1
|
Koufaris C, Berger M, Aqeilan R. Causes and consequences of T cell DNA damage. Trends Immunol 2025:S1471-4906(25)00119-X. [PMID: 40382245 DOI: 10.1016/j.it.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/21/2025] [Accepted: 04/24/2025] [Indexed: 05/20/2025]
Abstract
Although DNA damage is a common cellular event, T cells experience significant genotoxic stresses because of rapid antigen-stimulated expansion and their presence in various nonlymphoid microenvironments. In addition to the well-established link between genomic instability and malignancy, recent genomic studies have uncovered a substantial mutational burden in nonmalignant T cells in both normal aging and disease contexts. Furthermore, genomic damage in T cells is accelerated in autoimmune diseases and in older individuals because of both intrinsic and extrinsic factors. This review highlights the different genotoxic stressors affecting T cells and the detrimental effects of persistent DNA damage and identifies the most critical knowledge gaps.
Collapse
Affiliation(s)
| | - Michael Berger
- The Concern Foundation Laboratories, Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, the Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rami Aqeilan
- Cyprus Cancer Research Institute (CCRI), Nicosia, Cyprus; The Concern Foundation Laboratories, Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research, the Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
2
|
Yang T, Gao R, Gao Y, Huang M, Cui J, Lin L, Cheng H, Dang W, Gao Y, Ma Z. The Changes of Lymphocytes and Immune Molecules in Irradiated Mice by Different Doses of Radiation. HEALTH PHYSICS 2025:00004032-990000000-00227. [PMID: 39888326 DOI: 10.1097/hp.0000000000001957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
ABSTRACT The effects of different radiation doses on T and B lymphocyte functional subsets and the changes of immune cells and immune molecules were observed in mice at different times post-irradiation to provide a theoretical basis for the changes of immune cells affected by radiation. In this study, the changes of T and B immune cells and immune-related molecules were observed at 1, 3, 7, 14, and 21 d after single irradiation of 2 Gy, 4 Gy, and 6 Gy. The results showed that white blood cells (WBC), lymphocytes (LYMPH), and lymphocyte percentage (LYMPH%) in peripheral blood of mice were significantly reduced and reached the lowest point 3 d after irradiation. Flow cytometry results showed that the percentages of CD3+T and CD8+/CD3+T lymphocytes in spleen and thymus were significantly decreased, and the percentages of CD19+B lymphocytes in spleen and CD4+/CD3+T lymphocytes in thymus were also decreased. However, the percentages of splenic NK cells, CD4+/CD3+T cells, and CD4+/CD8+ ratios in spleen and thymus were increased. Most of the indicators fell to the lowest or highest point 3 d after irradiation, indicating that immune function was suppressed at this time. From 7 to 21 d after irradiation, most immune cells gradually recovered. Single irradiation of 2 Gy, 4 Gy, and 6 Gy increased the contents of IL-1β, IL-2, IL-6, IL-17, TNF-α, TGF-β, and IFN-γ in serum of mice and decreased the contents of anti-inflammatory factors IL-4 and IL-10. The serum levels of immunoglobulin IgA, IgG, IgM and complement C3, C4 were significantly increased after irradiation. Our study showed that a single dose of 2 Gy, 4 Gy, and 6 Gy induced immunosuppression in mice, and maximum immunosuppression was achieved 3 d after irradiation. At this time, CD19+B lymphocytes were the most sensitive, followed by CD3+T lymphocytes, and NK cells were the most resistant. The radiosensitivity of CD8+/CD3+T lymphocytes was slightly higher than that of CD4+/CD3+T lymphocytes.
Collapse
Affiliation(s)
| | | | | | - Mingyue Huang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | | |
Collapse
|
3
|
Morel D, Robert C, Paragios N, Grégoire V, Deutsch E. Translational Frontiers and Clinical Opportunities of Immunologically Fitted Radiotherapy. Clin Cancer Res 2024; 30:2317-2332. [PMID: 38477824 PMCID: PMC11145173 DOI: 10.1158/1078-0432.ccr-23-3632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Ionizing radiation can have a wide range of impacts on tumor-immune interactions, which are being studied with the greatest interest and at an accelerating pace by the medical community. Despite its undeniable immunostimulatory potential, it clearly appears that radiotherapy as it is prescribed and delivered nowadays often alters the host's immunity toward a suboptimal state. This may impair the full recovery of a sustained and efficient antitumor immunosurveillance posttreatment. An emerging concept is arising from this awareness and consists of reconsidering the way of designing radiation treatment planning, notably by taking into account the individualized risks of deleterious radio-induced immune alteration that can be deciphered from the planned beam trajectory through lymphocyte-rich organs. In this review, we critically appraise key aspects to consider while planning immunologically fitted radiotherapy, including the challenges linked to the identification of new dose constraints to immune-rich structures. We also discuss how pharmacologic immunomodulation could be advantageously used in combination with radiotherapy to compensate for the radio-induced loss, for example, with (i) agonists of interleukin (IL)2, IL4, IL7, IL9, IL15, or IL21, similarly to G-CSF being used for the prophylaxis of severe chemo-induced neutropenia, or with (ii) myeloid-derived suppressive cell blockers.
Collapse
Affiliation(s)
- Daphné Morel
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- INSERM U1030, Molecular Radiotherapy, Villejuif, France
| | - Charlotte Robert
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- INSERM U1030, Molecular Radiotherapy, Villejuif, France
- Paris-Saclay University, School of Medicine, Le Kremlin Bicêtre, France
| | - Nikos Paragios
- Therapanacea, Paris, France
- CentraleSupélec, Gif-sur-Yvette, France
| | - Vincent Grégoire
- Department of Radiation Oncology, Centre Léon Bérard, Lyon, France
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- INSERM U1030, Molecular Radiotherapy, Villejuif, France
- Paris-Saclay University, School of Medicine, Le Kremlin Bicêtre, France
| |
Collapse
|
4
|
Yoshida K, Misumi M, Yamaoka M, Kyoizumi S, Ohishi W, Sugiyama H, Hayashi T, Kusunoki Y. Naive CD4 T Cells Highly Expressing the Inflammatory Chemokine Receptor CXCR3 Increase with Age and Radiation Exposure in Atomic Bomb Survivors. Radiat Res 2024; 201:71-76. [PMID: 37989111 DOI: 10.1667/rade-23-00065.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/03/2023] [Indexed: 11/23/2023]
Abstract
The numbers of naive T cells that react to novel pathogens not yet encountered by an immune system, decrease during aging, mainly due to age-associated involution of the thymus. CD45RA+ naive CD4 T cells consist of heterogeneous populations, including highly CXCR3-expressing cells that appear during the homeostatic proliferation of naive T cells and exhibit enhanced type-1 inflammatory phenotypes. Based on previous evidence of radiation-associated reductions in thymic function and peripheral blood naive CD4 T cells, we hypothesized that the homeostatic proliferation of naive CD4 T cells compensates for deficits in peripheral T-cell populations after radiation injury, which may increase the proportion of CXCR3high cells in naive CD4 T cells and enhance inflammation. The statistical models employed in this study revealed positive associations between the number of CXCR3high naive CD4 T cells and age as well as radiation dose among 580 Hiroshima atomic bomb survivors. In addition, the CXCR3high cells in these survivors increased not only with the levels of homeostatic cytokines, IL6 and IL7, but also with those of inflammatory indicators, CXCL10 and CRP. These results suggest that thymic T-cell production deficiency due to radiation and aging results in enhanced homeostatic proliferation that drives the appearance of CXCR3high naive CD4 T cells poised for an inflammatory response. Molecular mechanisms and clinical relevance of increasing CXCR3high cells in naive CD4 T populations should be further investigated in the context of inflammatory disease development long after radiation exposure.
Collapse
Affiliation(s)
- Kengo Yoshida
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima
| | - Mika Yamaoka
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima
| | - Seishi Kyoizumi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima
| | - Waka Ohishi
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima
| | - Hiromi Sugiyama
- Department of Epidemiology, Radiation Effects Research Foundation, Hiroshima
| | - Tomonori Hayashi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima
| | - Yoichiro Kusunoki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima
| |
Collapse
|
5
|
Hayashi T, Kato N, Furudoi K, Hayashi I, Kyoizumi S, Yoshida K, Kusunoki Y, Furukawa K, Imaizumi M, Hida A, Tanabe O, Ohishi W. Early-life atomic-bomb irradiation accelerates immunological aging and elevates immune-related intracellular reactive oxygen species. Aging Cell 2023; 22:e13940. [PMID: 37539495 PMCID: PMC10577552 DOI: 10.1111/acel.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023] Open
Abstract
Reactive oxygen species (ROS) play an important role in immune responses; however, their excessive production and accumulation increases the risk of inflammation-related diseases. Although irradiation is known to accelerate immunological aging, the underlying mechanism is still unclear. To determine the possible involvement of ROS in this mechanism, we examined 10,023 samples obtained from 3752 atomic-bomb survivors in Hiroshima and Nagasaki, who participated in repeated biennial examinations from 2008 to 2016, for the effects of aging and radiation exposure on intracellular ROS (H2 O2 and O2 •- ) levels, percentages of T-cell subsets, and the effects of radiation exposure on the relationship between cell percentages and intracellular ROS levels in T-cell subsets. The cell percentages and intracellular ROS levels in T-cell subsets were measured using flow cytometry, with both fluorescently labeled antibodies and the fluorescent reagents, carboxy-DCFDA and hydroethidine. The percentages of naïve CD4+ and CD8+ T cells decreased with increasing age and radiation dose, while the intracellular O2 •- levels in central and effector memory CD8+ T cells increased. Additionally, when divided into three groups based on the percentages of naïve CD4+ T cells, intracellular O2 •- levels of central and effector memory CD8+ T cells were significantly elevated with the lowest radiation dose group in the naïve CD4+ T cells. Thus, the radiation exposure-induced decrease in the naïve CD4+ T cell pool size may reflect decreased immune function, resulting in increased intracellular ROS levels in central and effector memory CD8+ T cells, and increased intracellular oxidative stress.
