal hematopoietic or gastrointestinal injuries and then transfused intravenously with progenitor-enriched, whole blood, or peripheral blood mononuclear cells from mice injected with tocopherol succinate- and AMD3100- (a chemokine receptor anatogonist used to improve the yield of mobilized progenitors). Survival of these mice over a 30-d period was used as the primary measured endpoint of therapeutic effectiveness. The authors demonstrate that tocopherol succinate and AMD3100 mobilize progenitors into peripheral circulation and that the infusion of mobilized progenitor enriched blood or mononuclear cells acts as a bridging therapy for lymphohematopoietic system recovery in mice exposed to whole-body ionizing irradiation. The results demonstrate that infusion of whole blood or blood mononuclear cells from tocopherol succinate (TS)- and AMD3100-injected mice improved the survival of mice receiving high radiation doses significantly. The efficacy of TS-injected donor mice blood or mononuclear cells was comparable to that of blood or cells obtained from mice injected with granulocyte colony-stimulating factor. Donor origin-mobilized progenitors were found to localize in various tissues. The authors suggest that tocopherol succinate is an optimal agent for mobilizing progenitors with significant therapeutic potential. The extent of progenitor mobilization that tocopherol succinate elicits in experimental mice is comparable quantitatively to clinically used drugs such as granulocyte-colony stimulating factor and AMD3100. Therefore, it is proposed that tocopherol succinate be considered for further translational development and ultimately for use in humans.
Collapse
Affiliation(s)
- Vijay K Singh
- *Armed Forces Radiobiology Research Institute, Bethesda, MD; †Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; ‡Tech Micro Services, 4417 Maple Avenue, Bethesda, MD
| | | | | | | | | |
Collapse
|
43
|
Hofer M, Pospíšil M, Komůrková D, Hoferová Z. Granulocyte colony-stimulating factor in the treatment of acute radiation syndrome: a concise review. Molecules 2014; 19:4770-8. [PMID: 24743934 PMCID: PMC6270858 DOI: 10.3390/molecules19044770] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/17/2014] [Accepted: 04/11/2014] [Indexed: 02/07/2023] Open
Abstract
This article concisely summarizes data on the action of one of the principal and best known growth factors, the granulocyte colony-stimulating factor (G-CSF), in a mammalian organism exposed to radiation doses inducing acute radiation syndrome. Highlighted are the topics of its real or anticipated use in radiation accident victims, the timing of its administration, the possibilities of combining G-CSF with other drugs, the ability of other agents to stimulate endogenous G-CSF production, as well as of the capability of this growth factor to ameliorate not only the bone marrow radiation syndrome but also the gastrointestinal radiation syndrome. G-CSF is one of the pivotal drugs in the treatment of radiation accident victims and its employment in this indication can be expected to remain or even grow in the future.
Collapse
Affiliation(s)
- Michal Hofer
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Královopolská 135, Brno CZ-612 65, Czech Republic.
| | - Milan Pospíšil
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Královopolská 135, Brno CZ-612 65, Czech Republic.
| | - Denisa Komůrková
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Královopolská 135, Brno CZ-612 65, Czech Republic.
| | - Zuzana Hoferová
- Department of Molecular Cytology and Cytometry, Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic, Královopolská 135, Brno CZ-612 65, Czech Republic.
