1
|
Chen D, Zhou X, Gan C, Yang Q, Chen W, Feng X, Zhang T, Zhang L, Dai L, Chen Y, Yang H, Wang M, Jiang W, Li Q. Characterization of glomerular basement membrane components within pediatric glomerular diseases. Clin Kidney J 2024; 17:sfae037. [PMID: 38455522 PMCID: PMC10919337 DOI: 10.1093/ckj/sfae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 03/09/2024] Open
Abstract
Background Disruptions in gene expression associated with the glomerular basement membrane (GBM) could precipitate glomerular dysfunction. Nevertheless, a comprehensive understanding of the characterization of GBM components within pediatric glomerular diseases and their potential association with glomerular function necessitates further systematic investigation. Methods We conducted a systematic analysis focusing on the pathological transformations and molecular attributes of key constituents within the GBM, specifically Collagen IV α3α4α5, Laminin α5β2γ1, and Integrin α3β1, across prevalent pediatric glomerular diseases. Results We observed upregulation of linear expression levels of COL4A3/4/5 and Laminin 5α proteins, along with a partial reduction in the linear structural expression of Podocin in idiopathic nephrotic syndrome (INS), encompassing minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS), but showing a reduction in IgA nephropathy (IgAN), IgA vasculitis nephritis (IgAVN) and lupus nephritis (LN). Furthermore, our study revealed reductions in Laminin β2γ1 and Integrin α3β1 in both primary and secondary childhood glomerular diseases. Conclusion In INS, notably MCD and FSGS, there is a notable increase in the linear expression levels of COL4A3/4/5 and Laminin 5α proteins. In contrast, in IgAN, IgAVN, and LN, there is a consistent reduction in the expression of these markers. Furthermore, the persistent reduction of Laminin β2γ1 and Integrin α3β1 in both primary and secondary childhood glomerular diseases suggests a shared characteristic of structural alterations within the GBM across these conditions.
Collapse
Affiliation(s)
- Dan Chen
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, P.R. China
| | - Xindi Zhou
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, P.R. China
| | - Chun Gan
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, P.R. China
| | - Qing Yang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, P.R. China
| | - Wanbing Chen
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, P.R. China
| | - Xiaoqian Feng
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, P.R. China
- Chongqing University Three Gorges Hospital, School of Medicine of Chongqing University, Chongqing, P.R. China
| | - Tao Zhang
- Pediatric Renal Immunology Specialist Section, The Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Children's Medical Center, Guiyang, Guizhou, P.R. China
| | - Li Zhang
- Pediatric Renal Immunology Specialist Section, The Affiliated Hospital of Guizhou Medical University, Guizhou Provincial Children's Medical Center, Guiyang, Guizhou, P.R. China
| | - Lujun Dai
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China
| | - Yaxi Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, P.R. China
| | - Haiping Yang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, P.R. China
| | - Mo Wang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, P.R. China
| | - Wei Jiang
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, P.R. China
| | - Qiu Li
- Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, P.R. China
| |
Collapse
|
2
|
Deltas C, Papagregoriou G, Louka SF, Malatras A, Flinter F, Gale DP, Gear S, Gross O, Hoefele J, Lennon R, Miner JH, Renieri A, Savige J, Turner AN. Genetic Modifiers of Mendelian Monogenic Collagen IV Nephropathies in Humans and Mice. Genes (Basel) 2023; 14:1686. [PMID: 37761826 PMCID: PMC10530214 DOI: 10.3390/genes14091686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Familial hematuria is a clinical sign of a genetically heterogeneous group of conditions, accompanied by broad inter- and intrafamilial variable expressivity. The most frequent condition is caused by pathogenic (or likely pathogenic) variants in the collagen-IV genes, COL4A3/A4/A5. Pathogenic variants in COL4A5 are responsible for the severe X-linked glomerulopathy, Alport syndrome (AS), while homozygous or compound heterozygous variants in the COL4A3 or the COL4A4 gene cause autosomal recessive AS. AS usually leads to progressive kidney failure before the age of 40-years when left untreated. People who inherit heterozygous COL4A3/A4 variants are at-risk of a slowly progressive form of the disease, starting with microscopic hematuria in early childhood, developing Alport spectrum nephropathy. Sometimes, they are diagnosed with benign familial hematuria, and sometimes with autosomal dominant AS. At diagnosis, they often show thin basement membrane nephropathy, reflecting the uniform thin glomerular basement membrane lesion, inherited as an autosomal dominant condition. On a long follow-up, most patients will retain normal or mildly affected kidney function, while a substantial proportion will develop chronic kidney disease (CKD), even kidney failure at an average age of 55-years. A question that remains unanswered is how to distinguish those patients with AS or with heterozygous COL4A3/A4 variants who will manifest a more aggressive kidney function decline, requiring prompt medical intervention. The hypothesis that a subgroup of patients coinherit additional genetic modifiers that exacerbate their clinical course has been investigated by several researchers. Here, we review all publications that describe the potential role of candidate genetic modifiers in patients and include a summary of studies in AS mouse models.
Collapse
Affiliation(s)
- Constantinos Deltas
- School of Medicine, University of Cyprus, Nicosia 2109, Cyprus
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Gregory Papagregoriou
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Stavroula F. Louka
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Apostolos Malatras
- biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Frances Flinter
- Clinical Genetics Department, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 9RT, UK
| | - Daniel P. Gale
- Department of Renal Medicine, University College London, London NW3 2PF, UK
| | | | - Oliver Gross
- Clinic for Nephrology and Rheumatology, University Medicine Goettingen, 37075 Goettingen, Germany
| | - Julia Hoefele
- Institute of Human Genetics, Klinikum Rechts der Isar, School of Medicine & Health, Technical University Munich, 81675 Munich, Germany
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester M13 9WU, UK
| | - Jeffrey H. Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alessandra Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, VIC 3052, Australia
| | - A. Neil Turner
- Renal Medicine, Royal Infirmary, University of Edinburgh, Edinburgh EH16 4UX, UK
| |
Collapse
|
3
|
Irion CI, Williams M, Capcha JC, Eisenberg T, Lambert G, Takeuchi LM, Seo G, Yousefi K, Kanashiro-Takeuchi R, Webster KA, Young KC, Hare JM, Shehadeh LA. Col4a3-/- Mice on Balb/C Background Have Less Severe Cardiorespiratory Phenotype and SGLT2 Over-Expression Compared to 129x1/SvJ and C57Bl/6 Backgrounds. Int J Mol Sci 2022; 23:6674. [PMID: 35743114 PMCID: PMC9223785 DOI: 10.3390/ijms23126674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 01/27/2023] Open
Abstract
Alport syndrome (AS) is a hereditary renal disorder with no etiological therapy. In the preclinical Col4a3-/- model of AS, disease progression and severity vary depending on mouse strain. The sodium-glucose cotransporter 2 (SGLT2) is emerging as an attractive therapeutic target in cardiac/renal pathologies, but its application to AS remains untested. This study investigates cardiorespiratory function and SGLT2 renal expression in Col4a3-/- mice from three different genetic backgrounds, 129x1/SvJ, C57Bl/6 and Balb/C. male Col4a3-/- 129x1/SvJ mice displayed alterations consistent with heart failure with preserved ejection fraction (HFpEF). Female, but not male, C57Bl/6 and Balb/C Col4a3-/- mice exhibited mild changes in systolic and diastolic function of the heart by echocardiography. Male C57Bl/6 Col4a3-/- mice presented systolic dysfunction by invasive hemodynamic analysis. All strains except Balb/C males demonstrated alterations in respiratory function. SGLT2 expression was significantly increased in AS compared to WT mice from all strains. However, cardiorespiratory abnormalities and SGLT2 over-expression were significantly less in AS Balb/C mice compared to the other two strains. Systolic blood pressure was significantly elevated only in mutant 129x1/SvJ mice. The results provide further evidence for strain-dependent cardiorespiratory and hypertensive phenotype variations in mouse AS models, corroborated by renal SGLT2 expression, and support ongoing initiatives to develop SGLT2 inhibitors for the treatment of AS.
Collapse
Affiliation(s)
- Camila I. Irion
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.I.I.); (M.W.); (J.C.C.); (T.E.); (G.L.); (J.M.H.)
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
| | - Monique Williams
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.I.I.); (M.W.); (J.C.C.); (T.E.); (G.L.); (J.M.H.)
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
| | - Jose Condor Capcha
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.I.I.); (M.W.); (J.C.C.); (T.E.); (G.L.); (J.M.H.)
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
| | - Trevor Eisenberg
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.I.I.); (M.W.); (J.C.C.); (T.E.); (G.L.); (J.M.H.)
| | - Guerline Lambert
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.I.I.); (M.W.); (J.C.C.); (T.E.); (G.L.); (J.M.H.)
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
| | - Lauro M. Takeuchi
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
| | - Grace Seo
- Department of Medical Education, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Keyvan Yousefi
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Rosemeire Kanashiro-Takeuchi
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Keith A. Webster
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Ophthalmology, Vascular Biology Institute, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Karen C. Young
- Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Joshua M. Hare
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.I.I.); (M.W.); (J.C.C.); (T.E.); (G.L.); (J.M.H.)
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
| | - Lina A. Shehadeh
- Department of Medicine, Division of Cardiology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.I.I.); (M.W.); (J.C.C.); (T.E.); (G.L.); (J.M.H.)
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, USA; (L.M.T.); (K.Y.); (R.K.-T.)
| |
Collapse
|
4
|
Sasaki H, Sasaki N. Tensin 2-deficient nephropathy - mechanosensitive nephropathy, genetic susceptibility. Exp Anim 2022; 71:252-263. [PMID: 35444113 PMCID: PMC9388341 DOI: 10.1538/expanim.22-0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Tensin 2 (TNS2), a focal adhesion protein, is considered to anchor focal adhesion proteins to β integrin as an integrin adaptor protein and/or serve as a scaffold to facilitate the
interactions of these proteins. In the kidney, TNS2 localizes to the basolateral surface of glomerular epithelial cells, i.e., podocytes. Loss of TNS2 leads to the development of glomerular
basement membrane lesions and abnormal accumulation of extracellular matrix in maturing glomeruli during the early postnatal stages. It subsequently results in podocyte foot process
effacement, eventually leading to glomerulosclerosis. Histopathological features of the affected glomeruli in the middle stage of the disease include expansion of the mesangial matrix
without mesangial cell proliferation. In this review, we provide an overview of TNS2-deficient nephropathy and discuss the potential mechanism underlying this mechanosensitive nephropathy,
which may be applicable to other glomerulonephropathies, such as CD151-deficient nephropathy and Alport syndrome. The onset of TNS2-deficient nephropathy strictly depends on the genetic
background, indicating the presence of critical modifier genes. A better understanding of molecular mechanisms of mechanosensitive nephropathy may open new avenues for the management of
patients with glomerulonephropathies.