Collapse
Affiliation(s)
- Tomonori Hayashi
- Department of Molecular BiosciencesRadiation Effects Research FoundationHiroshimaJapan
- Biosample Research CenterRadiation Effects Research FoundationHiroshimaJapan
| | - Naohiro Kato
- Department of StatisticsRadiation Effects Research FoundationHiroshimaJapan
| | - Keiko Furudoi
- Biosample Research CenterRadiation Effects Research FoundationHiroshimaJapan
| | - Ikue Hayashi
- Central Research LaboratoryHiroshima University Faculty of Medicine Graduate School of Biomedical and Health SciencesHiroshimaJapan
| | - Seishi Kyoizumi
- Department of Molecular BiosciencesRadiation Effects Research FoundationHiroshimaJapan
| | - Kengo Yoshida
- Department of Molecular BiosciencesRadiation Effects Research FoundationHiroshimaJapan
| | - Yoichiro Kusunoki
- Department of Molecular BiosciencesRadiation Effects Research FoundationHiroshimaJapan
| | | | - Misa Imaizumi
- Biosample Research CenterRadiation Effects Research FoundationHiroshimaJapan
- Department of Nagasaki Clinical StudiesRadiation Effects Research FoundationNagasakiJapan
| | - Ayumi Hida
- Department of Nagasaki Clinical StudiesRadiation Effects Research FoundationNagasakiJapan
| | - Osamu Tanabe
- Biosample Research CenterRadiation Effects Research FoundationHiroshimaJapan
| | - Waka Ohishi
- Department of Hiroshima Clinical StudiesRadiation Effects Research FoundationHiroshimaJapan
| |
Collapse
|
6
|
Hollingsworth BA, Aldrich JT, Case CM, DiCarlo AL, Hoffman CM, Jakubowski AA, Liu Q, Loelius SG, PrabhuDas M, Winters TA, Cassatt DR. Immune Dysfunction from Radiation Exposure. Radiat Res 2023; 200:396-416. [PMID: 38152282 PMCID: PMC10751071 DOI: 10.1667/rade-22-00004.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
The hematopoietic system is highly sensitive to ionizing radiation. Damage to the immune system may result in opportunistic infections and hemorrhage, which could lead to mortality. Inflammation triggered by tissue damage can also lead to additional local or widespread tissue damage. The immune system is responsible for tissue repair and restoration, which is made more challenging when it is in the process of self-recovery. Because of these challenges, the Radiation and Nuclear Countermeasures Program (RNCP) and the Basic Immunology Branch (BIB) under the Division of Allergy, Immunology, and Transplantation (DAIT) within the National Institute of Allergy and Infectious Diseases (NIAID), along with partners from the Biomedical Advanced Research and Development Authority (BARDA), and the Radiation Injury Treatment Network (RITN) sponsored a two-day meeting titled Immune Dysfunction from Radiation Exposure held on September 9-10, 2020. The intent was to discuss the manifestations and mechanisms of radiation-induced immune dysfunction in people and animals, identify knowledge gaps, and discuss possible treatments to restore immune function and enhance tissue repair after irradiation.
Collapse
Affiliation(s)
- Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
- Current address: Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Silver Spring, Maryland
| | | | - Cullen M. Case
- Radiation Injury Treatment Network, Minneapolis, Minnesota
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Corey M. Hoffman
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | | | - Qian Liu
- Basic Immunology Branch (BIB), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Shannon G. Loelius
- Biomedical Advanced Research and Development Authority (BARDA), Office of the Assistant Secretary for Preparedness and Response (ASPR), Department of Health and Human Services (HHS), Washington, DC
| | - Mercy PrabhuDas
- Basic Immunology Branch (BIB), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, Maryland
| |
Collapse
|
7
|
Long-Term Immunological Consequences of Radiation Exposure in a Diverse Cohort of Rhesus Macaques. Int J Radiat Oncol Biol Phys 2023; 115:945-956. [PMID: 36288757 PMCID: PMC9974872 DOI: 10.1016/j.ijrobp.2022.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE The aim of this study was to develop an improved understanding of the delayed immunologic effects of acute total body irradiation (TBI) using a diverse cohort of nonhuman primates as a model for an irradiated human population. METHODS AND MATERIALS Immune recovery was evaluated in 221 rhesus macaques either left unirradiated (n = 36) or previously irradiated (n = 185) at 1.1 to 8.5 Gy TBI (median, 6.5 Gy) when aged 2.1 to 15.5 years (median, 4.2 years). Blood was drawn annually for up to 5 years total between 0.5 and 14.3 years after exposure. Blood was analyzed by complete blood count, immunophenotyping of monocytes, dendritic cells (DC) and lymphocytes by flow cytometry, and signal joint T-cell receptor exclusion circle quantification in isolated peripheral blood CD4 and CD8 T cells. Animals were categorized by age, irradiation status, and time since irradiation. Sex-adjusted means of immune metrics were evaluated by generalized estimating equation models to identify cell populations altered by TBI. RESULTS Overall, the differences between irradiated and nonirradiated animals were subtle and largely restricted to younger animals and select cell populations. Subsets of monocytes, DC, T cells, and B cells showed significant interaction effects between radiation dose and age after adjustment for sex. Irradiation at a young age caused transient increases in the percentage of peripheral blood myeloid DC and dose-dependent changes in monocyte balance for at least 5 years after TBI. TBI also led to a sustained decrease in the percentage of circulating memory B cells. Young irradiated animals exhibited statistically significant and prolonged disruption of the naïve/effector memory/central memory CD4 and CD8 T-cell equilibrium and exhibited a dose-dependent increase in thymopoiesis for 2 to 3 years after exposure. CONCLUSIONS This study indicates TBI subtly but significantly alters the circulating proportions of cellular mediators of adaptive immune memory for several years after irradiation, especially in macaques under 5 years of age and those receiving a high dose of radiation.
Collapse
|
8
|
Pugh JL, Coplen CP, Sukhina AS, Uhrlaub J, Padilla‐Torres J, Hayashi T, Nikolich‐Žugich J. Lifelong cytomegalovirus and early-LIFE irradiation synergistically potentiate age-related defects in response to vaccination and infection. Aging Cell 2022; 21:e13648. [PMID: 35657768 PMCID: PMC9282846 DOI: 10.1111/acel.13648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/02/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
While whole-body irradiation (WBI) can induce some hallmarks of immune aging, (re)activation of persistent microbial infection also occurs following WBI and may contribute to immune effects of WBI over the lifespan. To test this hypothesis in a model relevant to human immune aging, we examined separate and joint effects of lifelong latent murine cytomegalovirus (MCMV) and of early-life WBI over the course of the lifespan. In late life, we then measured the response to a West Nile virus (WNV) live attenuated vaccine, and lethal WNV challenge subsequent to vaccination. We recently published that a single dose of non-lethal WBI in youth, on its own, was not sufficient to accelerate aging of the murine immune system, despite widespread DNA damage and repopulation stress in hematopoietic cells. However, 4Gy sub-lethal WBI caused manifest reactivation of MCMV. Following vaccination and challenge with WNV in the old age, MCMV-infected animals experiencing 4Gy, but not lower, dose of sub-lethal WBI in youth had reduced survival. By contrast, old irradiated mice lacking MCMV and MCMV-infected, but not irradiated, mice were both protected to the same high level as the old non-irradiated, uninfected controls. Analysis of the quality and quantity of anti-WNV immunity showed that higher mortality in MCMV-positive WBI mice correlated with increased levels of MCMV-specific immune activation during WNV challenge. Moreover, we demonstrate that infection, including that by WNV, led to MCMV reactivation. Our data suggest that MCMV reactivation may be an important determinant of increased late-life mortality following early-life irradiation and late-life acute infection.
Collapse
Affiliation(s)
- Jason L. Pugh
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Arizona Center on AgingUniversity of Arizona College of MedicineTucsonArizonaUSA
- Graduate Interdisciplinary Program in GeneticsUniversity of ArizonaTucsonArizonaUSA
| | - Christopher P. Coplen
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Arizona Center on AgingUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Alona S. Sukhina
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Jennifer L. Uhrlaub
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Arizona Center on AgingUniversity of Arizona College of MedicineTucsonArizonaUSA
| | - Jose Padilla‐Torres
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
| | | | - Janko Nikolich‐Žugich
- Department of ImmunobiologyUniversity of Arizona College of MedicineTucsonArizonaUSA
- Arizona Center on AgingUniversity of Arizona College of MedicineTucsonArizonaUSA
- Graduate Interdisciplinary Program in GeneticsUniversity of ArizonaTucsonArizonaUSA
- BIO5 Institute University of ArizonaTucsonArizonaUSA
| |
Collapse
|
9
|
Macintyre AN, French MJ, Sanders BR, Riebe KJ, Shterev ID, Wiehe K, Hora B, Evangelous T, Dugan G, Bourland JD, Cline JM, Sempowski GD. Long-Term Recovery of the Adaptive Immune System in Rhesus Macaques After Total Body Irradiation. Adv Radiat Oncol 2021; 6:100677. [PMID: 34646962 PMCID: PMC8498734 DOI: 10.1016/j.adro.2021.100677] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/14/2020] [Accepted: 01/30/2021] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Ionizing radiation causes acute damage to hematopoietic and immune cells, but the long-term immunologic consequences of irradiation are poorly understood. We therefore performed a prospective study of the delayed immune effects of radiation using a rhesus macaque model. METHODS AND MATERIALS Ten macaques received 4 Gy high-energy x-ray total body irradiation (TBI) and 6 control animals received sham irradiation. TBI caused transient lymphopenia that resolved over several weeks. Once white blood cell counts recovered, flow cytometry was used to immunophenotype the circulating adaptive immune cell populations 4, 9, and 21 months after TBI. Data were fit using a mixed-effects model to determine age-dependent, radiation-dependent, and interacting effects. T cell receptor (TCR) sequencing and quantification of TCR Excision Circles were used to determine relative contributions of thymopoiesis and peripheral expansion to T cell repopulation. Two years after TBI, the cohort was vaccinated with a 23-valent pneumococcal polysaccharide vaccine and a tetravalent influenza hemagglutinin vaccine. RESULTS Aging, but not TBI, led to significant changes in the frequencies of dendritic cells, CD4 and CD8 T cells, and B cells. However, irradiated animals exhibited increased frequencies of central memory T cells and decreased frequencies of naïve T cells. These consequences of irradiation were time-dependent and more prolonged in the CD8 T cell population. Irradiation led to transient increases in CD8+ T cell TCR Excision Circles and had no significant effect on TCR sequence entropy, indicating T cell recovery was partially mediated by thymopoiesis. Animals that were irradiated and then vaccinated showed normal immunoglobulin G binding and influenza neutralization titers in response to the 4 protein antigens but weaker immunoglobulin G binding titers to 10 of the 23 polysaccharide antigens. CONCLUSIONS These findings indicate that TBI causes subtle but long-lasting immune defects that are evident years after recovery from lymphopenia.
