1
|
Caparali EB, De Gregorio V, Barua M. Genotype-Based Molecular Mechanisms in Alport Syndrome. J Am Soc Nephrol 2025:00001751-990000000-00551. [PMID: 39899372 DOI: 10.1681/asn.0000000647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/29/2025] [Indexed: 02/05/2025] Open
Abstract
Alport syndrome is an inherited disorder characterized by kidney disease, sensorineural hearing loss, and ocular abnormalities. Alport syndrome is caused by pathogenic variants in COL4A3 , COL4A4 , or COL4A5 , which encode the α 3, α 4, and α 5 chains of type 4 collagen that forms a heterotrimer expressed in the glomerular basement membrane. Knowledge of its genetic basis has informed the development of different models in dogs, mice, and rats that reflect its autosomal and X-linked inheritance patterns as well as different mutation types, including protein-truncating and missense variants. A key difference between these two types is the synthesis of α 3 α 4 α 5(IV), which is not made in autosomal Alport syndrome (two pathogenic variants in trans or biallelic) or male patients with X-linked Alport syndrome due to protein-truncating variants. By contrast, α 3 α 4 α 5(IV) is synthesized in Alport syndrome because of missense variants. For missense variants, in vitro studies suggest that these cause impaired type 4 collagen trafficking and endoplasmic reticulum stress. For protein-truncating variants, knockout models suggest that persistence of an immature α 1 α 1 α 2(IV) network is associated with biomechanical strain, which activates endothelin-A receptors leading to mesangial filopodia formation. Moreover, studies suggest that activation of collagen receptors, integrins and discoidin domain receptor 1, play a role in disease propagation. In this review, we provide an overview of how these genotype-phenotype mechanisms are key for a precision medicine-based approach in the future.
Collapse
Affiliation(s)
- Emine Bilge Caparali
- Department of Internal Medicine, University of Texas Southwestern, Dallas, Texas
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| | | | - Moumita Barua
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Division of Nephrology, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Furusho T, Das R, Hakui H, Sairavi A, Adachi K, Galbraith-Liss MS, Rajagopal P, Horikawa M, Luo S, Li L, Yamada K, Andeen N, Dissen GA, Nakai H. Enhancing gene transfer to renal tubules and podocytes by context-dependent selection of AAV capsids. Nat Commun 2024; 15:10728. [PMID: 39737896 PMCID: PMC11685967 DOI: 10.1038/s41467-024-54475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 11/13/2024] [Indexed: 01/01/2025] Open
Abstract
AAV vectors show promise for gene therapy; however, kidney gene transfer remains challenging. Here we conduct a barcode-seq-based comparison of 47 AAV capsids administered through different routes in mice, followed by individual validation. We find that local delivery of AAV-KP1, but not AAV9, via the renal vein or pelvis effectively transduces proximal tubules with minimal off-target liver transduction, while systemic AAV9, but not AAV-KP1, enhances proximal tubule and podocyte transduction in chronic kidney disease. We demonstrate that these contrasting observations are partly due to differences in their pharmacokinetics. Importantly, we show that renal pelvis injection overcomes pre-existing immunity, leading to robust and exclusive proximal tubule transduction, in non-human primates (NHPs). In addition, we highlight drastic differences in renal transduction profiles between mice and NHPs. Thus, this study provides mechanistic insights and underscores importance of context-dependent selection of AAV capsids to overcome challenges in gene delivery to the kidney.
Collapse
Affiliation(s)
- Taisuke Furusho
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Ranjan Das
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Hideyuki Hakui
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Anusha Sairavi
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Kei Adachi
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Mia S Galbraith-Liss
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Pratheppa Rajagopal
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Masahiro Horikawa
- Dotter Department of Interventional Radiology, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Shuhua Luo
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Lena Li
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Kentaro Yamada
- Dotter Department of Interventional Radiology, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Nicole Andeen
- Department of Pathology, Oregon Health & Science University School of Medicine, Portland, OR, USA
| | - Gregory A Dissen
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
- Molecular Virology Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Hiroyuki Nakai
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, Portland, OR, USA.
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University School of Medicine, Portland, OR, USA.
| |
Collapse
|
3
|
Roye Y, Miller C, Kalejaiye TD, Musah S. A human stem cell-derived model reveals pathologic extracellular matrix remodeling in diabetic podocyte injury. Matrix Biol Plus 2024; 24:100164. [PMID: 39582511 PMCID: PMC11585791 DOI: 10.1016/j.mbplus.2024.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/16/2024] [Accepted: 10/27/2024] [Indexed: 11/26/2024] Open
Abstract
Diabetic nephropathy results from chronic (or uncontrolled) hyperglycemia and is the leading cause of kidney failure. The kidney's glomerular podocytes are highly susceptible to diabetic injury and subsequent non-reversible degeneration. We generated a human induced pluripotent stem (iPS) cell-derived model of diabetic podocytopathy to investigate disease pathogenesis and progression. The model recapitulated hallmarks of podocytopathy that precede proteinuria including retraction of foot processes and podocytopenia (detachment from the extracellular matrix (ECM)). Moreover, hyperglycemia-induced injury to podocytes exacerbated remodeling of the ECM. Specifically, mature podocytes aberrantly increased expression and excessively deposited collagen (IV)α1α1α2 that is normally abundant in the embryonic glomerulus. This collagen (IV) imbalance coincided with dysregulation of lineage-specific proteins, structural abnormalities of the ECM, and podocytopenia - a mechanism not shared with endothelium and is distinct from drug-induced injury. Intriguingly, repopulation of hyperglycemia-injured podocytes on decellularized ECM scaffolds isolated from healthy podocytes attenuated the loss of synaptopodin (a mechanosensitive protein associated with podocyte health). These results demonstrate that human iPS cell-derived podocytes can facilitate in vitro studies to uncover the mechanisms of chronic hyperglycemia and ECM remodeling and guide disease target identification.
Collapse
Affiliation(s)
- Yasmin Roye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Carmen Miller
- Department of Biology, Trinity College of Arts and Sciences, Duke University, Durham NC, USA
| | - Titilola D. Kalejaiye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, USA
- Department of Medicine, Division of Nephrology, Duke University School of Medicine, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC, USA
- Affiliate Faculty of the Developmental and Stem Cell Biology Program, Duke University School of Medicine, Durham, NC, USA
- MEDx Investigator, Duke University, Durham, NC, USA
| |
Collapse
|
4
|
Yuan F, Lerman LO. Targeted therapeutic strategies for the kidney. Expert Opin Ther Targets 2024; 28:979-989. [PMID: 39491501 PMCID: PMC11617265 DOI: 10.1080/14728222.2024.2421756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Kidney diseases impose a significant burden with high incidence and mortality rates. Current treatment options for kidney diseases are limited, necessitating urgent development of novel and effective therapeutic strategies to delay or reverse disease progression. Targeted therapies for the kidney hold promise in significantly enhancing treatment outcomes, offering hope to patients afflicted with renal disorders. AREAS COVERED This review summarized advances in kidney-targeted therapies including genes, peptides and proteins, cell-based, nanoparticles, and localized delivery routes. We also explored the potential clinical applications, prospects, and challenges of targeted therapies for renal disorders. EXPERT OPINION Advances in targeted therapies for renal conditions have enhanced therapeutic outcomes. Clinical application of kidney-targeted therapies is currently limited by renal structure and the scarcity of robust biomarkers. Bridging the gap from basic and pre-clinical research targeting the kidney to achieving clinical translation remains a formidable challenge.
Collapse
Affiliation(s)
- Fei Yuan
- Division of Nephrology and Hypertension, Mayo Clinic; Rochester, MN, USA
- Department of Urology, National Children’s Medical Center, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic; Rochester, MN, USA
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
LeBleu VS, Kanasaki K, Lovisa S, Alge JL, Kim J, Chen Y, Teng Y, Gerami-Naini B, Sugimoto H, Kato N, Revuelta I, Grau N, Sleeman JP, Taduri G, Kizu A, Rafii S, Hochedlinger K, Quaggin SE, Kalluri R. Genetic reprogramming with stem cells regenerates glomerular epithelial podocytes in Alport syndrome. Life Sci Alliance 2024; 7:e202402664. [PMID: 38561223 PMCID: PMC10985218 DOI: 10.26508/lsa.202402664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Glomerular filtration relies on the type IV collagen (ColIV) network of the glomerular basement membrane, namely, in the triple helical molecules containing the α3, α4, and α5 chains of ColIV. Loss of function mutations in the genes encoding these chains (Col4a3, Col4a4, and Col4a5) is associated with the loss of renal function observed in Alport syndrome (AS). Precise understanding of the cellular basis for the patho-mechanism remains unknown and a specific therapy for this disease does not currently exist. Here, we generated a novel allele for the conditional deletion of Col4a3 in different glomerular cell types in mice. We found that podocytes specifically generate α3 chains in the developing glomerular basement membrane, and that its absence is sufficient to impair glomerular filtration as seen in AS. Next, we show that horizontal gene transfer, enhanced by TGFβ1 and using allogenic bone marrow-derived mesenchymal stem cells and induced pluripotent stem cells, rescues Col4a3 expression and revive kidney function in Col4a3-deficient AS mice. Our proof-of-concept study supports that horizontal gene transfer such as cell fusion enables cell-based therapy in Alport syndrome.
Collapse
Affiliation(s)
- Valerie S LeBleu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Northwestern University Feinberg School of Medicine and Kellogg School of Management, Chicago, IL, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Keizo Kanasaki
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Sara Lovisa
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph L Alge
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jiha Kim
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yang Chen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yingqi Teng
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Behzad Gerami-Naini
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Noritoshi Kato
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Ignacio Revuelta
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Nicole Grau
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jonathan P Sleeman
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
- Karlsruhe Institute of Technology (IBCS-BIP), Karlsruhe, Germany
| | - Gangadhar Taduri
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Akane Kizu
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Shahin Rafii
- Department of Genetic Medicine and Ansary Stem Cell Institute, Weill Cornell Medical College, New York, NY, USA
| | - Konrad Hochedlinger
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Boston, MA, USA
| | - Susan E Quaggin
- Northwestern University Feinberg School of Medicine & Feinberg Cardiovascular and Renal Research Institute, Chicago, IL, USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Matrix Biology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Quan S, Zhang J, Zhang L, Li N, Zhu L, Sun X, Xiao J. Versatile triblock peptides mimicking ABC-type heterotrimeric collagen with stabilizing salt bridges. Int J Biol Macromol 2024; 272:132446. [PMID: 38795898 DOI: 10.1016/j.ijbiomac.2024.132446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/25/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Type IV collagen, a principal constituent of basement membranes, consists of six distinct α chains that assemble into both ABC and AAB-type heterotrimers. While collagen-like peptides have been investigated for heterotrimer formation, the construction of ABC-type heterotrimeric collagen mimetic peptides remains a formidable challenge, primarily due to the intricate composition and arrangement of the chains. We have herein for the first time reported the development of a versatile triblock peptide system to mimic ABC-type heterotrimeric collagen stabilized by salt bridges. The triblock peptides A, B, and C incorporate functional natural type IV collagen sequences in the center, along with charged amino acids at their N and C-terminals. By leveraging electrostatic repulsion at these charged termini, the formation of homotrimers is effectively inhibited, while stable ABC-type heterotrimers are generated through the establishment of salt bridges between oppositely charged terminals. Circular dichroism (CD) spectroscopy demonstrated that peptides A, B, and C existed as individual monomers, while they effectively formed stable ABC-type heterotrimers upon being mixed at a molar ratio of 1:1:1. Additionally, fluorescence quenching results indicated that fluorescence-labeled peptides A', B', and C' formed ABC-type heterotrimer, exhibiting comparable thermal stability as determined by CD spectroscopy. Molecular dynamics simulations elucidated the role of salt bridges between arginine and aspartic acid residues at N- and C-terminals in maintaining a unique chain register in the ABC-type heterotrimers. These triblock peptides offer a robust approach for replicating the structural and functional characteristics of type IV collagen, with promising applications in elucidating the biological roles and pathologies associated with heterotrimeric collagen.