Collapse
Affiliation(s)
- Hayato Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University
| | - Nobuya Sasaki
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University
| |
Collapse
|
5
|
Falcone S, Nicol T, Blease A, Randles MJ, Angus E, Page A, Tam FWK, Pusey CD, Lennon R, Potter PK. A novel model of nephrotic syndrome results from a point mutation in Lama5 and is modified by genetic background. Kidney Int 2022; 101:527-540. [PMID: 34774562 PMCID: PMC8883398 DOI: 10.1016/j.kint.2021.10.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 11/22/2022]
Abstract
Nephrotic syndrome is characterized by severe proteinuria, hypoalbuminaemia, edema and hyperlipidaemia. Genetic studies of nephrotic syndrome have led to the identification of proteins playing a crucial role in slit diaphragm signaling, regulation of actin cytoskeleton dynamics and cell-matrix interactions. The laminin α5 chain is essential for embryonic development and, in association with laminin β2 and laminin γ1, is a major component of the glomerular basement membrane, a critical component of the glomerular filtration barrier. Mutations in LAMA5 were recently identified in children with nephrotic syndrome. Here, we have identified a novel missense mutation (E884G) in the uncharacterized L4a domain of LAMA5 where homozygous mice develop nephrotic syndrome with severe proteinuria with histological and ultrastructural changes in the glomerulus mimicking the progression seen in most patients. The levels of LAMA5 are reduced in vivo and the assembly of the laminin 521 heterotrimer significantly reduced in vitro. Proteomic analysis of the glomerular extracellular fraction revealed changes in the matrix composition. Importantly, the genetic background of the mice had a significant effect on aspects of disease progression from proteinuria to changes in podocyte morphology. Thus, our novel model will provide insights into pathologic mechanisms of nephrotic syndrome and pathways that influence the response to a dysfunctional glomerular basement membrane that may be important in a range of kidney diseases.
Collapse
Affiliation(s)
- Sara Falcone
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK; Centre for Cellular and Molecular Physiology, University of Oxford, Oxford, UK
| | - Thomas Nicol
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK; British Heart Foundation, Centre of Research Excellence, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Andrew Blease
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK
| | - Michael J Randles
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Elizabeth Angus
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anton Page
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Frederick W K Tam
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Charles D Pusey
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Paul K Potter
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Campus, Oxfordshire, UK; Department Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, UK.
| |
Collapse
|
6
|
Namba M, Kobayashi T, Kohno M, Koyano T, Hirose T, Fukushima M, Matsuyama M. Creation of X-linked Alport syndrome rat model with Col4a5 deficiency. Sci Rep 2021; 11:20836. [PMID: 34675305 PMCID: PMC8531394 DOI: 10.1038/s41598-021-00354-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/12/2021] [Indexed: 12/31/2022] Open
Abstract
Alport syndrome is an inherited chronic human kidney disease, characterized by glomerular basement membrane abnormalities. This disease is caused by mutations in COL4A3, COL4A4, or COL4A5 gene. The knockout mice for Col4α3, Col4α4, and Col4α5 are developed and well characterized for the study of Alport syndrome. However, disease progression and effects of pharmacological therapy depend on the genetic variability. This model was reliable only to mouse. In this study, we created a novel Alport syndrome rat model utilizing the rGONAD technology, which generated rat with a deletion of the Col4α5 gene. Col4α5 deficient rats showed hematuria, proteinuria, high levels of BUN, Cre, and then died at 18 to 28 weeks of age (Hemizygous mutant males). Histological and ultrastructural analyses displayed the abnormalities including parietal cell hyperplasia, mesangial sclerosis, and interstitial fibrosis. Then, we demonstrated that α3/α4/α5 (IV) and α5/α5/α6 (IV) chains of type IV collagen disrupted in Col4α5 deficient rats. Thus, Col4α5 mutant rat is a reliable candidate for the Alport syndrome model for underlying the mechanism of kidney diseases and further identifying potential therapeutic targets for human renal diseases.
Collapse
Affiliation(s)
- Masumi Namba
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Tomoe Kobayashi
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Mayumi Kohno
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Takuo Hirose
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Department of Endocrinology and Applied Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Fukushima
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan.,Shigei Medical Research Hospital, Okayama, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan.
| |
Collapse
|
7
|
Isaranuwatchai S, Chanakul A, Ittiwut C, Srichomthong C, Shotelersuk V, Praditpornsilpa K, Suphapeetiporn K. Whole-Exome Sequencing Solved over 2-Decade Kidney Disease Enigma. Nephron Clin Pract 2021; 145:311-316. [PMID: 33725694 DOI: 10.1159/000514293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/03/2021] [Indexed: 11/19/2022] Open
Abstract
Chronic kidney disease of unknown etiology (CKDu) has been a problem in renal practice as indefinite diagnosis may lead to inappropriate management. Here, we report a 54-year-old father diagnosed with CKDu at 33 years old and his 8-year-old son with steroid-resistant nephrotic syndrome. Using whole-exome sequencing, both were found to be heterozygous for c.737G>A (p.Arg246Gln) in LMX1B. The diagnosis of LMX1B-associated nephropathy has led to changes in the treatment plan with appropriate genetic counseling. The previously reported cases with this particular mutation were also reviewed. Most children with LMX1B-associated nephropathy had nonnephrotic proteinuria with normal renal function. Interestingly, our pediatric case presented with steroid-resistant nephrotic syndrome at 8 years old and progressed to ESRD requiring peritoneal dialysis at the age of 15 years. Our report emphasized the need of genetic testing in CKDu for definite diagnosis leading to precise management.
Collapse
Affiliation(s)
- Suramath Isaranuwatchai
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ankanee Chanakul
- Division of Nephrology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chupong Ittiwut
- Department of Pediatrics, Center of Excellence for Medical Genomics, Medical Genomics Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Chalurmpon Srichomthong
- Department of Pediatrics, Center of Excellence for Medical Genomics, Medical Genomics Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Department of Pediatrics, Center of Excellence for Medical Genomics, Medical Genomics Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| | - Kearkiat Praditpornsilpa
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,
| | - Kanya Suphapeetiporn
- Department of Pediatrics, Center of Excellence for Medical Genomics, Medical Genomics Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
8
|
Yousefi K, Irion CI, Takeuchi LM, Ding W, Lambert G, Eisenberg T, Sukkar S, Granzier HL, Methawasin M, Lee DI, Hahn VS, Kass DA, Hatzistergos KE, Hare JM, Webster KA, Shehadeh LA. Osteopontin Promotes Left Ventricular Diastolic Dysfunction Through a Mitochondrial Pathway. J Am Coll Cardiol 2020; 73:2705-2718. [PMID: 31146816 DOI: 10.1016/j.jacc.2019.02.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) and coincident heart failure with preserved ejection fraction (HFpEF) may constitute a distinct HFpEF phenotype. Osteopontin (OPN) is a biomarker of HFpEF and predictive of disease outcome. We recently reported that OPN blockade reversed hypertension, mitochondrial dysfunction, and kidney failure in Col4a3-/- mice, a model of human Alport syndrome. OBJECTIVES The purpose of this study was to identify potential OPN targets in biopsies of HF patients, healthy control subjects, and human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs), and to characterize the cardiac phenotype of Col4a3-/- mice, relate this to HFpEF, and investigate possible causative roles for OPN in driving the cardiomyopathy. METHODS OGDHL mRNA and protein were quantified in myocardial samples from patients with HFpEF, heart failure with reduced ejection fraction, and donor control subjects. OGDHL expression was quantified in hiPS-CMs treated with or without anti-OPN antibody. Cardiac parameters were evaluated in Col4a3-/- mice with and without global OPN knockout or AAV9-mediated delivery of 2-oxoglutarate dehydrogenase-like (Ogdhl) to the heart. RESULTS OGDHL mRNA and protein displayed abnormal abundances in cardiac biopsies of HFpEF (n = 17) compared with donor control subjects (n = 12; p < 0.01) or heart failure with reduced ejection fraction patients (n = 12; p < 0.05). Blockade of OPN in hiPS-CMs conferred increased OGDHL expression. Col4a3-/- mice demonstrated cardiomyopathy with similarities to HFpEF, including diastolic dysfunction, cardiac hypertrophy and fibrosis, pulmonary edema, and impaired mitochondrial function. The cardiomyopathy was ameliorated by Opn-/- coincident with improved renal function and increased expression of Ogdhl. Heart-specific overexpression of Ogdhl in Col4a3-/- mice also improved cardiac function and cardiomyocyte energy state. CONCLUSIONS Col4a3-/- mice present a model of HFpEF secondary to CKD wherein OPN and OGDHL are intermediates, and possibly therapeutic targets.
Collapse
Affiliation(s)
- Keyvan Yousefi
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida; Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Camila I Irion
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida; Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Lauro M Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Wen Ding
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida; Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Guerline Lambert
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida; Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Trevor Eisenberg
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Sarah Sukkar
- Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Henk L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Dong I Lee
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Virginia S Hahn
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - David A Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Konstantinos E Hatzistergos
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida; Department of Cell Biology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida; Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Keith A Webster
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida; Vascular Biology Institute and Peggy and Harold Katz Family Drug Discovery Center, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Lina A Shehadeh
- Interdisciplinary Stem Cell Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida; Department of Medicine, Division of Cardiology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida; Vascular Biology Institute and Peggy and Harold Katz Family Drug Discovery Center, University of Miami Leonard M. Miller School of Medicine, Miami, Florida.
| |
Collapse
|
9
|
Kuure S, Sariola H. Mouse Models of Congenital Kidney Anomalies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:109-136. [PMID: 32304071 DOI: 10.1007/978-981-15-2389-2_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are common birth defects, which cause the majority of chronic kidney diseases in children. CAKUT covers a wide range of malformations that derive from deficiencies in embryonic kidney and lower urinary tract development, including renal aplasia, hypodysplasia, hypoplasia, ectopia, and different forms of ureter abnormalities. The majority of the genetic causes of CAKUT remain unknown. Research on mutant mice has identified multiple genes that critically regulate renal differentiation. The data generated from this research have served as an excellent resource to identify the genetic bases of human kidney defects and have led to significantly improved diagnostics. Furthermore, genetic data from human CAKUT studies have also revealed novel genes regulating kidney differentiation.