Collapse
Affiliation(s)
- Andrew N. Macintyre
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Matthew J. French
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Brittany R. Sanders
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Kristina J. Riebe
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Ivo D. Shterev
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Kevin Wiehe
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Bhavna Hora
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Tyler Evangelous
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Greg Dugan
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - J. Daniel Bourland
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - J. Mark Cline
- Department of Pathology/Comparative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Gregory D. Sempowski
- Duke Human Vaccine Institute and Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
10
|
Hayashi T, Furukawa K, Morishita Y, Hayashi I, Kato N, Yoshida K, Kusunoki Y, Kyoizumi S, Ohishi W. Intracellular reactive oxygen species level in blood cells of atomic bomb survivors is increased due to aging and radiation exposure. Free Radic Biol Med 2021; 171:126-134. [PMID: 33992676 DOI: 10.1016/j.freeradbiomed.2021.05.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/26/2021] [Accepted: 05/09/2021] [Indexed: 12/20/2022]
Abstract
Although reactive oxygen species (ROS) play important roles in immune responses, excessive ROS production and accumulation might enhance the risk of inflammation-related diseases. Moreover, impaired immune function and the acceleration of pre-clinically persistent inflammation due to aging and radiation exposure have been observed in atomic bomb (A-bomb) survivors more than 60 years post-exposure. Meanwhile, the effects of aging and radiation exposure on ROS production in immune cells have not been characterized. This study investigated the relationship between intracellular ROS (H2O2 and O2•-) levels in blood cells or T cell subsets and serum iron, ferritin, and C-reactive protein (CRP) levels, as well as how these variables are affected by age and radiation exposure in A-bomb survivors. We examined 2495 Hiroshima A-bomb survivors. Multiple linear regression models adjusted for confounding factors indicated that intracellular O2•- levels in monocytes, granulocytes, and lymphocytes, and particularly in memory CD8+ T cells, including effector memory and terminally differentiated effector memory CD8+ T cells, increased with radiation dose. Additionally, serum iron, ferritin, and CRP levels affected intracellular ROS levels in specific blood cell types and T cell subsets. Serum CRP levels increased significantly with increasing age and radiation dose. Finally, when divided into three groups according to serum CRP levels, dose-dependent increases in the intracellular O2•- levels in blood cells and central memory and effector memory CD8+ T cells were most prominently observed in the high-CRP group. These results suggest that an increase in the levels of certain intracellular ROS, particularly after radiation exposure, might be linked to enhanced inflammatory status, including elevated serum CRP levels and reduced serum iron levels. This study reveals that aging and radiation exposure increase oxidative stress in blood cells, which is involved in impaired immune function and accelerated pre-clinically persistent inflammation in radiation-exposed individuals.
Collapse
Affiliation(s)
- Tomonori Hayashi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, 732-0815, Japan.
| | - Kyoji Furukawa
- Biostatistics Center, Kurume University, Kurume, 830-0011, Japan
| | - Yukari Morishita
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, 732-0815, Japan
| | - Ikue Hayashi
- Central Research Laboratory, Hiroshima University Faculty of Medicine Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Naohiro Kato
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, 732-0815, Japan
| | - Kengo Yoshida
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, 732-0815, Japan
| | - Yoichiro Kusunoki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, 732-0815, Japan
| | - Seishi Kyoizumi
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, 732-0815, Japan
| | - Waka Ohishi
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, 732-0815, Japan
| |
Collapse
|
11
|
Impact of early life exposure to ionizing radiation on influenza vaccine response in an elderly Japanese cohort. Vaccine 2018; 36:6650-6659. [PMID: 30274868 DOI: 10.1016/j.vaccine.2018.09.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/12/2018] [Accepted: 09/23/2018] [Indexed: 01/10/2023]
Abstract
The objective of this study was to evaluate effects of whole body radiation exposure early in life on influenza vaccination immune responses much later in life. A total of 292 volunteers recruited from the cohort members of ongoing Adult Health Study (AHS) of Japanese atomic bomb (A-bomb) survivors completed this observational study spanning two influenza seasons (2011-2012 and 2012-2013). Peripheral blood samples were collected prior to and three weeks after vaccination. Serum hemagglutination inhibition (HAI) antibody titers were measured as well as concentrations of 25 cytokines and chemokines in culture supernatant from peripheral blood mononuclear cells, with and without in vitro stimulation with influenza vaccine. We found that influenza vaccination modestly enhanced serum HAI titers in this unique cohort of elderly subjects, with seroprotection ranging from 18 to 48% for specific antigen/season combinations. Twelve percent of subjects were seroprotected against all three vaccine antigens post-vaccination. Males were generally more likely to be seroprotected for one or more antigens post-vaccination, with no differences in vaccine responses based on age at vaccination or radiation exposure in early life. These results show that early life exposure to ionizing radiation does not prevent responses of elderly A-bomb survivors to seasonal influenza vaccine.
Collapse
|
12
|
Gyuleva I, Djounova J, Rupova I. Impact of Low-Dose Occupational Exposure to Ionizing Radiation on T-Cell Populations and Subpopulations and Humoral Factors Included in the Immune Response. Dose Response 2018; 16:1559325818785564. [PMID: 30140179 PMCID: PMC6096692 DOI: 10.1177/1559325818785564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 11/15/2022] Open
Abstract
The aim of the present study is to assess the effects of low-dose occupational exposure on T helper response. One Hundred five employees working in Nuclear Power Plant, Kozloduy, Bulgaria and control group of 32 persons are included in this investigation. Flow cytometry measurements of T-cell populations and subpopulations and natural killer T cells are performed and levels of G, A, and M immunoglobulins and interleukin 2 (IL-2), IL-4, and interferon γ were determined. The data interpreted with regard to cumulative doses, length of service, and age. The results of the present study are not enough to outline a clear impact of occupational radiation exposure on T helper populations. Nevertheless, the observed even slight trends in some lymphocyte’s populations and in cytokines profile give us the reason to assume a possibility of a gradual polarization of T helper 1 to T helper 2 immune response at dose range 100 to 200 mSv. The results of the present study indicate the need to perform a more detailed epidemiological survey including potential confounding and misclassifying factors and possible selection bias that could influence the results.
Collapse
Affiliation(s)
- Ilona Gyuleva
- Radiation Medicine and Emergency, National Centre Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - Jana Djounova
- Radiation Medicine and Emergency, National Centre Radiobiology and Radiation Protection, Sofia, Bulgaria
| | - Ivanka Rupova
- Radiation Medicine and Emergency, National Centre Radiobiology and Radiation Protection, Sofia, Bulgaria
| |
Collapse
|
13
|
Rybkina VL, Bannikova MV, Adamova GV, Dörr H, Scherthan H, Azizova TV. Immunological Markers of Chronic Occupational Radiation Exposure. HEALTH PHYSICS 2018; 115:108-113. [PMID: 29787436 DOI: 10.1097/hp.0000000000000855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study aimed to identify immunological biomarkers for prolonged occupational radiation exposure and thus studied a random sample of the Mayak Production Association worker cohort (91 individuals). The control group included 43 local individuals never employed at the Mayak Production Association. To identify biomarkers, two groups of workers were formed: the first one included workers chronically exposed to external gamma rays at cumulative doses of 0.5-3.0 Gy (14 individuals); the second one included workers exposed to combined radiation-external gamma rays at doses ranging from 0.7 to 5.1 Gy and internal alpha radiation from incorporated plutonium with 0.3-16.4 kBq body burden (77 individuals). The age range of the study individuals was 66-91 y. Peripheral blood serum protein concentrations of cytokines, immunoglobulins, and matrix metalloproteinase-9 were analyzed using enzyme-linked immunoassay following the manufacturer's protocol. Flow cytometry was used to analyze levels of various lymphocyte subpopulations. The findings of the current study demonstrate that some immunological characteristics may be considered as biomarkers of prolonged chronic radiation exposure for any radiation type (in the delayed period after the exposure) based on fold differences from controls: M immunoglobulin fold differences were 1.75 ± 0.27 (p = 0.0001) for external gamma-ray exposure and 1.50 ± 0.27 (p = 0.0003) for combined radiation exposure; matrix metalloproteinase-9 fold differences were 1.5 ± 0.22 (p = 0.008) for external gamma-ray exposure and 1.69 ± 0.24 (p = 0.00007) for combined radiation exposure; A immunoglobulin fold differences were 1.61 ± 0.27 (p = 0.002) for external gamma-ray exposure and 1.56 ± 0.27 (p = 0.00002) for combined radiation exposure; relative concentration of natural killer cell fold differences were 1.53 ± 0.23 (p = 0.01) for external gamma-ray exposure and 1.35 ± 0.22 (p = 0.001) for combined radiation exposure; and relative concentration of T-lymphocytes fold differences were 0.89 ± 0.04 (p = 0.01) for external gamma-ray exposure and 0.95 ± 0.05 (p = 0.003) for combined radiation exposure. Based on fold differences from controls, interferon-gamma (3.50 ± 0.65, p = 0.031), transforming growth factor-beta (2.91 ± 0.389, p = 0.026), and relative blood serum levels of T-helper cells (0.90 ± 0.065, p = 0.02) may be used as immunological markers of chronic external gamma-ray exposure. Moreover, there was a significant inverse linear association of relative concentration of T-helper cells with dose from external gamma rays accumulated over an extended period.
Collapse
Affiliation(s)
- Valentina L Rybkina
- Southern Urals Biophysics Institute, Ozerskoe shosse, 19, Ozyorsk 456780, Ozyorsk, Russia
| | - Maria V Bannikova
- Southern Urals Biophysics Institute, Ozerskoe shosse, 19, Ozyorsk 456780, Ozyorsk, Russia
| | - Galina V Adamova
- Southern Urals Biophysics Institute, Ozerskoe shosse, 19, Ozyorsk 456780, Ozyorsk, Russia
| | - Harald Dörr
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Neuherbergstr. 11, Ernst von Bergmann Kaserne, 80937 Munich, Germany
| | - Harry Scherthan
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Neuherbergstr. 11, Ernst von Bergmann Kaserne, 80937 Munich, Germany
| | - Tamara V Azizova
- Southern Urals Biophysics Institute, Ozerskoe shosse, 19, Ozyorsk 456780, Ozyorsk, Russia
| |
Collapse
|
14
|
Bamoulid J, Staeck O, Crépin T, Halleck F, Saas P, Brakemeier S, Ducloux D, Budde K. Anti-thymocyte globulins in kidney transplantation: focus on current indications and long-term immunological side effects. Nephrol Dial Transplant 2018; 32:1601-1608. [PMID: 27798202 DOI: 10.1093/ndt/gfw368] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/12/2016] [Indexed: 11/12/2022] Open
Abstract
Antithymocyte globulins (ATGs) are part of the immunosuppression arsenal currently used by clinicians to prevent or treat acute rejection in solid organ transplantation. ATG is a mixture of non-specific anti-lymphocyte immunoglobulins targeting not only T cell subsets but also several other immune and non-immune cells, rendering its precise immunoglobulin composition difficult to appreciate or to compare from one preparation to another. Furthermore, several mechanisms of action have been described. Taken together, this probably explains the efficacy and the side effects associated with this drug. Recent data suggest a long-term negative impact on allograft and patient outcomes, pointing out the need to better characterize the potential toxicity and the benefit-risk balance associated to this immunosuppressive therapy within large clinical trials.