Collapse
Affiliation(s)
- Siqi Quan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, China
| | - Jingting Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, China
| | - Lanyue Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, China
| | - Na Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, China
| | - Lijun Zhu
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, China
| | - Xiuxia Sun
- School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, China.
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, China.
| |
Collapse
|
7
|
Zhao Y, Zheng Q, Xie J. Exploration of Gene Therapy for Alport Syndrome. Biomedicines 2024; 12:1159. [PMID: 38927366 PMCID: PMC11200676 DOI: 10.3390/biomedicines12061159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Alport syndrome is a hereditary disease caused by mutations in the genes encoding the alpha 3, alpha 4, and alpha 5 chains of type IV collagen. It is characterized by hematuria, proteinuria, progressive renal dysfunction, hearing loss, and ocular abnormalities. The main network of type IV collagen in the glomerular basement membrane is composed of α3α4α5 heterotrimer. Mutations in these genes can lead to the replacement of this network by an immature network composed of the α1α1α2 heterotrimer. Unfortunately, this immature network is unable to provide normal physical support, resulting in hematuria, proteinuria, and progressive renal dysfunction. Current treatment options for Alport syndrome include angiotensin-converting enzyme inhibitors and angiotensin receptor blockers, which aim to alleviate glomerular filtration pressure, reduce renal injury, and delay the progression of renal dysfunction. However, the effectiveness of these treatments is limited, highlighting the need for novel therapeutic strategies and medications to improve patient outcomes. Gene therapy, which involves the use of genetic material to prevent or treat diseases, holds promise for the treatment of Alport syndrome. This approach may involve the insertion or deletion of whole genes or gene fragments to restore or disrupt gene function or the editing of endogenous genes to correct genetic mutations and restore functional protein synthesis. Recombinant adeno-associated virus (rAAV) vectors have shown significant progress in kidney gene therapy, with several gene therapy drugs based on these vectors reaching clinical application. Despite the challenges posed by the structural characteristics of the kidney, the development of kidney gene therapy using rAAV vectors is making continuous progress. This article provides a review of the current achievements in gene therapy for Alport syndrome and discusses future research directions in this field.
Collapse
Affiliation(s)
- Yafei Zhao
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.Z.); (Q.Z.)
- Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qimin Zheng
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.Z.); (Q.Z.)
- Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingyuan Xie
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Y.Z.); (Q.Z.)
- Institute of Nephrology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
8
|
Koehler S, Hengel FE, Dumoulin B, Damashek L, Holzman LB, Susztak K, Huber TB. The 14th International Podocyte Conference 2023: from podocyte biology to glomerular medicine. Kidney Int 2024; 105:935-952. [PMID: 38447880 DOI: 10.1016/j.kint.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 03/08/2024]
Abstract
The 14th International Podocyte Conference took place in Philadelphia, Pennsylvania, USA from May 23 to 26, 2023. It commenced with an early-career researchers' meeting on May 23, providing young scientists with a platform to present and discuss their research findings. Throughout the main conference, 29 speakers across 9 sessions shared their insights on podocyte biology, glomerular medicine, novel technologic advancements, and translational approaches. Additionally, the event featured 3 keynote lectures addressing engineered chimeric antigen receptor T cell- and mRNA-based therapies and the use of biobanks for enhanced disease comprehension. Furthermore, 4 brief oral abstract sessions allowed scientists to present their findings to a broad audience. The program also included a panel discussion addressing the challenges of conducting human research within the American Black community. Remarkably, after a 5-year hiatus from in-person conferences, the 14th International Podocyte Conference successfully convened scientists from around the globe, fostering the presentation and discussion of crucial research findings, as summarized in this review. Furthermore, to ensure continuous and sustainable education, research, translation, and trial medicine related to podocyte and glomerular diseases for the benefit of patients, the International Society of Glomerular Disease was officially launched during the conference.
Collapse
Affiliation(s)
- Sybille Koehler
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Felicitas E Hengel
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Bernhard Dumoulin
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Laurel Damashek
- International Society of Glomerular Disease, Florence, Massachusetts, USA
| | - Lawrence B Holzman
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA; Institute of Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tobias B Huber
- III. Department of Medicine and Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; International Society of Glomerular Disease, Florence, Massachusetts, USA.
| |
Collapse
|
9
|
Tavakolidakhrabadi N, Aulicino F, May CJ, Saleem MA, Berger I, Welsh GI. Genome editing and kidney health. Clin Kidney J 2024; 17:sfae119. [PMID: 38766272 PMCID: PMC11099665 DOI: 10.1093/ckj/sfae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Indexed: 05/22/2024] Open
Abstract
Genome editing technologies, clustered regularly interspaced short palindromic repeats (CRISPR)-Cas in particular, have revolutionized the field of genetic engineering, providing promising avenues for treating various genetic diseases. Chronic kidney disease (CKD), a significant health concern affecting millions of individuals worldwide, can arise from either monogenic or polygenic mutations. With recent advancements in genomic sequencing, valuable insights into disease-causing mutations can be obtained, allowing for the development of new treatments for these genetic disorders. CRISPR-based treatments have emerged as potential therapies, especially for monogenic diseases, offering the ability to correct mutations and eliminate disease phenotypes. Innovations in genome editing have led to enhanced efficiency, specificity and ease of use, surpassing earlier editing tools such as zinc-finger nucleases and transcription activator-like effector nucleases (TALENs). Two prominent advancements in CRISPR-based gene editing are prime editing and base editing. Prime editing allows precise and efficient genome modifications without inducing double-stranded DNA breaks (DSBs), while base editing enables targeted changes to individual nucleotides in both RNA and DNA, promising disease correction in the absence of DSBs. These technologies have the potential to treat genetic kidney diseases through specific correction of disease-causing mutations, such as somatic mutations in PKD1 and PKD2 for polycystic kidney disease; NPHS1, NPHS2 and TRPC6 for focal segmental glomerulosclerosis; COL4A3, COL4A4 and COL4A5 for Alport syndrome; SLC3A1 and SLC7A9 for cystinuria and even VHL for renal cell carcinoma. Apart from editing the DNA sequence, CRISPR-mediated epigenome editing offers a cost-effective method for targeted treatment providing new avenues for therapeutic development, given that epigenetic modifications are associated with the development of various kidney disorders. However, there are challenges to overcome, including developing efficient delivery methods, improving safety and reducing off-target effects. Efforts to improve CRISPR-Cas technologies involve optimizing delivery vectors, employing viral and non-viral approaches and minimizing immunogenicity. With research in animal models providing promising results in rescuing the expression of wild-type podocin in mouse models of nephrotic syndrome and successful clinical trials in the early stages of various disorders, including cancer immunotherapy, there is hope for successful translation of genome editing to kidney diseases.
Collapse
Affiliation(s)
| | - Francesco Aulicino
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, Bristol Royal Hospital for Children
| | - Carl J May
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, UK
| | - Moin A Saleem
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, UK
- Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Bristol, UK
| | - Imre Berger
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Gavin I Welsh
- Bristol Renal, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, UK
| |
Collapse
|
10
|
Mahrous NN, Jamous YF, Almatrafi AM, Fallatah DI, Theyab A, Alanati BH, Alsagaby SA, Alenazi MK, Khan MI, Hawsawi YM. A Current Landscape on Alport Syndrome Cases: Characterization, Therapy and Management Perspectives. Biomedicines 2023; 11:2762. [PMID: 37893135 PMCID: PMC10604007 DOI: 10.3390/biomedicines11102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Alport syndrome (AS) is a rare genetic disorder categorized by the progressive loss of kidney function, sensorineural hearing loss and eye abnormalities. It occurs due to mutations in three genes that encode for the alpha chains of type IV collagen. Globally, the disease is classified based on the pattern of inheritance into X-linked AS (XLAS), which is caused by pathogenic variants in COL4A5, representing 80% of AS. Autosomal recessive AS (ARAS), caused by mutations in either COL4A3 or COL4A4, represents 15% of AS. Autosomal dominant AS (ADAS) is rare and has been recorded in 5% of all cases due to mutations in COL4A3 or COL4A4. This review provides updated knowledge about AS including its clinical and genetic characteristics in addition to available therapies that only slow the progression of the disease. It also focuses on reported cases in Saudi Arabia and their prevalence. Moreover, we shed light on advances in genetic technologies like gene editing using CRISPR/Cas9 technology, the need for an early diagnosis of AS and managing the progression of the disease. Eventually, we provide a few recommendations for disease management, particularly in regions like Saudi Arabia where consanguineous marriages increase the risk.
Collapse
Affiliation(s)
- Nahed N. Mahrous
- Department of Biological Sciences, College of Science, University of Hafr Al-Batin, Hafr Al-Batin 39524, Saudi Arabia;
| | - Yahya F. Jamous
- The National Center of Vaccines and Bioprocessing, King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia;
| | - Ahmad M. Almatrafi
- Department of Biological Sciences, College of Science, Taibah University, Madinah 42353, Saudi Arabia;
| | - Deema I. Fallatah
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Abdulrahman Theyab
- Department of Laboratory and Blood Bank, Security Forces Hospital, Makkah 11481, Saudi Arabia;
- Department of Biochemistry & Molecular Medicine, College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Bayan H. Alanati
- Center for Synthetic Microbiology, Bioinformatics Core Facility, University of Marburg, 35032 Marburg, Germany;
| | - Suliman A. Alsagaby
- Department of Medicinal Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah 11952, Saudi Arabia;
| | - Munifa K. Alenazi
- Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 40047, Jeddah 21499, Saudi Arabia; (M.K.A.); (M.I.K.)
| | - Mohammed I. Khan
- Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 40047, Jeddah 21499, Saudi Arabia; (M.K.A.); (M.I.K.)
| | - Yousef M. Hawsawi
- Department of Biochemistry & Molecular Medicine, College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
- Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 40047, Jeddah 21499, Saudi Arabia; (M.K.A.); (M.I.K.)
| |
Collapse
|
11
|
Peek JL, Wilson MH. Cell and gene therapy for kidney disease. Nat Rev Nephrol 2023:10.1038/s41581-023-00702-3. [PMID: 36973494 DOI: 10.1038/s41581-023-00702-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Kidney disease is a leading cause of morbidity and mortality across the globe. Current interventions for kidney disease include dialysis and renal transplantation, which have limited efficacy or availability and are often associated with complications such as cardiovascular disease and immunosuppression. There is therefore a pressing need for novel therapies for kidney disease. Notably, as many as 30% of kidney disease cases are caused by monogenic disease and are thus potentially amenable to genetic medicine, such as cell and gene therapy. Systemic disease that affects the kidney, such as diabetes and hypertension, might also be targetable by cell and gene therapy. However, although there are now several approved gene and cell therapies for inherited diseases that affect other organs, none targets the kidney. Promising recent advances in cell and gene therapy have been made, including in the kidney research field, suggesting that this form of therapy might represent a potential solution for kidney disease in the future. In this Review, we describe the potential for cell and gene therapy in treating kidney disease, focusing on recent genetic studies, key advances and emerging technologies, and we describe several crucial considerations for renal genetic and cell therapies.