Collapse
Affiliation(s)
- Satu Kuure
- GM-Unit, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland. .,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| | - Hannu Sariola
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Paediatric Pathology, HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
10
|
Falcone S, Wisby L, Nicol T, Blease A, Starbuck B, Parker A, Sanderson J, Brown SDM, Scudamore CL, Pusey CD, Tam FWK, Potter PK. Modification of an aggressive model of Alport Syndrome reveals early differences in disease pathogenesis due to genetic background. Sci Rep 2019; 9:20398. [PMID: 31892712 PMCID: PMC6938516 DOI: 10.1038/s41598-019-56837-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
The link between mutations in collagen genes and the development of Alport Syndrome has been clearly established and a number of animal models, including knock-out mouse lines, have been developed that mirror disease observed in patients. However, it is clear from both patients and animal models that the progression of disease can vary greatly and can be modified genetically. We have identified a point mutation in Col4a4 in mice where disease is modified by strain background, providing further evidence of the genetic modification of disease symptoms. Our results indicate that C57BL/6J is a protective background and postpones end stage renal failure from 7 weeks, as seen on a C3H background, to several months. We have identified early differences in disease progression, including expression of podocyte-specific genes and podocyte morphology. In C57BL/6J mice podocyte effacement is delayed, prolonging normal renal function. The slower disease progression has allowed us to begin dissecting the pathogenesis of murine Alport Syndrome in detail. We find that there is evidence of differential gene expression during disease on the two genetic backgrounds, and that disease diverges by 4 weeks of age. We also show that an inflammatory response with increasing MCP-1 and KIM-1 levels precedes loss of renal function.
Collapse
Affiliation(s)
- Sara Falcone
- Mammalian Genetics Unit, Medical Research Council, Harwell science and innovation campus, Oxford, OX11 0RD, UK
| | - Laura Wisby
- Mammalian Genetics Unit, Medical Research Council, Harwell science and innovation campus, Oxford, OX11 0RD, UK
| | - Thomas Nicol
- Mammalian Genetics Unit, Medical Research Council, Harwell science and innovation campus, Oxford, OX11 0RD, UK
| | - Andrew Blease
- Mammalian Genetics Unit, Medical Research Council, Harwell science and innovation campus, Oxford, OX11 0RD, UK
| | - Becky Starbuck
- Mammalian Genetics Unit, Medical Research Council, Harwell science and innovation campus, Oxford, OX11 0RD, UK
| | - Andrew Parker
- Mammalian Genetics Unit, Medical Research Council, Harwell science and innovation campus, Oxford, OX11 0RD, UK
| | - Jeremy Sanderson
- Mammalian Genetics Unit, Medical Research Council, Harwell science and innovation campus, Oxford, OX11 0RD, UK
| | - Steve D M Brown
- Mammalian Genetics Unit, Medical Research Council, Harwell science and innovation campus, Oxford, OX11 0RD, UK
| | - Cheryl L Scudamore
- Mary Lyon Centre, Medical Research Council, Harwell science and innovation campus, Oxford, OX11 0RD, UK
| | - Charles D Pusey
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College, London, W12 0N, UK
| | - Frederick W K Tam
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College, London, W12 0N, UK
| | - Paul K Potter
- Renal and Vascular Inflammation Section, Department of Medicine, Imperial College, London, W12 0N, UK.
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK.
| |
Collapse
|
11
|
Neuburg S, Dussold C, Gerber C, Wang X, Francis C, Qi L, David V, Wolf M, Martin A. Genetic background influences cardiac phenotype in murine chronic kidney disease. Nephrol Dial Transplant 2019; 33:1129-1137. [PMID: 29309658 DOI: 10.1093/ndt/gfx332] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/03/2017] [Indexed: 01/01/2023] Open
Abstract
Background Levels of fibroblast growth factor 23 (FGF23) increase early in chronic kidney disease (CKD) and are independently associated with left ventricular hypertrophy (LVH), heart failure and death. Experimental models of CKD with elevated FGF23 and LVH are needed. We hypothesized that slow rates of CKD progression in the Col4a3 knockout (Col4a3KO) mouse model of CKD would promote development of LVH by prolonging exposure to elevated FGF23. Methods We studied congenic Col4a3KO and wild-type (WT) mice with either 75% 129X1/SvJ (129Sv) or 94% C57Bl6/J (B6) genomes. Results B6-Col4a3KO lived longer than 129Sv-Col4a3KO mice (21.4 ± 0.6 versus 11.4 ± 0.4 weeks; P < 0.05). 10-week-old 129Sv-Col4a3KO mice showed impaired renal function (blood urea nitrogen 191 ± 39 versus 34 ± 4 mg/dL), hyperphosphatemia (14.1 ± 1.4 versus 6.8 ± 0.3 mg/dL) and 33-fold higher serum FGF23 levels (P < 0.05 versus WT for each). Consistent with their slower CKD progression, 10 week-old B6-Col4a3KO mice showed milder impairment of renal function than 129Sv-Col4a3KO mice and modest FGF23 elevation without other alterations of mineral metabolism. At 20 weeks, further declines in renal function in B6-Col4a3KO mice was accompanied by hyperphosphatemia and 8-fold higher FGF23 levels (P < 0.05 versus WT for each). Only the 20-week-old B6-Col4a3KO mice developed LVH (LV mass 125 ± 3 versus 98 ± 6 mg; P < 0.05 versus WT) in association with significantly increased cardiac expression of FGF receptor 4 (FGFR4) messenger RNA and protein and markers of LVH (Atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), beta-myosin heavy chain (β-MHC); P < 0.05 versus WT for each). Conclusions In conclusion, B6-Col4a3KO mice manifest slower CKD progression and longer survival than 129Sv-Col4a3KO mice and can serve as a novel model of cardiorenal disease.
Collapse
Affiliation(s)
- Samantha Neuburg
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Corey Dussold
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Claire Gerber
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xueyan Wang
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Connor Francis
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lixin Qi
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Valentin David
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Aline Martin
- Division of Nephrology and Hypertension, Department of Medicine, Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
12
|
Basement membrane collagens and disease mechanisms. Essays Biochem 2019; 63:297-312. [PMID: 31387942 PMCID: PMC6744580 DOI: 10.1042/ebc20180071] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 12/28/2022]
Abstract
Basement membranes (BMs) are specialised extracellular matrix (ECM) structures and collagens are a key component required for BM function. While collagen IV is the major BM collagen, collagens VI, VII, XV, XVII and XVIII are also present. Mutations in these collagens cause rare multi-systemic diseases but these collagens have also been associated with major common diseases including stroke. Developing treatments for these conditions will require a collective effort to increase our fundamental understanding of the biology of these collagens and the mechanisms by which mutations therein cause disease. Novel insights into pathomolecular disease mechanisms and cellular responses to these mutations has been exploited to develop proof-of-concept treatment strategies in animal models. Combined, these studies have also highlighted the complexity of the disease mechanisms and the need to obtain a more complete understanding of these mechanisms. The identification of pathomolecular mechanisms of collagen mutations shared between different disorders represent an attractive prospect for treatments that may be effective across phenotypically distinct disorders.
Collapse
|
13
|
Funk SD, Bayer RH, Miner JH. Endothelial cell-specific collagen type IV-α 3 expression does not rescue Alport syndrome in Col4a3 -/- mice. Am J Physiol Renal Physiol 2019; 316:F830-F837. [PMID: 30724107 PMCID: PMC6580247 DOI: 10.1152/ajprenal.00556.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 01/15/2023] Open
Abstract
The glomerular basement membrane (GBM) is a critical component of the kidney's blood filtration barrier. Alport syndrome, a hereditary disease leading to kidney failure, is caused by the loss or dysfunction of the GBM's major collagen type IV (COL4) isoform α3α4α5. The constituent COL4 α-chains assemble into heterotrimers in the endoplasmic reticulum before secretion into the extracellular space. If any one of the α3-, α4-, or α5-chains is lost due to mutation of one of the genes, then the entire heterotrimer is lost. Patients with Alport syndrome typically have mutations in the X-linked COL4A5 gene or uncommonly have the autosomal recessive form of the disease due to COL4A3 or COL4A4 mutations. Treatment for Alport syndrome is currently limited to angiotensin-converting enzyme inhibition or angiotensin receptor blockers. Experimental approaches in Alport mice have demonstrated that induced expression of COL4A3, either widely or specifically in podocytes of Col4a3-/- mice, can abrogate disease progression even after establishment of the abnormal GBM. While targeting podocytes in vivo for gene therapy is a significant challenge, the more accessible glomerular endothelium could be amenable for mutant gene repair. In the present study, we expressed COL4A3 in Col4a3-/- Alport mice using an endothelial cell-specific inducible transgenic system, but collagen-α3α4α5(IV) was not detected in the GBM or elsewhere, and the Alport phenotype was not rescued. Our results suggest that endothelial cells do not express the Col4a3/a4/a5 genes and should not be viewed as a target for gene therapy.
Collapse
Affiliation(s)
- Steven D Funk
- Department of Medicine, Division of Nephrology, Washington University School of Medicine , St. Louis, Missouri
| | - Raymond H Bayer
- Department of Medicine, Division of Nephrology, Washington University School of Medicine , St. Louis, Missouri
| | - Jeffrey H Miner
- Department of Medicine, Division of Nephrology, Washington University School of Medicine , St. Louis, Missouri
| |
Collapse
|
14
|
Ding W, Yousefi K, Goncalves S, Goldstein BJ, Sabater AL, Kloosterboer A, Ritter P, Lambert G, Mendez AJ, Shehadeh LA. Osteopontin deficiency ameliorates Alport pathology by preventing tubular metabolic deficits. JCI Insight 2018; 3:94818. [PMID: 29563333 PMCID: PMC5926939 DOI: 10.1172/jci.insight.94818] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 02/09/2018] [Indexed: 12/31/2022] Open
Abstract
Alport syndrome is a rare hereditary renal disorder with no etiologic therapy. We found that osteopontin (OPN) is highly expressed in the renal tubules of the Alport mouse and plays a causative pathological role. OPN genetic deletion ameliorated albuminuria, hypertension, tubulointerstitial proliferation, renal apoptosis, and hearing and visual deficits in the Alport mouse. In Alport renal tubules we found extensive cholesterol accumulation and increased protein expression of dynamin-3 (DNM3) and LDL receptor (LDLR) in addition to dysmorphic mitochondria with defective bioenergetics. Increased pathological cholesterol influx was confirmed by a remarkably increased uptake of injected DiI-LDL cholesterol by Alport renal tubules, and by the improved lifespan of the Alport mice when crossed with the Ldlr-/- mice with defective cholesterol influx. Moreover, OPN-deficient Alport mice demonstrated significant reduction of DNM3 and LDLR expression. In human renal epithelial cells, overexpressing DNM3 resulted in elevated LDLR protein expression and defective mitochondrial respiration. Our results suggest a potentially new pathway in Alport pathology where tubular OPN causes DNM3- and LDLR-mediated enhanced cholesterol influx and impaired mitochondrial respiration.