Collapse
Affiliation(s)
- Jamal Bamoulid
- Department of Nephrology, Dialysis, and Renal Transplantation, CHU Besançon, France.,UMR1098, Federation hospitalo-universitaire INCREASE, France.,Faculté de Médecine et de Pharmacie, Université de Franche-Comté, France.,Structure Fédérative de Recherche, SFR FED4234, France
| | - Oliver Staeck
- Department of Nephrology, Charité Universitätsmedizin Berlin, Germany
| | - Thomas Crépin
- Department of Nephrology, Dialysis, and Renal Transplantation, CHU Besançon, France.,UMR1098, Federation hospitalo-universitaire INCREASE, France.,Faculté de Médecine et de Pharmacie, Université de Franche-Comté, France.,Structure Fédérative de Recherche, SFR FED4234, France
| | - Fabian Halleck
- Department of Nephrology, Charité Universitätsmedizin Berlin, Germany
| | - Philippe Saas
- UMR1098, Federation hospitalo-universitaire INCREASE, France.,Faculté de Médecine et de Pharmacie, Université de Franche-Comté, France.,Structure Fédérative de Recherche, SFR FED4234, France
| | | | - Didier Ducloux
- Department of Nephrology, Dialysis, and Renal Transplantation, CHU Besançon, France.,UMR1098, Federation hospitalo-universitaire INCREASE, France.,Faculté de Médecine et de Pharmacie, Université de Franche-Comté, France.,Structure Fédérative de Recherche, SFR FED4234, France
| | - Klemens Budde
- Department of Nephrology, Charité Universitätsmedizin Berlin, Germany
| |
Collapse
|
15
|
Kajimura J, Lynch HE, Geyer S, French B, Yamaoka M, Shterev ID, Sempowski GD, Kyoizumi S, Yoshida K, Misumi M, Ohishi W, Hayashi T, Nakachi K, Kusunoki Y. Radiation- and Age-Associated Changes in Peripheral Blood Dendritic Cell Populations among Aging Atomic Bomb Survivors in Japan. Radiat Res 2018; 189:84-94. [PMID: 29324175 PMCID: PMC10949854 DOI: 10.1667/rr4854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Previous immunological studies in atomic bomb survivors have suggested that radiation exposure leads to long-lasting changes, similar to immunological aging observed in T-cell-adaptive immunity. However, to our knowledge, late effects of radiation on dendritic cells (DCs), the key coordinators for activation and differentiation of T cells, have not yet been investigated in humans. In the current study, we hypothesized that numerical and functional decreases would be observed in relationship to radiation dose in circulating conventional DCs (cDCs) and plasmacytoid DCs (pDCs) among 229 Japanese A-bomb survivors. Overall, the evidence did not support this hypothesis, with no overall changes in DCs or functional changes observed with radiation dose. Multivariable regression analysis for radiation dose, age and gender effects revealed that total DC counts as well as subpopulation counts decreased in relationship to increasing age. Further analyses revealed that in women, absolute numbers of pDCs showed significant decreases with radiation dose. A hierarchical clustering analysis of gene expression profiles in DCs after Toll-like receptor stimulation in vitro identified two clusters of participants that differed in age-associated expression levels of genes involved in antigen presentation and cytokine/chemokine production in cDCs. These results suggest that DC counts decrease and expression levels of gene clusters change with age. More than 60 years after radiation exposure, we also observed changes in pDC counts associated with radiation, but only among women.
Collapse
Affiliation(s)
| | - Heather E. Lynch
- Duke Regional Biocontainment Laboratory, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Susan Geyer
- Health Informatics Institute, University of South Florida, Tampa, Florida
| | - Benjamin French
- Statistics, Department of Molecular Biosciences, Hiroshima, Japan
| | - Mika Yamaoka
- Department of Molecular Biosciences, Hiroshima, Japan
| | - Ivo D. Shterev
- Duke Regional Biocontainment Laboratory, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Gregory D. Sempowski
- Duke Regional Biocontainment Laboratory, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | | | - Kengo Yoshida
- Department of Molecular Biosciences, Hiroshima, Japan
| | - Munechika Misumi
- Statistics, Department of Molecular Biosciences, Hiroshima, Japan
| | - Waka Ohishi
- Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| | | | - Kei Nakachi
- Department of Molecular Biosciences, Hiroshima, Japan
| | | |
Collapse
|
16
|
Candéias SM, Mika J, Finnon P, Verbiest T, Finnon R, Brown N, Bouffler S, Polanska J, Badie C. Low-dose radiation accelerates aging of the T-cell receptor repertoire in CBA/Ca mice. Cell Mol Life Sci 2017; 74:4339-4351. [PMID: 28667356 PMCID: PMC11107572 DOI: 10.1007/s00018-017-2581-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 06/15/2017] [Accepted: 06/26/2017] [Indexed: 11/28/2022]
Abstract
While the biological effects of high-dose-ionizing radiation on human health are well characterized, the consequences of low-dose radiation exposure remain poorly defined, even though they are of major importance for radiological protection. Lymphocytes are very radiosensitive, and radiation-induced health effects may result from immune cell loss and/or immune system impairment. To decipher the mechanisms of effects of low doses, we analyzed the modulation of the T-cell receptor gene repertoire in mice exposed to a single low (0.1 Gy) or high (1 Gy) dose of radiation. High-throughput T-cell receptor gene profiling was used to visualize T-lymphocyte dynamics over time in control and irradiated mice. Radiation exposure induces "aging-like" effects on the T-cell receptor gene repertoire, detectable as early as 1 month post-exposure and for at least 6 months. Surprisingly, these effects are more pronounced in animals exposed to 0.1 Gy than to 1 Gy, where partial correction occurs over time. Importantly, we found that low-dose radiation effects are partially due to the hematopoietic stem cell impairment. Collectively, our findings show that acute low-dose radiation exposure specifically results in long-term alterations of the T-lymphocyte repertoire.
Collapse
Affiliation(s)
- Serge M Candéias
- CEA, Fundamental Research Division, Biosciences and Biotechnologies Institute, Laboratory of Chemistry and Biology of Metals, 38054, Grenoble, France.
- Laboratory of Chemistry and Biology of Metals, CNRS, UMR5249, 38054, Grenoble, France.
- Laboratory of Chemistry and Biology of Metals, UMR5249, University of Grenoble-Alpes, 38054, Grenoble, France.
| | - Justyna Mika
- Data Mining Group, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Paul Finnon
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Tom Verbiest
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Rosemary Finnon
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Natalie Brown
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Simon Bouffler
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK
| | - Joanna Polanska
- Data Mining Group, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, CRCE, Public Health England, Didcot, UK.
| |
Collapse
|
17
|
Yoshida K, Nakashima E, Kyoizumi S, Hakoda M, Hayashi T, Hida A, Ohishi W, Kusunoki Y. Metabolic Profile as a Potential Modifier of Long-Term Radiation Effects on Peripheral Lymphocyte Subsets in Atomic Bomb Survivors. Radiat Res 2016; 186:275-82. [PMID: 27541825 DOI: 10.1667/rr14336.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Immune system impairments reflected by the composition and function of circulating lymphocytes are still observed in atomic bomb survivors, and metabolic abnormalities including altered blood triglyceride and cholesterol levels have also been detected in such survivors. Based on closely related features of immune and metabolic profiles of individuals, we investigated the hypothesis that long-term effects of radiation exposure on lymphocyte subsets might be modified by metabolic profiles in 3,113 atomic bomb survivors who participated in health examinations at the Radiation Effect Research Foundation, Hiroshima and Nagasaki, in 2000-2002. The lymphocyte subsets analyzed involved T-, B- and NK-cell subsets, and their percentages in the lymphocyte fraction were assessed using flow cytometry. Health examinations included metabolic indicators, body mass index, serum levels of total cholesterol, high-density lipoprotein cholesterol, C-reactive protein and hemoglobin A1c, as well as diabetes and fatty liver diagnoses. Standard regression analyses indicated that several metabolic indicators of obesity/related disease, particularly high-density lipoprotein cholesterol levels, were positively associated with type-1 helper T- and B-cell percentages but were inversely associated with naïve CD4 T and NK cells. A regression analysis adjusted for high-density lipoprotein cholesterol revealed a radiation dose relationship with increasing NK-cell percentage. Additionally, an interaction effect was suggested between radiation dose and C-reactive protein on B-cell percentage with a negative coefficient of the interaction term. Collectively, these findings suggest that radiation exposure and subsequent metabolic profile changes, potentially in relationship to obesity-related inflammation, lead to such long-term alterations in lymphocyte subset composition. Because this study is based on cross-sectional and exploratory analyses, the implications regarding radiation exposure, metabolic profiles and circulating lymphocytes warrant future longitudinal and molecular mechanistic studies.
Collapse
Affiliation(s)
| | | | | | - Masayuki Hakoda
- e Department of Nutritional Sciences, Faculty of Human Ecology, Yasuda Women's University, Hiroshima, Japan
| | | | - Ayumi Hida
- d Department of Clinical Studies, Radiation Effects Research Foundation, Nagasaki, Japan; and
| | - Waka Ohishi
- c Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| | | |
Collapse
|
18
|
Pugh JL, Foster SA, Sukhina AS, Petravic J, Uhrlaub JL, Padilla‐Torres J, Hayashi T, Nakachi K, Smithey MJ, Nikolich‐Žugich J. Acute systemic DNA damage in youth does not impair immune defense with aging. Aging Cell 2016; 15:686-93. [PMID: 27072188 PMCID: PMC4933672 DOI: 10.1111/acel.12478] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2016] [Indexed: 02/06/2023] Open
Abstract
Aging‐related decline in immunity is believed to be the main driver behind decreased vaccine efficacy and reduced resistance to infections in older adults. Unrepaired DNA damage is known to precipitate cellular senescence, which was hypothesized to be the underlying cause of certain age‐related phenotypes. Consistent with this, some hallmarks of immune aging were more prevalent in individuals exposed to whole‐body irradiation (WBI), which leaves no anatomical repository of undamaged hematopoietic cells. To decisively test whether and to what extent WBI in youth will leave a mark on the immune system as it ages, we exposed young male C57BL/6 mice to sublethal WBI (0.5–4 Gy), mimicking human survivor exposure during nuclear catastrophe. We followed lymphocyte homeostasis thorough the lifespan, response to vaccination, and ability to resist lethal viral challenge in the old age. None of the irradiated groups showed significant differences compared with mock‐irradiated (0 Gy) animals for the parameters measured. Even the mice that received the highest dose of sublethal WBI in youth (4 Gy) exhibited equilibrated lymphocyte homeostasis, robust T‐ and B‐cell responses to live attenuated West Nile virus (WNV) vaccine and full survival following vaccination upon lethal WNV challenge. Therefore, a single dose of nonlethal WBI in youth, resulting in widespread DNA damage and repopulation stress in hematopoietic cells, leaves no significant trace of increased immune aging in a lethal vaccine challenge model.