Collapse
Affiliation(s)
- Jennifer L Peek
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Matthew H Wilson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Veterans Affairs, Tennessee Valley Health Services, Nashville, TN, USA.
| |
Collapse
|
12
|
Reiterová J, Tesař V. Current and Future Therapeutical Options in Alport Syndrome. Int J Mol Sci 2023; 24:5522. [PMID: 36982595 PMCID: PMC10056269 DOI: 10.3390/ijms24065522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Alport syndrome (AS) is a hereditary kidney disease caused by pathogenic variants in COL4A3 and COL4A4 genes with autosomal recessive or autosomal dominant transmission or in the COL4A5 gene with X-linked inheritance. Digenic inheritance was also described. Clinically it is associated with microscopic hematuria, followed by proteinuria and chronic renal insufficiency with end-stage renal disease in young adults. Nowadays, there is no curative treatment available. The inhibitors of RAS (renin-angiotensin system) since childhood slow the progression of the disease. Sodium-glucose cotransporter-2 inhibitors seem to be promising drugs from DAPA-CKD (dapagliflozin-chronic kidney disease) study, but only a limited number of patients with Alport syndrome was included. Endothelin type A receptor and angiotensin II type 1 receptor combined inhibitors, and lipid-lowering agents are used in ongoing studies in patients with AS and focal segmental glomerulosclerosis (FSGS). Hydroxychloroquine in AS is studied in a clinical trial in China. Molecular genetic diagnosis of AS is crucial not only for prognosis prediction but also for future therapeutic options. Different types of mutations will require various types of gene, RNA, or protein therapy to improve the function, the of final protein product.
Collapse
Affiliation(s)
- Jana Reiterová
- Department of Nephrology, First Faculty of Medicine, Charles University, General University Hospital in Prague, 128 08 Prague, Czech Republic
- First Faculty of Medicine, Institute of Biology and Medical Genetics, Charles University, General University Hospital in Prague, 128 08 Prague, Czech Republic
| | - Vladimír Tesař
- Department of Nephrology, First Faculty of Medicine, Charles University, General University Hospital in Prague, 128 08 Prague, Czech Republic
| |
Collapse
|
13
|
Gregorio VD, Caparali B, Shojaei A, Ricardo S, Barua M. Alport Syndrome: Clinical Spectrum and Therapeutic Advances. Kidney Med 2023; 5:100631. [PMID: 37122389 PMCID: PMC10131117 DOI: 10.1016/j.xkme.2023.100631] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Alport syndrome is a hereditary disorder characterized by kidney disease, ocular abnormalities, and sensorineural hearing loss. Work in understanding the cause of Alport syndrome and the molecular composition of the glomerular basement membrane ultimately led to the identification of COL4A3, COL4A4 (both on chromosome 2q36), and COL4A5 (chromosome Xq22), encoding the α3, α4, and α5 chains of type IV collagen, as the responsible genes. Subsequent studies suggested that autosomal recessive Alport syndrome and males with X-linked Alport syndrome have more severe disease, whereas autosomal dominant Alport syndrome and females with X-linked Alport syndrome have more variability. Variant type is also influential-protein-truncating variants in autosomal recessive Alport syndrome or males with X-linked Alport syndrome often present with severe symptoms, characterized by kidney failure, extrarenal manifestations, and lack of the α3-α4-α5(IV) network. By contrast, mild-moderate forms from missense variants display α3-α4-α5(IV) in the glomerular basement membrane and are associated with protracted kidney involvement without extrarenal manifestations. Regardless of type, therapeutic intervention for kidney involvement is focused on early initiation of angiotensin-converting enzyme inhibitors. There are several therapies under investigation including sodium/glucose cotransporter 2 inhibitors, aminoglycoside analogs, endothelin type A antagonists, lipid-modifying drugs, and hydroxychloroquine, although targeting the underlying defect through gene therapy remains in preclinical stages.
Collapse
|
14
|
Lausecker F, Koehler S, Fresquet M, Naylor RW, Tian P, Wanner N, Braun F, Butt L, Huber TB, Lennon R. Integrating basic science with translational research: the 13th International Podocyte Conference 2021. Kidney Int 2022; 102:708-719. [PMID: 35964799 PMCID: PMC9386279 DOI: 10.1016/j.kint.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
The 13th International Podocyte Conference was held in Manchester, UK, and online from July 28 to 30, 2021. Originally planned for 2020, this biannual meeting was postponed by a year because of the coronavirus disease 2019 (COVID-19) pandemic and proceeded as an innovative hybrid meeting. In addition to in-person attendance, online registration was offered, and this attracted 490 conference registrations in total. As a Podocyte Conference first, a day for early-career researchers was introduced. This premeeting included talks from graduate students and postdoctoral researchers. It gave early career researchers the opportunity to ask a panel, comprising academic leaders and journal editors, about career pathways and the future for podocyte research. The main meeting over 3 days included a keynote talk and 4 focused sessions each day incorporating invited talks, followed by selected abstract presentations, and an open panel discussion. The conference concluded with a Patient Day, which brought together patients, clinicians, researchers, and industry representatives. The Patient Day was an interactive and diverse day. As well as updates on improving diagnosis and potential new therapies, the Patient Day included a PodoArt competition, exercise and cooking classes with practical nutrition advice, and inspirational stories from patients and family members. This review summarizes the exciting science presented during the 13th International Podocyte Conference and demonstrates the resilience of researchers during a global pandemic.
Collapse
Affiliation(s)
- Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Sybille Koehler
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
15
|
Xiao M, Bohnert BN, Grahammer F, Artunc F. Rodent models to study sodium retention in experimental nephrotic syndrome. Acta Physiol (Oxf) 2022; 235:e13844. [PMID: 35569011 DOI: 10.1111/apha.13844] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022]
Abstract
Sodium retention and edema are hallmarks of nephrotic syndrome (NS). Different experimental rodent models have been established for simulating NS, however, not all of them feature sodium retention which requires proteinuria to exceed a certain threshold. In rats, puromycin aminonucleoside nephrosis (PAN) is a classic NS model introduced in 1955 that was adopted as doxorubicin-induced nephropathy (DIN) in 129S1/SvImJ mice. In recent years, mice with inducible podocin deletion (Nphs2Δipod ) or podocyte apoptosis (POD-ATTAC) have been developed. In these models, sodium retention is thought to be caused by activation of the epithelial sodium channel (ENaC) in the distal nephron through aberrantly filtered serine proteases or proteasuria. Strikingly, rodent NS models follow an identical chronological time course after the development of proteinuria featuring sodium retention within days and spontaneous reversal thereafter. In DIN and Nphs2Δipod mice, inhibition of ENaC by amiloride or urinary serine protease activity by aprotinin prevents sodium retention, opening up new and promising therapeutic approaches that could be translated into the treatment of nephrotic patients. However, the essential serine protease(s) responsible for ENaC activation is (are) still unknown. With the use of nephrotic rodent models, there is the possibility that this (these) will be identified in the future. This review summarizes the various rodent models used to study experimental nephrotic syndrome and the insights gained from these models with regard to the pathophysiology of sodium retention.
Collapse
Affiliation(s)
- Mengyun Xiao
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine University Hospital Tübingen Tübingen Germany
| | - Bernhard N. Bohnert
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| | - Florian Grahammer
- III. Department of Medicine University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Ferruh Artunc
- Division of Endocrinology, Diabetology and Nephrology, Department of Internal Medicine University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| |
Collapse
|
16
|
Chavez E, Rodriguez J, Drexler Y, Fornoni A. Novel Therapies for Alport Syndrome. Front Med (Lausanne) 2022; 9:848389. [PMID: 35547199 PMCID: PMC9081811 DOI: 10.3389/fmed.2022.848389] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Alport syndrome (AS) is a hereditary kidney disease associated with proteinuria, hematuria and progressive kidney failure. It is characterized by a defective glomerular basement membrane caused by mutations in type IV collagen genes COL4A3/A4/A5 which result in defective type IV collagen α3, α4, or α5 chains, respectively. Alport syndrome has three different patterns of inheritance: X-linked, autosomal and digenic. In a study of CKD of unknown etiology type IV collagen gene mutations accounted for the majority of the cases of hereditary glomerulopathies which suggests that AS is often underrecognized. The natural history and prognosis in patients with AS is variable and is determined by genetics and environmental factors. At present, no preventive or curative therapies exist for AS. Current treatment includes the use of renin-angiotensin-aldosterone system inhibitors which slow progression of kidney disease and prolong life expectancy. Ramipril was found in retrospective studies to delay the onset of ESKD and was recently demonstrated to be safe and effective in children and adolescents, supporting that early initiation of Renin Angiotensin Aldosterone System (RAAS) blockade is very important. Mineralocorticoid receptor blockers might be favorable for patients who develop "aldosterone breakthrough." While the DAPA-CKD trial suggests a beneficial effect of SGLT2 inhibitors in CKD of non-metabolic origin, only a handful of patients had Alport in this cohort, and therefore conclusions can't be extrapolated for the treatment of AS with SGLT2 inhibitors. Advances in our understanding on the pathogenesis of Alport syndrome has culminated in the development of innovative therapeutic approaches that are currently under investigation. We will provide a brief overview of novel therapeutic targets to prevent progression of kidney disease in AS. Our review will include bardoxolone methyl, an oral NRf2 activator; lademirsen, an anti-miRNA-21 molecule; sparsentan, dual endothelin type A receptor (ETAR) and angiotensin 1 receptor inhibitor; atrasentan, oral selective ETAR inhibitor; lipid-modifying agents, including cholesterol efflux transporter ATP-binding cassette A1 (ABCA1) inducers, discoidin domain receptor 1 (DDR1) inhibitors and osteopontin blocking agents; the antimalarial drug hydroxychloroquine; the antiglycemic drug metformin and the active vitamin D analog paricalcitol. Future genomic therapeutic strategies such as chaperone therapy, genome editing and stem cell therapy will also be discussed.
Collapse
Affiliation(s)
- Efren Chavez
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juanly Rodriguez
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Yelena Drexler
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States.,Peggy and Harold Katz Family Drug Discovery Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
17
|
Boudko SP, Pokidysheva E, Hudson BG. Prospective collagen IVα345 therapies for Alport syndrome. Curr Opin Nephrol Hypertens 2022; 31:213-220. [PMID: 35283436 PMCID: PMC9159491 DOI: 10.1097/mnh.0000000000000789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW In Alport syndrome, over 1,700 genetic variants in the COL4A3, COL4A4, and COL4A5 genes cause the absence or malfunctioning of the collagen IVα345 scaffold - an essential component of the glomerular basement membrane (GBM). Therapies are limited to treatment with Angiotensin-Converting enzyme (ACE) inhibitors to slow progression of the disease. Here, we review recent progress in therapy development to replace the scaffold or restore its function. RECENT FINDINGS Multiple approaches emerged recently for development of therapies that target different stages of production and assembly of the collagen IVα345 scaffold in the GBM. These approaches are based on (1) recent advances in technologies allowing to decipher pathogenic mechanisms that underlie scaffold assembly and dysfunction, (2) development of DNA editing tools for gene therapy, (3) RNA splicing interference, and (4) control of mRNA translation. SUMMARY There is a growing confidence that these approaches will ultimately provide cure for Alport patients. The development of therapy will be accelerated by studies that provide a deeper understanding of mechanisms that underlie folding, assembly, and function of the collagen IVα345 scaffold.