Collapse
Affiliation(s)
- Wen Ding
- Department of Molecular and Cellular Pharmacology
- Interdisciplinary Stem Cell Institute
| | - Keyvan Yousefi
- Department of Molecular and Cellular Pharmacology
- Interdisciplinary Stem Cell Institute
| | | | | | | | | | | | | | | | - Lina A. Shehadeh
- Interdisciplinary Stem Cell Institute
- Department of Medicine, Division of Cardiology
- Vascular Biology Institute, and
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami Leonard M. Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
15
|
Nakagawa N, Barron L, Gomez IG, Johnson BG, Roach AM, Kameoka S, Jack RM, Lupher ML, Gharib SA, Duffield JS. Pentraxin-2 suppresses c-Jun/AP-1 signaling to inhibit progressive fibrotic disease. JCI Insight 2016; 1:e87446. [PMID: 27942582 DOI: 10.1172/jci.insight.87446] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Pentraxin-2 (PTX-2), also known as serum amyloid P component (SAP/APCS), is a constitutive, antiinflammatory, innate immune plasma protein whose circulating level is decreased in chronic human fibrotic diseases. Here we show that recombinant human PTX-2 (rhPTX-2) retards progression of chronic kidney disease in Col4a3 mutant mice with Alport syndrome, reducing blood markers of kidney failure, enhancing lifespan by 20%, and improving histological signs of disease. Exogenously delivered rhPTX-2 was detected in macrophages but also in tubular epithelial cells, where it counteracted macrophage activation and was cytoprotective for the epithelium. Computational analysis of genes regulated by rhPTX-2 identified the transcriptional regulator c-Jun along with its activator protein-1 (AP-1) binding partners as a central target for the function of rhPTX-2. Accordingly, PTX-2 attenuates c-Jun and AP-1 activity, and reduces expression of AP-1-dependent inflammatory genes in both monocytes and epithelium. Our studies therefore identify rhPTX-2 as a potential therapy for chronic fibrotic disease of the kidney and an important inhibitor of pathological c-Jun signaling in this setting.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Division of Nephrology, Departments of Medicine and Pathology, and.,Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Luke Barron
- Research and Development, Biogen, Cambridge, Massachusetts, USA
| | - Ivan G Gomez
- Division of Nephrology, Departments of Medicine and Pathology, and.,Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Research and Development, Biogen, Cambridge, Massachusetts, USA
| | - Bryce G Johnson
- Division of Nephrology, Departments of Medicine and Pathology, and.,Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Research and Development, Biogen, Cambridge, Massachusetts, USA
| | - Allie M Roach
- Division of Nephrology, Departments of Medicine and Pathology, and.,Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Research and Development, Biogen, Cambridge, Massachusetts, USA
| | - Sei Kameoka
- Research and Development, Biogen, Cambridge, Massachusetts, USA
| | | | | | - Sina A Gharib
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Computational Medicine Core.,Divsion of Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington, USA
| | - Jeremy S Duffield
- Division of Nephrology, Departments of Medicine and Pathology, and.,Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA.,Research and Development, Biogen, Cambridge, Massachusetts, USA
| |
Collapse
|
16
|
COL4A6 is dispensable for autosomal recessive Alport syndrome. Sci Rep 2016; 6:29450. [PMID: 27377778 PMCID: PMC4932521 DOI: 10.1038/srep29450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/17/2016] [Indexed: 01/27/2023] Open
Abstract
Alport syndrome is caused by mutations in the genes encoding α3, α4, or α5 (IV) chains. Unlike X-linked Alport mice, α5 and α6 (IV) chains are detected in the glomerular basement membrane of autosomal recessive Alport mice, however, the significance of this finding remains to be investigated. We therefore generated mice lacking both α3 and α6 (IV) chains and compared their renal function and survival with Col4a3 knockout mice of 129 × 1/Sv background. No significant difference was observed in the renal function or survival of the two groups, or when the mice were backcrossed once to C57BL/6 background. However, the survival of backcrossed double knockout mice was significantly longer than that of the mice of 129 × 1/Sv background, which suggests that other modifier genes were involved in this phenomenon. In further studies we identified two Alport patients who had a homozygous mutation in intron 46 of COL4A4. The α5 and α6 (IV) chains were focally detected in the glomerular basement membrane of these patients. These findings indicate that although α5 and α6 (IV) chains are induced in the glomerular basement membrane in autosomal recessive Alport syndrome, their induction does not seem to play a major compensatory role.
Collapse
|
17
|
Uchio-Yamada K, Monobe Y, Akagi KI, Yamamoto Y, Ogura A, Manabe N. Tensin2-deficient mice on FVB/N background develop severe glomerular disease. J Vet Med Sci 2016; 78:811-8. [PMID: 26854109 PMCID: PMC4905836 DOI: 10.1292/jvms.15-0442] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Tensin2 (Tns2) is an essential component for the maintenance of glomerular basement
membrane (GBM) structures. Tns2-deficient mice were previously shown to
develop mild glomerular injury on a DBA/2 background, but not on a C57BL/6J or a 129/SvJ
background, suggesting that glomerular injury by the deletion of Tns2 was
strongly dependent on the genetic background. To further understand the mechanisms for the
onset and the progression of glomerular injury by the deletion of Tns2,
we generated Tns2-deficient mice on an FVB/N (FVB) strain, which is
highly sensitive to glomerular disease. Tns2-deficient mice on FVB
(FVBGN) developed severe nephrotic syndrome, and female FVBGN mice died within 8 weeks.
Ultrastructural analysis revealed that FVBGN mice exhibited severe glomerular defects with
mesangial process invasion of glomerular capillary tufts, lamination and thickening of the
GBM and subsequent podocyte foot process effacement soon after birth. Aberrant laminin
components containing α1, α2 and β1 chains, which are normally expressed in the mesangium,
accumulated in the GBM of FVBGN, suggesting that these components originated from
mesangial cells that invaded glomerular capillary tufts. Compared to
Tns2-deficient mice on the other backgrounds in previous reports, FVBGN
mice developed earlier onset of glomerular defects and rapid progression of renal failure.
Thus, this study further extended our understanding of the possible genetic background
effect on the deterioration of nephrotic syndrome by Tns2 deficiency.
Collapse
Affiliation(s)
- Kozue Uchio-Yamada
- Laboratory of Animal Models for Human Diseases, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 567-0085, Japan
| | | | | | | | | | | |
Collapse
|
18
|
New LA, Martin CE, Scott RP, Platt MJ, Keyvani Chahi A, Stringer CD, Lu P, Samborska B, Eremina V, Takano T, Simpson JA, Quaggin SE, Jones N. Nephrin Tyrosine Phosphorylation Is Required to Stabilize and Restore Podocyte Foot Process Architecture. J Am Soc Nephrol 2016; 27:2422-35. [PMID: 26802179 DOI: 10.1681/asn.2015091048] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/17/2015] [Indexed: 11/03/2022] Open
Abstract
Podocytes are specialized epithelial cells of the kidney blood filtration barrier that contribute to permselectivity via a series of interdigitating actin-rich foot processes. Positioned between adjacent projections is a unique cell junction known as the slit diaphragm, which is physically connected to the actin cytoskeleton via the transmembrane protein nephrin. Evidence indicates that tyrosine phosphorylation of the intracellular tail of nephrin initiates signaling events, including recruitment of cytoplasmic adaptor proteins Nck1 and Nck2 that regulate actin cytoskeletal dynamics. Nephrin tyrosine phosphorylation is altered in human and experimental renal diseases characterized by pathologic foot process remodeling, prompting the hypothesis that phosphonephrin signaling directly influences podocyte morphology. To explore this possibility, we generated and analyzed knockin mice with mutations that disrupt nephrin tyrosine phosphorylation and Nck1/2 binding (nephrin(Y3F/Y3F) mice). Homozygous nephrin(Y3F/Y3F) mice developed progressive proteinuria accompanied by structural changes in the filtration barrier, including podocyte foot process effacement, irregular thickening of the glomerular basement membrane, and dilated capillary loops, with a similar but later onset phenotype in heterozygous animals. Furthermore, compared with wild-type mice, nephrin(Y3F/Y3F) mice displayed delayed recovery in podocyte injury models. Profiling of nephrin tyrosine phosphorylation dynamics in wild-type mice subjected to podocyte injury indicated site-specific differences in phosphorylation at baseline, injury, and recovery, which correlated with loss of nephrin-Nck1/2 association during foot process effacement. Our results define an essential requirement for nephrin tyrosine phosphorylation in stabilizing podocyte morphology and suggest a model in which dynamic changes in phosphotyrosine-based signaling confer plasticity to the podocyte actin cytoskeleton.
Collapse
Affiliation(s)
- Laura A New
- Departments of Molecular and Cellular Biology and
| | | | - Rizaldy P Scott
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Feinberg Cardiovascular Research Institute and Division of Nephrology and Hypertension, Northwestern University, Chicago, Illinois; and
| | - Mathew J Platt
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | | | - Peihua Lu
- Departments of Molecular and Cellular Biology and
| | | | - Vera Eremina
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Tomoko Takano
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jeremy A Simpson
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Susan E Quaggin
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Feinberg Cardiovascular Research Institute and Division of Nephrology and Hypertension, Northwestern University, Chicago, Illinois; and
| | - Nina Jones
- Departments of Molecular and Cellular Biology and
| |
Collapse
|
19
|
Borza CM, Chen X, Zent R, Pozzi A. Cell Receptor-Basement Membrane Interactions in Health and Disease: A Kidney-Centric View. CURRENT TOPICS IN MEMBRANES 2015; 76:231-53. [PMID: 26610916 PMCID: PMC4913201 DOI: 10.1016/bs.ctm.2015.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-extracellular matrix (ECM) interactions are essential for tissue development, homeostasis, and response to injury. Basement membranes (BMs) are specialized ECMs that separate epithelial or endothelial cells from stromal components and interact with cells via cellular receptors, including integrins and discoidin domain receptors. Disruption of cell-BM interactions due to either injury or genetic defects in either the ECM components or cellular receptors often lead to irreversible tissue injury and loss of organ function. Animal models that lack specific BM components or receptors either globally or in selective tissues have been used to help with our understanding of the molecular mechanisms whereby cell-BM interactions regulate organ function in physiological and pathological conditions. We review recently published works on animal models that explore how cell-BM interactions regulate kidney homeostasis in both health and disease.
Collapse
Affiliation(s)
- Corina M. Borza
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Xiwu Chen
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, 37232
| | - Roy Zent
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Medicine, Veterans Administration Hospital, Nashville, TN, 37232
| | - Ambra Pozzi
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, 37232
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN, 37232
- Department of Medicine, Veterans Administration Hospital, Nashville, TN, 37232
| |
Collapse
|
20
|
Gomez IG, MacKenna DA, Johnson BG, Kaimal V, Roach AM, Ren S, Nakagawa N, Xin C, Newitt R, Pandya S, Xia TH, Liu X, Borza DB, Grafals M, Shankland SJ, Himmelfarb J, Portilla D, Liu S, Chau BN, Duffield JS. Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest 2014; 125:141-56. [PMID: 25415439 DOI: 10.1172/jci75852] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 10/23/2014] [Indexed: 02/06/2023] Open
Abstract
MicroRNA-21 (miR-21) contributes to the pathogenesis of fibrogenic diseases in multiple organs, including the kidneys, potentially by silencing metabolic pathways that are critical for cellular ATP generation, ROS production, and inflammatory signaling. Here, we developed highly specific oligonucleotides that distribute to the kidney and inhibit miR-21 function when administered subcutaneously and evaluated the therapeutic potential of these anti-miR-21 oligonucleotides in chronic kidney disease. In a murine model of Alport nephropathy, miR-21 silencing did not produce any adverse effects and resulted in substantially milder kidney disease, with minimal albuminuria and dysfunction, compared with vehicle-treated mice. miR-21 silencing dramatically improved survival of Alport mice and reduced histological end points, including glomerulosclerosis, interstitial fibrosis, tubular injury, and inflammation. Anti-miR-21 enhanced PPARα/retinoid X receptor (PPARα/RXR) activity and downstream signaling pathways in glomerular, tubular, and interstitial cells. Moreover, miR-21 silencing enhanced mitochondrial function, which reduced mitochondrial ROS production and thus preserved tubular functions. Inhibition of miR-21 was protective against TGF-β-induced fibrogenesis and inflammation in glomerular and interstitial cells, likely as the result of enhanced PPARα/RXR activity and improved mitochondrial function. Together, these results demonstrate that inhibition of miR-21 represents a potential therapeutic strategy for chronic kidney diseases including Alport nephropathy.