Collapse
Affiliation(s)
- Jason L. Pugh
- Department of Immunobiology University of Arizona College of Medicine Tucson AZ USA
- Arizona Center on Aging University of Arizona College of Medicine Tucson AZ USA
- Graduate Interdisciplinary Program in Genetics University of Arizona Tucson AZ USA
| | - Sarah A. Foster
- Department of Immunobiology University of Arizona College of Medicine Tucson AZ USA
| | - Alona S. Sukhina
- Department of Immunobiology University of Arizona College of Medicine Tucson AZ USA
| | - Janka Petravic
- Centre for Vascular Research University of New South Wales Sydney NSW 2052 Australia
| | - Jennifer L. Uhrlaub
- Department of Immunobiology University of Arizona College of Medicine Tucson AZ USA
- Arizona Center on Aging University of Arizona College of Medicine Tucson AZ USA
| | - Jose Padilla‐Torres
- Department of Immunobiology University of Arizona College of Medicine Tucson AZ USA
| | | | - Kei Nakachi
- Radiation Effects Research Foundation Minato‐Ku Hiroshima Japan
| | - Megan J. Smithey
- Department of Immunobiology University of Arizona College of Medicine Tucson AZ USA
- Arizona Center on Aging University of Arizona College of Medicine Tucson AZ USA
| | - Janko Nikolich‐Žugich
- Department of Immunobiology University of Arizona College of Medicine Tucson AZ USA
- Arizona Center on Aging University of Arizona College of Medicine Tucson AZ USA
- Graduate Interdisciplinary Program in Genetics University of Arizona Tucson AZ USA
- The BIO5 Institute University of Arizona Tucson AZ USA
| |
Collapse
|
19
|
Adhikari M, Arora R. The flavonolignan-silymarin protects enzymatic, hematological, and immune system against γ-radiation-induced toxicity. ENVIRONMENTAL TOXICOLOGY 2016; 31:641-654. [PMID: 25411116 DOI: 10.1002/tox.22076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 10/24/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
The main focus of this study is evaluation of radioprotective efficacy of silymarin, a flavonolignan, against γ-radiation-induced damage to hematological, vital organs (liver and intestine), and immune system. Survival studies revealed that silymarin (administered orally for 3 days) provided maximum protection (67%) at 70 mg/kg body weight (b.wt.) against lethal 9 Gy γ-irradiation (dose reduction factor = 1.27). The study revealed significant (p < 0.05) changes in levels of catalase (12.57 ± 2.58 to 30.24 ± 4.89 units), glutathione peroxidase (6.23 ± 2.95 to 13.26 ± 1.36 µg of reduced glutathione consumed/min/mg protein), glutathione reductase (0.25 ± 5.6 to 11.65 ± 2.83 pM NADPH consumed/min/mg protein), and superoxide dismutase (11.74 ± 0.2 to 16.09 ± 3.47 SOD U/mg of protein) activity at 30th day. Silymarin pretreated irradiated group exhibited increased proliferation in erythrocyte count (1.76 ± 0.41 × 10(6) to 9.25 ± 0.24 × 10(6) ), hemoglobin (2.15 ± 0.48g/dL to 14.77 ± 0.25g/dL), hematocrit (4.55 ± 0.24% to 37.22 ± 0.21%), and total leucocyte count (1.4 ± 0.15 × 10(6) to 8.31 ± 0.47 × 10(6) ) as compared with radiation control group on 15th day. An increase in CD4:CD8 ratio was witnessed (0.2-1%) at 30th day time interval using flow cytometry. Silymarin also countered radiation-induced decrease (p < 0.05) in regulatory T-cells (Tregs ) (11.23% in radiation group at 7th day versus 0.1% in pretreated silymarin irradiated group at 15th day). The results of this study indicate that flavonolignan-silymarin protects enzymatic, hematological, and immune system against γ-radiation-induced toxicity and might prove useful in management of nuclear and radiological emergencies. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 641-654, 2016.
Collapse
Affiliation(s)
- Manish Adhikari
- Radiation Biotechnology Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Brig SK Mazumdar Marg, Delhi, 110054, India
| | - Rajesh Arora
- Radiation Biotechnology Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Brig SK Mazumdar Marg, Delhi, 110054, India
- Office of the Distinguished Scientist and Director General-Life Sciences, DRDO Head Quarters, DRDO Bhawan, Rajaji Marg, New Delhi, 110011, India
| |
Collapse
|
20
|
Relationship between spontaneous γH2AX foci formation and progenitor functions in circulating hematopoietic stem and progenitor cells among atomic-bomb survivors. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 802:59-65. [PMID: 27169377 DOI: 10.1016/j.mrgentox.2016.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 01/04/2023]
Abstract
Accumulated DNA damage in hematopoietic stem cells is a primary mechanism of aging-associated dysfunction in human hematopoiesis. About 70 years ago, atomic-bomb (A-bomb) radiation induced DNA damage and functional decreases in the hematopoietic system of A-bomb survivors in a radiation dose-dependent manner. The peripheral blood cell populations then recovered to a normal range, but accompanying cells derived from hematopoietic stem cells still remain that bear molecular changes possibly caused by past radiation exposure and aging. In the present study, we evaluated radiation-related changes in the frequency of phosphorylated (Ser-139) H2AX (γH2AX) foci formation in circulating CD34-positive/lineage marker-negative (CD34+Lin-) hematopoietic stem and progenitor cells (HSPCs) among 226Hiroshima A-bomb survivors. An association between the frequency of γH2AX foci formation in HSPCs and the radiation dose was observed, but the γH2AX foci frequency was not significantly elevated by past radiation. We found a negative correlation between the frequency of γH2AX foci formation and the length of granulocyte telomeres. A negative interaction effect between the radiation dose and the frequency of γH2AX foci was suggested in a proportion of a subset of HSPCs as assessed by the cobblestone area-forming cell assay (CAFC), indicating that the self-renewability of HSPCs may decrease in survivors who were exposed to a higher radiation dose and who had more DNA damage in their HSPCs. Thus, although many years after radiation exposure and with advancing age, the effect of DNA damage on the self-renewability of HSPCs may be modified by A-bomb radiation exposure.
Collapse
|
21
|
Synhaeve N, Musilli S, Stefani J, Nicolas N, Delissen O, Dublineau I, Bertho JM. Immune System Modifications Induced in a Mouse Model of Chronic Exposure to (90)Sr. Radiat Res 2016; 185:267-84. [PMID: 26930377 DOI: 10.1667/rr14014.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Strontium 90 ((90)Sr) remains in the environment long after a major nuclear disaster occurs. As a result, populations living on contaminated land are potentially exposed to daily ingesting of low quantities of (90)Sr. The potential long-term health effects of such chronic contamination are unknown. In this study, we used a mouse model to evaluate the effects of (90)Sr ingestion on the immune system, the animals were chronically exposed to (90)Sr in drinking water at a concentration of 20 kBq/l, for a daily ingestion of 80-100 Bq/day. This resulted in a reduced number of CD19(+) B lymphocytes in the bone marrow and spleen in steady-state conditions. In contrast, the results from a vaccine experiment performed as a functional test of the immune system showed that in response to T-dependent antigens, there was a reduction in IgG specific to tetanus toxin (TT), a balanced Th1/Th2 response inducer antigen, but not to keyhole limpet hemocyanin (KLH), a strong Th2 response inducer antigen. This was accompanied by a reduction in Th1 cells in the spleen, consistent with the observed reduction in specific IgG concentration. The precise mechanisms by which (90)Sr acts on the immune system remain to be elucidated. However, our results suggest that (90)Sr ingestion may be responsible for some of the reported effects of internal contamination on the immune system in civilian populations exposed to the Chernobyl fallout.
Collapse
Affiliation(s)
- Nicholas Synhaeve
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SRBE, LRTOX, Fontenay-aux-Roses, F-92262, France
| | - Stefania Musilli
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SRBE, LRTOX, Fontenay-aux-Roses, F-92262, France
| | - Johanna Stefani
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SRBE, LRTOX, Fontenay-aux-Roses, F-92262, France
| | - Nour Nicolas
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SRBE, LRTOX, Fontenay-aux-Roses, F-92262, France
| | - Olivia Delissen
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SRBE, LRTOX, Fontenay-aux-Roses, F-92262, France
| | - Isabelle Dublineau
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SRBE, LRTOX, Fontenay-aux-Roses, F-92262, France
| | - Jean-Marc Bertho
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM/SRBE, LRTOX, Fontenay-aux-Roses, F-92262, France
| |
Collapse
|
22
|
Kyoizumi S, Kubo Y, Misumi M, Kajimura J, Yoshida K, Hayashi T, Imai K, Ohishi W, Nakachi K, Young LF, Shieh JH, Moore MA, van den Brink MRM, Kusunoki Y. Circulating Hematopoietic Stem and Progenitor Cells in Aging Atomic Bomb Survivors. Radiat Res 2016; 185:69-76. [PMID: 26720799 PMCID: PMC5015444 DOI: 10.1667/rr14209.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is not yet known whether hematopoietic stem and progenitor cells (HSPCs) are compromised in the aging population of atomic bomb (A-bomb) survivors after their exposure nearly 70 years ago. To address this, we evaluated age- and radiation-related changes in different subtypes of circulating HSPCs among the CD34-positive/lineage marker-negative (CD34(+)Lin(-)) cell population in 231 Hiroshima A-bomb survivors. We enumerated functional HSPC subtypes, including: cobblestone area-forming cells; long-term culture-initiating cells; erythroid burst-forming units; granulocyte and macrophage colony-forming units; and T-cell and natural killer cell progenitors using cell culture. We obtained the count of each HSPC subtype per unit volume of blood and the proportion of each HSPC subtype in CD34(+)Lin(-) cells to represent the lineage commitment trend. Multivariate analyses, using sex, age and radiation dose as variables, showed significantly decreased counts with age in the total CD34(+)Lin(-) cell population and all HSPC subtypes. As for the proportion, only T-cell progenitors decreased significantly with age, suggesting that the commitment to the T-cell lineage in HSPCs continuously declines with age throughout the lifetime. However, neither the CD34(+)Lin(-) cell population, nor HSPC subtypes showed significant radiation-induced dose-dependent changes in counts or proportions. Moreover, the correlations of the proportions among HSPC subtypes in the survivors properly revealed the hierarchy of lineage commitments. Taken together, our findings suggest that many years after exposure to radiation and with advancing age, the number and function of HSPCs in living survivors as a whole may have recovered to normal levels.