Collapse
Affiliation(s)
- Sergei P. Boudko
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Elena Pokidysheva
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Billy G. Hudson
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
18
|
Yang YW, Poudel B, Frederick J, Dhillon P, Shrestha R, Ma Z, Wu J, Okamoto K, Kopp JB, Booten SL, Gattis D, Watt AT, Palmer M, Aghajan M, Susztak K. Antisense oligonucleotides ameliorate kidney dysfunction in podocyte specific APOL1 risk variant mice. Mol Ther 2022; 30:2491-2504. [PMID: 35450819 DOI: 10.1016/j.ymthe.2022.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/23/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022] Open
Abstract
Coding variants (named G1 and G2) in Apolipoprotein L1 (APOL1) can explain the most excess risk of kidney disease observed in African Americans. It has been proposed that risk variant APOL1 dose, such as increased risk variant APOL1 level serves as a trigger (second hit) for disease development. The goal of this study was to determine whether lowering risk variant APOL1 levels protects from disease development in podocyte specific transgenic mouse disease model. We administered antisense oligonucleotides (ASO) targeting APOL1 to podocyte specific G2APOL1 mice and observed efficient reduction of APOL1 levels. APOL1 ASO1, which more efficiently lowered APOL1 transcript levels, protected mice from albuminuria, glomerulosclerosis, tubulointerstitial fibrosis, and renal failure. The administration of APOL1 ASO1 was effective even for established disease in the NEFTA-rtTA/TRE-G2APOL1 (NEFTA/G2APOL1) mice. We observed a strong correlation between APOL1 transcript level and disease severity. We concluded that an APOL1 ASO1 may be an effective therapeutic approach for APOL1-associated glomerular disease.
Collapse
Affiliation(s)
- Ya-Wen Yang
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA; Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Bibek Poudel
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Julia Frederick
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Poonam Dhillon
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Rojesh Shrestha
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ziyuan Ma
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Junnan Wu
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Koji Okamoto
- Kidney Disease Section, NIDDK, NIH, Bethesda, MD, USA
| | | | | | | | | | - Matthew Palmer
- Department of Pathology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Katalin Susztak
- Division of Nephrology, Department of Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Cosgrove D, Madison J. Molecular and Cellular Mechanisms Underlying the Initiation and Progression of Alport Glomerular Pathology. Front Med (Lausanne) 2022; 9:846152. [PMID: 35223933 PMCID: PMC8863674 DOI: 10.3389/fmed.2022.846152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
Alport syndrome results from a myriad of variants in the COL4A3, COL4A4, or COL4A5 genes that encode type IV (basement membrane) collagens. Unlike type IV collagen α1(IV)2α2(IV)1 heterotrimers, which are ubiquitous in basement membranes, α3/α4/α5 have a limited tissue distribution. The absence of these basement membrane networks causes pathologies in some, but not all these tissues. Primarily the kidney glomerulus, the stria vascularis of the inner ear, the lens, and the retina as well as a rare link with aortic aneurisms. Defects in the glomerular basement membranes results in delayed onset and progressive focal segmental glomerulosclerosis ultimately requiring the patient to undergo dialysis and if accessible, kidney transplant. The lifespan of patients with Alport syndrome is ultimately significantly shortened. This review addresses the consequences of the altered glomerular basement membrane composition in Alport syndrome with specific emphasis on the mechanisms underlying initiation and progression of glomerular pathology.
Collapse
Affiliation(s)
| | - Jacob Madison
- Boys Town National Research Hospital, Omaha, NE, United States
| |
Collapse
|
20
|
Omachi K, Kai H, Roberge M, Miner JH. Full-length and split-NanoLuc reporters identify pathogenic COL4A5 nonsense mutations susceptible to premature termination codon readthrough. iScience 2022; 25:103891. [PMID: 35243249 PMCID: PMC8866893 DOI: 10.1016/j.isci.2022.103891] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/22/2021] [Accepted: 02/04/2022] [Indexed: 11/02/2022] Open
Abstract
Alport syndrome, a disease of kidney, ear, and eye, is caused by pathogenic variants in the COL4A3, COL4A4, or COL4A5 genes encoding collagen α3α4α5(IV) of basement membranes. Collagen IV chains that are truncated due to nonsense variants/premature termination codons (PTCs) cannot assemble into heterotrimers or incorporate into basement membranes. To investigate the feasibility of PTC readthrough therapy for Alport syndrome, we utilized two NanoLuc reporters in transfected cells: full-length for monitoring translation, and a split version for assessing readthrough product function. Full-length assays of 49 COL4A5 nonsense variants identified eleven as susceptible to PTC readthrough using various readthrough drugs. In split-NanoLuc assays, the predicted missense α5(IV) readthrough products of five nonsense mutations could heterotrimerize with α3(IV) and α4(IV). Readthrough was also observed in kidney cells from an engineered Col4a5 PTC mouse model. These results suggest that readthrough therapy is a feasible approach for a fraction of patients with Alport syndrome. NanoLuc fusion constructs identified COL4A5 mutants susceptible to PTC readthrough Readthrough enhancer and “designer” compounds promoted PTC readthrough Split-NanoLuc fusion constructs identified functional missense readthrough products Cultured Col4a5 nonsense mutant mouse kidney cells were susceptible to readthrough
Collapse
|
21
|
Barral-Juez M, García-Rabaneda C, Poyatos-Andújar AM, Martínez-Atienza M, Morales-García AI, Morales-Santana S, Bellido-Díaz ML, Bravo-Soto JA, Esteban-de la Rosa RJ. Story of two sisters with kidney disease: Genetics command. Nefrologia 2022; 42:99-100. [PMID: 36153905 DOI: 10.1016/j.nefroe.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 06/16/2023] Open
Affiliation(s)
- Mikel Barral-Juez
- Sección de Genética Molecular, Hospital Universitario San Cecilio, Granada, Spain.
| | | | | | | | | | - Sonia Morales-Santana
- Servicio de Proteómica, Instituto de Investigación Biosanitaria, Ibs. Granada, Hospital Universitario San Cecilio, Granada, Spain
| | | | | | | |
Collapse
|
22
|
Mondragón-Huerta CG, Bautista-Pérez R, Baiza-Gutman LA, Escobar-Sánchez ML, Valle-Mondragón LD, Salas-Garrido CG, Castro-Moreno P, Ibarra-Barajas M. Morphology and cyclooxygenase-2 and renin expression in the kidney of young spontaneously hypertensive rats. Vet Pathol 2021; 59:371-384. [PMID: 34841988 DOI: 10.1177/03009858211052663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The kidneys play an important role in blood pressure regulation under normal and pathological conditions. We examined the histological changes and expression patterns of cyclooxygenase-2, renin, and (pro)renin receptor (PRR) in the renal cortex of prehypertensive spontaneously hypertensive rats (SHRs) and Wistar Kyoto rats (WKYs). Moreover, blood pressure and plasma urea, creatinine, angiotensin II, and angiotensin (1-7) levels were measured. The results showed that both strains had similar blood pressure and plasma urea and creatinine levels. The glomerular area, basement membrane thickness, collagen fiber content, and arterial wall thickness were greater in SHRs than in WKYs. By immunohistochemistry, cyclooxygenase-2 was localized in the macula densa and renal tubules of both strains. In SHRs, cyclooxygenase-2 was detected in a larger number of tubules, and the cortical expression of cyclooxygenase-2 was also increased. In both strains, PRR and renin were localized in the tubular epithelium and juxtaglomerular cells, respectively. In SHRs, PRR immunolocalization was increased in the glomerulus. The cortical expression of immature renin was markedly increased in SHRs compared to that in WKYs, while renin was significantly decreased. These changes were associated with higher plasma angiotensin II levels and lower plasma angiotensin (1-7) levels in SHRs. The results indicate that the kidneys of SHRs showed morphological changes and variations in cortical expression patterns of PRR, cyclooxygenase-2, and renin before the development of hypertension.
Collapse
Affiliation(s)
| | - Rocío Bautista-Pérez
- Instituto Nacional de Cardiología, "Dr. Ignacio Chávez," Ciudad de México, México
| | - Luis A Baiza-Gutman
- Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | | | | | | | | | | |
Collapse
|
23
|
Banu K, Lin Q, Basgen JM, Planoutene M, Wei C, Reghuvaran AC, Tian X, Shi H, Garzon F, Garzia A, Chun N, Cumpelik A, Santeusanio AD, Zhang W, Das B, Salem F, Li L, Ishibe S, Cantley LG, Kaufman L, Lemley KV, Ni Z, He JC, Murphy B, Menon MC. AMPK mediates regulation of glomerular volume and podocyte survival. JCI Insight 2021; 6:e150004. [PMID: 34473647 PMCID: PMC8525649 DOI: 10.1172/jci.insight.150004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Herein, we report that Shroom3 knockdown, via Fyn inhibition, induced albuminuria with foot process effacement (FPE) without focal segmental glomerulosclerosis (FSGS) or podocytopenia. Interestingly, knockdown mice had reduced podocyte volumes. Human minimal change disease (MCD), where podocyte Fyn inactivation was reported, also showed lower glomerular volumes than FSGS. We hypothesized that lower glomerular volume prevented the progression to podocytopenia. To test this hypothesis, we utilized unilateral and 5/6th nephrectomy models in Shroom3-KD mice. Knockdown mice exhibited less glomerular and podocyte hypertrophy after nephrectomy. FYN-knockdown podocytes had similar reductions in podocyte volume, implying that Fyn was downstream of Shroom3. Using SHROOM3 or FYN knockdown, we confirmed reduced podocyte protein content, along with significantly increased phosphorylated AMPK, a negative regulator of anabolism. AMPK activation resulted from increased cytoplasmic redistribution of LKB1 in podocytes. Inhibition of AMPK abolished the reduction in glomerular volume and induced podocytopenia in mice with FPE, suggesting a protective role for AMPK activation. In agreement with this, treatment of glomerular injury models with AMPK activators restricted glomerular volume, podocytopenia, and progression to FSGS. Glomerular transcriptomes from MCD biopsies also showed significant enrichment of Fyn inactivation and Ampk activation versus FSGS glomeruli. In summary, we demonstrated the important role of AMPK in glomerular volume regulation and podocyte survival. Our data suggest that AMPK activation adaptively regulates glomerular volume to prevent podocytopenia in the context of podocyte injury.
Collapse
Affiliation(s)
- Khadija Banu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Qisheng Lin
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - John M Basgen
- Morphometry and Stereology Laboratory, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
| | - Marina Planoutene
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anand C Reghuvaran
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xuefei Tian
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hongmei Shi
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Felipe Garzon
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, New York, USA
| | - Nicholas Chun
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Arun Cumpelik
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew D Santeusanio
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bhaskar Das
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Li Li
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shuta Ishibe
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lloyd G Cantley
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lewis Kaufman
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kevin V Lemley
- Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Barbara Murphy
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madhav C Menon
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
24
|
Quinlan C, Rheault MN. Genetic Basis of Type IV Collagen Disorders of the Kidney. Clin J Am Soc Nephrol 2021; 16:1101-1109. [PMID: 33849932 PMCID: PMC8425620 DOI: 10.2215/cjn.19171220] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The glomerular basement membrane is a vital component of the filtration barrier of the kidney and is primarily composed of a highly structured matrix of type IV collagen. Specific isoforms of type IV collagen, the α3(IV), α4(IV), and α5(IV) isoforms, assemble into trimers that are required for normal glomerular basement membrane function. Disruption or alteration in these isoforms leads to breakdown of the glomerular basement membrane structure and function and can lead to progressive CKD known as Alport syndrome. However, there is wide variability in phenotype among patients with mutations affecting type IV collagen that depends on a complex interplay of sex, genotype, and X-chromosome inactivation. This article reviews the genetic basis of collagen disorders of the kidney as well as potential treatments for these conditions, including direct alteration of the DNA, RNA therapies, and manipulation of collagen proteins.