Collapse
|
21
|
Katayama K, Nomura S, Tryggvason K, Ito M. Searching for a treatment for Alport syndrome using mouse models. World J Nephrol 2014; 3:230-236. [PMID: 25374816 PMCID: PMC4220355 DOI: 10.5527/wjn.v3.i4.230] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/15/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Alport syndrome (AS) is a hereditary nephritis caused by mutations in COL4A3, COL4A4 or COL4A5 encoding the type IV collagen α3, α4, and α5 chains, which are major components of the glomerular basement membrane. About 20 years have passed since COL4A3, COL4A4, and COL4A5 were identified and the first Alport mouse model was developed using a knockout approach. The phenotype of Alport mice is similar to that of Alport patients, including characteristic thickening and splitting of the glomerular basement membrane. Alport mice have been widely used to study the pathogenesis of AS and to develop effective therapies. In this review, the newer therapies for AS, such as pharmacological interventions, genetic approaches and stem cell therapies, are discussed. Although some stem cell therapies have been demonstrated to slow the renal disease progression in Alport mice, these therapies demand continual refinement as research advances. In terms of the pharmacological drugs, angiotensin-converting enzyme inhibitors have been shown to be effective in Alport mice. Novel therapies that can provide a better outcome or lead to a cure are still awaited.
Collapse
|
22
|
Armstead SI, Hellmark T, Wieslander J, Zhou XJ, Saxena R, Rajora N. A Case of Alport Syndrome with Posttransplant Antiglomerular Basement Membrane Disease despite Negative Antiglomerular Basement Membrane Antibodies by EIA Treated with Plasmapheresis and Intravenous Immunoglobulin. Case Rep Transplant 2013; 2013:164016. [PMID: 24363950 PMCID: PMC3865643 DOI: 10.1155/2013/164016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 07/17/2013] [Indexed: 11/18/2022] Open
Abstract
Posttransplant antiglomerular basement membrane (anti-GBM) disease occurs in approximately 5% of Alport patients and usually ends in irreversible graft failure. Recent research has focused on characterizing the structure of the anti-GBM alloepitope. Here we present a case of a 22-year-old male with end-stage renal disease secondary to Alport syndrome, with a previously failed renal allograft, who received a second deceased-donor kidney transplant. Six days after transplantation, he developed acute kidney injury. The serum anti-GBM IgG was negative by enzyme immunoassay (EIA). On biopsy, he had crescentic glomerulonephritis with linear GBM fixation of IgG. With further analysis by western blotting, we were able to detect antibodies to an unidentified protein from the basement membrane. This patient was treated with plasmapheresis twice per week and monthly intravenous immunoglobulin (IVIG) for a total of five months. At the end of treatment, these unknown antibodies were no longer detected. His renal function improved, and he has not required dialysis. We conclude that anti-GBM disease in patients with Alport Syndrome may be caused by circulating antibodies to other components of the basement membrane that are undetectable by routine anti-GBM EIA and may respond to treatment with plasmapheresis and IVIG.
Collapse
Affiliation(s)
- Sumiko I. Armstead
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | - Xin J. Zhou
- Department of Pathology, Baylor University Medical Center at Dallas, Dallas, TX 75246, USA
- Renal Path Diagnostics, Pathologists BioMedical Laboratories, Lewisville, TX 75067, USA
| | - Ramesh Saxena
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Nilum Rajora
- Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| |
Collapse
|
23
|
Early B-cell factor 1 is an essential transcription factor for postnatal glomerular maturation. Kidney Int 2013; 85:1091-102. [PMID: 24172684 PMCID: PMC4006322 DOI: 10.1038/ki.2013.433] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 12/19/2022]
Abstract
The coordination of multiple cytokines and transcription factors with their downstream signaling pathways have been shown to be integral to nephron maturation. Here we present a completely novel role for the helix-loop-helix transcription factor Early B cell Factor 1 (Ebf1), originally identified for B cell maturation, for the proper maturation of glomerular cells from mesenchymal progenitors. The expression of Ebf1 was both spatially and temporally regulated within the developing cortex and glomeruli. Using Ebf1-null mice we then identified biochemical, metabolic, and histological abnormalities in renal development that arose in the absence of this transcription factor. In the Ebf1 knockout mice the developed kidneys show thinned cortices and reduced glomerular maturation. The glomeruli showed abnormal vascularization and severely effaced podocytes. The mice exhibited early albuminuria and elevated blood urea nitrogen levels. Moreover, the GFR was reduced over 66 percent and the expression of podocyte-derived VEGF-A was decreased compared to wild type control mice. Thus, Ebf1 has a significant and novel role in glomerular development, podocyte maturation, and the maintenance of kidney integrity and function.
Collapse
|
24
|
Deltas C, Pierides A, Voskarides K. Molecular genetics of familial hematuric diseases. Nephrol Dial Transplant 2013; 28:2946-60. [PMID: 24046192 DOI: 10.1093/ndt/gft253] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The familial hematuric diseases are a genetically heterogeneous group of monogenic conditions, caused by mutations in one of several genes. The major genes involved are the following: (i) the collagen IV genes COL4A3/A4/A5 that are expressed in the glomerular basement membranes (GBM) and are responsible for the most frequent forms of microscopic hematuria, namely Alport syndrome (X-linked or autosomal recessive) and thin basement membrane nephropathy (TBMN). (ii) The FN1 gene, expressed in the glomerulus and responsible for a rare form of glomerulopathy with fibronectin deposits (GFND). (iii) CFHR5 gene, a recently recognized regulator of the complement alternative pathway and mutated in a recently revisited form of inherited C3 glomerulonephritis (C3GN), characterized by isolated C3 deposits in the absence of immune complexes. A hallmark feature of all conditions is the age-dependent penetrance and a broad phenotypic heterogeneity in the sense that subsets of patients progress to added proteinuria or proteinuria and chronic renal failure that may or may not lead to end-stage kidney disease (ESKD) anywhere between the second and seventh decade of life. In addition to other excellent laboratory tools that assist the clinician in reaching the correct diagnosis, the molecular analysis emerges as the gold standard in establishing the diagnosis in many cases of doubt due to equivocal findings that complicate the differential diagnosis. Recent work led to the description of candidate genetic modifiers which confer a variable risk for progressing to chronic renal failure when co-inherited on the background of a primary glomerulopathy. Finally, more families are still waiting to be studied and more genes to be mapped and cloned that are responsible for other forms of heritable hematuric diseases. The study of such genes and their protein products will likely shed more light on the structure and function of the glomerular filtration barrier and other important glomerular components.
Collapse
Affiliation(s)
- Constantinos Deltas
- Molecular Medicine Research Center and Laboratory of Molecular and Medical Genetics, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | | | | |
Collapse
|
25
|
Uchio-Yamada K, Sawada K, Tamura K, Katayama S, Monobe Y, Yamamoto Y, Ogura A, Manabe N. Tenc1-deficient mice develop glomerular disease in a strain-specific manner. Nephron Clin Pract 2013; 123:22-33. [PMID: 23988887 DOI: 10.1159/000354058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/26/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIMS Tenc1 (also known as tensin2) is an integrin-associated focal adhesion molecule that is broadly expressed in mouse tissues including the liver, muscle, heart and kidney. A mouse strain carrying mutated Tenc1, the ICR-derived glomerulonephritis (ICGN) strain, develops severe nephrotic syndrome. METHODS To elucidate the function of Tenc1 in the kidney, Tenc1(ICGN) was introduced into 2 genetic backgrounds, i.e. DBA/2J (D2) and C57BL/6J (B6), strains that are respectively susceptible and resistant to chronic kidney disease. RESULTS Biochemical and histological analysis revealed that homozygous Tenc1(ICGN) mice develop nephrotic syndrome on the D2 background (D2GN) but not on the B6 background (B6GN). Initially, abnormal assembly and maturation of glomerular basement membrane (GBM) were observed, and subsequently effacement of podocyte foot processes was noted in the kidneys of D2GN but not B6GN mice. These defects are likely to be involved in the integrin signaling pathway. CONCLUSION This study suggests that Tenc1 contributes to the maintenance of GBM structures and that the genetic background influences the severity of nephrotic syndrome.
Collapse
Affiliation(s)
- Kozue Uchio-Yamada
- Laboratory of Animal Models for Human Diseases, National Institute of Biomedical Innovation, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Olaru F, Luo W, Wang XP, Ge L, Hertz JM, Kashtan CE, Sado Y, Segal Y, Hudson BG, Borza DB. Quaternary epitopes of α345(IV) collagen initiate Alport post-transplant anti-GBM nephritis. J Am Soc Nephrol 2013; 24:889-95. [PMID: 23620401 DOI: 10.1681/asn.2012100978] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Alport post-transplant nephritis (APTN) is an aggressive form of anti-glomerular basement membrane disease that targets the allograft in transplanted patients with X-linked Alport syndrome. Alloantibodies develop against the NC1 domain of α5(IV) collagen, which occurs in normal kidneys, including renal allografts, forming distinct α345(IV) and α1256(IV) networks. Here, we studied the roles of these networks as antigens inciting alloimmunity and as targets of nephritogenic alloantibodies in APTN. We found that patients with APTN, but not those without nephritis, produce two kinds of alloantibodies against allogeneic collagen IV. Some alloantibodies targeted alloepitopes within α5NC1 monomers, shared by α345NC1 and α1256NC1 hexamers. Other alloantibodies specifically targeted alloepitopes that depended on the quaternary structure of α345NC1 hexamers. In Col4a5-null mice, immunization with native forms of allogeneic collagen IV exclusively elicited antibodies to quaternary α345NC1 alloepitopes, whereas alloimmunogens lacking native quaternary structure elicited antibodies to shared α5NC1 alloepitopes. These results imply that quaternary epitopes within α345NC1 hexamers may initiate alloimmune responses after transplant in X-linked Alport patients. Thus, α345NC1 hexamers are the culprit alloantigen and primary target of all alloantibodies mediating APTN, whereas α1256NC1 hexamers become secondary targets of anti-α5NC1 alloantibodies. Reliable detection of alloantibodies by immunoassays using α345NC1 hexamers may improve outcomes by facilitating early, accurate diagnosis.