Collapse
Affiliation(s)
- Seishi Kyoizumi
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Yoshiko Kubo
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Junko Kajimura
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kengo Yoshida
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Tomonori Hayashi
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kazue Imai
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Waka Ohishi
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Kei Nakachi
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Lauren F. Young
- Department of Medicine and Immunology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Jae-Hung Shieh
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Malcolm A. Moore
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | - Yoichiro Kusunoki
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| |
Collapse
|
23
|
Misra RS, Johnston CJ, Groves AM, DeDiego ML, St Martin J, Reed C, Hernady E, Miller JN, Love T, Finkelstein JN, Williams JP. Examining the Effects of External or Internal Radiation Exposure of Juvenile Mice on Late Morbidity after Infection with Influenza A. Radiat Res 2015; 184:3-13. [PMID: 26114328 DOI: 10.1667/rr13917.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A number of investigators have suggested that exposure to low-dose radiation may pose a potentially serious health risk. However, the majority of these studies have focused on the short-term rather than long-term effects of exposure to fixed source radiation, and few have examined the effects of internal contamination. Additionally, very few studies have focused on exposure in juveniles, when organs are still developing and could be more sensitive to the toxic effects of radiation. To specifically address whether early-life radiation injury may affect long-term immune competence, we studied 14-day-old juvenile pups that were either 5 Gy total-body irradiated or injected internally with 50 μCi soluble (137)Cs, then infected with influenza A virus at 26 weeks after exposure. After influenza infection, all groups demonstrated immediate weight loss. We found that externally irradiated, infected animals failed to recover weight relative to age-matched infected controls, but internally (137)Cs contaminated and infected animals had a weight recovery with a similar rate and degree as controls. Externally and internally irradiated mice demonstrated reduced levels of club cell secretory protein (CCSP) message in their lungs after influenza infection. The externally irradiated group did not recover CCSP expression even at the two-week time point after infection. Although the antibody response and viral titers did not appear to be affected by either radiation modality, there was a slight increase in monocyte chemoattractant protein (MCP)-1 expression in the lungs of externally irradiated animals 14 days after influenza infection, with increased cellular infiltration present. Notably, an increase in the number of regulatory T cells was seen in the mediastinal lymph nodes of irradiated mice relative to uninfected mice. These data confirm the hypothesis that early-life irradiation may have long-term consequences on the immune system, leading to an altered antiviral response.
Collapse
Affiliation(s)
- Ravi S Misra
- a Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Carl J Johnston
- a Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642.,b Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Angela M Groves
- b Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Marta L DeDiego
- c Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Joe St Martin
- d Department of Environmental Health and Safety: Radiation Safety Unit, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Christina Reed
- b Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Eric Hernady
- b Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jen-Nie Miller
- b Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Tanzy Love
- e Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jacob N Finkelstein
- a Department of Pediatrics and Neonatology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642.,b Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jacqueline P Williams
- b Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
24
|
Bamoulid J, Carron C, Crépin T, Saas P, Ducloux D. [Clinical consequences of immunosenescence in chronic kidney diseases]. Med Sci (Paris) 2015; 31:484-6. [PMID: 26059297 DOI: 10.1051/medsci/20153105008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jamal Bamoulid
- Inserm U1098, EFS B/FC, Université de Franche-Comté, LabEx LipSTIC, FHU INCREASE, 8, rue JFX Girod, F-25020 Besançon, France - CHRU Besançon, néphrologie, F-25030 Besançon, France
| | - Clémence Carron
- Inserm U1098, EFS B/FC, Université de Franche-Comté, LabEx LipSTIC, FHU INCREASE, 8, rue JFX Girod, F-25020 Besançon, France
| | - Thomas Crépin
- Inserm U1098, EFS B/FC, Université de Franche-Comté, LabEx LipSTIC, FHU INCREASE, 8, rue JFX Girod, F-25020 Besançon, France - CHRU Besançon, néphrologie, F-25030 Besançon, France
| | - Philippe Saas
- Inserm U1098, EFS B/FC, Université de Franche-Comté, LabEx LipSTIC, FHU INCREASE, 8, rue JFX Girod, F-25020 Besançon, France
| | - Didier Ducloux
- Inserm U1098, EFS B/FC, Université de Franche-Comté, LabEx LipSTIC, FHU INCREASE, 8, rue JFX Girod, F-25020 Besançon, France - CHRU Besançon, néphrologie, F-25030 Besançon, France
| |
Collapse
|
25
|
Sidler C, Li D, Wang B, Kovalchuk I, Kovalchuk O. SUV39H1 downregulation induces deheterochromatinization of satellite regions and senescence after exposure to ionizing radiation. Front Genet 2014; 5:411. [PMID: 25484892 PMCID: PMC4240170 DOI: 10.3389/fgene.2014.00411] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/05/2014] [Indexed: 12/22/2022] Open
Abstract
While the majority of cancer patients are exposed to ionizing radiation during diagnostic and therapeutic procedures, age-dependent differences in radiation sensitivity are not yet well understood. Radiation sensitivity is characterized by the appearance of side effects to radiation therapy, such as secondary malignancies, developmental deficits, and compromised immune function. However, the knowledge of the molecular mechanisms that trigger these side effects is incomplete. Here we used an in vitro system and showed that low-senescent normal human diploid fibroblasts (WI-38) senesce in response to 5 Gy IR, while highly senescent cultures do not show changes in cell cycle regulation and only a slight increase in the percentage of senescent cells. Our study shows that this is associated with changes in the expression of genes responsible for cell cycle progression, apoptosis, DNA repair, and aging, as well as transcriptional and epigenetic regulators. Furthermore, we propose a role of the downregulation of SUV39H1 expression, a histone methyltransferase that specifically trimethylates H3K9, and the corresponding reduction in H3K9me3 levels in the establishment of IR-induced senescence.
Collapse
Affiliation(s)
- Corinne Sidler
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| | - Dongping Li
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| | - Bo Wang
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge Lethbridge, AB, Canada
| |
Collapse
|
26
|
Rybkina VL, Azizova TV, Scherthan H, Meineke V, Doerr H, Adamova GV, Teplyakova OV, Osovets SV, Bannikova MV, Zurochka AV. Expression of blood serum proteins and lymphocyte differentiation clusters after chronic occupational exposure to ionizing radiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:659-70. [PMID: 25073961 DOI: 10.1007/s00411-014-0556-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/08/2014] [Indexed: 05/20/2023]
Abstract
This study aimed to assess effects of chronic occupational exposure on immune status in Mayak workers chronically exposed to ionizing radiation (IR). The study cohort consists of 77 workers occupationally exposed to external gamma-rays at total dose from 0.5 to 3.0 Gy (14 individuals) and workers with combined exposure (external gamma-rays at total dose range 0.7-5.1 Gy and internal alpha-radiation from incorporated plutonium with a body burden of 0.3-16.4 kBq). The control group consists of 43 age- and sex-matched individuals who never were exposed to IR, never involved in any cleanup operations following radiation accidents and never resided at contaminated areas. Enzyme-linked immunoassay and flow cytometry were used to determine the relative concentration of lymphocytes and proteins. The concentrations of T-lymphocytes, interleukin-8 and immunoglobulins G were decreased in external gamma-exposed workers relative to control. Relative concentrations of NKT-lymphocytes, concentrations of transforming growth factor-β, interferon gamma, immunoglobulins A, immunoglobulins M and matrix proteinase-9 were higher in this group as compared with control. Relative concentrations of T-lymphocytes and concentration of interleukin-8 were decreased, while both the relative and absolute concentration of natural killers, concentration of immunoglobulins A and M and matrix proteinase-9 were increased in workers with combined exposure as compared to control. An inverse linear relation was revealed between absolute concentration of T-lymphocytes, relative and absolute concentration of T-helpers cells, concentration of interferon gamma and total absorbed dose from external gamma-rays in exposed workers. For workers with incorporated plutonium, there was an inverse linear relation of absolute concentration of T-helpers as well as direct linear relation of relative concentration of NKT-lymphocytes to total absorbed red bone marrow dose from internal alpha-radiation. In all, chronic occupational IR exposure of workers induced a depletion of immune cells in peripheral blood of the individuals involved.
Collapse
|
27
|
Lee KF, Weng JTY, Hsu PWC, Chi YH, Chen CK, Liu IY, Chen YC, Wu LSH. Gene expression profiling of biological pathway alterations by radiation exposure. BIOMED RESEARCH INTERNATIONAL 2014; 2014:834087. [PMID: 25276823 PMCID: PMC4170887 DOI: 10.1155/2014/834087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/21/2014] [Indexed: 11/18/2022]
Abstract
Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from five participants and each sample was subjected to 0.5 Gy, 1 Gy, 2.5 Gy, and 5 Gy of cobalt 60 radiation, followed by array-based expression profiling. Gene set enrichment analysis indicated that the immune system and cancer development pathways appeared to be the major affected targets by radiation exposure. Therefore, 1 Gy radioactive exposure seemed to be a critical threshold dosage. In fact, after 1 Gy radiation exposure, expression levels of several genes including FADD, TNFRSF10B, TNFRSF8, TNFRSF10A, TNFSF10, TNFSF8, CASP1, and CASP4 that are associated with carcinogenesis and metabolic disorders showed significant alterations. Our results suggest that exposure to low-dose radiation may elicit changes in metabolic and immune pathways, potentially increasing the risk of immune dysfunctions and metabolic disorders.