Collapse
Affiliation(s)
- Catherine Quinlan
- Department of Nephrology, Royal Children’s Hospital, Melbourne, Victoria, Australia,Department of Kidney Regeneration, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Michelle N. Rheault
- Division of Pediatric Nephrology, Department of Pediatrics, University of Minnesota Masonic Children’s Hospital, Minneapolis, Minnesota
| |
Collapse
|
25
|
Maier JI, Rogg M, Helmstädter M, Sammarco A, Walz G, Werner M, Schell C. A Novel Model for Nephrotic Syndrome Reveals Associated Dysbiosis of the Gut Microbiome and Extramedullary Hematopoiesis. Cells 2021; 10:cells10061509. [PMID: 34203913 PMCID: PMC8232754 DOI: 10.3390/cells10061509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Glomerular kidney disease causing nephrotic syndrome is a complex systemic disorder and is associated with significant morbidity in affected patient populations. Despite its clinical relevance, well-established models are largely missing to further elucidate the implications of uncontrolled urinary protein loss. To overcome this limitation, we generated a novel, inducible, podocyte-specific transgenic mouse model (Epb41l5fl/fl*Nphs1-rtTA-3G*tetOCre), developing nephrotic syndrome in adult mice. Animals were comprehensively characterized, including microbiome analysis and multiplexed immunofluorescence imaging. Induced knockout mice developed a phenotype consistent with focal segmental glomerular sclerosis (FSGS). Although these mice showed hallmark features of severe nephrotic syndrome (including proteinuria, hypoalbuminemia and dyslipidemia), they did not exhibit overt chronic kidney disease (CKD) phenotypes. Analysis of the gut microbiome demonstrated distinct dysbiosis and highly significant enrichment of the Alistipes genus. Moreover, Epb41l5-deficient mice developed marked organ pathologies, including extramedullary hematopoiesis of the spleen. Multiplex immunofluorescence imaging demonstrated red pulp macrophage proliferation and mTOR activation as driving factors of hematopoietic niche expansion. Thus, this novel mouse model for adult-onset nephrotic syndrome reveals the significant impact of proteinuria on extra-renal manifestations, demonstrating the versatility of this model for nephrotic syndrome-related research.
Collapse
Affiliation(s)
- Jasmin I. Maier
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
| | - Manuel Rogg
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
| | - Martin Helmstädter
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (M.H.); (G.W.)
| | - Alena Sammarco
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
| | - Gerd Walz
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (M.H.); (G.W.)
| | - Martin Werner
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
| | - Christoph Schell
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, 79106 Freiburg, Germany; (J.I.M.); (M.R.); (A.S.); (M.W.)
- Correspondence:
| |
Collapse
|
26
|
Feng J, Bao L, Wang X, Li H, Chen Y, Xiao W, Li Z, Xie L, Lu W, Jiang H, Lee K, He JC. Low expression of HIV genes in podocytes accelerates the progression of diabetic kidney disease in mice. Kidney Int 2021; 99:914-925. [PMID: 33359498 PMCID: PMC8006538 DOI: 10.1016/j.kint.2020.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/11/2020] [Accepted: 12/07/2020] [Indexed: 01/22/2023]
Abstract
With the widespread use combination antiretroviral therapy, there has been a dramatic decrease in HIV-associated nephropathy. However, although the patients living with HIV have low or undetectable viral load, the prevalence of chronic kidney disease (CKD) in this population remains high. Additionally, improved survival is associated with aging-related comorbidities such as diabetes and cardiovascular disease. A faster progression of CKD is associated with concurrent HIV infection and diabetes than with HIV infection or diabetes alone. To explore the potential pathogenic mechanisms that synergistically drive CKD progression by diabetes and HIV infection, we generated a new mouse model with a relatively low expression of HIV-1 proviral genes specifically in podocytes (pod-HIV mice) to better mimic the setting of kidney injury in patients living with HIV. While no apparent kidney phenotypes were observed at baseline in pod-HIV mice, the induction of mild diabetic kidney disease with streptozotocin led to significant worsening of albuminuria, glomerular injury, podocyte loss, and kidney dysfunction as compared to the mice with diabetes alone. Mechanistically, diabetes and HIV-1 synergistically increased the glomerular expression of microRNA-34a (miR-34a), thereby reducing the expression of Sirtuin-1 (SIRT1) deacetylase. These changes were also associated with increased acetylation and activation of p53 and p65 NF-κB and with enhanced expression of senescence and inflammatory markers. The treatment of diabetic pod-HIV mice with the specific Sirtuin-1 agonist BF175 significantly attenuated albuminuria and glomerulopathy. Thus, our study highlights the reduction in Sirtuin-1 as a major basis of CKD progression in diabetic patients living with HIV and suggests Sirtuin-1 agonists as a potential therapy.
Collapse
Affiliation(s)
- Jie Feng
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Bao
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Xuan Wang
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Huilin Li
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Yuqiang Chen
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Wenzhen Xiao
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Zhengzhe Li
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Liyi Xie
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wanhong Lu
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongli Jiang
- Department of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Kyung Lee
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA.
| | - John Cijiang He
- Department of Medicine, Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, USA; Renal Section, James J. Peters VAMC, Bronx, New York, USA.
| |
Collapse
|
27
|
Xiao M, Bohnert BN, Aypek H, Kretz O, Grahammer F, Aukschun U, Wörn M, Janessa A, Essigke D, Daniel C, Amann K, Huber TB, Plow EF, Birkenfeld AL, Artunc F. Plasminogen deficiency does not prevent sodium retention in a genetic mouse model of experimental nephrotic syndrome. Acta Physiol (Oxf) 2021; 231:e13512. [PMID: 32455507 DOI: 10.1111/apha.13512] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
AIM Sodium retention is the hallmark of nephrotic syndrome (NS) and mediated by the proteolytic activation of the epithelial sodium channel (ENaC) by aberrantly filtered serine proteases. Plasmin is highly abundant in nephrotic urine and has been proposed to be the principal serine protease responsible for ENaC activation in NS. However, a proof of the essential role of plasmin in experimental NS is lacking. METHODS We used a genetic mouse model of NS based on an inducible podocin knockout (Bl6-Nphs2tm3.1Antc *Tg(Nphs1-rtTA*3G)8Jhm *Tg(tetO-cre)1Jaw or nphs2Δipod ). These mice were crossed with plasminogen deficient mice (Bl6-Plgtm1Jld or plg-/- ) to generate double knockout mice (nphs2Δipod *plg-/- ). NS was induced after oral doxycycline treatment for 14 days and mice were followed for subsequent 14 days. RESULTS Uninduced nphs2Δipod *plg-/- mice had normal kidney function and sodium handling. After induction, proteinuria increased similarly in both nphs2Δipod *plg+/+ and nphs2Δipod *plg-/- mice. Western blot revealed the urinary excretion of plasminogen and plasmin in nphs2Δipod *plg+/+ mice which were absent in nphs2Δipod *plg-/- mice. After the onset of proteinuria, amiloride-sensitive natriuresis was increased compared to the uninduced state in both genotypes. Subsequently, urinary sodium excretion dropped in both genotypes leading to an increase in body weight and development of ascites. Treatment with the serine protease inhibitor aprotinin prevented sodium retention in both genotypes. CONCLUSIONS This study shows that mice lacking urinary plasminogen are not protected from ENaC-mediated sodium retention in experimental NS. This points to an essential role of other urinary serine proteases in the absence of plasminogen.
Collapse
Affiliation(s)
- Mengyun Xiao
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tübingen Germany
| | - Bernhard N. Bohnert
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| | - Hande Aypek
- III. Department of Medicine University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Oliver Kretz
- III. Department of Medicine University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Florian Grahammer
- III. Department of Medicine University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Ute Aukschun
- IV. Department of Medicine, Faculty and University Medical Center Freiburg Freiburg Germany
| | - Matthias Wörn
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tübingen Germany
| | - Andrea Janessa
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tübingen Germany
| | - Daniel Essigke
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tübingen Germany
| | - Christoph Daniel
- Institute of Nephropathology Friedrich‐Alexander University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Kerstin Amann
- Institute of Nephropathology Friedrich‐Alexander University Erlangen‐Nürnberg (FAU) Erlangen Germany
| | - Tobias B. Huber
- III. Department of Medicine University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Edward F. Plow
- Lerner Research InstituteCleveland Clinic Cleveland OH USA
| | - Andreas L. Birkenfeld
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| | - Ferruh Artunc
- Department of Internal Medicine Division of Endocrinology, Diabetology and Nephrology University Hospital Tübingen Tübingen Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University Tübingen Tübingen Germany
- German Center for Diabetes Research (DZD) at the University Tübingen Tübingen Germany
| |
Collapse
|
28
|
Barral-Juez M, García-Rabaneda C, Poyatos-Andújar AM, Martínez-Atienza M, Morales-García AI, Morales-Santana S, Bellido-Díaz ML, Bravo-Soto JA, Esteban-de la Rosa RJ. Story of two sisters with kidney disease: genetics command. Nefrologia 2020; 42:S0211-6995(20)30151-X. [PMID: 33353754 DOI: 10.1016/j.nefro.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 11/16/2022] Open
Affiliation(s)
- Mikel Barral-Juez
- Sección de Genética Molecular, Hospital Universitario San Cecilio, Granada, España.
| | | | | | | | | | - Sonia Morales-Santana
- Servicio de Proteómica, Instituto de Investigación Biosanitaria, Ibs. Granada, Hospital Universitario San Cecilio, Granada, España
| | | | | | | |
Collapse
|
29
|
Abstract
The glomerular filtration barrier is a highly specialized capillary wall comprising fenestrated endothelial cells, podocytes, and an intervening basement membrane. In glomerular disease, this barrier loses functional integrity, allowing the passage of macromolecules and cells, and there are associated changes in both cell morphology and the extracellular matrix. Over the past 3 decades, there has been a transformation in our understanding about glomerular disease, fueled by genetic discovery, and this is leading to exciting advances in our knowledge about glomerular biology and pathophysiology. In current clinical practice, a genetic diagnosis already has important implications for management, ranging from estimating the risk of disease recurrence post-transplant to the life-changing advances in the treatment of atypical hemolytic uremic syndrome. Improving our understanding about the mechanistic basis of glomerular disease is required for more effective and personalized therapy options. In this review, we describe genotype and phenotype correlations for genetic disorders of the glomerular filtration barrier, with a particular emphasis on how these gene defects cluster by both their ontology and patterns of glomerular pathology.
Collapse
Affiliation(s)
- Anna S. Li
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Department of Nephrology, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jack F. Ingham
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Rachel Lennon
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
30
|
Abstract
The glomerular basement membrane (GBM) is a key component of the glomerular capillary wall and is essential for kidney filtration. The major components of the GBM include laminins, type IV collagen, nidogens and heparan sulfate proteoglycans. In addition, the GBM harbours a number of other structural and regulatory components and provides a reservoir for growth factors. New technologies have improved our ability to study the composition and assembly of basement membranes. We now know that the GBM is a complex macromolecular structure that undergoes key transitions during glomerular development. Defects in GBM components are associated with a range of hereditary human diseases such as Alport syndrome, which is caused by defects in the genes COL4A3, COL4A4 and COL4A5, and Pierson syndrome, which is caused by variants in LAMB2. In addition, the GBM is affected by acquired autoimmune disorders and metabolic diseases such as diabetes mellitus. Current treatments for diseases associated with GBM involvement aim to reduce intraglomerular pressure and to treat the underlying cause where possible. As our understanding about the maintenance and turnover of the GBM improves, therapies to replace GBM components or to stimulate GBM repair could translate into new therapies for patients with GBM-associated disease.