Collapse
Affiliation(s)
- Florina Olaru
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Olaru F, Wang XP, Luo W, Ge L, Miner JH, Kleinau S, Geiger XJ, Wasiluk A, Heidet L, Kitching AR, Borza DB. Proteolysis breaks tolerance toward intact α345(IV) collagen, eliciting novel anti-glomerular basement membrane autoantibodies specific for α345NC1 hexamers. THE JOURNAL OF IMMUNOLOGY 2013; 190:1424-32. [PMID: 23303673 DOI: 10.4049/jimmunol.1202204] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Goodpasture disease is an autoimmune kidney disease mediated by autoantibodies against noncollagenous domain 1 (NC1) monomers of α3(IV) collagen that bind to the glomerular basement membrane (GBM), usually causing rapidly progressive glomerulonephritis (GN). We identified a novel type of human IgG4-restricted anti-GBM autoantibodies associated with mild nonprogressive GN, which specifically targeted α345NC1 hexamers but not α3NC1 monomers. The mechanisms eliciting these anti-GBM autoantibodies were investigated in mouse models recapitulating this phenotype. Wild-type and FcγRIIB(-/-) mice immunized with autologous murine GBM NC1 hexamers produced mouse IgG1-restricted autoantibodies specific for α345NC1 hexamers, which bound to the GBM in vivo but did not cause GN. In these mice, intact collagen IV from murine GBM was not immunogenic. However, in Col4a3(-/-) Alport mice, both intact collagen IV and NC1 hexamers from murine GBM elicited IgG Abs specific for α345NC1 hexamers, which were not subclass restricted. As heterologous Ag in COL4A3-humanized mice, murine GBM NC1 hexamers elicited mouse IgG1, IgG2a, and IgG2b autoantibodies specific for α345NC1 hexamers and induced anti-GBM Ab GN. These findings indicate that tolerance toward autologous intact α345(IV) collagen is established in hosts expressing this Ag, even though autoreactive B cells specific for α345NC1 hexamers are not purged from their repertoire. Proteolysis selectively breaches this tolerance by generating autoimmunogenic α345NC1 hexamers. This provides a mechanism eliciting autoantibodies specific for α345NC1 hexamers, which are restricted to noninflammatory IgG subclasses and are nonnephritogenic. In Alport syndrome, lack of tolerance toward α345(IV) collagen promotes production of alloantibodies to α345NC1 hexamers, including proinflammatory IgG subclasses that mediate posttransplant anti-GBM nephritis.
Collapse
Affiliation(s)
- Florina Olaru
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Glomerular pathology in Alport syndrome: a molecular perspective. Pediatr Nephrol 2012; 27:885-90. [PMID: 21455721 PMCID: PMC3484979 DOI: 10.1007/s00467-011-1868-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 01/28/2023]
Abstract
We have known for some time that mutations in the genes encoding 3 of the 6 type IV collagen chains are the underlying defect responsible for both X-linked (where the COL4A5 gene is involved) and autosomal (where either COL4A3 or COL4A4 genes are involved) Alport syndrome. The result of these mutations is the absence of the sub-epithelial network of all three chains in the glomerular basement membrane (GBM), resulting, at maturity, in a type IV collagen GBM network comprising only α1(IV) and α2(IV) chains. The altered GBM functions adequately in early life. Eventually, there is onset of proteinuria associated with the classic and progressive irregular thickening, thinning, and splitting of the GBM, which culminates in end-stage renal failure. We have learned much about the molecular events associated with disease onset and progression through the study of animal models for Alport syndrome, and have identified some potential therapeutic approaches that may serve to delay the onset or slow the progression of the disease. This review focuses on where we are in our understanding of the disease, where we need to go to understand the molecular triggers that set the process in motion, and what emergent therapeutic approaches show promise for ameliorating disease progression in the clinic.
Collapse
|
29
|
Abstract
Much attention recently has been focused on stem cell technology as a possible alternative modality of treatment of a variety of diseases. Chronic kidney disease is a serious health problem and most chronic kidney diseases share in common the presence of interstitial and glomerular fibrosis, regardless of the underlying cause. To date there are no specific therapies aimed at treating fibrosis in the kidney. In a novel effort to address the underlying pathology in kidney disease, researchers are demonstrating that stem cell therapy can attenuate fibrosis in chronic kidney disease in animal models. This review will focus on the recent developments in stem cell research and their possible implications to treat chronic kidney disease.
Collapse
|
30
|
Boucher I, Yu W, Beaudry S, Negoro H, Tran M, Pollak M, Henderson J, Denker BM. Gα12 activation in podocytes leads to cumulative changes in glomerular collagen expression, proteinuria and glomerulosclerosis. J Transl Med 2012; 92:662-75. [PMID: 22249312 PMCID: PMC3338890 DOI: 10.1038/labinvest.2011.198] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Glomerulosclerosis is a common pathological finding that often progresses to renal failure. The mechanisms of chronic kidney disease progression are not well defined, but may include activation of numerous vasoactive and inflammatory pathways. We hypothesized that podocytes are susceptible to filtered plasma components, including hormones and growth factors that stimulate signaling pathways leading to glomerulosclerosis. Gα12 couples to numerous G-protein-coupled receptors (GPCRs) and regulates multiple epithelial responses, including proliferation, apoptosis, permeability and the actin cytoskeleton. Herein, we report that genetic activation of Gα12 in podocytes leads to time-dependent increases in proteinuria and glomerulosclerosis. To mimic activation of Gα12 pathways, constitutively active Gα12 (QL) was conditionally expressed in podocytes using Nphs2-Cre and LacZ/floxed QLα12 transgenic mice. Some QLα12(LacZ+/Cre+) mice developed proteinuria at 4-6 months, and most were proteinuric by 12 months. Proteinuria increased with age, and by 12-14 months, many demonstrated glomerulosclerosis with ultrastructural changes, including foot process fusion and both mesangial and subendothelial deposits. QLα12(LacZ+/Cre+) mice showed no changes in podocyte number, apoptosis, proliferation or Rho/Src activation. Real-time PCR revealed no significant changes in Nphs1, Nphs2, Cd2ap or Trpc6 expression, but Col4a2 message was increased in younger and older mice, while Col4a5 was decreased in older mice. Confocal microscopy revealed disordered collagen IVα1/2 staining in older mice and loss of α5 without changes in other collagen IV subunits. Taken together, these studies suggest that Gα12 activation promotes glomerular injury without podocyte depletion through a novel mechanism regulating collagen (α)IV expression, and supports the notion that glomerular damage may accrue through persistent GPCR activation in podocytes.
Collapse
|
31
|
Zhang JJ, Malekpour M, Luo W, Ge L, Olaru F, Wang XP, Bah M, Sado Y, Heidet L, Kleinau S, Fogo AB, Borza DB. Murine membranous nephropathy: immunization with α3(IV) collagen fragment induces subepithelial immune complexes and FcγR-independent nephrotic syndrome. THE JOURNAL OF IMMUNOLOGY 2012; 188:3268-77. [PMID: 22371398 DOI: 10.4049/jimmunol.1103368] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Membranous nephropathy (MN) is a leading cause of nephrotic syndrome in adults and a significant cause of end-stage renal disease, yet current therapies are nonspecific, toxic, and often ineffective. The development of novel targeted therapies requires a detailed understanding of the pathogenic mechanisms, but progress is hampered by the lack of a robust mouse model of disease. We report that DBA/1 mice as well as congenic FcγRIII(-/-) and FcRγ(-/-) mice immunized with a fragment of α3(IV) collagen developed massive albuminuria and nephrotic syndrome, because of subepithelial deposits of mouse IgG and C3 with corresponding basement membrane reaction and podocyte foot process effacement. The clinical presentation and histopathologic findings were characteristic of MN. Although immunized mice produced genuine anti-α3NC1 autoantibodies that bound to kidney and lung basement membranes, neither crescentic glomerulonephritis nor alveolitis ensued, likely because of the predominance of mouse IgG1 over IgG2a and IgG2b autoantibodies. The ablation of activating IgG Fc receptors did not ameliorate injury, implicating subepithelial deposition of immune complexes and consequent complement activation as a major effector pathway. We have thus established an active model of murine MN. This model, leveraged by the availability of genetically engineered mice and mouse-specific reagents, will be instrumental in studying the pathogenesis of MN and evaluating the efficacy of novel experimental therapies.
Collapse
Affiliation(s)
- Jun-Jun Zhang
- Division of Nephrology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sellers RS. The gene or not the gene--that is the question: understanding the genetically engineered mouse phenotype. Vet Pathol 2011; 49:5-15. [PMID: 21971987 DOI: 10.1177/0300985811421324] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Embryonic stem cells have had a significant impact on understanding gene function and gene interactions through the use of genetically engineered mice. However, the genetic context (ie, mouse strain) in which these modifications in alleles are made may have a considerable effect on the phenotypic changes identified in these mice. In addition, tissue- and time-specific gene expression systems may generate unanticipated outcomes. This article discusses the history of embryonic stem cells, reviews how mouse strain can affect phenotype (using specific examples), and examines some of the caveats of conditional gene expression systems.
Collapse
Affiliation(s)
- R S Sellers
- Department of Pathology, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Bronx, NY 10461, USA.
| |
Collapse
|
33
|
Miner JH. Organogenesis of the kidney glomerulus: focus on the glomerular basement membrane. Organogenesis 2011; 7:75-82. [PMID: 21519194 DOI: 10.4161/org.7.2.15275] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The glomerular basement membrane (GBM) is a crucial component of the kidney's filtration barrier that separates the vasculature from the urinary space. During glomerulogenesis, the GBM is formed from fusion of two distinct basement membranes, one synthesized by the glomerular epithelial cell (podocyte) and the other by the glomerular endothelial cell. The main components of the GBM are laminin-521 (α5β2γ1), collagen α3α4α5(IV), nidogen and the heparan sulfate proteoglycan, agrin. By studying mice lacking specific GBM components, we have shown that during glomerulogenesis, laminin is the only one that is required for GBM integrity and in turn, the GBM is required for completion of glomerulogenesis and glomerular vascularization. In addition, our results from laminin β2-null mice suggest that laminin-521, and thus the GBM, contribute to the establishment and maintenance of the glomerular filtration barrier to plasma albumin. In contrast, mutations that affect GBM collagen IV or agrin do not impair glomerular development or cause immediate leakage of plasma proteins. However, collagen IV mutation, which causes Alport syndrome and ESRD in humans, leads to gradual damage to the GBM that eventually leads to albuminuria and renal failure. These results highlight the importance of the GBM for establishing and maintaining a perfectly functioning, highly selective glomerular filter.