Collapse
Affiliation(s)
- Kuei-Fang Lee
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
- Laboratory for Cytogenetics, Center for Genetic Counseling, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
| | - Julia Tzu-Ya Weng
- Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Chungli 32003, Taiwan
- Department of Computer Science and Engineering, Yuan Ze University, Chungli 32003, Taiwan
| | - Paul Wei-Che Hsu
- Bioinformatics Core Laboratory, Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Hsiang Chi
- Department of Computer Science and Engineering, Yuan Ze University, Chungli 32003, Taiwan
| | - Ching-Kai Chen
- Department of Computer Science and Engineering, Yuan Ze University, Chungli 32003, Taiwan
| | - Ingrid Y. Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan
| | - Yi-Cheng Chen
- Department of Computer Science & Information Engineering, Tamkang University, New Taipei City 25137, Taiwan
| | | |
Collapse
|
28
|
Tinago W, Coghlan E, Macken A, McAndrews J, Doak B, Prior-Fuller C, Lambert JS, Sheehan GJ, Mallon PWG, on behalf of the Mater Immunology Study Group. Clinical, immunological and treatment-related factors associated with normalised CD4+/CD8+ T-cell ratio: effect of naïve and memory T-cell subsets. PLoS One 2014; 9:e97011. [PMID: 24816636 PMCID: PMC4016205 DOI: 10.1371/journal.pone.0097011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/14/2014] [Indexed: 01/23/2023] Open
Abstract
Background Although effective antiretroviral therapy(ART) increases CD4+ T-cell count, responses to ART vary considerably and only a minority of patients normalise their CD4+/CD8+ ratio. Although retention of naïve CD4+ T-cells is thought to predict better immune responses, relationships between CD4+ and CD8+ T-cell subsets and CD4+/CD8+ ratio have not been well described. Methods A cross-sectional study in a cohort of ambulatory HIV+ patients. We used flow cytometry on fresh blood to determine expanded CD4+ and CD8+ T-cell subsets; CD45RO+CD62L+(central memory), CD45RO+CD62L-(effector memory) and CD45RO-CD62L+(naïve) alongside routine T-cell subsets(absolute, percentage CD4+ and CD8+ counts), HIVRNA and collected demographic and treatment data. Relationship between CD4+/CD8+ T-cell ratio and expanded T-cell subsets was determined using linear regression analysis. Results are median[IQR] and regression coefficients unless stated. Results We recruited 190 subjects, age 42(36–48) years, 65% male, 65.3% Caucasian, 91% on ART(52.6% on protease inhibitors), 78.4% with HIVRNA<40cps/ml and median ART duration 6.8(2.6–10.2) years. Nadir and current CD4+ counts were 200(112–309) and 465(335–607) cells/mm3 respectively. Median CD4+/CD8+ ratio was 0.6(0.4–1.0), with 26.3% of subjects achieving CD4+/CD8+ ratio>1. Of the expanded CD4+ T-cell subsets, 27.3(18.0–38.3)% were naïve, 36.8(29.0–40.0)% central memory and 27.4(20.0–38.5)% effector memory. Of the CD8+ T-cells subsets, 16.5(10.2–25.5)% were naïve, 19.9(12.7–26.6)% central memory and 41.0(31.8–52.5)% effector memory. In the multivariable adjusted analysis, total cumulative-ART exposure(+0.15,p = 0.007), higher nadir CD4+ count(+0.011,p<0.001) and higher %CD8+ naive T-cells(+0.0085,p<0.001) were associated with higher CD4+/CD8+ ratio, higher absolute CD8+ T-cell(-0.0044,p<0.001) and higher %CD4+ effector memory T-cells(-0.004,p = 0.0036) were associated with lower CD4+/CD8+ ratio. Those with CD4+/CD8+ ratio>1 had significantly higher median %CD8+ naive T-cells; 25.4(14.0–36.0)% versus 14.4(9.4–21.6)%, p<0.0001, but significantly lower absolute CD8+ count; 464(384.5–567) versus 765(603–1084) cells/mm3, p<0.001. Conclusions Study suggests important role for naïve CD8+ T-cell populations in normalisation of the immune response to HIV-infection. How these findings relate to persistent immune activation on ART requires further study.
Collapse
Affiliation(s)
- Willard Tinago
- HIV Molecular Research Group, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Department of Community Medicine, University of Zimbabwe, Harare, Zimbabwe
- * E-mail:
| | - Elizabeth Coghlan
- HIV Molecular Research Group, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Alan Macken
- HIV Molecular Research Group, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Julie McAndrews
- Department of Immunology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Brenda Doak
- Department of Immunology, Mater Misericordiae University Hospital, Dublin, Ireland
| | | | - John S. Lambert
- HIV Molecular Research Group, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Gerard J. Sheehan
- HIV Molecular Research Group, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Patrick W. G. Mallon
- HIV Molecular Research Group, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
- Department of Infectious Diseases, Mater Misericordiae University Hospital, Dublin, Ireland
| | | |
Collapse
|
29
|
Yoshida K, Nakashima E, Kubo Y, Yamaoka M, Kajimura J, Kyoizumi S, Hayashi T, Ohishi W, Kusunoki Y. Inverse associations between obesity indicators and thymic T-cell production levels in aging atomic-bomb survivors. PLoS One 2014; 9:e91985. [PMID: 24651652 PMCID: PMC3961282 DOI: 10.1371/journal.pone.0091985] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/16/2014] [Indexed: 12/15/2022] Open
Abstract
Reduction of the naive T-cell population represents a deteriorating state in the immune system that occurs with advancing age. In animal model studies, obesity compromises the T-cell immune system as a result of enhanced adipogenesis in primary lymphoid organs and systemic inflammation. In this study, to test the hypothesis that obesity may contribute to the aging of human T-cell immunity, a thousand atomic-bomb survivors were examined for obesity status and ability to produce naive T cells, i.e., T-cell receptor excision circle (TREC) numbers in CD4 and CD8 T cells. The number of TRECs showed a strong positive correlation with naive T cell numbers, and lower TREC numbers were associated with higher age. We found that the TREC number was inversely associated with levels of obesity indicators (BMI, hemoglobin A1c) and serum CRP levels. Development of type-2 diabetes and fatty liver was also associated with lower TREC numbers. This population study suggests that obesity with enhanced inflammation is involved in aging of the human T-cell immune system. Given the fact that obesity increases the risk of numerous age-related diseases, attenuated immune competence is a possible mechanistic link between obesity and disease development among the elderly.
Collapse
Affiliation(s)
- Kengo Yoshida
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
- * E-mail:
| | - Eiji Nakashima
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Yoshiko Kubo
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Mika Yamaoka
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Junko Kajimura
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Seishi Kyoizumi
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Tomonori Hayashi
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Waka Ohishi
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Yoichiro Kusunoki
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| |
Collapse
|
30
|
Manning CM, Johnston CJ, Reed CK, Lawrence BP, Williams JP, Finkelstein JN. Lung irradiation increases mortality after influenza A virus challenge occurring late after exposure. Int J Radiat Oncol Biol Phys 2012. [PMID: 23195776 DOI: 10.1016/j.ijrobp.2012.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To address whether irradiation-induced changes in the lung environment alter responses to a viral challenge delivered late after exposure but before the appearance of late lung radiation injury. METHODS AND MATERIALS C57BL/6J mice received either lung alone or combined lung and whole-body irradiation (0-15 Gy). At 10 weeks after irradiation, animals were infected with 120 HAU influenza virus strain A/HKx31. Innate and adaptive immune cell recruitment was determined using flow cytometry. Cytokine and chemokine production and protein leakage into the lung after infection were assessed. RESULTS Prior irradiation led to a dose-dependent failure to regain body weight after infection and exacerbated mortality, but it did not affect virus-specific immune responses or virus clearance. Surviving irradiated animals displayed a persistent increase in total protein in bronchoalveolar lavage fluid and edema. CONCLUSIONS Lung irradiation increased susceptibility to death after infection with influenza virus and impaired the ability to complete recovery. This altered response does not seem to be due to a radiation effect on the immune response, but it may possibly be an effect on epithelial repair.
Collapse
Affiliation(s)
- Casey M Manning
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
31
|
Yoshida K, Ohishi W, Nakashima E, Fujiwara S, Akahoshi M, Kasagi F, Chayama K, Hakoda M, Kyoizumi S, Nakachi K, Hayashi T, Kusunoki Y. Lymphocyte subset characterization associated with persistent hepatitis C virus infection and subsequent progression of liver fibrosis. Hum Immunol 2011; 72:821-6. [PMID: 21712057 DOI: 10.1016/j.humimm.2011.05.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/12/2011] [Accepted: 05/20/2011] [Indexed: 12/22/2022]
Abstract
This study aims to deepen the understanding of lymphocyte phenotypes related to the course of hepatitis C virus (HCV) infection and progression of liver fibrosis in a cohort of atomic bomb survivors. The study subjects comprise 3 groups: 162 HCV persistently infected, 145 spontaneously cleared, and 3,511 uninfected individuals. We observed increased percentages of peripheral blood T(H)1 and total CD8 T cells and decreased percentages of natural killer (NK) cells in the HCV persistence group compared with the other 2 groups after adjustment for age, gender, and radiation exposure dose. Subsequently, we determined that increased T(H)1 cell percentages in the HCV persistence group were significantly associated with an accelerated time-course reduction in platelet counts-accelerated progression of liver fibrosis-whereas T(C)1 and NK cell percentages were inversely associated with progression. This study suggests that T(H)1 immunity is enhanced by persistent HCV infection and that percentages of peripheral T(H)1, T(C)1, and NK cells may help predict progression of liver fibrosis.
Collapse
Affiliation(s)
- Kengo Yoshida
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bertho JM, Faure MC, Louiba S, Tourlonias E, Stefani J, Siffert B, Paquet F, Dublineau I. Influence on the mouse immune system of chronic ingestion of 137Cs. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2011; 31:25-39. [PMID: 21346294 DOI: 10.1088/0952-4746/31/1/001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The aim of this work was to determine the possible occurrence of damage to the immune system during the course of chronic ingestion of (137)Cs. BALB/C mice were used, with (137)Cs intake via drinking water at a concentration of 20 kBq l(-1). Adults received (137)Cs before mating and offspring were sacrificed at various ages between birth and 20 weeks. Phenotypic analysis of circulating blood cells and thymocytes did not show any significant modification of immune cell populations in animals ingesting (137)Cs as compared with control animals, with the exception of a slight increase in Treg percentage at the age of 12 weeks. Functional tests, including proliferative response to mitogens such as phytohaemagglutinin, response to alloantigens in mixed lymphocyte reaction and immunoglobulin response to vaccine antigens such as tetanus toxin and keyhole limpet haemocyanin did not show any significant functional modification of the immune system in (137)Cs-ingesting animals as compared with control animals. Overall, our results suggest that chronic ingestion of a low concentration of (137)Cs in drinking water in the long term does not have any biologically relevant effect on the immune system.
Collapse
Affiliation(s)
- Jean-Marc Bertho
- IRSN, Laboratoire de Radiotoxicologie Expérimentale, Fontenay aux Roses, France.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Wagner U. Immunseneszenz und Autoimmunität. Z Rheumatol 2011; 70:95-8. [DOI: 10.1007/s00393-010-0735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Kusunoki Y, Yamaoka M, Kubo Y, Hayashi T, Kasagi F, Douple EB, Nakachi K. T-cell immunosenescence and inflammatory response in atomic bomb survivors. Radiat Res 2010; 174:870-6. [PMID: 21128811 DOI: 10.1667/rr1847.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this paper we summarize the long-term effects of A-bomb radiation on the T-cell system and discuss the possible involvement of attenuated T-cell immunity in the disease development observed in A-bomb survivors. Our previous observations on such effects include impaired mitogen-dependent proliferation and IL-2 production, decreases in naive T-cell populations, and increased proportions of anergic and functionally weak memory CD4 T-cell subsets. In addition, we recently found a radiation dose-dependent increase in the percentages of CD25(+)/CD127(-) regulatory T cells in the CD4 T-cell population of the survivors. All these effects of radiation on T-cell immunity resemble effects of aging on the immune system, suggesting that ionizing radiation might direct the T-cell system toward a compromised phenotype and thereby might contribute to an enhanced immunosenescence. Furthermore, there are inverse, significant associations between plasma levels of inflammatory cytokines and the relative number of naïve CD4 T cells, also suggesting that the elevated levels of inflammatory markers found in A-bomb survivors can be ascribed in part to T-cell immunosenescence. We suggest that radiation-induced T-cell immunosenescence may result in activation of inflammatory responses and may be partly involved in the development of aging-associated and inflammation-related diseases frequently observed in A-bomb survivors.