Collapse
|
31
|
Warady BA, Agarwal R, Bangalore S, Chapman A, Levin A, Stenvinkel P, Toto RD, Chertow GM. Alport Syndrome Classification and Management. Kidney Med 2020; 2:639-649. [PMID: 33094278 PMCID: PMC7568086 DOI: 10.1016/j.xkme.2020.05.014] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alport syndrome affects up to 60,000 people in the United States. The proposed reclassification of thin basement membrane nephropathy and some cases of focal segmental glomerulosclerosis as Alport syndrome could substantially increase the affected population. The reclassification scheme categorizes Alport syndrome as 3 distinct diseases of type IV collagen α3/4/5 based on a genetic evaluation: X-linked, autosomal, and digenic. This approach has the advantage of identifying patients at risk for progressive loss of kidney function. Furthermore, the shared molecular cause of Alport syndrome and thin basement membrane nephropathy arises from mutations in the COL4A3, COL4A4, and COL4A5 genes, which contribute to downstream pathophysiologic consequences, including chronic kidney inflammation. Recent evidence indicates that chronic inflammation and its regulation through anti-inflammatory nuclear factor erythroid 2-related factor 2 (Nrf2) and proinflammatory nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) transcription factors plays a central role in renal tubular and glomerular cell responses to injury. Crosstalk between the Nrf2 and NF-κB pathways is important in the regulation of inflammation in patients with chronic kidney disease; moreover, there is evidence that an insufficient Nrf2 response to inflammation contributes to disease progression. Given the association between type IV collagen abnormalities and chronic inflammation, there is renewed interest in targeted anti-inflammatory therapies in Alport syndrome and other forms of progressive chronic kidney disease.
Collapse
Affiliation(s)
- Bradley A Warady
- Division of Pediatric Nephrology, Children's Mercy Kansas City, Kansas City, MO
| | - Rajiv Agarwal
- Division of Nephrology, Indiana University, Indianapolis, IN
| | | | - Arlene Chapman
- Division of Nephrology, University of Chicago, Chicago, IL
| | - Adeera Levin
- Division of Nephrology, University of British Columbia, Vancouver, BC, Canada
| | | | - Robert D Toto
- Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX
| | | |
Collapse
|
32
|
Kashtan CE. An update on current and potential genetic insights and diagnosis of Alport syndrome. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1784722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Torra R, Furlano M. New therapeutic options for Alport syndrome. Nephrol Dial Transplant 2020; 34:1272-1279. [PMID: 31190059 DOI: 10.1093/ndt/gfz131] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Alport syndrome (AS) is the most frequent inherited kidney disease after autosomal dominant polycystic kidney disease. It has three different patterns of inheritance-autosomal dominant, autosomal recessive and X-linked-which in part explains the wide spectrum of disease, ranging from isolated microhaematuria to end-stage renal disease early in life. The search for a treatment for AS is being pursued vigorously, not only because of the obvious unmet need but also because AS is a rare disease and any drug approved will have an orphan drug designation with its various benefits. Moreover, AS patients are quite young with very few comorbidities, which facilitates clinical trials. This review identifies the particularities of each pattern of inheritance but focuses mainly on new drugs or therapeutic targets for the disease. Most treatment-related investigations are directed not at the main abnormality in AS, namely collagen IV composition, but rather at the associated inflammation and fibrosis. Thus, AS may serve as a proof of concept for numerous drugs of potential value in many diseases that cause chronic kidney disease.
Collapse
Affiliation(s)
- Roser Torra
- Inherited Renal Disorders, Nephrology Department, Fundació Puigvert, REDINREN, IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mónica Furlano
- Inherited Renal Disorders, Nephrology Department, Fundació Puigvert, REDINREN, IIB Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
34
|
Puelles VG, van der Wolde JW, Wanner N, Scheppach MW, Cullen-McEwen LA, Bork T, Lindenmeyer MT, Gernhold L, Wong MN, Braun F, Cohen CD, Kett MM, Kuppe C, Kramann R, Saritas T, van Roeyen CR, Moeller MJ, Tribolet L, Rebello R, Sun YB, Li J, Müller-Newen G, Hughson MD, Hoy WE, Person F, Wiech T, Ricardo SD, Kerr PG, Denton KM, Furic L, Huber TB, Nikolic-Paterson DJ, Bertram JF. mTOR-mediated podocyte hypertrophy regulates glomerular integrity in mice and humans. JCI Insight 2019; 4:99271. [PMID: 31534053 DOI: 10.1172/jci.insight.99271] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
The cellular origins of glomerulosclerosis involve activation of parietal epithelial cells (PECs) and progressive podocyte depletion. While mammalian target of rapamycin-mediated (mTOR-mediated) podocyte hypertrophy is recognized as an important signaling pathway in the context of glomerular disease, the role of podocyte hypertrophy as a compensatory mechanism preventing PEC activation and glomerulosclerosis remains poorly understood. In this study, we show that glomerular mTOR and PEC activation-related genes were both upregulated and intercorrelated in biopsies from patients with focal segmental glomerulosclerosis (FSGS) and diabetic nephropathy, suggesting both compensatory and pathological roles. Advanced morphometric analyses in murine and human tissues identified podocyte hypertrophy as a compensatory mechanism aiming to regulate glomerular functional integrity in response to somatic growth, podocyte depletion, and even glomerulosclerosis - all of this in the absence of detectable podocyte regeneration. In mice, pharmacological inhibition of mTOR signaling during acute podocyte loss impaired hypertrophy of remaining podocytes, resulting in unexpected albuminuria, PEC activation, and glomerulosclerosis. Exacerbated and persistent podocyte hypertrophy enabled a vicious cycle of podocyte loss and PEC activation, suggesting a limit to its beneficial effects. In summary, our data highlight a critical protective role of mTOR-mediated podocyte hypertrophy following podocyte loss in order to preserve glomerular integrity, preventing PEC activation and glomerulosclerosis.
Collapse
Affiliation(s)
- Victor G Puelles
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.,Department of Nephrology, Monash Health, Melbourne, Australia.,Center for Inflammatory Diseases, Monash University, Melbourne, Australia.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - James W van der Wolde
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Luise A Cullen-McEwen
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Tillmann Bork
- Renal Division, University Medical Center Freiburg, Freiburg, Germany
| | - Maja T Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Gernhold
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Milagros N Wong
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clemens D Cohen
- Nephrological Center Medical Clinic and Polyclinic IV, University of Munich, Munich, Germany
| | - Michelle M Kett
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | | | | | | | | | | | - Leon Tribolet
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Richard Rebello
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Yu By Sun
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Jinhua Li
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Michael D Hughson
- Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Wendy E Hoy
- Centre for Chronic Disease, The University of Queensland, Brisbane, Queensland, Australia
| | - Fermin Person
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sharon D Ricardo
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Peter G Kerr
- Department of Nephrology, Monash Health, Melbourne, Australia.,Center for Inflammatory Diseases, Monash University, Melbourne, Australia
| | - Kate M Denton
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Luc Furic
- Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia.,Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - David J Nikolic-Paterson
- Department of Nephrology, Monash Health, Melbourne, Australia.,Center for Inflammatory Diseases, Monash University, Melbourne, Australia
| | - John F Bertram
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| |
Collapse
|
35
|
Basement membrane collagens and disease mechanisms. Essays Biochem 2019; 63:297-312. [PMID: 31387942 PMCID: PMC6744580 DOI: 10.1042/ebc20180071] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 12/28/2022]
Abstract
Basement membranes (BMs) are specialised extracellular matrix (ECM) structures and collagens are a key component required for BM function. While collagen IV is the major BM collagen, collagens VI, VII, XV, XVII and XVIII are also present. Mutations in these collagens cause rare multi-systemic diseases but these collagens have also been associated with major common diseases including stroke. Developing treatments for these conditions will require a collective effort to increase our fundamental understanding of the biology of these collagens and the mechanisms by which mutations therein cause disease. Novel insights into pathomolecular disease mechanisms and cellular responses to these mutations has been exploited to develop proof-of-concept treatment strategies in animal models. Combined, these studies have also highlighted the complexity of the disease mechanisms and the need to obtain a more complete understanding of these mechanisms. The identification of pathomolecular mechanisms of collagen mutations shared between different disorders represent an attractive prospect for treatments that may be effective across phenotypically distinct disorders.
Collapse
|
36
|
Torban E, Braun F, Wanner N, Takano T, Goodyer PR, Lennon R, Ronco P, Cybulsky AV, Huber TB. From podocyte biology to novel cures for glomerular disease. Kidney Int 2019; 96:850-861. [PMID: 31420194 DOI: 10.1016/j.kint.2019.05.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/23/2019] [Accepted: 05/13/2019] [Indexed: 01/20/2023]
Abstract
The podocyte is a key component of the glomerular filtration barrier. Podocyte dysfunction is central to the underlying pathophysiology of many common glomerular diseases, including diabetic nephropathy, glomerulonephritis and genetic forms of nephrotic syndrome. Collectively, these conditions affect millions of people worldwide, and account for the majority of kidney diseases requiring dialysis and transplantation. The 12th International Podocyte Conference was held in Montreal, Canada from May 30 to June 2, 2018. The primary aim of this conference was to bring together nephrologists, clinician scientists, basic scientists and their trainees from all over the world to present their research and to establish networks with the common goal of developing new therapies for glomerular diseases based on the latest advances in podocyte biology. This review briefly highlights recent advances made in understanding podocyte structure and metabolism, experimental systems in which to study podocytes and glomerular disease, disease mediators, genetic and immune origins of glomerulopathies, and the development of novel therapeutic agents to protect podocyte and glomerular injury.
Collapse
Affiliation(s)
- Elena Torban
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada.
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tomoko Takano
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Paul R Goodyer
- Department of Pediatrics, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Pierre Ronco
- Sorbonne University, INSERM UMR_S 1155, and Nephrology and Dialysis Department, Hôpital Tenon, Paris France
| | - Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
37
|
Funk SD, Bayer RH, Miner JH. Endothelial cell-specific collagen type IV-α 3 expression does not rescue Alport syndrome in Col4a3 -/- mice. Am J Physiol Renal Physiol 2019; 316:F830-F837. [PMID: 30724107 PMCID: PMC6580247 DOI: 10.1152/ajprenal.00556.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 01/15/2023] Open
Abstract
The glomerular basement membrane (GBM) is a critical component of the kidney's blood filtration barrier. Alport syndrome, a hereditary disease leading to kidney failure, is caused by the loss or dysfunction of the GBM's major collagen type IV (COL4) isoform α3α4α5. The constituent COL4 α-chains assemble into heterotrimers in the endoplasmic reticulum before secretion into the extracellular space. If any one of the α3-, α4-, or α5-chains is lost due to mutation of one of the genes, then the entire heterotrimer is lost. Patients with Alport syndrome typically have mutations in the X-linked COL4A5 gene or uncommonly have the autosomal recessive form of the disease due to COL4A3 or COL4A4 mutations. Treatment for Alport syndrome is currently limited to angiotensin-converting enzyme inhibition or angiotensin receptor blockers. Experimental approaches in Alport mice have demonstrated that induced expression of COL4A3, either widely or specifically in podocytes of Col4a3-/- mice, can abrogate disease progression even after establishment of the abnormal GBM. While targeting podocytes in vivo for gene therapy is a significant challenge, the more accessible glomerular endothelium could be amenable for mutant gene repair. In the present study, we expressed COL4A3 in Col4a3-/- Alport mice using an endothelial cell-specific inducible transgenic system, but collagen-α3α4α5(IV) was not detected in the GBM or elsewhere, and the Alport phenotype was not rescued. Our results suggest that endothelial cells do not express the Col4a3/a4/a5 genes and should not be viewed as a target for gene therapy.