Collapse
Affiliation(s)
- Jeffrey H Miner
- Renal Division,Washington University School of Medicine; St. Louis, MO, USA.
| |
Collapse
|
34
|
Luo W, Wang XP, Kashtan CE, Borza DB. Alport alloantibodies but not Goodpasture autoantibodies induce murine glomerulonephritis: protection by quinary crosslinks locking cryptic α3(IV) collagen autoepitopes in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:3520-8. [PMID: 20709951 PMCID: PMC2951005 DOI: 10.4049/jimmunol.1001152] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The noncollagenous (NC1) domains of alpha3alpha4alpha5(IV) collagen in the glomerular basement membrane (GBM) are targets of Goodpasture autoantibodies or Alport posttransplant nephritis alloantibodies mediating rapidly progressive glomerulonephritis. Because the autoepitopes but not the alloepitopes become cryptic upon assembly of alpha3alpha4alpha5NC1 hexamers, we investigated how the accessibility of B cell epitopes in vivo influences the development of glomerulonephritis in mice passively immunized with human anti-GBM Abs. Alport alloantibodies, which bound to native murine alpha3alpha4alpha5NC1 hexamers in vitro, deposited linearly along the mouse GBM in vivo, eliciting crescentic glomerulonephritis in Fcgr2b(-/-) mice susceptible to Ab-mediated inflammation. Goodpasture autoantibodies, which bound to murine alpha3NC1 monomer and dimer subunits but not to native alpha3alpha4alpha5NC1 hexamers in vitro, neither bound to the mouse GBM in vivo nor induced experimental glomerulonephritis. This was due to quinary NC1 crosslinks, recently identified as sulfilimine bonds, which comprehensively locked the cryptic Goodpasture autoepitopes in the mouse GBM. In contrast, non-crosslinked alpha3NC1 subunits were identified as a native target of Goodpasture autoantibodies in the GBM of squirrel monkeys, a species susceptible to Goodpasture autoantibody-mediated nephritis. Thus, crypticity of B cell autoepitopes in tissues uncouples potentially pathogenic autoantibodies from autoimmune disease. Crosslinking of alpha3alpha4alpha5NC1 hexamers represents a novel mechanism averting autoantibody binding and subsequent tissue injury by posttranslational modifications of an autoantigen.
Collapse
Affiliation(s)
- Wentian Luo
- Department of Medicine (Division of Nephrology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Xu-Ping Wang
- Department of Medicine (Division of Nephrology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Clifford E. Kashtan
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota 55455
| | - Dorin-Bogdan Borza
- Department of Medicine (Division of Nephrology), Vanderbilt University School of Medicine, Nashville, Tennessee 37232
- Department of Pathology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
35
|
Little MH, Rae FK. Review article: Potential cellular therapies for renal disease: can we translate results from animal studies to the human condition? Nephrology (Carlton) 2009. [PMID: 19712255 DOI: 10.1111/j.1440-1797.2009.01144.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The incidence of chronic kidney disease is increasing worldwide, prompting considerable research into potential regenerative therapies. These have included studies to determine whether an endogenous renal stem cell exists in the postnatal kidney and whether non-renal adult stem cells, such as mesenchymal stem cell, can ameliorate renal damage. Such stem cells will either need to be recruited to the damaged kidney to repair the damage in situ or be differentiated into the desired cell type and delivered into the damaged kidney to subsequently elicit repair without maldifferentiation. To date, these studies have largely been performed using experimental and genetic models of renal damage in rodents. The translation of such research into a therapy applicable to human disease faces many challenges. In this review, we examine which animal models have been used to evaluate potential cellular therapies and how valid these are to human chronic kidney disease.
Collapse
Affiliation(s)
- Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| | | |
Collapse
|
36
|
Rheault MN, Kren SM, Hartich LA, Wall M, Thomas W, Mesa HA, Avner P, Lees GE, Kashtan CE, Segal Y. X-inactivation modifies disease severity in female carriers of murine X-linked Alport syndrome. Nephrol Dial Transplant 2009; 25:764-9. [PMID: 19854849 DOI: 10.1093/ndt/gfp551] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Female carriers of X-linked Alport syndrome (XLAS) demonstrate variability in clinical phenotype that, unlike males, cannot be correlated with genotype. X-inactivation, the method by which females (XX) silence transcription from one X chromosome in order to achieve gene dosage parity with males (XY), likely modifies the carrier phenotype, but this hypothesis has not been tested directly. METHODS Using a genetically defined mouse model of XLAS, we generated two groups of Alport female (Col4a5(+/-)) carriers that differed only in the X-controlling element (Xce) allele regulating X-inactivation. We followed the groups as far as 6 months of age comparing survival and surrogate outcome measures of urine protein and plasma urea nitrogen. RESULTS Preferential inactivation of the mutant Col4a5 gene improved survival and surrogate outcome measures of urine protein and plasma urea nitrogen. In studies of surviving mice, we found that X-inactivation in kidney, measured by allele-specific mRNA expression assays, correlated with surrogate outcomes. CONCLUSIONS Our findings establish X-inactivation as a major modifier of the carrier phenotype in X-linked Alport syndrome. Thus, X-inactivation patterns may offer prognostic information and point to possible treatment strategies for symptomatic carriers.
Collapse
Affiliation(s)
- Michelle N Rheault
- Division of Pediatric Nephrology, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Although the normal glomerulus comprises four resident cell types, least is known about the parietal epithelial cells (PECs). This comprehensive review addresses the cellular origin of PECs, discusses the normal structure and protein makeup of PECs, describes PEC function, and defines the responses to injury in disease and how these events lead to clinical events. The data show that PECs have unique properties and that new functions are being recognized such as their role in differentiating into podocytes during disease.
Collapse
|
38
|
LeBleu V, Sugimoto H, Mundel TM, Gerami-Naini B, Finan E, Miller CA, Gattone VH, Lu L, Shield CF, Folkman J, Kalluri R. Stem cell therapies benefit Alport syndrome. J Am Soc Nephrol 2009; 20:2359-70. [PMID: 19833902 DOI: 10.1681/asn.2009010123] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Patients with Alport syndrome progressively lose renal function as a result of defective type IV collagen in their glomerular basement membrane. In mice lacking the alpha3 chain of type IV collagen (Col4A3 knockout mice), a model for Alport syndrome, transplantation of wild-type bone marrow repairs the renal disease. It is unknown whether cell-based therapies that do not require transplantation have similar potential. Here, infusion of wild-type bone marrow-derived cells into unconditioned, nonirradiated Col4A3 knockout mice during the late stage of disease significantly improved renal histology and function. Furthermore, transfusion of unfractionated wild-type blood into unconditioned, nonirradiated Col4A3 knockout mice improved the renal phenotype and significantly improved survival. Injection of mouse and human embryonic stem cells into Col4A3 knockout mice produced similar results. Regardless of treatment modality, the improvement in the architecture of the glomerular basement membrane is associated with de novo expression of the alpha3(IV) chain. These data provide further support for testing cell-based therapies for Alport syndrome.
Collapse
Affiliation(s)
- Valerie LeBleu
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Abstract
In 1990, the role of basement membranes in human disease was established by the identification of COL4A5 mutations in Alport's syndrome. Since then, the number of diseases caused by mutations in basement membrane components has steadily increased as has our understanding of the roles of basement membranes in organ development and function. However, many questions remain as to the molecular and cellular consequences of these mutations and the way in which they lead to the observed disease phenotypes. Despite this, exciting progress has recently been made with potential treatment options for some of these so far incurable diseases.
Collapse
|
41
|
Hentati N, Sellami D, Makni K, Kharrat M, Hachicha J, Hammadi A, Feki J. [Ocular findings in Alport syndrome: 32 case studies]. J Fr Ophtalmol 2009; 31:597-604. [PMID: 18772811 DOI: 10.1016/s0181-5512(08)75461-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alport syndrome is an inherited disease resulting in kidney failure, hearing loss, and ocular abnormalities. The purpose of this study was to describe the incidence and type of ocular abnormalities and to determine inheritance of this syndrome in our population. PATIENTS AND METHODS A total of 32 patients, from ten different families in South Tunisia, underwent a complete ocular examination. Inheritance was determined using pedigrees and genotyping. RESULTS The best corrected visual acuity was 7.6/10. Biomicroscopy showed polymorphous dystrophy in 3%, anterior lenticonus in 28%, lens opacities in 3%, cataract in 19%, and retinal flecks in 37%. The genetic survey found five families with X-linked Alport syndrome, four families with recessive autosomal disease, and one family with dominant autosomal disease. DISCUSSION Ocular abnormalities have been reported in 9%-82% of Alport syndrome patients. They are rare in childhood and increase in frequency and severity with age. The types of ocular defects described mostly involve the lens, the retina and more rarely the cornea. The most common changes are anterior lenticonus and perimacular retinal flecks. In approximately 85%, Alport syndrome is X-linked. In the remaining 15%, the transmission is autosomal recessive and exceptionally autosomal dominant. CONCLUSION Ocular examination is a precious help for Alport syndrome diagnosis. It can also determine the prognosis of nephropathy.
Collapse
Affiliation(s)
- N Hentati
- Service d'Ophtalmologie, CHU Habib Bourguiba, Sfax, Tunisie
| | | | | | | | | | | | | |
Collapse
|
42
|
Gross O, Borza DB, Anders HJ, Licht C, Weber M, Segerer S, Torra R, Gubler MC, Heidet L, Harvey S, Cosgrove D, Lees G, Kashtan C, Gregory M, Savige J, Ding J, Thorner P, Abrahamson DR, Antignac C, Tryggvason K, Hudson B, Miner JH. Stem cell therapy for Alport syndrome: the hope beyond the hype. Nephrol Dial Transplant 2008; 24:731-4. [PMID: 19110486 DOI: 10.1093/ndt/gfn722] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Oliver Gross
- Department of Nephrology and Rheumatology, University Hospital Gottingen, Gottingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Danysh BP, Czymmek KJ, Olurin PT, Sivak JG, Duncan MK. Contributions of mouse genetic background and age on anterior lens capsule thickness. Anat Rec (Hoboken) 2008; 291:1619-27. [PMID: 18951502 PMCID: PMC2699617 DOI: 10.1002/ar.20753] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Accurate lens capsule thickness measurements are necessary for studies investigating mechanical characteristics of the capsule. Confocal Z-axis imaging was used to measure the anterior lens capsule thickness of living intact lenses with minimal tissue manipulation. Measurements of the anterior capsule thickness is reported for the first time in young and old mice from four inbred strains, BALB/c, FVB/N, C57BL/6, and 129X1, and the outbred strain ICR. Our data demonstrates that the mouse anterior lens capsule continues to grow postnatally similar to that described in other mammals. It is also shown there is a significant difference in anterior lens capsule thickness between unrelated mouse strains, suggesting that capsule thickness is a quantitative trait shared by strains with common ancestry. Measurements, taken from other regions of FVB/N capsules revealed the anterior pole to be the thickest, followed by the equatorial region and posterior pole. In addition to mouse, anterior capsule measurements taken from intact cattle, rabbit, rat lenses, and human capsulotomy specimens correlated with the overall size of the animal.