| |
Collapse
|
44
|
Singh VK, Wise SY, Scott JR, Romaine PL, Newman VL, Fatanmi OO. Radioprotective efficacy of delta-tocotrienol, a vitamin E isoform, is mediated through granulocyte colony-stimulating factor. Life Sci 2014; 98:113-22. [DOI: 10.1016/j.lfs.2014.01.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/29/2013] [Accepted: 01/16/2014] [Indexed: 12/31/2022]
|
45
|
Chua HL, Plett PA, Sampson CH, Katz BP, Carnathan GW, MacVittie TJ, Lenden K, Orschell CM. Survival efficacy of the PEGylated G-CSFs Maxy-G34 and neulasta in a mouse model of lethal H-ARS, and residual bone marrow damage in treated survivors. HEALTH PHYSICS 2014; 106:21-38. [PMID: 24276547 PMCID: PMC3843155 DOI: 10.1097/hp.0b013e3182a4df10] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In an effort to expand the worldwide pool of available medical countermeasures (MCM) against radiation, the PEGylated G-CSF (PEG-G-CSF) molecules Neulasta and Maxy-G34, a novel PEG-G-CSF designed for increased half-life and enhanced activity compared to Neulasta, were examined in a murine model of the Hematopoietic Syndrome of the Acute Radiation Syndrome (H-ARS), along with the lead MCM for licensure and stockpiling, G-CSF. Both PEG-G-CSFs were shown to retain significant survival efficacy when administered as a single dose 24 h post-exposure, compared to the 16 daily doses of G-CSF required for survival efficacy. Furthermore, 0.1 mg kg of either PEG-G-CSF affected survival of lethally-irradiated mice that was similar to a 10-fold higher dose. The one dose/low dose administration schedules are attractive attributes of radiation MCM given the logistical challenges of medical care in a mass casualty event. Maxy-G34-treated mice that survived H-ARS were examined for residual bone marrow damage (RBMD) up to 9 mo post-exposure. Despite differences in Sca-1 expression and cell cycle position in some hematopoietic progenitor phenotypes, Maxy-G34-treated mice exhibited the same degree of hematopoietic stem cell (HSC) insufficiency as vehicle-treated H-ARS survivors in competitive transplantation assays of 150 purified Sca-1+cKit+lin-CD150+cells. These data suggest that Maxy-G34, at the dose, schedule, and time frame examined, did not mitigate RBMD but significantly increased survival from H-ARS at one-tenth the dose previously tested, providing strong support for advanced development of Maxy-G34, as well as Neulasta, as MCM against radiation.
Collapse
Affiliation(s)
- Hui Lin Chua
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - P. Artur Plett
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Barry P. Katz
- Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|
46
|
Farese AM, Cohen MV, Katz BP, Smith CP, Gibbs A, Cohen DM, MacVittie TJ. Filgrastim improves survival in lethally irradiated nonhuman primates. Radiat Res 2012; 179:89-100. [PMID: 23210705 DOI: 10.1667/rr3049.1] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Treatment of individuals exposed to potentially lethal doses of radiation is of paramount concern to health professionals and government agencies. We evaluated the efficacy of filgrastim to increase survival of nonhuman primates (NHP) exposed to an approximate mid-lethal dose (LD(50/60)) (7.50 Gy) of LINAC-derived photon radiation. Prior to total-body irradiation (TBI), nonhuman primates were randomized to either a control (n = 22) or filgrastim-treated (n = 24) cohorts. Filgrastim (10 μg/kg/d) was administered beginning 1 day after TBI and continued daily until the absolute neutrophil count (ANC) was >1,000/μL for 3 consecutive days. All nonhuman primates received medical management as per protocol. The primary end point was all cause overall mortality over the 60 day in-life study. Secondary end points included mean survival time of decedents and all hematologic-related parameters. Filgrastim significantly (P < 0.004) reduced 60 day overall mortality [20.8% (5/24)] compared to the controls [59.1% (13/22)]. Filgrastim significantly decreased the duration of neutropenia, but did not affect the absolute neutrophil count nadir. Febrile neutropenia (ANC <500/μL and body temperature ≥ 103°F) was experienced by 90.9% (20/22) of controls compared to 79.2% (19/24) of filgrastim-treated animals (P = 0.418). Survival was significantly increased by 38.3% over controls. Filgrastim, administered at this dose and schedule, effectively mitigated the lethality of the hematopoietic subsyndrome of the acute radiation syndrome.
Collapse
Affiliation(s)
- Ann M Farese
- Department of Radiation Oncology, University of Maryland, School of Medicine, Baltimore, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|