Collapse
Affiliation(s)
- Steven D Funk
- Department of Medicine, Division of Nephrology, Washington University School of Medicine , St. Louis, Missouri
| | - Raymond H Bayer
- Department of Medicine, Division of Nephrology, Washington University School of Medicine , St. Louis, Missouri
| | - Jeffrey H Miner
- Department of Medicine, Division of Nephrology, Washington University School of Medicine , St. Louis, Missouri
| |
Collapse
|
38
|
van Roeyen CRC, Martin IV, Drescher A, Schuett KA, Hermert D, Raffetseder U, Otten S, Buhl EM, Braun GS, Kuppe C, Liehn E, Boor P, Weiskirchen R, Eriksson U, Gross O, Eitner F, Floege J, Ostendorf T. Identification of platelet-derived growth factor C as a mediator of both renal fibrosis and hypertension. Kidney Int 2019; 95:1103-1119. [PMID: 30827511 DOI: 10.1016/j.kint.2018.11.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 11/15/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Platelet-derived growth factors (PDGF) have been implicated in kidney disease progression. We previously found that PDGF-C is upregulated at sites of renal fibrosis and that antagonism of PDGF-C reduces fibrosis in the unilateral ureteral obstruction model. We studied the role of PDGF-C in collagen 4A3-/- ("Alport") mice, a model of progressive renal fibrosis with greater relevance to human kidney disease. Alport mice were crossbred with PDGF-C-/- mice or administered a neutralizing PDGF-C antibody. Both PDGF-C deficiency and neutralization reduced serum creatinine and blood urea nitrogen levels and mitigated glomerular injury, renal fibrosis, and renal inflammation. Unexpectedly, systolic blood pressure was also reduced in both Alport and wild-type mice treated with a neutralizing PDGF-C antibody. Neutralization of PDGF-C reduced arterial wall thickness in the renal cortex of Alport mice. Aortic rings isolated from anti-PDGF-C-treated wildtype mice exhibited reduced tension and faster relaxation than those of untreated mice. In vitro, PDGF-C upregulated angiotensinogen in aortic tissue and in primary hepatocytes and induced nuclear factor κB (NFκB)/p65-binding to the angiotensinogen promoter in hepatocytes. Neutralization of PDGF-C suppressed transcript expression of angiotensinogen in Alport mice and angiotensin II receptor type 1 in Alport and wildtype mice. Finally, administration of neutralizing PDGF-C antibodies ameliorated angiotensin II-induced hypertension in healthy mice. Thus, in addition to its key role in mediating renal fibrosis, we identified PDGF-C as a mediator of hypertension via effects on renal vasculature and on the renin-angiotensin system. The contribution to both renal fibrosis and hypertension render PDGF-C an attractive target in progressive kidney disease.
Collapse
Affiliation(s)
- Claudia R C van Roeyen
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany.
| | - Ina V Martin
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Ana Drescher
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | | | - Daniela Hermert
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Ute Raffetseder
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Stephanie Otten
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Eva M Buhl
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Gerald S Braun
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Christoph Kuppe
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Elisa Liehn
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - Peter Boor
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry RWTH Aachen University, Aachen, Germany
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Gross
- Division of Nephrology and Rheumatology, University Medicine Göttingen, Göttingen, Germany
| | - Frank Eitner
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; Kidney Diseases Research, Bayer AG, Wuppertal, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Tammo Ostendorf
- Division of Nephrology and Clinical Immunology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| |
Collapse
|
39
|
Chen W, Tang D, Dai Y, Diao H. Establishment of microRNA, transcript and protein regulatory networks in Alport syndrome induced pluripotent stem cells. Mol Med Rep 2018; 19:238-250. [PMID: 30483741 PMCID: PMC6297794 DOI: 10.3892/mmr.2018.9672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/12/2018] [Indexed: 12/14/2022] Open
Abstract
Alport syndrome (AS) is an inherited progressive disease caused by mutations in genes encoding for the α3, α4 and α5 chains, which are an essential component of type IV collagen and are required for formation of the glomerular basement membrane. However, the underlying etiology of AS remains largely unknown, and the aim of the present study was to examine the genetic mechanisms in AS. Induced pluripotent stem cells (iPSCs) were generated from renal tubular cells. The Illumina HiSeq™ 2000 system and iTRAQ‑coupled 2D liquid chromatography‑tandem mass spectrometry were used to generate the sequences of microRNAs (miRNAs), transcripts and proteins from AS‑iPSCs. Integration of miRNA, transcript and protein expression data was used to construct regulatory networks and identify specific miRNA targets amongst the transcripts and proteins. Relative quantitative proteomics using iTRAQ technology revealed 383 differentially abundant proteins, and high‑throughput sequencing identified 155 differentially expressed miRNAs and 1,168 differentially expressed transcripts. Potential miRNA targets were predicted using miRanda, TargetScan and Pictar. All target proteins and transcripts were subjected to network analysis with miRNAs. Gene ontology analysis of the miRNAs and their targets revealed functional information on the iPSCs, including biological process and cell signaling. Kyoto Encyclopedia of Genes and Genomes pathways analysis revealed that the transcripts and proteins were primarily enriched in metabolic and cell adhesion molecule pathways. In addition, the network maps identified hsa‑miRNA (miR)‑4775 as a prominent miRNA that was associated with a number of targets. Similarly, the prominent ELV‑like protein 1‑A and epidermal growth factor receptor (EGFR)‑associated transcripts were identified. Reverse transcription‑quantitative polymerase chain reaction analysis was used to confirm the upregulation of hsa‑miR‑4775 and EGFR. The integrated approach used in the present study provided a comprehensive molecular characterization of AS. The results may also further understanding of the genetic pathogenesis of AS and facilitate the identification of candidate biomarkers for AS.
Collapse
Affiliation(s)
- Wenbiao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
40
|
Funk SD, Lin MH, Miner JH. Alport syndrome and Pierson syndrome: Diseases of the glomerular basement membrane. Matrix Biol 2018; 71-72:250-261. [PMID: 29673759 PMCID: PMC6146048 DOI: 10.1016/j.matbio.2018.04.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022]
Abstract
The glomerular basement membrane (GBM) is an important component of the kidney's glomerular filtration barrier. Like all basement membranes, the GBM contains type IV collagen, laminin, nidogen, and heparan sulfate proteoglycan. It is flanked by the podocytes and glomerular endothelial cells that both synthesize it and adhere to it. Mutations that affect the GBM's collagen α3α4α5(IV) components cause Alport syndrome (kidney disease with variable ear and eye defects) and its variants, including thin basement membrane nephropathy. Mutations in LAMB2 that impact the synthesis or function of laminin α5β2γ1 (LM-521) cause Pierson syndrome (congenital nephrotic syndrome with eye and neurological defects) and its less severe variants, including isolated congenital nephrotic syndrome. The very different types of kidney diseases that result from mutations in collagen IV vs. laminin are likely due to very different pathogenic mechanisms. A better understanding of these mechanisms should lead to targeted therapeutic approaches that can help people with these rare but important diseases.
Collapse
Affiliation(s)
- Steven D Funk
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Meei-Hua Lin
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jeffrey H Miner
- Division of Nephrology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
41
|
Zhang Y, Ding J. Renal, auricular, and ocular outcomes of Alport syndrome and their current management. Pediatr Nephrol 2018; 33:1309-1316. [PMID: 28864840 DOI: 10.1007/s00467-017-3784-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 08/01/2017] [Accepted: 08/10/2017] [Indexed: 01/27/2023]
Abstract
Alport syndrome is a hereditary glomerular basement membrane disease caused by mutations in the COL4A3/4/5 genes encoding the type IV collagen alpha 3-5 chains. Most cases of Alport syndrome are inherited as X-linked dominant, and some as autosomal recessive or autosomal dominant. The primary manifestations are hematuria, proteinuria, and progressive renal failure, whereas some patients present with sensorineural hearing loss and ocular abnormalities. Renin-angiotensin-aldosterone system blockade is proven to delay the onset of renal failure by reducing proteinuria. Renal transplantation is a curative treatment for patients who have progressed to end-stage renal disease. However, only supportive measures can be used to improve hearing loss and visual loss. Although both stem cell therapy and gene therapy aim to repair the basement membrane defects, technical difficulties require more research in Alport mice before clinical studies. Here, we review the renal, auricular, and ocular manifestations and outcomes of Alport syndrome and their current management.
Collapse
Affiliation(s)
- Yanqin Zhang
- Pediatric Department, Peking University First Hospital, Beijing, China
| | - Jie Ding
- Pediatric Department, Peking University First Hospital, Beijing, China.
| |
Collapse
|
42
|
Fertala J, Arita M, Steplewski A, Arnold WV, Fertala A. Epiphyseal growth plate architecture is unaffected by early postnatal activation of the expression of R992C collagen II mutant. Bone 2018; 112:42-50. [PMID: 29660427 DOI: 10.1016/j.bone.2018.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 11/29/2022]
Abstract
Spondyloepiphyseal dysplasia (SED) exemplifies a group of heritable diseases caused by mutations in collagenous proteins of the skeletal system. Its main feature is altered skeletal growth. Pathomechanisms of SED include: changes in the stability of collagen II molecules, inability to form proper collagen fibrils, excessive intracellular retention of mutant molecules, and endoplasmic reticulum stress. The complexity of this pathomechanism presents a challenge for designing therapies for SED. Our earlier research tested whether such therapies only succeed when applied during a limited window of development. Here, employing an inducible mouse model of SED caused by the R992C mutation in collagen II, we corroborate our earlier observations that a therapy must be applied at the prenatal or early postnatal stages of skeletal growth in order to be successful. Moreover, we demonstrate that blocking the expression of the R992C collagen II mutant at the early prenatal stages leads to long-term positive effects. Although, we could not precisely mark the start of the expression of the mutant, these effects are not significantly changed by switching on the mutant production at the early postnatal stages. By demonstrating the need for early therapeutic interventions, our study provides, for the first time, empirically-based directions for designing effective therapies for SED and, quite likely, for other skeletal dysplasias caused by mutations in key macromolecules of the skeletal system.
Collapse
Affiliation(s)
- Jolanta Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Machiko Arita
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrzej Steplewski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - William V Arnold
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
43
|
Omachi K, Kamura M, Teramoto K, Kojima H, Yokota T, Kaseda S, Kuwazuru J, Fukuda R, Koyama K, Matsuyama S, Motomura K, Shuto T, Suico MA, Kai H. A Split-Luciferase-Based Trimer Formation Assay as a High-throughput Screening Platform for Therapeutics in Alport Syndrome. Cell Chem Biol 2018. [PMID: 29526710 DOI: 10.1016/j.chembiol.2018.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alport syndrome is a hereditary glomerular disease caused by mutation in type IV collagen α3-α5 chains (α3-α5(IV)), which disrupts trimerization, leading to glomerular basement membrane degeneration. Correcting the trimerization of α3/α4/α5 chain is a feasible therapeutic approach, but is hindered by lack of information on the regulation of intracellular α(IV) chain and the absence of high-throughput screening (HTS) platforms to assess α345(IV) trimer formation. Here, we developed sets of split NanoLuc-fusion α345(IV) proteins to monitor α345(IV) trimerization of wild-type and clinically associated mutant α5(IV). The α345(IV) trimer assay, which satisfied the acceptance criteria for HTS, enabled the characterization of intracellular- and secretion-dependent defects of mutant α5(IV). Small interfering RNA-based and chemical screening targeting the ER identified several chemical chaperones that have potential to promote α345(IV) trimer formation. This split luciferase-based trimer formation assay is a functional HTS platform that realizes the feasibility of targeting α345(IV) trimers to treat Alport syndrome.
Collapse
Affiliation(s)
- Kohei Omachi
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan; Program for Leading Graduate School "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Misato Kamura
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan; Program for Leading Graduate School "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Keisuke Teramoto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan; Program for Leading Graduate School "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Haruka Kojima
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Tsubasa Yokota
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Shota Kaseda
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan; Program for Leading Graduate School "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Jun Kuwazuru
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Ryosuke Fukuda
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Kosuke Koyama
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Shingo Matsuyama
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Keishi Motomura
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan.