Collapse
MESH Headings
- Aging/physiology
- Animals
- Biological Evolution
- Cattle
- Gene Expression Regulation, Developmental/genetics
- Genotype
- Humans
- Lens Capsule, Crystalline/cytology
- Lens Capsule, Crystalline/growth & development
- Lens, Crystalline/cytology
- Lens, Crystalline/growth & development
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred ICR
- Microscopy, Confocal/methods
- Organogenesis/physiology
- Rabbits
- Rats
- Rats, Sprague-Dawley
- Species Specificity
Collapse
Affiliation(s)
- Brian P. Danysh
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| | - Kirk J. Czymmek
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
- Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711 USA
| | - Pecos T. Olurin
- Roxana Cannon Arsht Surgicenter, Wilmington Hospital, Wilmington, DE 19801 USA
| | - Jacob G. Sivak
- School of Optometry, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada
| | - Melinda K. Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716 USA
| |
Collapse
|
44
|
Increased glomerular matrix metalloproteinase activity in murine lupus nephritis. Kidney Int 2008; 74:1150-8. [DOI: 10.1038/ki.2008.308] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
LeBleu VS, Kalluri R. Stem Cell–Based Therapy for Glomerular Diseases: An Evolving Concept. J Am Soc Nephrol 2008; 19:1621-3. [DOI: 10.1681/asn.2008070735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
46
|
Xu H, Hu F, Sado Y, Ninomiya Y, Borza DB, Ungvari Z, Lagamma EF, Csiszar A, Nedergaard M, Ballabh P. Maturational changes in laminin, fibronectin, collagen IV, and perlecan in germinal matrix, cortex, and white matter and effect of betamethasone. J Neurosci Res 2008; 86:1482-500. [PMID: 18214989 DOI: 10.1002/jnr.21618] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Germinal matrix is selectively vulnerable to hemorrhage in premature infants, and use of prenatal betamethasone is associated with a lower occurrence of germinal matrix hemorrhage. Because the major components of extracellular matrix of the cerebral vasculature-laminin, fibronectin, collagen IV, and perlecan-provide structural stability to blood vessels, we examined whether the expression of these molecules was decreased in the germinal matrix and affected by betamethasone. In both human fetuses and premature infants, fibronectin was significantly lower in the germinal matrix than in the cortical mantle or white matter anlagen. Conversely, laminin alpha1 gene expression was greater in the human germinal matrix compared with the cortical mantle or white matter. Expression of alpha1- and alpha2(IV) collagen chains increased with advancing gestational age. Low-dose prenatal betamethasone treatment enhanced fibronectin level by 1.5-2-fold whereas a high dose reduced fibronectin expression by 2-fold in rabbit pups. Because fibronectin provides structural stability to the blood vessels, its reduced expression in the germinal matrix may contribute to the fragility of germinal matrix vasculature and the propensity to hemorrhage in premature neonates.
Collapse
Affiliation(s)
- Hongmin Xu
- Department of Pediatrics, New York Medical College-Westchester Medical Center, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Katayama K, Kawano M, Naito I, Ishikawa H, Sado Y, Asakawa N, Murata T, Oosugi K, Kiyohara M, Ishikawa E, Ito M, Nomura S. Irradiation prolongs survival of Alport mice. J Am Soc Nephrol 2008; 19:1692-700. [PMID: 18480315 DOI: 10.1681/asn.2007070829] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Alport syndrome is a hereditary nephropathy that results in irreversible, progressive renal failure. Recent reports suggested that bone marrow transplantation (BMT) has a beneficial, short-term effect on renal injury in Alport (Col4a3(-/-)) mice, but its long-term effects, especially with regard to survival, are unknown. In this study, Alport mice received a transplant of either wild-type or Col4a3(-/-) bone marrow cells. Surprising, laboratory evaluations and renal histology demonstrated similar findings in both transplanted groups. Transplanted cells accounted for >10% of glomerular cells at 8 wk, but type IV collagen alpha3 chains were not detected in glomerular basement membranes of either group by immunofluorescence or Western blot analysis, although Col4a3 mRNA in the kidney could be amplified by reverse transcription-PCR in knockout mice that received a transplant of wild-type bone marrow. Both transplanted groups, however, survived approximately 1.5 times longer than untreated knockout mice (log rank P < 0.05). These data suggested that irradiation, which preceded BMT, may have conferred a survival benefit; therefore, the survival time of knockout mice was assessed after sublethal irradiation (3, 6, and 7 Gy) without subsequent BMT. A strong positive correlation between irradiation dosage and survival time was identified (P < 0.0001). In conclusion, the improved survival observed in Alport mice that received a transplant of wild-type bone marrow might be primarily attributed to as-yet-unidentified effects of irradiation.
Collapse
Affiliation(s)
- Kan Katayama
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, 21-153 Noda, Tsu, Mie, 514-0826, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu Y, Peng X, Tan J, Darling DS, Kaplan HJ, Dean DC. Zeb1 mutant mice as a model of posterior corneal dystrophy. Invest Ophthalmol Vis Sci 2008; 49:1843-9. [PMID: 18436818 PMCID: PMC2504018 DOI: 10.1167/iovs.07-0789] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The zinc finger transcription factor Zeb1 binds to E-box-like sequences and is important for maintaining repression of epithelial specification genes in vivo. Overexpression of Zeb1 in cancer triggers epithelial-mesenchymal transition, which facilitates metastasis. The mutation of ZEB1 in humans is linked to posterior polymorphous corneal dystrophy (PPCD), in which an epithelial transition of the corneal endothelium is associated with abnormal endothelial proliferation. The purpose of this study is to determine whether Zeb1 null or heterozygous mice may provide an animal model for PPCD. METHODS Corneal morphology, protein and mRNA expression, and cell proliferation were compared in wild-type and Zeb1 gene knockout mice by immunostaining, real-time PCR, and BrdU incorporation. mRNA expression in isolated embryo fibroblasts derived from wild-type, Zeb1 heterozygous, and null mice was analyzed by real-time PCR RESULTS: Zeb1 null mice late in gestation show ectopic expression of epithelial genes in the corneal endothelium and keratocytes, including the basement membrane component COL4A3, which is ectopically expressed by the corneal endothelium in PPCD. These embryos also show abnormal corneal endothelial and keratocyte proliferation, corneal thickening, and corneolenticular and iridocorneal adhesions. Adult Zeb1 heterozygous mice exhibit these same corneal defects. The ectopic expression of epithelial genes extended to embryonic fibroblasts derived from Zeb1 heterozygous and null mice, suggesting that Zeb1 may have a more general role in the suppression of an epithelial phenotype. CONCLUSIONS The authors conclude that Zeb1 heterozygous and null mice show features of PPCD and thus should provide an animal model for genetic dissection of pathways contributing to the disease.
Collapse
MESH Headings
- Animals
- Autoantigens/genetics
- Autoantigens/metabolism
- Bromodeoxyuridine/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Cell Proliferation
- Collagen Type IV/genetics
- Collagen Type IV/metabolism
- Corneal Dystrophies, Hereditary/embryology
- Corneal Dystrophies, Hereditary/genetics
- Corneal Dystrophies, Hereditary/pathology
- Disease Models, Animal
- Endothelium, Corneal/embryology
- Endothelium, Corneal/metabolism
- Endothelium, Corneal/pathology
- Epithelium, Corneal/embryology
- Epithelium, Corneal/metabolism
- Epithelium, Corneal/pathology
- Female
- Fibroblasts/metabolism
- Fluorescent Antibody Technique, Indirect
- Gene Dosage
- Genotype
- Homeodomain Proteins/physiology
- Kruppel-Like Transcription Factors/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation/physiology
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Zinc Finger E-box-Binding Homeobox 1
- Zinc Fingers/physiology
Collapse
Affiliation(s)
- Yongqing Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville KY 40202
- James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville KY 40202
| | - Xiaoyan Peng
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville KY 40202
| | - Jinlian Tan
- Departments of Peiodontics, Endodontics and Dental Hygiene; Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, KY 40292
| | - Douglas S. Darling
- Departments of Peiodontics, Endodontics and Dental Hygiene; Center for Oral Health and Systemic Disease, University of Louisville School of Dentistry, Louisville, KY 40292
| | - Henry J. Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville KY 40202
| | - Douglas C. Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville KY 40202
- James Graham Brown Cancer Center, University of Louisville Health Sciences Center, Louisville KY 40202
| |
Collapse
|
49
|
Kreidberg JA. Integrins and matrix in the glomerulus: old mysteries and new insights. J Am Soc Nephrol 2008; 19:650-1. [PMID: 18322154 DOI: 10.1681/asn.2008020160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
50
|
Cosgrove D, Meehan DT, Delimont D, Pozzi A, Chen X, Rodgers KD, Tempero RM, Zallocchi M, Rao VH. Integrin alpha1beta1 regulates matrix metalloproteinases via P38 mitogen-activated protein kinase in mesangial cells: implications for Alport syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:761-73. [PMID: 18258846 DOI: 10.2353/ajpath.2008.070473] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous work has shown that integrin alpha1-null Alport mice exhibit attenuated glomerular disease with decreased matrix accumulation and live much longer than strain-matched Alport mice. However, the mechanism underlying this observation is unknown. Here we show that glomerular gelatinase expression, specifically matrix metalloproteinase-2 (MMP-2), MMP-9, and MMP-14, was significantly elevated in both integrin alpha1-null mice and integrin alpha1-null Alport mice relative to wild-type mice; however, only MMP-9 was elevated in glomeruli of Alport mice that express integrin alpha1. Similarly, cultured mesangial cells from alpha1-null mice showed elevated expression levels of all three MMPs, whereas mesangial cells from Alport mice show elevated expression levels of only MMP-9. In both glomeruli and cultured mesangial cells isolated from integrin alpha1-null mice, activation of the p38 and ERK branches of the mitogen-activated protein kinase pathway was also observed. The use of small molecule inhibitors demonstrated that the activation of the p38, but not ERK, pathway was linked to elevated MMP-2, -9, and -14 expression levels in mesangial cells from integrin alpha1-null mice. In contrast, elevated MMP-9 levels in mesangial cells from Alport mice were linked to ERK pathway activation. Blockade of gelatinase activity using a small molecule inhibitor (BAY-12-9566) ameliorated progression of proteinuria and restored the architecture of the glomerular basement membrane in alpha1 integrin-null Alport mice, suggesting that elevated gelatinase activity exacerbates glomerular disease progression in these mice.
Collapse
Affiliation(s)
- Dominic Cosgrove
- Boys Town National Research Hospital, 555 No. 30th St., Omaha, NE 68131, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|