Collapse
Affiliation(s)
- Yoichiro Kusunoki
- Department of Radiobiology, Radiation Effects Research Foundation, Hiroshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Kyoizumi S, Yamaoka M, Kubo Y, Hamasaki K, Hayashi T, Nakachi K, Kasagi F, Kusunoki Y. Memory CD4 T-cell subsets discriminated by CD43 expression level in A-bomb survivors. Int J Radiat Biol 2010; 86:56-62. [PMID: 20070216 DOI: 10.3109/09553000903272641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE Our previous study showed that radiation exposure reduced the diversity of repertoires of memory thymus-derived cells (T cells) with cluster of differentiation (CD)- 4 among atomic-bomb (A-bomb) survivors. To evaluate the maintenance of T-cell memory within A-bomb survivors 60 years after radiation exposure, we examined functionally distinct memory CD4 T-cell subsets in the peripheral blood lymphocytes of the survivors. METHODS Three functionally different subsets of memory CD4 T cells were identified by differential CD43 expression levels and measured using flow cytometry. These subsets consist of functionally mature memory cells, cells weakly responsive to antigenic stimulation, and those cells functionally anergic and prone to spontaneous apoptosis. RESULTS The percentages of these subsets within the peripheral blood CD4 T-cell pool all significantly increased with age. Percentages of functionally weak and anergic subsets were also found to increase with radiation dose, fitting to a log linear model. Within the memory CD4 T-cell pool, however, there was an inverse association between radiation dose and the percentage of functionally mature memory cells. CONCLUSION These results suggest that the steady state of T cell memory, which is regulated by cell activation and/or cell survival processes in subsets, may have been perturbed by prior radiation exposure among A-bomb survivors.
Collapse
Affiliation(s)
- Seishi Kyoizumi
- Department of Radiobiology, Yasuda Women's University, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Richardson RB. Ionizing radiation and aging: rejuvenating an old idea. Aging (Albany NY) 2009; 1:887-902. [PMID: 20157573 PMCID: PMC2815743 DOI: 10.18632/aging.100081] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 11/16/2009] [Indexed: 12/27/2022]
Abstract
This paper reviews the contemporary evidence that radiation can accelerate aging, degenerative health effects and mortality. Around the 1960s, the idea that ionizing radiation caused premature aging was dismissed as the radiation-induced health effects appeared to be virtually confined to neoplasms. More recently, radiation has become associated with a much wider spectrum of age-related diseases, including cardiovascular disease; although some diseases of old age, such as diabetes, are notably absent as a radiation risk. On the basis of recent research, is there a stronger case today to be made linking radiation and aging? Comparison is made between the now-known biological mechanisms of aging and those of radiation, including oxidative stress, chromosomal damage, apoptosis, stem cell exhaustion and inflammation. The association between radiation effects and the free-radical theory of aging as the causative hypothesis seems to be more compelling than that between radiation and the nutrient-sensing TOR pathway. Premature aging has been assessed by biomarkers in calorie restriction studies; yet, biomarkers such as telomere erosion and p16(INK4a) are ambiguous for radiation-induced aging. Some animal studies suggest low dose radiation may even demonstrate hormesis health benefits. Regardless, there is virtually no support for a life span extending hypothesis for A-bomb survivors and other exposed subjects.
Collapse
Affiliation(s)
- Richard B Richardson
- Radiation Protection Research and Instrumentation Branch, Atomic Energy of Canada Limited, Chalk River Laboratories, Chalk River, ON K0J 1J0, Canada.
| |
Collapse
|
37
|
Kusunoki Y, Hayashi T. Long-lasting alterations of the immune system by ionizing radiation exposure: implications for disease development among atomic bomb survivors. Int J Radiat Biol 2008; 84:1-14. [PMID: 17852558 DOI: 10.1080/09553000701616106] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE The immune systems of the atomic-bomb (A-bomb) survivors were damaged proportionately to irradiation levels at the time of the bombing over 60 years ago. Although the survivor's immune system repaired and regenerated as the hematopoietic system has recovered, significant residual injury persists, as manifested by abnormalities in lymphoid cell composition and function. This review summarizes the long-lasting alterations in immunological functions associated with atomic-bomb irradiation, and discusses the likelihood that damaging effects of radiation on the immune system may be involved partly in disease development so frequently observed in A-bomb survivors. CONCLUSIONS Significant immunological alterations noted include: (i) attrition of T-cell functions, as reductions in mitogen-dependent proliferation and interleukin-2 (IL-2) production; (ii) decrease in helper T-cell populations; and (iii) increase in blood inflammatory cytokine levels. These findings suggest that A-bomb radiation exposure perturbed one or more of the primary processes responsible for T-cell homeostasis and the balance between cell renewal and survival and cell death among naive and memory T cells. Such perturbed T-cell homeostasis may result in acceleration of immunological aging. Persistent inflammation, linked in some way to the perturbation of T-cell homeostasis, is key in addressing whether such noted immunological changes observed in A-bomb survivors are in fact associated with disease development.
Collapse
Affiliation(s)
- Yoichiro Kusunoki
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, 5-2, Hijiyama-Park, Minami-ward, Hiroshima 732, Japan.
| | | |
Collapse
|
38
|
Igari Y, Igari K, Kunugita N, Ootsuyama A, Norimura T. Prolonged Increase in T-Cell Receptor (TCR) Variant Fractions of Spleen T Lymphocytes in Pregnant Mice after γ Irradiation. Radiat Res 2007; 168:81-6. [PMID: 17722993 DOI: 10.1667/rr0288.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 01/22/2007] [Indexed: 11/03/2022]
Abstract
To investigate the relationship between the radiation-induced increase of T-cell receptor (TCR) defective variant fractions and physiological status such as pregnancy, C57BL/ 6N mice were irradiated with 3 Gy of gamma rays at various days of gestation, just before and just after pregnancy. While the highest level of variant fractions in spleen T lymphocytes appeared at 9 days postirradiation and resolved fairly rapidly for nonpregnant mice, the increased variant fractions for pregnant mice irradiated at 16.5 days of gestation reached a plateau at 14 days postirradiation and remained at high levels until 28 days after irradiation. Therefore, variant fractions 28 days postirradiation were measured to determine the overall effect of radiation on the kinetics of TCR variant fractions during gestation. There was no significant difference in the baseline TCR variant fraction between unirradiated nonpregnant and pregnant mice. TCR variant fractions after irradiation were about twofold higher in pregnant mice (from 10.5 days of gestation until delivery) than those in nonpregnant mice. Both gamma radiation and pregnancy caused a decrease in the proportion of naïve T-cell subsets and an increase in TCR variant fractions of naïve T cells. In addition, the prolonged postirradiation increase in the TCR variant fractions of pregnant mice was associated with an increase in serum progesterone level. Differences between pregnant and nonpregnant mice in the kinetics of postirradiation restoration of T-cell systems may be involved in producing the differences in residual TCR variant fractions of these mice.
Collapse
Affiliation(s)
- Yuka Igari
- Department of Radiation Biology and Health, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | |
Collapse
|
39
|
Wong FL, Yamada M, Tominaga T, Fujiwara S, Suzuki G. Effects of radiation on the longitudinal trends of hemoglobin levels in the Japanese atomic bomb survivors. Radiat Res 2006; 164:820-7. [PMID: 16296889 DOI: 10.1667/rr3470.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The late effects of radiation on the hematopoietic system have not been fully evaluated. We examined the long-term effects of radiation exposure on hemoglobin levels in the Japanese atomic bomb survivors over a 40-year period from 1958 to 1998. Compared to the unexposed survivors, the mean hemoglobin levels for those exposed to a bone marrow dose of 1 Gy were significantly reduced by 0.10 g/dl (95% CI: 0.04 to 0.16) or 0.67% at 40 years of age (P < 0.0001) and by 0.24 g/dl (95% CI: 0.08 to 0.40) or 1.8% at 80 years of age. Radiation effects are greater for smokers than for nonsmokers at age less than 35 years (P < 0.01), although cigarette smoking was associated with increased hemoglobin levels. Sex and birth cohort differences in radiation effects were not found after adjusting for smoking. The radiation-induced reduction in hemoglobin levels could not be explained by the presence of certain anemia-associated diseases.
Collapse
Affiliation(s)
- F Lennie Wong
- Departments of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
40
|
|
41
|
Nakachi K, Hayashi T, Imai K, Kusunoki Y. Perspectives on cancer immuno-epidemiology. Cancer Sci 2004; 95:921-9. [PMID: 15596039 PMCID: PMC11159298 DOI: 10.1111/j.1349-7006.2004.tb03178.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 09/22/2004] [Accepted: 10/12/2004] [Indexed: 01/22/2023] Open
Abstract
Estimating human cancer risk based on host-environment interaction is one task of epidemiology, and it has provided indispensable knowledge for prevention of cancer. The recent develop-ment of gene-engineered mice has also provided solid evidence about the relationship between cancer development and immunity. The aim of this review is to discuss the possible contribution of epidemiology to understanding the role of immunity in host defense against cancer, and also to assess the involvement of inflammation in the occurrence of selected cancers. Here we look at the concepts of cancer immunosurveillance and infection-inflammation-cancer, and include a brief introduction to recent studies in humans and experimental animal models. It has been postulated for many years that the immune system has the ability to recognize and eliminate nascent transformed cells in the body (so-called cancer immunosurveillance hypothesis), and this idea has recently obtained strong support from animal experiments. In humans, follow-up studies among immunosuppressed transplant recipients revealed a remarkably increased risk of not only selected malignancies, but also cancers with no known viral etiology. On the other hand, a prospective cohort study among the general population revealed that individuals with low natural cytotoxic activity of peripheral blood lymphocytes had an increased risk of cancer development. More studies are warranted to allow the construction of a model for the interaction between host immunity, aging, and the environment. The host immune system is also involved in inflammatory responses to pathogen infection: insufficient immune function of the host, or repeated infection, may result in persistent inflammation, where growth/survival factors continuously act on initiated cells. The combined use of biomarkers will be necessary to define low-grade persistent inflammation in future cohort studies; and, in addition to these phenotype marker-based cohort studies, one plausible future direction will be a genomic approach that can be undertaken within cohort studies, looking at the genetic background underlying individual variations in phenotype markers.
Collapse
Affiliation(s)
- Kei Nakachi
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima 732-0815, Japan.
| | | | | | | |
Collapse
|