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan; Program for Leading Graduate School "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City 862-0973, Kumamoto, Japan.
| |
Collapse
|
44
|
Abstract
The glomerular basement membrane (GBM) is a specialized structure with a significant role in maintaining the glomerular filtration barrier. This GBM is formed from the fusion of two basement membranes during development and its function in the filtration barrier is achieved by key extracellular matrix components including type IV collagen, laminins, nidogens, and heparan sulfate proteoglycans. The characteristics of specific matrix isoforms such as laminin-521 (α5β2γ1) and the α3α4α5 chain of type IV collagen are essential for the formation of a mature GBM and the restricted tissue distribution of these isoforms makes the GBM a unique structure. Detailed investigation of the GBM has been driven by the identification of inherited abnormalities in matrix proteins and the need to understand pathogenic mechanisms causing severe glomerular disease. A well-described hereditary GBM disease is Alport syndrome, associated with a progressive glomerular disease, hearing loss, and lens defects due to mutations in the genes COL4A3, COL4A4, or COL4A5. Other proteins associated with inherited diseases of the GBM include laminin β2 in Pierson syndrome and LMX1B in nail patella syndrome. The knowledge of these genetic mutations associated with GBM defects has enhanced our understanding of cell-matrix signaling pathways affected in glomerular disease. This review will address current knowledge of GBM-associated abnormalities and related signaling pathways, as well as discussing the advances toward disease-targeted therapies for patients with glomerular disease.
Collapse
Affiliation(s)
- Christine Chew
- Faculty of Biology Medicine and Health, Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Rachel Lennon
- Faculty of Biology Medicine and Health, Wellcome Trust Centre for Cell-Matrix Research, Division of Cell Matrix Biology, School of Biological Sciences, University of Manchester, Manchester, United Kingdom.,Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
45
|
Abstract
Using a mouse model of Alport disease, Dufek et al. report that endothelial cell-derived endothelin-1 activates mesangial cells, which deposit abnormal laminin isoforms in the Alport glomerular basement membrane. This study extends findings obtained previously by this laboratory implicating mesangial cells in the early pathogenesis of Alport disease. Together with abnormalities in matrix receptor expression, cytoskeletal architecture, and proteinase secretion in podocytes, a clearer picture is emerging on the inception of proteinuria in Alport disease.
Collapse
|
46
|
Li SY, Park J, Qiu C, Han SH, Palmer MB, Arany Z, Susztak K. Increasing the level of peroxisome proliferator-activated receptor γ coactivator-1α in podocytes results in collapsing glomerulopathy. JCI Insight 2017; 2:92930. [PMID: 28724797 DOI: 10.1172/jci.insight.92930] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/06/2017] [Indexed: 01/07/2023] Open
Abstract
Inherited and acquired mitochondrial defects have been associated with podocyte dysfunction and chronic kidney disease (CKD). Peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α) is one of the main transcriptional regulators of mitochondrial biogenesis and function. We hypothesized that increasing PGC1α expression in podocytes could protect from CKD. We found that PGC1α and mitochondrial transcript levels are lower in podocytes of patients and mouse models with diabetic kidney disease (DKD). To increase PGC1α expression, podocyte-specific inducible PGC1α-transgenic mice were generated by crossing nephrin-rtTA mice with tetO-Ppargc1a animals. Transgene induction resulted in albuminuria and glomerulosclerosis in a dose-dependent manner. Expression of PGC1α in podocytes increased mitochondrial biogenesis and maximal respiratory capacity. PGC1α also shifted podocytes towards fatty acid usage from their baseline glucose preference. RNA sequencing analysis indicated that PGC1α induced podocyte proliferation. Histological lesions of mice with podocyte-specific PGC1α expression resembled collapsing focal segmental glomerular sclerosis. In conclusion, decreased podocyte PGC1α expression and mitochondrial content is a consistent feature of DKD, but excessive PGC1α alters mitochondrial properties and induces podocyte proliferation and dedifferentiation, indicating that there is likely a narrow therapeutic window for PGC1α levels in podocytes.
Collapse
Affiliation(s)
- Szu-Yuan Li
- Renal-Electrolyte and Hypertension Division of Department of Medicine, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jihwan Park
- Renal-Electrolyte and Hypertension Division of Department of Medicine, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Chengxiang Qiu
- Renal-Electrolyte and Hypertension Division of Department of Medicine, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Seung Hyeok Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | | | - Zoltan Arany
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Katalin Susztak
- Renal-Electrolyte and Hypertension Division of Department of Medicine, and Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
47
|
Wang D, Mohammad M, Wang Y, Tan R, Murray LS, Ricardo S, Dagher H, van Agtmael T, Savige J. The Chemical Chaperone, PBA, Reduces ER Stress and Autophagy and Increases Collagen IV α5 Expression in Cultured Fibroblasts From Men With X-Linked Alport Syndrome and Missense Mutations. Kidney Int Rep 2017; 2:739-748. [PMID: 29142990 PMCID: PMC5678609 DOI: 10.1016/j.ekir.2017.03.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 12/21/2022] Open
Abstract
Introduction X-linked Alport syndrome (OMIM 301050) is caused by COL4A5 missense variants in 40% of families. This study examined the effects of chemical chaperone treatment (sodium 4-phenylbutyrate) on fibroblast cell lines derived from men with missense mutations. Methods Dermal fibroblast cultures were established from 2 affected men and 3 normals. Proliferation rates were examined, the collagen IV α5 chain localized with immunostaining, and levels of the intra- and extracellular chains quantitated with an in-house enzyme-linked immunosorbent assay. COL4A5 mRNA was measured using quantitative reverse transcriptase polymerase chain reaction. Endoplasmic reticulum (ER) size was measured on electron micrographs and after HSP47 immunostaining. Markers of ER stress (ATF6, HSPA5, DDIT3), autophagy (ATG5, BECN1, ATG7), and apoptosis (CASP3, BAD, BCL2) were also quantitated by quantitative reverse transcriptase polymerase chain reaction. Measurements were repeated after 48 hours of incubation with 10 mM sodium 4-phenylbutyrate acid. Results Both COL4A5 missense variants were associated with reduced proliferation rates on day 6 (P = 0.01 and P = 0.03), ER enlargement, and increased mRNA for ER stress and autophagy (all P values < 0.05) when compared with normal. Sodium 4-phenylbutyrate treatment increased COL4A5 transcript levels (P < 0.01), and reduced ER size (P < 0.01 by EM and P < 0.001 by immunostaining), ER stress (p HSPA5 and DDIT3, all P values < 0.01) and autophagy (ATG7, P < 0.01). Extracellular collagen IV α5 chain was increased in the M1 line only (P = 0.06). Discussion Sodium 4-phenylbutyrate increases collagen IV α5 mRNA levels, reduces ER stress and autophagy, and possibly facilitates collagen IV α5 extracellular transport. Whether these actions delay end-stage renal failure in men with X-linked Alport syndrome and missense mutations will only be determined with clinical trials.
Collapse
Affiliation(s)
- Dongmao Wang
- The University of Melbourne, Department of Medicine (Northern Health and Melbourne Health), Melbourne, Victoria, Australia
| | - Mardhiah Mohammad
- The University of Melbourne, Department of Medicine (Northern Health and Melbourne Health), Melbourne, Victoria, Australia.,Department of Biomedical Science, International Islamic University of Malaysia, Kuala Lumpur, Selangor, Malaysia
| | - Yanyan Wang
- The University of Melbourne, Department of Medicine (Northern Health and Melbourne Health), Melbourne, Victoria, Australia
| | - Rachel Tan
- The University of Melbourne, Department of Medicine (Northern Health and Melbourne Health), Melbourne, Victoria, Australia
| | - Lydia S Murray
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Sharon Ricardo
- Department of Anatomy and Developmental Cell Biology, Monash University, Clayton, Victoria, Australia
| | - Hayat Dagher
- The University of Melbourne, Department of Medicine (Northern Health and Melbourne Health), Melbourne, Victoria, Australia
| | - Tom van Agtmael
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Judy Savige
- The University of Melbourne, Department of Medicine (Northern Health and Melbourne Health), Melbourne, Victoria, Australia
| |
Collapse
|
48
|
Beckerman P, Bi-Karchin J, Park ASD, Qiu C, Dummer PD, Soomro I, Boustany-Kari CM, Pullen SS, Miner JH, Hu CAA, Rohacs T, Inoue K, Ishibe S, Saleem MA, Palmer MB, Cuervo AM, Kopp JB, Susztak K. Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice. Nat Med 2017; 23:429-438. [PMID: 28218918 DOI: 10.1038/nm.4287] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
African Americans have a heightened risk of developing chronic and end-stage kidney disease, an association that is largely attributed to two common genetic variants, termed G1 and G2, in the APOL1 gene. Direct evidence demonstrating that these APOL1 risk alleles are pathogenic is still lacking because the APOL1 gene is present in only some primates and humans; thus it has been challenging to demonstrate experimental proof of causality of these risk alleles for renal disease. Here we generated mice with podocyte-specific inducible expression of the APOL1 reference allele (termed G0) or each of the risk-conferring alleles (G1 or G2). We show that mice with podocyte-specific expression of either APOL1 risk allele, but not of the G0 allele, develop functional (albuminuria and azotemia), structural (foot-process effacement and glomerulosclerosis) and molecular (gene-expression) changes that closely resemble human kidney disease. Disease development was cell-type specific and likely reversible, and the severity correlated with the level of expression of the risk allele. We further found that expression of the risk-variant APOL1 alleles interferes with endosomal trafficking and blocks autophagic flux, which ultimately leads to inflammatory-mediated podocyte death and glomerular scarring. In summary, this is the first demonstration that the expression of APOL1 risk alleles is causal for altered podocyte function and glomerular disease in vivo.
Collapse
Affiliation(s)
- Pazit Beckerman
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jing Bi-Karchin
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ae Seo Deok Park
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chengxiang Qiu
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patrick D Dummer
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Irfana Soomro
- Division of Nephrology, New York University, New York, New York, USA
| | - Carine M Boustany-Kari
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Steven S Pullen
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Jeffrey H Miner
- Division of Nephrology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Chien-An A Hu
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine and Health Sciences Center, Albuquerque, New Mexico, USA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology &Neuroscience, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Kazunori Inoue
- Division of Nephrology, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Shuta Ishibe
- Division of Nephrology, Yale University, School of Medicine, New Haven, Connecticut, USA
| | - Moin A Saleem
- Bristol Renal and Children's Renal Unit, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Matthew B Palmer
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ana Maria Cuervo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, New York, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
49
|
Prospects and limitations of improving skeletal growth in a mouse model of spondyloepiphyseal dysplasia caused by R992C (p.R1192C) substitution in collagen II. PLoS One 2017; 12:e0172068. [PMID: 28182776 PMCID: PMC5300241 DOI: 10.1371/journal.pone.0172068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/30/2017] [Indexed: 12/01/2022] Open
Abstract
Skeletal dysplasias form a group of skeletal disorders caused by mutations in macromolecules of cartilage and bone. The severity of skeletal dysplasias ranges from precocious arthropathy to perinatal lethality. Although the pathomechanisms of these disorders are generally well defined, the feasibility of repairing established aberrant skeletal tissues that developed in the presence of mutant molecules is currently unknown. Here, we employed a validated mouse model of spondyloepiphyseal dysplasia (SED) that enables temporal control of the production of the R992C (p.R1192C) collagen II mutant that causes this disease. Although in our earlier studies we determined that blocking the expression of this mutant at the early prenatal stages prevents a SED phenotype, the utility of blocking the R992C collagen II at the postnatal stages is not known. Here, by switching off the expression of R992C collagen II at various postnatal stages of skeletal development, we determined that significant improvements of cartilage and bone morphology were achieved only when blocking the production of the mutant molecules was initiated in newborn mice. Our study indicates that future therapies of skeletal dysplasias may require defining a specific time window when interventions should be applied to be successful.
Collapse
|
50
|
Abstract
In this commentary, I review recent advances in Alport syndrome genetics, diagnostics, and therapeutics. I also offer some opinions regarding strategies to optimize the early identification of affected individuals to promote early therapeutic intervention.
Collapse
Affiliation(s)
- Clifford Kashtan
- Department of Pediatrics, Division of Pediatric Nephrology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|